I have joined the newly-created Johns Hopkins University Ralph S. O’Connor Sustainable Energy Institute (ROSEI) as an affiliated researcher!
Hancheng Min
Epstein Institute Seminar @ USC
I gave a talk on “Incentive Analysis and Coordination Design for Multi-timescale Electricity Markets” at Epstein Institute Seminar, USC (Hosts: Jong-Shi Pang, Suvrajeet Sen). Related publications include [1]
[Bibtex] [Abstract] [Download PDF]
Economic dispatch and frequency regulation are typically viewed as fundamentally different problems in power systems and, hence, are typically studied separately. In this paper, we frame and study a joint problem that co-optimizes both slow timescale economic dispatch resources and fast timescale frequency regulation resources. We show how the joint problem can be decomposed without loss of optimality into slow and fast timescale sub-problems that have appealing interpretations as the economic dispatch and frequency regulation problems respectively. We solve the fast timescale sub-problem using a distributed frequency control algorithm that preserves the stability of the network during transients. We solve the slow timescale sub-problem using an efficient market mechanism that coordinates with the fast timescale sub-problem. We investigate the performance of the decomposition on the IEEE 24-bus reliability test system.
@article{cmw2017tps,
abstract = {Economic dispatch and frequency regulation are typically viewed as fundamentally different problems in power systems and, hence, are typically studied separately. In this paper, we frame and study a joint problem that co-optimizes both slow timescale economic dispatch resources and fast timescale frequency regulation resources. We show how the joint problem can be decomposed without loss of optimality into slow and fast timescale sub-problems that have appealing interpretations as the economic dispatch and frequency regulation problems respectively. We solve the fast timescale sub-problem using a distributed frequency control algorithm that preserves the stability of the network during transients. We solve the slow timescale sub-problem using an efficient market mechanism that coordinates with the fast timescale sub-problem. We investigate the performance of the decomposition on the IEEE
24-bus reliability test system.},
author = {Cai, Desmond and Mallada, Enrique and Wierman, Adam},
doi = {10.1109/TPWRS.2017.2682235},
grants = {1544771},
journal = {IEEE Transactions on Power Systems},
keywords = {Power Networks; Markets},
month = {11},
number = {6},
pages = {4370-4385},
title = {Distributed optimization decomposition for joint economic dispatch and frequency regulation},
url = {https://mallada.ece.jhu.edu/pubs/2017-TPS-CMW.pdf},
volume = {32},
year = {2017}
}
ECSE Seminar @ RPI
I gave a talk on “Embracing Low Inertia in Power System Frequency Control: A Dynamic Droop Approach” at ECSE Seminar, RPI (Hosts: Joe Chow, Meng Wang). Related publications include [1, 2, 3]
[Bibtex] [Abstract] [Download PDF]
The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define –and compute in closed form– several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.
@article{pm2020tac,
abstract = {The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define --and compute in closed form-- several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.},
author = {Paganini, Fernando and Mallada, Enrique},
doi = {10.1109/TAC.2019.2942536},
grants = {CPS-1544771, AMPS-1736448, EPCN-1711188, CAREER-1752362, ENERGISE-DE-EE0008006},
journal = {IEEE Transactions on Automatic Control},
month = {7},
number = {7},
pages = {3007-3022},
title = {Global analysis of synchronization performance for power systems: bridging the theory-practice gap},
url = {https://mallada.ece.jhu.edu/pubs/2020-TAC-PM.pdf},
volume = {67},
year = {2020}
}
[Bibtex] [Abstract] [Download PDF]
A widely embraced approach to mitigate the dynamic degradation in low-inertia power systems is to mimic generation response using grid-connected inverters to restore the grid’s stiffness. In this paper, we seek to challenge this approach and advocate for a principled design based on a systematic analysis of the performance trade-offs of inverterbased frequency control. With this aim, we perform a qualitative and quantitative study comparing the effect of conventional control strategies –droop control (DC) and virtual inertia (VI)– on several performance metrics induced by L2 and L∞ signal norms. By extending a recently proposed modal decomposition method, we capture the effect of step and stochastic power disturbances, and frequency measurement noise, on the overall transient and steady-state behavior of the system. Our analysis unveils several limitations of these solutions, such as the inability of DC to improve dynamic frequency response without increasing steady-state control effort, or the large frequency variance that VI introduces in the presence of measurement noise. We further propose a novel dynam-i-c Droop controller (iDroop) that overcomes the limitations of DC and VI. More precisely, we show that iDroop can be tuned to achieve high noise rejection, fast system-wide synchronization, or frequency overshoot (Nadir) elimination without affecting the steady-state control effort share, and propose a tuning recommendation that strikes a balance among these objectives. Extensive numerical experimentation shows that the proposed tuning is effective even when our proportionality assumptions are not valid, and that the particular tuning used for Nadir elimination strikes a good trade-off among various performance metrics.
