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Abstract— We develop an optimization-based framework for
joint real-time trajectory planning and feedback control of
feedback-linearizable systems. To achieve this goal, we define
a target trajectory as the optimal solution of a time-varying
optimization problem. In general, however, such trajectory may
not be feasible due to, e.g., nonholonomic constraints. To solve
this problem, we design a control law that generates feasible
trajectories that asymptotically converge to the target trajec-
tory. More precisely, for systems that are (dynamic) full-state
linearizable, the proposed control law implicitly transforms the
nonlinear system into an optimization algorithm of sufficiently
high order. We prove global exponential convergence to the
target trajectory for both the optimization algorithm and the
original system. We illustrate the effectiveness of our proposed
method on multi-object or multi-agent tracking problems with
constraints.

Index Terms— Time-varying optimization, motion planning,
feedback linearization

I. INTRODUCTION

The ability to design and execute safe trajectories for
nonlinear systems constitutes one of the major pillars to-
wards the development of autonomous systems [1]–[8]. Thus,
not surprisingly, motion planning and control has been an
increasingly popular subject of research in both industry
and academia [2]–[10]. In general, this problem is usually
solved in a two stage-approach. The first stage, known as
motion planning, designs trajectories — usually by solving
an optimization problem — that are feasible, or in other
words, trajectories that account for obstacles and system
constraints [5]–[8]. In the second stage, feedback controllers
are designed to track the designed trajectories and account
for system uncertainties and disturbances [2], [3], [8], [9].

While in general this approach has been quite successful,
it requires the planning problem to be solved quickly enough
to account for time varying environments. Thus, it imposes
limits on the complexity of the optimization problem that im-
plements motion planning. In particular, when implemented
in real-time, motion planning usually amounts to linear [6]
or quadratic optimization problems [10], and rarely involves
more than one agent at a time. In this work, we seek to
alleviate these limitations by combining the planning and
tracking stages.
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More precisely, we seek to develop a time-varying op-
timization based framework for joint real-time trajectory
planning and feedback control of a nonlinear dynamical
system. To achieve this goal, we first define a target tra-
jectory; i.e., a minimizing path, as the optimal solution of a
time-varying optimization problem. Although in principle the
target trajectory may not be feasible due to initial conditions
or nonholonomic constraints, we overcome this problem by
designing a control law that exponentially drives the system
towards the target trajectory. For nonlinear systems that
are dynamic full-state linearizable, we accomplish this by
designing a control law that transforms the nonlinear system
into an optimization algorithm.

Our work broadly aligns with the extensive research
recently performed at the intersection of optimization and
traditional control theory [11]–[13], and more precisely with
recent works trying to eliminate the time-scale separation
usually present between optimization and control [14]–[16].
In many practical settings of robot control, especially when
designing control laws for multi-robot system tracking of
moving objects [17], [18], the optimization problems are
not stationary (i.e., time-invariant), as the objective function
and/or the constraints depend explicitly on time. Such time-
varying optimization problems with or without constraints
have been studied in both continuous [19] and discrete
time settings [20] using prediction-correction algorithms. Our
work here can be understood as an extension of these ideas
to accommodate non-trivial system dynamics.

The rest of the paper is organized as follows. Section II
introduces some preliminary definitions, including feedback
linearization, which means a system can be transformed
into a linear system by a state diffeomorphism, its dynamic
feedback extension, and elementary analysis of Hurwitz
linear systems. Then, in Section III, we formally state the
problem and present two motivating example with different
system dynamics (integrator and wheeled mobile robot). The
main contribution of this paper is contained in Section IV,
where we use a prediction-correction algorithm for the time-
varying optimization and feedback linearization to satisfy
the design requirement. We design a control law which (i)
implicitly defines a target trajectory as the optimal solution of
a time-varying optimization problem, and (ii) asymptotically
drives the system to the target trajectory. Finally, we illustrate
the effectiveness of our approach in two examples, one where
a wheeled mobile robot switches from tracking one moving
object to another (Section V-A), and another where multiple
agents must track multiple objects with internal distance
constraints (Section V-B).
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Notation: Given an n-tuple (x1, ..., xn), x ∈ Rn is the
associated column vector. The n × n identity matrix is
denoted as In. For a square symmetric matrix A, is positive
(semi-)definite, and write A � 0 (A � 0), if and only if all
the eigenvalues of A are positive (nonnegative). We further
write A � B (A � B) whenever A−B � 0 (A−B � 0).
The Frobenius norm of a vector x is denoted by ‖x‖2, and
the Euclidean norm of a matrix A by ‖A‖2.

