1 paper accepted to TAC

Our paper on global analysis of synchronization performance for power systems [1] has been accepted to IEEE Transactions on Automatic Control!

[1] [doi] F. Paganini and E. Mallada, “Global analysis of synchronization performance for power systems: bridging the theory-practice gap,” IEEE Transactions on Automatic Control, vol. 67, iss. 7, pp. 3007-3022, 2020.
[Bibtex] [Abstract] [Download PDF]

The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define –and compute in closed form– several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.

@article{pm2020tac,
  abstract = {The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define --and compute in closed form-- several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.},
  author = {Paganini, Fernando and Mallada, Enrique},
  doi = {10.1109/TAC.2019.2942536},
  grants = {CPS-1544771, AMPS-1736448, EPCN-1711188, CAREER-1752362, ENERGISE-DE-EE0008006},
  journal = {IEEE Transactions on Automatic Control},
  month = {7},
  number = {7},
  pages = {3007-3022},
  title = {Global analysis of synchronization performance for power systems: bridging the theory-practice gap},
  url = {https://mallada.ece.jhu.edu/pubs/2020-TAC-PM.pdf},
  volume = {67},
  year = {2020}
}

Seminar @ University of Colorado Boulder

I gave a talk on “Embracing Low Inertia in Power System Frequency Control: A Dynamic Droop Approach” at University of Colorado Boulder. Related publications include [1, 2, 3]

[1] [doi] F. Paganini and E. Mallada, “Global analysis of synchronization performance for power systems: bridging the theory-practice gap,” IEEE Transactions on Automatic Control, vol. 67, iss. 7, pp. 3007-3022, 2020.
[Bibtex] [Abstract] [Download PDF]

The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define –and compute in closed form– several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.

@article{pm2020tac,
  abstract = {The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define --and compute in closed form-- several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.},
  author = {Paganini, Fernando and Mallada, Enrique},
  doi = {10.1109/TAC.2019.2942536},
  grants = {CPS-1544771, AMPS-1736448, EPCN-1711188, CAREER-1752362, ENERGISE-DE-EE0008006},
  journal = {IEEE Transactions on Automatic Control},
  month = {7},
  number = {7},
  pages = {3007-3022},
  title = {Global analysis of synchronization performance for power systems: bridging the theory-practice gap},
  url = {https://mallada.ece.jhu.edu/pubs/2020-TAC-PM.pdf},
  volume = {67},
  year = {2020}
}
[2] Unknown bibtex entry with key [jpm2020tac]
[Bibtex]
[3] [doi] Y. Jiang, E. Cohn, P. Vorobev, and E. Mallada, “Storage-Based Frequency Shaping Control,” IEEE Transactions on Power Systems, pp. 1-13, 2021.
[Bibtex] [Abstract] [Download PDF]

With the decrease in system inertia, frequency security becomes an issue for power systems around the world. Energy storage systems (ESS), due to their excellent ramping capabilities, are considered as a natural choice for the improvement of frequency response following major contingencies. In this manuscript, we propose a new strategy for energy storage — frequency shaping control — that allows to completely eliminate the frequency Nadir, one of the main issue in frequency security, and at the same time tune the rate of change of frequency (RoCoF) to a desired value. With Nadir eliminated, the frequency security assessment can be performed via simple algebraic calculations, as opposed to dynamic simulations for conventional control strategies. Moreover, our proposed control is also very efficient in terms of the requirements on storage peak power, requiring up to 40% less power than conventional virtual inertia approach for the same performance.

@article{jcvm2021tps,
  abstract = {With the decrease in system inertia, frequency security becomes an issue for power systems around the world. Energy storage systems (ESS), due to their excellent ramping capabilities, are considered as a natural choice for the improvement of frequency response following major contingencies. In this manuscript, we propose a new strategy for energy storage -- frequency shaping control -- that allows to completely eliminate the frequency Nadir, one of the main issue in frequency security, and at the same time tune the rate of change of frequency (RoCoF) to a desired value. With Nadir eliminated, the frequency security assessment can be performed via simple algebraic calculations, as opposed to dynamic simulations for conventional control strategies. Moreover, our proposed control is also very efficient in terms of the requirements on storage peak power, requiring up to 40% less power than conventional virtual inertia approach for the same performance.},
  author = {Jiang, Yan and Cohn, Eliza and Vorobev, Petr and Mallada, Enrique},
  doi = {10.1109/TPWRS.2021.3072833},
  journal = {IEEE Transactions on Power Systems},
  month = {4},
  pages = {1-13},
  pubstate = {early access},
  record = {accepted Mar 2021, revised Oct 2020, submitted May 2020},
  title = {Storage-Based Frequency Shaping Control},
  url = {https://mallada.ece.jhu.edu/pubs/2021-TPS-JCVM.pdf},
  year = {2021}
}