@article{jpm2021tac,
abstract = {A widely embraced approach to mitigate the dynamic degradation in low-inertia power systems is to mimic generation response using grid-connected inverters to restore
the grid's stiffness. In this paper, we seek to challenge this approach and advocate for a principled design based on a systematic analysis of the performance trade-offs of inverterbased frequency control. With this aim, we perform a qualitative
and quantitative study comparing the effect of conventional
control strategies --droop control (DC) and virtual inertia (VI)--
on several performance metrics induced by L2 and L∞ signal
norms. By extending a recently proposed modal decomposition
method, we capture the effect of step and stochastic power
disturbances, and frequency measurement noise, on the overall
transient and steady-state behavior of the system. Our analysis
unveils several limitations of these solutions, such as the inability of DC to improve dynamic frequency response without
increasing steady-state control effort, or the large frequency
variance that VI introduces in the presence of measurement
noise. We further propose a novel dynam-i-c Droop controller
(iDroop) that overcomes the limitations of DC and VI. More
precisely, we show that iDroop can be tuned to achieve high
noise rejection, fast system-wide synchronization, or frequency
overshoot (Nadir) elimination without affecting the steady-state
control effort share, and propose a tuning recommendation that
strikes a balance among these objectives. Extensive numerical
experimentation shows that the proposed tuning is effective even
when our proportionality assumptions are not valid, and that
the particular tuning used for Nadir elimination strikes a good
trade-off among various performance metrics.},
author = {Jiang, Yan and Pates, Richard and Mallada, Enrique},
doi = {10.1109/TAC.2020.3034198},
grants = {ENERGISE-DE-EE0008006, EPCN-1711188,AMPS-1736448, CPS-1544771, CAREER-1752362, AMPS-1736448, ARO-W911NF-17-1-0092},
journal = {IEEE Transactions on Automatic Control},
month = {8},
number = {8},
pages = {3518-3533},
record = {available online Nov. 2020, accepted Aug. 2020, revised Mar. 2020, submitted Aug. 2019},
title = {Dynamic Droop Control in Low Inertia Power Systems},
url = {https://mallada.ece.jhu.edu/pubs/2021-TAC-JPM.pdf},
volume = {66},
year = {2021}
}
[Bibtex] [Abstract] [Download PDF]
With the decrease in system inertia, frequency security becomes an issue for power systems around the world. Energy storage systems (ESS), due to their excellent ramping capabilities, are considered as a natural choice for the improvement of frequency response following major contingencies. In this manuscript, we propose a new strategy for energy storage — frequency shaping control — that allows to completely eliminate the frequency Nadir, one of the main issue in frequency security, and at the same time tune the rate of change of frequency (RoCoF) to a desired value. With Nadir eliminated, the frequency security assessment can be performed via simple algebraic calculations, as opposed to dynamic simulations for conventional control strategies. Moreover, our proposed control is also very efficient in terms of the requirements on storage peak power, requiring up to 40% less power than conventional virtual inertia approach for the same performance.
@article{jcvm2021tps,
abstract = {With the decrease in system inertia, frequency security becomes an issue for power systems around the world. Energy storage systems (ESS), due to their excellent ramping capabilities, are considered as a natural choice for the improvement of frequency response following major contingencies. In this manuscript, we propose a new strategy for energy storage -- frequency shaping control -- that allows to completely eliminate the frequency Nadir, one of the main issue in frequency security, and at the same time tune the rate of change of frequency (RoCoF) to a desired value. With Nadir eliminated, the frequency security assessment can be performed via simple algebraic calculations, as opposed to dynamic simulations for conventional control strategies. Moreover, our proposed control is also very efficient in terms of the requirements on storage peak power, requiring up to 40% less power than conventional virtual inertia approach for the same performance.},
author = {Jiang, Yan and Cohn, Eliza and Vorobev, Petr and Mallada, Enrique},
doi = {10.1109/TPWRS.2021.3072833},
grants = {CAREER-1752362;CPS-2136324},
journal = {IEEE Transactions on Power Systems},
month = {11},
number = {6},
pages = {5006-5019},
record = {early access Apr 2021, accepted Mar 2021, revised Oct 2020, submitted May 2020},
title = {Storage-Based Frequency Shaping Control},
url = {https://mallada.ece.jhu.edu/pubs/2021-TPS-JCVM.pdf},
volume = {36},
year = {2021}
}
Haralampos to join NYU as postdoc in CUSP
Haralampos received an offer from NYU and will be joining there as a postdoc in the Center for Urban Science and Progress. Congrats Haralampos!