Given a continuously differentiable function f(x, t) of
state x ∈ Rn and time t ∈ R, the gradient with respect
to x (resp. t) is denoted by ∇xf(x, t) (resp. ∇tf(x, t)).
The total derivative of ∇xf(x(t), t) with respect to t is
denoted by ∇̇xf(x, t) := d

dt∇xf(x(t), t), and the n-th
total derivative with respect to t by ∇(n)

x f(x, t). The partial
derivatives of ∇xf(x, t) with respect to x and t are denoted
by ∇xxf(x, t) := ∂

∂x∇xf(x, t) ∈ Rn×n and ∇xtf(x, t) :=
∂
∂t∇xf(x, t) ∈ Rn , respectively. The derivative Lfh of a
function h : Rn → R along the vector field f : Rn → Rn
is given by (Lfh)(x) = ∇h(x)T f(x). Taking the derivative
of h first along a vector field f and then along a vector
field g is given by (LgLfh)(x) =

∂(Lfh)
∂x g(x). If h is

being differentiated k times along f , the notation Lkfh(x) =
∂(Lk−1

f h)

∂x g(x) is used.

II. PRELIMINARIES

A. Feedback Linearization

1) Static Feedback Linearization: We consider a square
control-affine nonlinear system with the state x ∈ D ⊂ Rn,
m inputs u ∈ Rm and m outputs y ∈ Rm, described in
state-space form:

ẋ = f(x) + G(x)u , (1a)
y = h(x) , (1b)

where f : D → Rn, G : D → Rn×m, and h : D → Rm
are sufficiently smooth on a domain D ⊂ Rn, with G and
h expanded as

G(x) =
[
g1(x), . . . , gm(x)

]
∈ Rn×m,

h(x) = (h1(x), . . . , hm(x)) ∈ Rm.

Problem 1 (State-Space Exact Linearization). Given a point
x0 ∈ D ⊂ Rn, for the control-affine nonlinear system (1),
find a feedback controller u = α(x) + β(x)v defined on
a neighborhood U of x0, a coordinate transformation z =
Φ(x) also defined on U , and a controllable pair (A,B)
(A ∈ Rn×n,B ∈ Rn×m) such that:

ż=Az+Bv=
∂Φ(x)

∂x

(
f(x)+g(x)(α(x)+β(x)v)

)
.

The key condition on (1) for solvability of the State-Space
Exact Linearization Problem is that the system possesses
vector relative degree [21]. In other references [22], this is
also called Full State Linearization.

Definition 1 (Vector Relative Degree [21]). The control
affine system (1) is said to have vector relative degree
{r1, r2, . . . , rm} at a point x0 ∈ D ⊂ Rn if:

(i) LgjL
k
fhi(x) = 0 for all 1 ≤ i ≤ m, for all k < ri−1,

for all 1 ≤ j ≤ m, and for all x in a neighborhood of
x0, and

(ii) the m×m matrix,

R(x)=


Lg1L

r1−1
f h1(x) . . . LgmL

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) . . . LgmL

r2−1
f h2(x)

... . . .
...

Lg1L
rm−1
f hm(x) . . . LgmL

rm−1
f hm(x)

 ,
(2)

is nonsingular at x = x0.

Lemma 1 (Solution of Exact Linearization Problem with
static feedback linearization [21, Lemma 5.2.1]). Suppose
the matrix G(x0) has rank m. Then the State-Space Exact
Linearization Problem is solvable if and only if there exists
a neighborhood of x0 such that the system (1) has vector
relative degree {r1, r2, . . . , rm} at x0 and r1 + r2 + · · · +
rm = n. In particular, one may choose
(i) the feedback as

u = −R(x)
−1

p(x) + R(x)
−1

v,

where p(x) = col(Lr1f h1(x), . . . , Lrmf hm(x)) ∈ Rm and
R(x) is defined in (2),

(ii) the coordinate transformation as

Φ(x) = col(h1(x), . . . , Lr1−1f h1(x), . . . , Lrm−1f hm(x)),

(iii) (A,B) having the Brunovsky Canonical Form

A = diag (A1, . . . ,Am) , B = diag (b1, . . . ,bm) ,

where Ai ∈ Rri×ri and bi ∈ Rri are

Ai =


0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . .
0 0 0 . . . 1
0 0 0 . . . 0

 , bi =


0
0
...
0
1

 .
Remark: The input vi controls only the output yi through-

out a chain of ri integrator. When r1 +r2 + · · ·+rm = n, in
the closed loop system there are no unobservable dynamics.