Seminars and Talks in Asia

During my trip to Asia from Jul 29th to Aug 5th, I gave talks on “Embracing Low Inertia in Power System Frequency Control: A Dynamic Droop Approach” at Hong Kong University, Zhejiang University, Tsinghua University, and Beijing Institute of Technology. Related publications include [1, 2, 3]

[1] [doi] F. Paganini and E. Mallada, “Global analysis of synchronization performance for power systems: bridging the theory-practice gap,” IEEE Transactions on Automatic Control, vol. 67, iss. 7, pp. 3007-3022, 2020.
[Bibtex] [Abstract] [Download PDF]

The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define –and compute in closed form– several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.

@article{pm2020tac,
  abstract = {The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define --and compute in closed form-- several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.},
  author = {Paganini, Fernando and Mallada, Enrique},
  doi = {10.1109/TAC.2019.2942536},
  grants = {CPS-1544771, AMPS-1736448, EPCN-1711188, CAREER-1752362, ENERGISE-DE-EE0008006},
  journal = {IEEE Transactions on Automatic Control},
  month = {7},
  number = {7},
  pages = {3007-3022},
  title = {Global analysis of synchronization performance for power systems: bridging the theory-practice gap},
  url = {https://mallada.ece.jhu.edu/pubs/2020-TAC-PM.pdf},
  volume = {67},
  year = {2020}
}
[2] Unknown bibtex entry with key [jpm2020tac]
[Bibtex]
[3] [doi] Y. Jiang, E. Cohn, P. Vorobev, and E. Mallada, “Storage-Based Frequency Shaping Control,” IEEE Transactions on Power Systems, pp. 1-13, 2021.
[Bibtex] [Abstract] [Download PDF]

With the decrease in system inertia, frequency security becomes an issue for power systems around the world. Energy storage systems (ESS), due to their excellent ramping capabilities, are considered as a natural choice for the improvement of frequency response following major contingencies. In this manuscript, we propose a new strategy for energy storage — frequency shaping control — that allows to completely eliminate the frequency Nadir, one of the main issue in frequency security, and at the same time tune the rate of change of frequency (RoCoF) to a desired value. With Nadir eliminated, the frequency security assessment can be performed via simple algebraic calculations, as opposed to dynamic simulations for conventional control strategies. Moreover, our proposed control is also very efficient in terms of the requirements on storage peak power, requiring up to 40% less power than conventional virtual inertia approach for the same performance.

@article{jcvm2021tps,
  abstract = {With the decrease in system inertia, frequency security becomes an issue for power systems around the world. Energy storage systems (ESS), due to their excellent ramping capabilities, are considered as a natural choice for the improvement of frequency response following major contingencies. In this manuscript, we propose a new strategy for energy storage -- frequency shaping control -- that allows to completely eliminate the frequency Nadir, one of the main issue in frequency security, and at the same time tune the rate of change of frequency (RoCoF) to a desired value. With Nadir eliminated, the frequency security assessment can be performed via simple algebraic calculations, as opposed to dynamic simulations for conventional control strategies. Moreover, our proposed control is also very efficient in terms of the requirements on storage peak power, requiring up to 40% less power than conventional virtual inertia approach for the same performance.},
  author = {Jiang, Yan and Cohn, Eliza and Vorobev, Petr and Mallada, Enrique},
  doi = {10.1109/TPWRS.2021.3072833},
  journal = {IEEE Transactions on Power Systems},
  month = {4},
  pages = {1-13},
  pubstate = {early access},
  record = {accepted Mar 2021, revised Oct 2020, submitted May 2020},
  title = {Storage-Based Frequency Shaping Control},
  url = {https://mallada.ece.jhu.edu/pubs/2021-TPS-JCVM.pdf},
  year = {2021}
}

3 papers accepted to CDC 19

Our papers on strategic behavior of load participants in two-stage settlement electricity markets [1], model predictive control via second order cone programming [2], and dynamics concentration of tightly-connected networks [3] have been accepted to IEEE Conference on Decision and Control!

[1] [doi] P. You, D. F. Gayme, and E. Mallada, “The Role of Strategic Load Participants in Two-Stage Settlement Electricity Markets,” in 58th IEEE Conference on Decision and Control (CDC), 2019, pp. 8416-8422.
[Bibtex] [Abstract] [Download PDF]

We consider the problem of designing a feedback controller that guides the input and output of a linear timeinvariant system to a minimizer of a convex optimization problem. The system is subject to an unknown disturbance, piecewise constant in time, which shifts the feasible set defined by the system equilibrium constraints. Our proposed design combines proportional-integral control with gradient feedback, and enforces the Karush-Kuhn-Tucker optimality conditions in steady-state without incorporating dual variables into the controller. We prove that the input and output variables achieve optimality in steady-state, and provide a stability criterion based on absolute stability theory. The effectiveness of our approach is illustrated on a simple example system.