ECE Seminar @ NYU
I gave a talk on “Embracing Low Inertia in Power System Frequency Control: A Dynamic Droop Approach” at ECE Seminar, New York University (Host: Yury Dvorkin). Related publications include [1, 2, 3]
[Bibtex] [Abstract] [Download PDF]
The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define –and compute in closed form– several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.
@article{pm2020tac,
abstract = {The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define --and compute in closed form-- several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.},
author = {Paganini, Fernando and Mallada, Enrique},
doi = {10.1109/TAC.2019.2942536},
grants = {CPS-1544771, AMPS-1736448, EPCN-1711188, CAREER-1752362, ENERGISE-DE-EE0008006},
journal = {IEEE Transactions on Automatic Control},
month = {7},
number = {7},
pages = {3007-3022},
title = {Global analysis of synchronization performance for power systems: bridging the theory-practice gap},
url = {https://mallada.ece.jhu.edu/pubs/2020-TAC-PM.pdf},
volume = {67},
year = {2020}
}
[Bibtex] [Abstract] [Download PDF]
A widely embraced approach to mitigate the dynamic degradation in low-inertia power systems is to mimic generation response using grid-connected inverters to restore the grid’s stiffness. In this paper, we seek to challenge this approach and advocate for a principled design based on a systematic analysis of the performance trade-offs of inverterbased frequency control. With this aim, we perform a qualitative and quantitative study comparing the effect of conventional control strategies –droop control (DC) and virtual inertia (VI)– on several performance metrics induced by L2 and L∞ signal norms. By extending a recently proposed modal decomposition method, we capture the effect of step and stochastic power disturbances, and frequency measurement noise, on the overall transient and steady-state behavior of the system. Our analysis unveils several limitations of these solutions, such as the inability of DC to improve dynamic frequency response without increasing steady-state control effort, or the large frequency variance that VI introduces in the presence of measurement noise. We further propose a novel dynam-i-c Droop controller (iDroop) that overcomes the limitations of DC and VI. More precisely, we show that iDroop can be tuned to achieve high noise rejection, fast system-wide synchronization, or frequency overshoot (Nadir) elimination without affecting the steady-state control effort share, and propose a tuning recommendation that strikes a balance among these objectives. Extensive numerical experimentation shows that the proposed tuning is effective even when our proportionality assumptions are not valid, and that the particular tuning used for Nadir elimination strikes a good trade-off among various performance metrics.
@article{jpm2021tac,
abstract = {A widely embraced approach to mitigate the dynamic degradation in low-inertia power systems is to mimic generation response using grid-connected inverters to restore
the grid's stiffness. In this paper, we seek to challenge this approach and advocate for a principled design based on a systematic analysis of the performance trade-offs of inverterbased frequency control. With this aim, we perform a qualitative
and quantitative study comparing the effect of conventional
control strategies --droop control (DC) and virtual inertia (VI)--
on several performance metrics induced by L2 and L∞ signal
norms. By extending a recently proposed modal decomposition
method, we capture the effect of step and stochastic power
disturbances, and frequency measurement noise, on the overall
transient and steady-state behavior of the system. Our analysis
unveils several limitations of these solutions, such as the inability of DC to improve dynamic frequency response without
increasing steady-state control effort, or the large frequency
variance that VI introduces in the presence of measurement
noise. We further propose a novel dynam-i-c Droop controller
(iDroop) that overcomes the limitations of DC and VI. More
precisely, we show that iDroop can be tuned to achieve high
noise rejection, fast system-wide synchronization, or frequency
overshoot (Nadir) elimination without affecting the steady-state
control effort share, and propose a tuning recommendation that
strikes a balance among these objectives. Extensive numerical
experimentation shows that the proposed tuning is effective even
when our proportionality assumptions are not valid, and that
the particular tuning used for Nadir elimination strikes a good
trade-off among various performance metrics.},
author = {Jiang, Yan and Pates, Richard and Mallada, Enrique},
doi = {10.1109/TAC.2020.3034198},
grants = {ENERGISE-DE-EE0008006, EPCN-1711188,AMPS-1736448, CPS-1544771, CAREER-1752362, AMPS-1736448, ARO-W911NF-17-1-0092},
journal = {IEEE Transactions on Automatic Control},
month = {8},
number = {8},
pages = {3518-3533},
record = {available online Nov. 2020, accepted Aug. 2020, revised Mar. 2020, submitted Aug. 2019},
title = {Dynamic Droop Control in Low Inertia Power Systems},
url = {https://mallada.ece.jhu.edu/pubs/2021-TAC-JPM.pdf},
volume = {66},
year = {2021}
}
[Bibtex] [Abstract] [Download PDF]