2) Dynamic Feedback Linearization: For systems which
do not have vector relative degree, one can sometimes
achieve a vector relative degree by introducing auxiliary state
variables ζ, e.g., for a system that is differentially flat [23],
by using dynamic feedback of the form

u = α(x, ζ) + β(x, ζ)w, (3a)

ζ̇ = γ(x, ζ) + δ(x, ζ)w. (3b)

Consider then the composite system formed by (1) and (3)[
ẋ

ζ̇

]
= f̃(x, ζ) + G̃(x, ζ)w, y = h(x), (4)

where

f̃(x, ζ)=

[
f(x)+G(x)α(x, ζ)

γ(x, ζ)

]
, G̃(x, ζ)=

[
g(x)β(x, ζ)
δ(x, ζ)

]
.



The following is a direct extension of Lemma 1. Further
details on this approach, known as dynamic extension, can
be found in [21] and [22].

Lemma 2 (Solution of Exact Linearization Problem using
dynamic feedback linearization [21]). Suppose the matrix
G̃(x0, ζ0) has rank m. Then the State-Space Exact Lin-
earization Problem is solvable if and only if there exists
a neighborhood of [x0, ζ0]T such that the system (4) has
vector relative degree {r1, r2, . . . , rm} at [x0, ζ0]T and
r1 + r2 + · · ·+ rm = n. In particular, one may choose
(i) The dynamic feedback defined by (3) and

w = −R−1(x, ζ)p(x, ζ) + R−1(x, ζ)v, (5)

where p(x, ζ) = col(Lr1
f̃
h1(x), . . . , Lrm

f̃
hm(x)) ∈ Rm

and R(x, ζ) is defined in (2).
(ii) the coordinate transformation as

Φ(x, ζ)=col(h1(x),. . ., Lr1−1
f̃

h1(x),. . ., Lrm−1
f̃

hm(x)),

(iii) (A,B) having the Brunovsky Canonical Form.

B. Convergence Rate of Hurwitz Matrix

A square matrix H is called Hurwitz if

µ(H) := max
λ∈spec(H)

<[λ] < 0 ,

where spec(H) := {λi} denotes the set of eigenvalues of
H. If H is Hurwitz, then limt→+∞ eHt = 0.

Theorem 3 (Exponential Convergence of Hurwitz Matri-
ces [24, Theorem 8.1]). If H is Hurwitz, then there exist
constants c, α > 0 such that

‖eHt‖2 ≤ ce
−αt, for all t ≥ 0,

where −α := maxλ∈spec(H) <[λ] + ε, for some ε > 0 that
are small enough.

When H is diagonalizable, i.e., when all Jordan blocks
of H have size equal to 1, one can choose −α =
maxλ∈spec(H) <[λ].

III. PROBLEM STATEMENT

As mentioned before, our goal is to develop an optimiza-
tion based framework for joint real-time trajectory planning
and feedback control of nonlinear systems. To achieve this
goal we develop a two-stage design approach where we (i)
implicitly define the desired trajectory as the optimal solution
of a time-varying optimization problem, and (ii) design a
control law that seeks to converge asymptotically to the
optimal solution of the optimization problem.

Formally, we consider a nonlinear system as described in
(1). Let t ≥ 0 be a continuous time index, and f0 : Rm ×
R+ → R be a time-varying function of the output y. Using
f0(y, t) we implicitly define our target trajectory; i.e., the
minimizing path:

y∗(t) = arg min
y∈Rm

f0(y, t). (6)

The goal is to generate a control input u(t) such that
‖y(t)−y∗(t)‖2 → 0 as t→∞ for all initial conditions; i.e.,
global asymptotic convergence. The following assumption
will be used throughout this paper.