@inproceedings{ygm2019cdc,
  abstract = {We consider the problem of designing a feedback controller that guides the input and output of a linear timeinvariant system to a minimizer of a convex optimization problem. The system is subject to an unknown disturbance, piecewise constant in time, which shifts the feasible set defined by the system equilibrium constraints. Our proposed design combines proportional-integral control with gradient feedback, and enforces the Karush-Kuhn-Tucker optimality conditions in steady-state without incorporating dual variables into the controller. We prove that the input and output variables achieve optimality in steady-state, and provide a stability criterion based on absolute stability theory. The effectiveness of our approach is illustrated on a simple example system.},
  author = {You, Pengcheng and Gayme, Dennice F. and Mallada, Enrique},
  booktitle = {58th IEEE Conference on Decision and Control (CDC)},
  doi = {10.1109/CDC40024.2019.9029514},
  grants = {ARO-W911NF-17-1-0092, CPS-1544771, EPCN-1711188, CAREER-1752362, AMPS-1736448, ENERGISE-DE-EE0008006},
  month = {12},
  pages = {8416-8422},
  title = {The Role of Strategic Load Participants in Two-Stage Settlement Electricity Markets},
  url = {https://mallada.ece.jhu.edu/pubs/2019-CDC-YGM.pdf},
  year = {2019}
}
[2] [doi] H. Min and E. Mallada, “Dynamics Concentration of Tightly-Connected Large-Scale Networks,” in 58th IEEE Conference on Decision and Control (CDC), 2019, pp. 758-763.
[Bibtex] [Abstract] [Download PDF]

The ability to achieve coordinated behavior –engineered or emergent– on networked systems has attracted widespread interest over several fields. This has led to remarkable advances on the development of a theoretical understanding of the conditions under which agents within a network can reach agreement (consensus) or develop coordinated behaviors such as synchronization. However, fewer advances have been made toward explaining another commonly observed phenomena in tightly-connected networks systems: output responses of nodes in the networks are almost identical to each other despite heterogeneity in their individual dynamics. In this paper, we leverage tools from high-dimensional probability to provide an initial answer to this phenomena. More precisely, we show that for linear networks of nodal random transfer functions, as the networks size and connectivity grows, every node in the network follows the same response to an input or disturbance — irrespectively of the source of this input. We term this behavior as dynamics concentration as it stems from the fact that the network transfer matrix uniformly converges in probability to a unique dynamic response –i.e., it concentrates– determined by the distribution of the random transfer function of each node. We further discuss the implications of our analysis in the context of model reduction and robustness, and provide numerical evidence that similar phenomena occur in small deterministic networks over a properly defined frequency band.

@inproceedings{mm2019cdc,
  abstract = {The ability to achieve coordinated behavior --engineered or emergent--  on networked systems has attracted widespread interest over several fields. This has led to remarkable advances on the development of a theoretical understanding of the conditions under which agents within a network can reach agreement (consensus) or develop coordinated behaviors such as synchronization. However, fewer advances have been made toward explaining another commonly observed phenomena in tightly-connected networks systems: output responses of nodes in the networks are almost identical to each other despite heterogeneity in their individual dynamics. In this paper, we leverage tools from high-dimensional probability to provide an initial answer to this phenomena. More precisely, we show that for linear networks of nodal random transfer functions, as the networks size and connectivity grows, every node in the network follows the same response to an input or disturbance -- irrespectively of the source of this input. We term this behavior as dynamics concentration as it stems from the fact that the network transfer matrix uniformly converges in probability to a unique dynamic response --i.e., it concentrates-- determined by the distribution of the random transfer function of each node. We further discuss the implications of our analysis in the context of model reduction and robustness, and provide numerical evidence that similar phenomena occur in small deterministic networks over a properly defined frequency band.},
  author = {Min, Hancheng and Mallada, Enrique},
  booktitle = {58th IEEE Conference on Decision and Control (CDC)},
  doi = {10.1109/CDC40024.2019.9029796},
  grants = {ARO-W911NF-17-1-0092, CPS-1544771, EPCN-1711188, CAREER-1752362, AMPS-1736448, ENERGISE-DE-EE0008006},
  month = {12},
  pages = {758-763},
  title = {Dynamics Concentration of Tightly-Connected Large-Scale Networks},
  url = {https://mallada.ece.jhu.edu/pubs/2019-CDC-MM.pdf},
  year = {2019}
}
[3] [doi] J. Guthrie and E. Mallada, “Adversarial Model Predictive Control via Second Order Cone Programming,” in 58th IEEE Conference on Decision and Control (CDC), 2019, pp. 1403-1409.
[Bibtex] [Abstract] [Download PDF]

We study the problem of designing attacks to safety critical systems in which the adversary seeks to maximize the overall system cost within a model predictive control framework. Although in general this problem is NP-hard, we characterize a family of problems that can be solved in polynomial time via a second-order cone programming relaxation. In particular, we show that positive systems fall under this family. We provide examples demonstrating the design of optimal attacks on an autonomous vehicle and a microgrid.