With the decrease in system inertia, frequency security becomes an issue for power systems around the world. Energy storage systems (ESS), due to their excellent ramping capabilities, are considered as a natural choice for the improvement of frequency response following major contingencies. In this manuscript, we propose a new strategy for energy storage — frequency shaping control — that allows to completely eliminate the frequency Nadir, one of the main issue in frequency security, and at the same time tune the rate of change of frequency (RoCoF) to a desired value. With Nadir eliminated, the frequency security assessment can be performed via simple algebraic calculations, as opposed to dynamic simulations for conventional control strategies. Moreover, our proposed control is also very efficient in terms of the requirements on storage peak power, requiring up to 40% less power than conventional virtual inertia approach for the same performance.
@article{jcvm2021tps,
abstract = {With the decrease in system inertia, frequency security becomes an issue for power systems around the world. Energy storage systems (ESS), due to their excellent ramping capabilities, are considered as a natural choice for the improvement of frequency response following major contingencies. In this manuscript, we propose a new strategy for energy storage -- frequency shaping control -- that allows to completely eliminate the frequency Nadir, one of the main issue in frequency security, and at the same time tune the rate of change of frequency (RoCoF) to a desired value. With Nadir eliminated, the frequency security assessment can be performed via simple algebraic calculations, as opposed to dynamic simulations for conventional control strategies. Moreover, our proposed control is also very efficient in terms of the requirements on storage peak power, requiring up to 40% less power than conventional virtual inertia approach for the same performance.},
author = {Jiang, Yan and Cohn, Eliza and Vorobev, Petr and Mallada, Enrique},
doi = {10.1109/TPWRS.2021.3072833},
grants = {CAREER-1752362;CPS-2136324},
journal = {IEEE Transactions on Power Systems},
month = {11},
number = {6},
pages = {5006-5019},
record = {early access Apr 2021, accepted Mar 2021, revised Oct 2020, submitted May 2020},
title = {Storage-Based Frequency Shaping Control},
url = {https://mallada.ece.jhu.edu/pubs/2021-TPS-JCVM.pdf},
volume = {36},
year = {2021}
}
Seminar @ Argentine Conference of Electronics
I gave a talk on “Embracing Low Inertia in Power System Frequency Control: A Dynamic Droop Approach” at Argentine Conference of Electronics (Host: Pedro Julian). Related publications include [1, 2, 3]
[Bibtex] [Abstract] [Download PDF]
The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define –and compute in closed form– several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.
@article{pm2020tac,
abstract = {The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define --and compute in closed form-- several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.},
author = {Paganini, Fernando and Mallada, Enrique},
doi = {10.1109/TAC.2019.2942536},
grants = {CPS-1544771, AMPS-1736448, EPCN-1711188, CAREER-1752362, ENERGISE-DE-EE0008006},
journal = {IEEE Transactions on Automatic Control},
month = {7},
number = {7},
pages = {3007-3022},
title = {Global analysis of synchronization performance for power systems: bridging the theory-practice gap},
url = {https://mallada.ece.jhu.edu/pubs/2020-TAC-PM.pdf},
volume = {67},
year = {2020}
}
[Bibtex] [Abstract] [Download PDF]
A widely embraced approach to mitigate the dynamic degradation in low-inertia power systems is to mimic generation response using grid-connected inverters to restore the grid’s stiffness. In this paper, we seek to challenge this approach and advocate for a principled design based on a systematic analysis of the performance trade-offs of inverterbased frequency control. With this aim, we perform a qualitative and quantitative study comparing the effect of conventional control strategies –droop control (DC) and virtual inertia (VI)– on several performance metrics induced by L2 and L∞ signal norms. By extending a recently proposed modal decomposition method, we capture the effect of step and stochastic power disturbances, and frequency measurement noise, on the overall transient and steady-state behavior of the system. Our analysis unveils several limitations of these solutions, such as the inability of DC to improve dynamic frequency response without increasing steady-state control effort, or the large frequency variance that VI introduces in the presence of measurement noise. We further propose a novel dynam-i-c Droop controller (iDroop) that overcomes the limitations of DC and VI. More precisely, we show that iDroop can be tuned to achieve high noise rejection, fast system-wide synchronization, or frequency overshoot (Nadir) elimination without affecting the steady-state control effort share, and propose a tuning recommendation that strikes a balance among these objectives. Extensive numerical experimentation shows that the proposed tuning is effective even when our proportionality assumptions are not valid, and that the particular tuning used for Nadir elimination strikes a good trade-off among various performance metrics.