Assumption 1 (Objective Function). The objective function
f0(y, t) is infinitely differentiable (C∞) with respect to
both y and t, and is uniformly strongly convex in y; i.e.,
∇yyf0(y(t), t) � mfIm for all t ≥ 0 and for some mf > 0.

The remainder of this section provides two examples that
help motivate both our goals and our solution approach.

A. Example #1: Integrator

We aim to design a control law for an integrator

ẋ = u, y = x, (7)

such that y converges asymptotically to the optimal solution
of time-varying optimization problem (6):

y∗(t) = arg min
y

f0(y, t).

Notice that, even though we can instantaneously change
the speed and direction of y(t) in (7), the initial condition
y(0) may not match y∗(0). This is illustrated in Figure 1.

Fig. 1: Plot of a robot tracking an object, where y∗(t) (6)
is simply the object trajectory and y(t) represents the real
trajectory of robot. Due to miss matching initial conditions
(highlighted using asterisk), we design a control law that
converge asymptotically to the target trajectory y∗(t).

This problem can be overcome by finding a control law
that transforms (7) into the following optimization dynamics

∇̇yf0(y, t) = −P∇yf0(y, t), P � 0, (8)

where the gradient ∇yf0(y, t) is driven to zero exponentially
fast [19], [20]. Thus, since by convexity (see Assump-
tion 1), the optimal trajectory y∗(t) is characterized by
∇yf0(y∗(t), t) = 0, the controlled y asymptotically reaches
y∗(t).

To achieve this transformation, we first characterize the
required evolution of y for (8) to hold, and then define the



proper control law. Using the chain rule to differentiate the
gradient term with respect to time yields

∇̇yf0(y, t) = ∇yyf0(y, t)ẏ +∇ytf0(y, t).

Then, by combining (8) and the above equation, we find that
ẏ is implicitly defined by

ẏimp = −∇−1yyf0(y, t)[P∇yf0(y, t) +∇ytf0(y, t)]. (9)

Finally, since by (7), u = ẏ, equation (9) leads to the control:

u = −∇−1yyf0(y, t)[P∇yf0(y, t) +∇ytf0(y, t)].

The above control law implicitly transforms (7) into (8).
Further, it has a nice optimization-based interpretation con-
sisting of two terms [19], [20]:
1) a prediction term −∇−1yyf0(y, t)∇ytf0(y, t),which tracks

the change of the optimal solution; i.e., target trajectory,
2) and a correction term −∇−1yyf0(y, t)P∇yf0(y, t), which

acts as a proportional controller that cancels the optimal-
ity error and drives the system toward the optimum.

Unfortunately, the solution approach shown in this exam-
ple critically relies on the integrator structure in (7) that
allows one to arbitrarily control ẏ by choosing u. However,
for a general nonlinear system, satisfying (8) may not be
possible. This is shown in the next example.

B. Example #2: Wheeled Mobile Robot

We now show how to extend the approach described above
for a more involved example where we aim to drive a
nonholonomic wheeled mobile robot (WMR) [22], [25]:

ẋ1 = cos(x3)u1, (10a)
ẋ2 = sin(x3)u1, (10b)
ẋ3 = u2, (10c)
y = (x1, x2), (10d)

such that y converges asymptotically to the optimal so-
lution of time-varying optimization problem (6). If we
once again want (10) to match the dynamics (8), we need
(9) to hold. However, it follows from (10) that ẏ =
[cos(x3)u1, sin(x3)u1]T , which is ill-defined. It is obvious
that one cannot control every direction of ẏ with this ill-
defined equation therefore cannot derive a control law that
ensures (9).

This motivates the search for an alternative to (8) that has
the equivalent effect of driving y towards y∗(t). Instead, we
seek to transform (10) into[
∇̇yf0(y, t)

∇̈yf0(y, t)

]
=

[
0 Im

−kpIm −kdIm

] [
∇yf0(y, t)

∇̇yf0(y, t)

]
, (11)

where kp, kd > 0, which defines a Hurwitz matrix, and
col(∇yf0(y, t), ∇̇yf0(y, t)) can be interpreted as the opti-
mality error of y, and its time derivative.