@inproceedings{gm2019cdc,
  abstract = {We study the problem of designing attacks to safety critical systems in which the adversary seeks to maximize the overall system cost within a model predictive control framework. Although in general this problem is NP-hard, we characterize a family of problems that can be solved in polynomial time via a second-order cone programming relaxation. In particular, we show that positive systems fall under this family. We provide examples demonstrating the design of optimal attacks on an autonomous vehicle and a microgrid.},
  author = {Guthrie, James and Mallada, Enrique},
  booktitle = {58th IEEE Conference on Decision and Control (CDC)},
  doi = {10.1109/CDC40024.2019.9029244},
  grants = {ARO-W911NF-17-1-0092, CPS-1544771, EPCN-1711188, CAREER-1752362, AMPS-1736448},
  month = {12},
  pages = {1403-1409},
  title = {Adversarial Model Predictive Control via Second Order Cone Programming},
  url = {https://mallada.ece.jhu.edu/pubs/2019-CDC-GM.pdf},
  year = {2019}
}

Seminar @ Universidad ORT Uruguay

I gave a talk on “Embracing Low Inertia in Power System Frequency Control: A Dynamic Droop Approach” at Universidad ORT Uruguay. Related publications include [1, 2, 3]

[1] [doi] F. Paganini and E. Mallada, “Global analysis of synchronization performance for power systems: bridging the theory-practice gap,” IEEE Transactions on Automatic Control, vol. 67, iss. 7, pp. 3007-3022, 2020.
[Bibtex] [Abstract] [Download PDF]

The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define –and compute in closed form– several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.

@article{pm2020tac,
  abstract = {The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define --and compute in closed form-- several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.},
  author = {Paganini, Fernando and Mallada, Enrique},
  doi = {10.1109/TAC.2019.2942536},
  grants = {CPS-1544771, AMPS-1736448, EPCN-1711188, CAREER-1752362, ENERGISE-DE-EE0008006},
  journal = {IEEE Transactions on Automatic Control},
  month = {7},
  number = {7},
  pages = {3007-3022},
  title = {Global analysis of synchronization performance for power systems: bridging the theory-practice gap},
  url = {https://mallada.ece.jhu.edu/pubs/2020-TAC-PM.pdf},
  volume = {67},
  year = {2020}
}
[2] Unknown bibtex entry with key [jpm2020tac]
[Bibtex]
[3] [doi] Y. Jiang, E. Cohn, P. Vorobev, and E. Mallada, “Storage-Based Frequency Shaping Control,” IEEE Transactions on Power Systems, pp. 1-13, 2021.
[Bibtex] [Abstract] [Download PDF]

With the decrease in system inertia, frequency security becomes an issue for power systems around the world. Energy storage systems (ESS), due to their excellent ramping capabilities, are considered as a natural choice for the improvement of frequency response following major contingencies. In this manuscript, we propose a new strategy for energy storage — frequency shaping control — that allows to completely eliminate the frequency Nadir, one of the main issue in frequency security, and at the same time tune the rate of change of frequency (RoCoF) to a desired value. With Nadir eliminated, the frequency security assessment can be performed via simple algebraic calculations, as opposed to dynamic simulations for conventional control strategies. Moreover, our proposed control is also very efficient in terms of the requirements on storage peak power, requiring up to 40% less power than conventional virtual inertia approach for the same performance.