To find the control law that transforms (10) into (11), we
can differentiate the gradient term with respect to time twice:

∇̈yf0(y, t) =∇yyf0(y, t)ÿ + ∇̇yyf0(y, t)ẏ + ∇̇ytf0(y, t).

Now combining once again the second row of (11) and
the above equation leads to the following implicit condition
for the acceleration ÿ:

ÿimp = −∇−1yyf0(y, t)
[
∇̇yyf0(y, t)ẏ + ∇̇ytf0(y, t)

+kp∇yf0(y, t) + kd∇̇yf0(y, t)
]

(12)

Finally, by differentiating y with respect to time twice we
notice that the matrix on the right-hand side of

ÿ =

[
cos(x3) − sin(x3)u1
sin(x3) cos(x3)u1

] [
u̇1
u2

]
(13)

is invertible for every nonzero u1 and thus, we can use
(u̇1, u2) to control ÿ to follow (12):[

u̇1
u2

]
=

[
cos(x3) − sin(x3)u1
sin(x3) cos(x3)u1

]−1
ÿimp.

As long as u1 6= 0, the control law is well-defined by
introducing u1 as an auxiliary state.

We finalize this section showing a particular case of (12)
that is familiar for most control audience. If the task is simply
tracking a moving object, we can define the following time-
varying problem:

y∗(t) = arg min
y

1
2‖y − yd(t)‖22,

where yd(t) represents the target trajectory. And according
to (12), the implicitly defined trajectory takes the form:

ÿimp = ÿd(t)− kp(y − yd(t))− kd(ẏ − ẏd(t)).

Thus, in this case equation ÿimp can be interpreted as a
common Proportional-Derivative (PD) controller.

IV. IMPLICIT TRAJECTORY PLANNING FOR FEEDBACK
LINEARIZABLE SYSTEMS

The above motivating example shows how to extend the
algorithm from a first-order system (an integrator) to a
second-order system (a unicycle). In this Section, we aim
to carry this procedure over to a more general setting. In
section IV-A, we begin with a relatively restrictive assump-
tion, where all m output channels have same relative degree.
This extension comes naturally from the WMR example
in III-B by considering higher orders of the gradient as
generalized optimality error. Then in Section IV-B, we relax
the assumption so that the relative degree of each channel
are not necessarily equal.

A. Uniform Vector Relative Degree

We assume now that the system under consideration has
a uniform vector relative degree, which will in general need
to be achieved via dynamic extension. This is a natural
extension from the WMR model, where the vector relative
degree is {2, 2} and n = 4.

Assumption 2 (Uniform Vector Relative Degree). The mul-
tivariable nonlinear system (4) has vector relative degree
r1 = · · · = rm = k and m× k = n.

Based on Lemma 2, it is straightforward that for a
multivariable nonlinear system satisfying Assumption 2,



the feedback function (5) and a state diffeomorphism
z = Φ(x, ζ) will transform the composite system (4)
into ż = Az + Bv, with (A,B) in Brunovsky Canonical
Form. By computing the higher derivatives of output chan-
nel, we can implicitly design the trajectory for y using
col(∇yf0(y, t), . . . ,∇(k−1)

y f0(y, t)) as a proxy for opti-
mality error, where the goal is to construct the following
dynamical system: ∇̇yf0(y, t)

...
∇(k)

y f0(y, t)

 = H

 ∇yf0(y, t)
...

∇(k−1)
y f0(y, t)

 , (14)

with

H =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
a0 a1 a2 . . . ak−1

⊗ Im (15)

being Hurwitz. The following technical lemma will be used
during the calculation of new optimality error state.

Lemma 4 (Gradient Time Differentiation). Differentiating
the gradient ∇yf0(y, t) with respect to time k−times yields:

∇(k)
y f0(y, t) =

k−1∑
m=0

(
k − 1

m

)
∇(m)

yy f0(y, t)y(k−m)

+∇(k−1)
yt f0(y, t),

(16)

where
(
k−1
m

)
represents the binomial coefficient.

Proof: See Appendix A.

Combining (14) and (16), we can implicitly design the
trajectory for y by:

y
(k)
imp = ∇−1yyf0(y, t)[

k−1∑
i=0

ai∇(i)
y f0(y, t)

−
k−1∑
m=1

(
k − 1

m

)
∇(m)

yy f0(y, t)y(k−m) −∇(k−1)
yt f0(y, t)].