@article{jcvm2021tps,
  abstract = {With the decrease in system inertia, frequency security becomes an issue for power systems around the world. Energy storage systems (ESS), due to their excellent ramping capabilities, are considered as a natural choice for the improvement of frequency response following major contingencies. In this manuscript, we propose a new strategy for energy storage -- frequency shaping control -- that allows to completely eliminate the frequency Nadir, one of the main issue in frequency security, and at the same time tune the rate of change of frequency (RoCoF) to a desired value. With Nadir eliminated, the frequency security assessment can be performed via simple algebraic calculations, as opposed to dynamic simulations for conventional control strategies. Moreover, our proposed control is also very efficient in terms of the requirements on storage peak power, requiring up to 40% less power than conventional virtual inertia approach for the same performance.},
  author = {Jiang, Yan and Cohn, Eliza and Vorobev, Petr and Mallada, Enrique},
  doi = {10.1109/TPWRS.2021.3072833},
  journal = {IEEE Transactions on Power Systems},
  month = {4},
  pages = {1-13},
  pubstate = {early access},
  record = {accepted Mar 2021, revised Oct 2020, submitted May 2020},
  title = {Storage-Based Frequency Shaping Control},
  url = {https://mallada.ece.jhu.edu/pubs/2021-TPS-JCVM.pdf},
  year = {2021}
}

The Mathematics of Energy Systems Workshop

I gave a talk on “Embracing Low Inertia in Power System Frequency Control: A Dynamic Droop Approach” at The Mathematics of Energy Systems Workshop in Issac Newton Institute for Mathematical Sciences. Related publications include [1, 2, 3]

[1] [doi] F. Paganini and E. Mallada, “Global analysis of synchronization performance for power systems: bridging the theory-practice gap,” IEEE Transactions on Automatic Control, vol. 67, iss. 7, pp. 3007-3022, 2020.
[Bibtex] [Abstract] [Download PDF]

The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define –and compute in closed form– several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.

@article{pm2020tac,
  abstract = {The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define --and compute in closed form-- several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.},
  author = {Paganini, Fernando and Mallada, Enrique},
  doi = {10.1109/TAC.2019.2942536},
  grants = {CPS-1544771, AMPS-1736448, EPCN-1711188, CAREER-1752362, ENERGISE-DE-EE0008006},
  journal = {IEEE Transactions on Automatic Control},
  month = {7},
  number = {7},
  pages = {3007-3022},
  title = {Global analysis of synchronization performance for power systems: bridging the theory-practice gap},
  url = {https://mallada.ece.jhu.edu/pubs/2020-TAC-PM.pdf},
  volume = {67},
  year = {2020}
}
[2] Unknown bibtex entry with key [jpm2020tac]
[Bibtex]
[3] [doi] Y. Jiang, E. Cohn, P. Vorobev, and E. Mallada, “Storage-Based Frequency Shaping Control,” IEEE Transactions on Power Systems, pp. 1-13, 2021.
[Bibtex] [Abstract] [Download PDF]

With the decrease in system inertia, frequency security becomes an issue for power systems around the world. Energy storage systems (ESS), due to their excellent ramping capabilities, are considered as a natural choice for the improvement of frequency response following major contingencies. In this manuscript, we propose a new strategy for energy storage — frequency shaping control — that allows to completely eliminate the frequency Nadir, one of the main issue in frequency security, and at the same time tune the rate of change of frequency (RoCoF) to a desired value. With Nadir eliminated, the frequency security assessment can be performed via simple algebraic calculations, as opposed to dynamic simulations for conventional control strategies. Moreover, our proposed control is also very efficient in terms of the requirements on storage peak power, requiring up to 40% less power than conventional virtual inertia approach for the same performance.

@article{jcvm2021tps,
  abstract = {With the decrease in system inertia, frequency security becomes an issue for power systems around the world. Energy storage systems (ESS), due to their excellent ramping capabilities, are considered as a natural choice for the improvement of frequency response following major contingencies. In this manuscript, we propose a new strategy for energy storage -- frequency shaping control -- that allows to completely eliminate the frequency Nadir, one of the main issue in frequency security, and at the same time tune the rate of change of frequency (RoCoF) to a desired value. With Nadir eliminated, the frequency security assessment can be performed via simple algebraic calculations, as opposed to dynamic simulations for conventional control strategies. Moreover, our proposed control is also very efficient in terms of the requirements on storage peak power, requiring up to 40% less power than conventional virtual inertia approach for the same performance.},
  author = {Jiang, Yan and Cohn, Eliza and Vorobev, Petr and Mallada, Enrique},
  doi = {10.1109/TPWRS.2021.3072833},
  journal = {IEEE Transactions on Power Systems},
  month = {4},
  pages = {1-13},
  pubstate = {early access},
  record = {accepted Mar 2021, revised Oct 2020, submitted May 2020},
  title = {Storage-Based Frequency Shaping Control},
  url = {https://mallada.ece.jhu.edu/pubs/2021-TPS-JCVM.pdf},
  year = {2021}
}

Panel Session @ IEEE ISGT 19

I gave a talk on “Dynamic Droop Control for Low Inertia Power Systems” in the Panel session at IEEE ISGT 2019. Related publications include [1, 2, 3, 4]

[1] [doi] F. Paganini and E. Mallada, “Global analysis of synchronization performance for power systems: bridging the theory-practice gap,” IEEE Transactions on Automatic Control, vol. 67, iss. 7, pp. 3007-3022, 2020.
[Bibtex] [Abstract] [Download PDF]

The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define –and compute in closed form– several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.

@article{pm2020tac,
  abstract = {The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define --and compute in closed form-- several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.},
  author = {Paganini, Fernando and Mallada, Enrique},
  doi = {10.1109/TAC.2019.2942536},
  grants = {CPS-1544771, AMPS-1736448, EPCN-1711188, CAREER-1752362, ENERGISE-DE-EE0008006},
  journal = {IEEE Transactions on Automatic Control},
  month = {7},
  number = {7},
  pages = {3007-3022},
  title = {Global analysis of synchronization performance for power systems: bridging the theory-practice gap},
  url = {https://mallada.ece.jhu.edu/pubs/2020-TAC-PM.pdf},
  volume = {67},
  year = {2020}
}
[2] Unknown bibtex entry with key [jpm2019a-preprint]
[Bibtex]
[3] [doi] Y. Jiang, R. Pates, and E. Mallada, “Performance tradeoffs of dynamically controlled grid-connected inverters in low inertia power systems,” in 56th IEEE Conference on Decision and Control (CDC), 2017, pp. 5098-5105.
[Bibtex] [Abstract] [Download PDF]

Implementing frequency response using grid-connected inverters is one of the popular proposed alternatives to mitigate the dynamic degradation experienced in low inertia power systems. However, such solution faces several challenges as inverters do not intrinsically possess the natural response to power fluctuations that synchronous generators have. Thus, to synthetically generate this response, inverters need to take frequency measurements, which are usually noisy, and subsequently make changes in the output power, which are therefore delayed. This paper explores the system-wide performance tradeoffs that arise when measurement noise, delayed actions, and power disturbances are considered in the design of dynamic controllers for grid-connected inverters. Using a recently proposed dynamic droop (iDroop) control for grid-connected inverters that is inspired by classical first order lead-lag compensation, we show that the sets of parameters that result in highest noise attenuation, power disturbance mitigation, and delay robustness do not necessarily have a common intersection. In particular, lead compensation is desired in systems where power disturbances are the predominant source of degradation, while lag compensation is a better alternative when the system is dominated by delays or frequency noise. Our analysis further shows that iDroop can outperform the standard droop alternative in both joint noise and disturbance mitigation, and delay robustness.

@inproceedings{jpm2017cdc,
  abstract = {Implementing frequency response using grid-connected inverters is one of the popular proposed alternatives to mitigate the dynamic degradation experienced in low inertia power systems. However, such solution faces several challenges as inverters do not intrinsically possess the natural response to power fluctuations that synchronous generators have. Thus, to synthetically generate this response, inverters need to take frequency measurements, which are usually noisy, and subsequently make changes in the output power, which are therefore delayed. This paper explores the system-wide performance tradeoffs that arise when measurement noise, delayed actions, and power disturbances are considered in the design of dynamic controllers for grid-connected inverters. 
Using a recently proposed dynamic droop (iDroop) control for grid-connected inverters that is inspired by classical first order lead-lag compensation, we show that the sets of parameters that result in highest noise attenuation, power disturbance mitigation, and delay robustness do not necessarily have a common intersection. In particular, lead compensation is desired in systems where power disturbances are the predominant source of degradation, while lag compensation is a better alternative when the system is dominated by delays or frequency noise. Our analysis further shows that iDroop can outperform the standard droop alternative in both joint noise and disturbance mitigation, and delay robustness.},
  author = {Jiang, Yan and Pates, Richard and Mallada, Enrique},
  booktitle = {56th IEEE Conference on Decision and Control (CDC)},
  doi = {10.1109/CDC.2017.8264414},
  grants = {1544771, 1711188, W911NF-17-1-0092},
  keywords = {Power Networks},
  month = {12},
  pages = {5098-5105},
  title = {Performance tradeoffs of dynamically controlled grid-connected inverters in low inertia power systems},
  url = {https://mallada.ece.jhu.edu/pubs/2017-CDC-JPM.pdf},
  year = {2017}
}
[4] [doi] E. Mallada, “iDroop: A dynamic droop controller to decouple power grid’s steady-state and dynamic performance,” in 55th IEEE Conference on Decision and Control (CDC), 2016, pp. 4957-4964.
[Bibtex] [Abstract] [Download PDF]