(17)

Now, we formally provide our solution for systems with
uniform relative degree.

Theorem 5 (Control Law for Uniform Vector Relative
Degree Systems). Consider the multivariable system defined
as (1) and the time-varying optimization problem defined as
(6). If both assumptions 1 and 2 are satisfied, then the system
will globally exponentially converge to the optimal solution
of (6), by using the control law:

u = α(x, ζ) + β(x, ζ)R(x, ζ)−1[y
(k)
imp − p(x, ζ)], (18)

where y
(k)
imp is given in (17) and the dynamic feedback

function defined in (5). Moreover, the following inequalities
hold:

‖y(t)− y∗(t)‖2 ≤ Ce−αt,

0 ≤ f0(y(t), t)− f0(y∗(t), t) ≤ mfC
2e−2αt,

0 < C =

(
c2

m2
f

∑k−1

j=0
‖∇(j)

y f0(y(0), 0)‖22)

) 1
2

<∞,

for some constant C > 0, −α = max{<(λi)+ε, i ∈ [1...n]},
for some ε > 0 small enough.

Proof: See Appendix B.

Theorem 5 makes a strong assumption on the structure of
the nonlinear system, which is that the system must have
equal vector degree {r1 = · · · = rm}. In the next section
we relax this assumption.

B. Non-Uniform Vector Relative Degree

We now consider the less restrictive assumption.

Assumption 3 (Non-Uniform Vector Relative Degree). The
multivariable nonlinear system (4) has vector relative degree
{r1, . . . , rm} and r1 + r2 + · · ·+ rm = n.

As a result of Assumption 3, the order of Lie differen-
tiation of each channel is different (c.f.(2)) and we cannot
directly design the trajectory as in (17). However, remember
that according to Lemma 2, the system is transformed into
ż = Az + Bv, with (A,B) in Brunovsky Canonical Form.
As a matter of fact, the input vi controls only the output yi
throughout out a chain of r1 integrators. If {r1, ...rm} are not
equal, we can always introduce k− ri auxiliary states (inte-
grators) for each channel yi, where k = max{r1, r2, . . . , rm}
and define the new input si accordingly. Notice that this
construction makes a dynamic extension of ż = Az + Bv
that posses uniform order of Lie differentiation of each
channel. For example, for channel yi, we introduce the
following states ξi1 = vi, ξ

i
2 = ξ̇i1, . . . , ξ̇

i
k−ri = si. More

specifically, the auxiliary states ξ should satisfy the following
dynamic:

v = α̃(ξ) + β̃(ξ)s, (19a)

ξ̇ = γ̃(ξ) + δ̃(ξ)s. (19b)

Then the feedback function (5), the auxiliary states dynamic
of ξ (19), and a state diffeomorphism z = Φ(x, ζ, ξ) will
transform the composite system (4) into

ż = Az + Bs,

with A,B in Brunovsky Canonical Form.

Theorem 6 (Control Law for General Vector Relative Degree
System). Consider the multivariable system defined as (1)
and the time-varying optimization problem defined as (6).
Suppose that both Assumption 1 and Assumption 3 are
satisfied, then the system will globally exponentially converge
to the optimal solution of (6), by using the control law:

u=α(x, ζ)+β(x, ζ)R−1(x, ζ)[α̃(ξ)+β̃(ξ)y
(k)
imp−p(x, ζ)]

(20)

where y
(k)
imp be the solution of (17), the dynamic feedback

function defined in (5) and the auxiliary states ξ satisfy (19).



Moreover, the following inequalities hold:

‖y(t)− y∗(t)‖2 ≤ Ce−αt,
0 ≤ f0(y(t), t)− f0(y∗(t), t) ≤ mfC

2e−2αt,

0 < C =

(
c2

m2
f

∑k−1

j=0
‖∇(j)

y f0(y(0), 0)‖22)

) 1
2

<∞,

for some constant C > 0, −α = max<(λi) + ε, i ∈ [1...n],
for some ε > 0 small enough.

Proof: See Appendix C.

V. NUMERICAL EXAMPLES

In this section, we illustrate how to leverage the time-
varying optimization algorithm to solve the following robot
tracking problems.