This paper presents a novel Dynam-i-c Droop (iDroop) control mechanism to perform primary frequency control with gird-connected inverters that improves the network dynamic performance while maintaining the same steady-state characteristics of droop control. The work is motivated by the increasing dynamic degradation experienced by the power grid due to the increment on asynchronous inverted-based generation. We show that the widely suggested virtual inertia solution suffers from unbounded noise amplification (infinite H2 norm) and therefore could potentially degrade further the grid performance once widely deployed. This motivates the proposed solution on this paper that over- comes the limitations of virtual inertia controllers while sharing the same advantages of traditional droop control. In particular, our iDroop controllers are decentralized, rebalance supply and demand, and provide power sharing. Furthermore, our solution improves the dynamic performance without affecting the steady state solution. Our algorithm can be incrementally deployed and can be guaranteed to be stable using a decentralized sufficient stability condition on the parameter values. We illustrate several features of our solution using numerical simulations.

@inproceedings{m2016cdc,
  abstract = {This paper presents a novel Dynam-i-c Droop (iDroop) control mechanism to perform primary frequency control with gird-connected inverters that improves the network dynamic performance while maintaining the same steady-state characteristics of droop control. The work is motivated by the increasing dynamic degradation experienced by the power grid due to the increment on asynchronous inverted-based generation. We show that the widely suggested virtual inertia solution suffers from unbounded noise amplification (infinite H2 norm) and therefore could potentially degrade further the grid performance once widely deployed.
This motivates the proposed solution on this paper that over- comes the limitations of virtual inertia controllers while sharing the same advantages of traditional droop control. In particular, our iDroop controllers are decentralized, rebalance supply and demand, and provide power sharing. Furthermore, our solution improves the dynamic performance without affecting the steady state solution. Our algorithm can be incrementally deployed and can be guaranteed to be stable using a decentralized sufficient stability condition on the parameter values. We illustrate several features of our solution using numerical simulations.},
  author = {Mallada, Enrique},
  booktitle = {55th IEEE Conference on Decision and Control (CDC)},
  doi = {10.1109/CDC.2016.7799027},
  grants = {1544771},
  keywords = {Power Networks},
  month = {12},
  pages = {4957-4964},
  title = {iDroop: A dynamic droop controller to decouple power grid's steady-state and dynamic performance},
  url = {https://mallada.ece.jhu.edu/pubs/2016-CDC-M.pdf},
  year = {2016}
}

Invited Session @ FEPSET 19

I gave a talk on “Dynamic Droop Control for Low Inertia Power Systems” in the invited session at Future Electric Power Systems and the Energy Transition 2019. Related publications include [1, 2, 3, 4]

[1] [doi] F. Paganini and E. Mallada, “Global analysis of synchronization performance for power systems: bridging the theory-practice gap,” IEEE Transactions on Automatic Control, vol. 67, iss. 7, pp. 3007-3022, 2020.
[Bibtex] [Abstract] [Download PDF]

The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define –and compute in closed form– several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.

@article{pm2020tac,
  abstract = {The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define --and compute in closed form-- several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.},
  author = {Paganini, Fernando and Mallada, Enrique},
  doi = {10.1109/TAC.2019.2942536},
  grants = {CPS-1544771, AMPS-1736448, EPCN-1711188, CAREER-1752362, ENERGISE-DE-EE0008006},
  journal = {IEEE Transactions on Automatic Control},
  month = {7},
  number = {7},
  pages = {3007-3022},
  title = {Global analysis of synchronization performance for power systems: bridging the theory-practice gap},
  url = {https://mallada.ece.jhu.edu/pubs/2020-TAC-PM.pdf},
  volume = {67},
  year = {2020}
}
[2] Unknown bibtex entry with key [jpm2019a-preprint]
[Bibtex]
[3] [doi] Y. Jiang, R. Pates, and E. Mallada, “Performance tradeoffs of dynamically controlled grid-connected inverters in low inertia power systems,” in 56th IEEE Conference on Decision and Control (CDC), 2017, pp. 5098-5105.
[Bibtex] [Abstract] [Download PDF]

Implementing frequency response using grid-connected inverters is one of the popular proposed alternatives to mitigate the dynamic degradation experienced in low inertia power systems. However, such solution faces several challenges as inverters do not intrinsically possess the natural response to power fluctuations that synchronous generators have. Thus, to synthetically generate this response, inverters need to take frequency measurements, which are usually noisy, and subsequently make changes in the output power, which are therefore delayed. This paper explores the system-wide performance tradeoffs that arise when measurement noise, delayed actions, and power disturbances are considered in the design of dynamic controllers for grid-connected inverters. Using a recently proposed dynamic droop (iDroop) control for grid-connected inverters that is inspired by classical first order lead-lag compensation, we show that the sets of parameters that result in highest noise attenuation, power disturbance mitigation, and delay robustness do not necessarily have a common intersection. In particular, lead compensation is desired in systems where power disturbances are the predominant source of degradation, while lag compensation is a better alternative when the system is dominated by delays or frequency noise. Our analysis further shows that iDroop can outperform the standard droop alternative in both joint noise and disturbance mitigation, and delay robustness.