A. Switching Tracking Goals

Consider a wheeled mobile robot (10) charged with the
task of tracking two moving objects sequentially. In the
first time interval [t0, ts], the agent is required to track the
first object and in the second time interval [ts, tf ] gradually
switched to track the second object. The equivalent time-
varying optimization problem takes the following form:

min
y
S(t)‖y − yd1(t)‖22 + (1− S(t))‖y − yd2(t)‖22,

where y(t) is the robot position satisfying (10), yd1(t),yd2(t)
represents the position of moving objects at time t respec-
tively. The smooth switch function S(t) takes the form:
S(t) = 0.5 − 0.5 tanh( t−ab ), where the parameters a and b
can be used to define the switch point and the smoothing
level. The target trajectories are designed via time para-
metric representation, where we use differential flatness in
this trajectory generation problem [26]. Specifically, we
parametrize the components of the flat output φ1 = y =
[x1, x2],φ2 = ẏ, by

φi(t) =
n−1∑
j=0

Aijλj(t),

where the λj(t) = tj are the standard polynomial basis
functions and the degree of the polynomial is set to be n = 4.
Thus, the trajectory generation problem reduces from finding
a function to finding a set of parameters.

The resulting trajectories we proposed are illustrated in
Figure 2, with a = 10, b = 1.5. It can be observed that the
robot successfully tracks the first object up to time ts= 5s,
gradually switching to the second object until tf =15s, and
track the second object until simulation stops. Particularly,
the randomly picked starting positions (highlighted using
asterisk) for the two objects are [−5,−5] and [5,−3] and
the agent is positioned randomly near the starting position,
which is [−5, 4]. We set t0 = 0s and the total simulation time
is 20s. For this implementation, the differential equation (10)
is solved based on an explicit Runge-Kutta (4, 5) formula,
the Dormand-Prince pair.

Fig. 2: Trajectory of the optimal solution y∗(t) (dashed
green), the robot (solid red) and the objects (black for 1
and blue for 2). The robot converge to the target trajectory,
which is to track the first object from [0s, 5s] and gradually
switch to track the second object in [5s, 15s].

B. Multi-robot Navigation

In this numerical example, two agents are required to track
two moving objects respectively, but the maximum distance
between two agents is limited (e.g., due to communication or
formation constraints). We assume y1(t),y2(t) representing
the current position of each robot, whose dynamic are
unicycles satisfying (10). We consider the following time-
varying optimization problem for this task:

min
y1,y2

‖y1−yd1(t)‖22+‖y2−yd2(t)‖22+H(‖y1−y2‖22),

where yd1(t),yd2(t) represents the current position of the
moving object. H(x) = α tan(xπ2d )2 is a smooth barrier
function, where the parameter d determines the maximum
distance allowed for the two agents and α determines the
flatness of penalty gain. In this scenario, although our theory
do not exactly holds, since the barrier barrier function is
not defined globally, as long as the initial conditions are not
violated, the numerical result suggests that our algorithm can
be applied beyond the presented assumptions.

The trajectories for the objects were also in time paramet-
ric representation, following the same computing procedure
as in the previous section. Particularly, the randomly picked
starting position (using asterisk) for two objects are [−5,−3]
and [−2,−3], respectively. The maximum allowed distance
is set to be d = 2, and the gain is α = 1e − 8. As to
the agents, they are positioned randomly near the starting
position, while satisfying the distance constraint between
them, which are [−4.5,−3.5] and [−3.5,−3.5] (using aster-
isk). For this implementation, the differential equation (10)
is solved using the same procedure as in Section V-A. The
resulting trajectories are illustrated in Figure 3, where both
robots, starting from arbitrary positions succeed in tracking
the moving object and keep the maximum distance within
limits simultaneously.



Fig. 3: Trajectories of two objects yd1(t),yd2(t) (solid) and
two agents y1,y2 (dashed). Agents succeed in tracking
objects while satisfying distance constraint between them.

VI. CONCLUSION

In this paper we develop an optimization-based framework
for joint real-time trajectory planning and feedback control
of feedback-linearizable systems. We implicitly define a
target trajectory as the optimal solution of a time-varying
optimization problem, which is strongly convex and smooth.
For systems that are (dynamic) full-state linearizable, the
proposed control law transforms the nonlinear system into
an optimization algorithm of sufficiently high order. Under
reasonable assumptions, our method globally asymptotically
converges to the time-varying optimal solution of the original
problem. Further work include: (i) adding equality and
inequality time-varying constraints in the framework and
(ii) considering more general nonlinear system that are not
feedback linearizable.
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APPENDIX

A. Proof of Lemma 4
We prove by mathematical induction. First we consider

when k = 1 and 2.

∇̇yf0(y, t) =
∂∇yf0(y, t)

∂y
ẏ +

∂∇yf0(y, t)

∂t

= ∇yyf0(y, t)ẏ +∇ytf0(y, t)

∇̈yf0(y, t) =
d

dt
(∇yyf0(y, t)ẏ +∇ytf0(y, t))

= ∇yyf0(y, t)ÿ + ∇̇yyf0(y, t)ẏ + ∇̇ytf0(y, t)

We want to show that for every k ≥ k0, k0 ≥ 2, if the
statement holds for k, then it holds for k + 1.

∇(k)
y f0(y, t) =

k−1∑
m=0

(
k − 1

m

)
∇(m)

yy f0(y, t)y(k−m)

+∇(k−1)
yt f0(y, t)

Using the binomial theorem we obtain:

∇(k+1)
y f0(y, t) =

d

dt
(
k−1∑
m=0

(
k − 1

m

)
∇(m)

yy f0(y, t)y(k−m))

+
d

dt
(∇(k−1)

yt f0(y, t))

=
k∑

m=0

(
k

m

)
∇(m)

yy f0(y, t)y(k+1−m)

+∇(k)
yt f0(y, t),

which completes the proof.

B. Proof of Theorem 5

By uniformly strong convexity of f0(y, t) in y, the Hes-
sian inverse ∇−1yyf0(y, t) is defined for all t ≥ 0. Because
the vector relative degree of the nonlinear system is r1 =
· · · = rm = k, which means y(k) has a linear relationship
with new input v. According to Lemma 4, we have (16).
Furthermore, as a result of Theorem 2, feedback function
of the form (18) results in y(k) = y

(k)
imp, where y

(k)
imp is the

solution of (17).
Now, we are able to construct the desired dynamical

system (14), where H is the designed Hurwitz matrix, and
the solution of this ODE is: ∇yf0(y, t)

...
∇(k−1)

y f0(y, t)

 = eHt

 ∇yf0(y(0), 0)
...

∇(k−1)
y f0(y(0), 0)

 (21)

where y(0) ∈ Rm is the initial point. By taking the
Frobenius norms of both sides and applying Theorem 3 we
obtain
k−1∑
j=0

‖∇(j)
y f0(y, t)‖22 ≤ c

2e−2αt(
k−1∑
j=0

‖∇(j)
y f0(y(0), 0)‖22)

(22)

for some constant c > 0, −α = max<(λi) + ε, i ∈ [1...n],
for some ε > 0 small enough.

Next, we use the mean-value theorem to expand
∇yf0(y, t) with respect to y as follows, where η(t) is a
convex combination of y(t) and y∗(t). Additionally using
the fact that ∇yf0(y∗(t), t) = 0 for all t ≥ 0, we obtain:

y(t)− y∗(t) = ∇−1yyf0(η(t), t)∇yf0(y(t), t). (23)

It follows from Assumption 1, that ‖∇−1yyf0(y, t)‖2 ≤ m
−1
f .

Taking the norm on both sides together with equation (22)
we have:

‖y(t)− y∗(t)‖2 ≤ Ce
−αt,

0 ≤ C =

(
c2

m2
f

∑k−1

j=0
‖∇(j)

y f0(y(0), 0)‖22)

) 1
2

<∞. (24)

On the other hand, convexity of f0(y, t) implies that for each
t ≥ 0

0≤f0(y, t)−f0(y∗, t)≤∇yf0(y, t)T (y−y∗) (25)



By applying Cauchy-Swhartz inequality on the right hand
side we obtain;

0 ≤ f0(y(t), t)− f0(y∗(t), t) ≤ mfC
2e−2αt (26)

which completes the proof.

C. Proof of Theorem 6

Feedback function of the form (20) results in
col(y

(k)
1 , . . . , y

(k)
m ) = y

(k)
imp, where y

(k)
imp is the solution

of (17). Rest of the proof follows B.
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