@inproceedings{jpm2017cdc,
  abstract = {Implementing frequency response using grid-connected inverters is one of the popular proposed alternatives to mitigate the dynamic degradation experienced in low inertia power systems. However, such solution faces several challenges as inverters do not intrinsically possess the natural response to power fluctuations that synchronous generators have. Thus, to synthetically generate this response, inverters need to take frequency measurements, which are usually noisy, and subsequently make changes in the output power, which are therefore delayed. This paper explores the system-wide performance tradeoffs that arise when measurement noise, delayed actions, and power disturbances are considered in the design of dynamic controllers for grid-connected inverters. 
Using a recently proposed dynamic droop (iDroop) control for grid-connected inverters that is inspired by classical first order lead-lag compensation, we show that the sets of parameters that result in highest noise attenuation, power disturbance mitigation, and delay robustness do not necessarily have a common intersection. In particular, lead compensation is desired in systems where power disturbances are the predominant source of degradation, while lag compensation is a better alternative when the system is dominated by delays or frequency noise. Our analysis further shows that iDroop can outperform the standard droop alternative in both joint noise and disturbance mitigation, and delay robustness.},
  author = {Jiang, Yan and Pates, Richard and Mallada, Enrique},
  booktitle = {56th IEEE Conference on Decision and Control (CDC)},
  doi = {10.1109/CDC.2017.8264414},
  grants = {1544771, 1711188, W911NF-17-1-0092},
  keywords = {Power Networks},
  month = {12},
  pages = {5098-5105},
  title = {Performance tradeoffs of dynamically controlled grid-connected inverters in low inertia power systems},
  url = {https://mallada.ece.jhu.edu/pubs/2017-CDC-JPM.pdf},
  year = {2017}
}
[4] [doi] E. Mallada, “iDroop: A dynamic droop controller to decouple power grid’s steady-state and dynamic performance,” in 55th IEEE Conference on Decision and Control (CDC), 2016, pp. 4957-4964.
[Bibtex] [Abstract] [Download PDF]

This paper presents a novel Dynam-i-c Droop (iDroop) control mechanism to perform primary frequency control with gird-connected inverters that improves the network dynamic performance while maintaining the same steady-state characteristics of droop control. The work is motivated by the increasing dynamic degradation experienced by the power grid due to the increment on asynchronous inverted-based generation. We show that the widely suggested virtual inertia solution suffers from unbounded noise amplification (infinite H2 norm) and therefore could potentially degrade further the grid performance once widely deployed. This motivates the proposed solution on this paper that over- comes the limitations of virtual inertia controllers while sharing the same advantages of traditional droop control. In particular, our iDroop controllers are decentralized, rebalance supply and demand, and provide power sharing. Furthermore, our solution improves the dynamic performance without affecting the steady state solution. Our algorithm can be incrementally deployed and can be guaranteed to be stable using a decentralized sufficient stability condition on the parameter values. We illustrate several features of our solution using numerical simulations.

@inproceedings{m2016cdc,
  abstract = {This paper presents a novel Dynam-i-c Droop (iDroop) control mechanism to perform primary frequency control with gird-connected inverters that improves the network dynamic performance while maintaining the same steady-state characteristics of droop control. The work is motivated by the increasing dynamic degradation experienced by the power grid due to the increment on asynchronous inverted-based generation. We show that the widely suggested virtual inertia solution suffers from unbounded noise amplification (infinite H2 norm) and therefore could potentially degrade further the grid performance once widely deployed.
This motivates the proposed solution on this paper that over- comes the limitations of virtual inertia controllers while sharing the same advantages of traditional droop control. In particular, our iDroop controllers are decentralized, rebalance supply and demand, and provide power sharing. Furthermore, our solution improves the dynamic performance without affecting the steady state solution. Our algorithm can be incrementally deployed and can be guaranteed to be stable using a decentralized sufficient stability condition on the parameter values. We illustrate several features of our solution using numerical simulations.},
  author = {Mallada, Enrique},
  booktitle = {55th IEEE Conference on Decision and Control (CDC)},
  doi = {10.1109/CDC.2016.7799027},
  grants = {1544771},
  keywords = {Power Networks},
  month = {12},
  pages = {4957-4964},
  title = {iDroop: A dynamic droop controller to decouple power grid's steady-state and dynamic performance},
  url = {https://mallada.ece.jhu.edu/pubs/2016-CDC-M.pdf},
  year = {2016}
}