@article{jpm2021tac,
abstract = {A widely embraced approach to mitigate the dynamic degradation in low-inertia power systems is to mimic generation response using grid-connected inverters to restore
the grid's stiffness. In this paper, we seek to challenge this approach and advocate for a principled design based on a systematic analysis of the performance trade-offs of inverterbased frequency control. With this aim, we perform a qualitative
and quantitative study comparing the effect of conventional
control strategies --droop control (DC) and virtual inertia (VI)--
on several performance metrics induced by L2 and L∞ signal
norms. By extending a recently proposed modal decomposition
method, we capture the effect of step and stochastic power
disturbances, and frequency measurement noise, on the overall
transient and steady-state behavior of the system. Our analysis
unveils several limitations of these solutions, such as the inability of DC to improve dynamic frequency response without
increasing steady-state control effort, or the large frequency
variance that VI introduces in the presence of measurement
noise. We further propose a novel dynam-i-c Droop controller
(iDroop) that overcomes the limitations of DC and VI. More
precisely, we show that iDroop can be tuned to achieve high
noise rejection, fast system-wide synchronization, or frequency
overshoot (Nadir) elimination without affecting the steady-state
control effort share, and propose a tuning recommendation that
strikes a balance among these objectives. Extensive numerical
experimentation shows that the proposed tuning is effective even
when our proportionality assumptions are not valid, and that
the particular tuning used for Nadir elimination strikes a good
trade-off among various performance metrics.},
author = {Jiang, Yan and Pates, Richard and Mallada, Enrique},
doi = {10.1109/TAC.2020.3034198},
grants = {ENERGISE-DE-EE0008006, EPCN-1711188,AMPS-1736448, CPS-1544771, CAREER-1752362, AMPS-1736448, ARO-W911NF-17-1-0092},
journal = {IEEE Transactions on Automatic Control},
month = {8},
number = {8},
pages = {3518-3533},
record = {available online Nov. 2020, accepted Aug. 2020, revised Mar. 2020, submitted Aug. 2019},
title = {Dynamic Droop Control in Low Inertia Power Systems},
url = {https://mallada.ece.jhu.edu/pubs/2021-TAC-JPM.pdf},
volume = {66},
year = {2021}
}
[Bibtex] [Abstract] [Download PDF]
With the decrease in system inertia, frequency security becomes an issue for power systems around the world. Energy storage systems (ESS), due to their excellent ramping capabilities, are considered as a natural choice for the improvement of frequency response following major contingencies. In this manuscript, we propose a new strategy for energy storage — frequency shaping control — that allows to completely eliminate the frequency Nadir, one of the main issue in frequency security, and at the same time tune the rate of change of frequency (RoCoF) to a desired value. With Nadir eliminated, the frequency security assessment can be performed via simple algebraic calculations, as opposed to dynamic simulations for conventional control strategies. Moreover, our proposed control is also very efficient in terms of the requirements on storage peak power, requiring up to 40% less power than conventional virtual inertia approach for the same performance.
@article{jcvm2021tps,
abstract = {With the decrease in system inertia, frequency security becomes an issue for power systems around the world. Energy storage systems (ESS), due to their excellent ramping capabilities, are considered as a natural choice for the improvement of frequency response following major contingencies. In this manuscript, we propose a new strategy for energy storage -- frequency shaping control -- that allows to completely eliminate the frequency Nadir, one of the main issue in frequency security, and at the same time tune the rate of change of frequency (RoCoF) to a desired value. With Nadir eliminated, the frequency security assessment can be performed via simple algebraic calculations, as opposed to dynamic simulations for conventional control strategies. Moreover, our proposed control is also very efficient in terms of the requirements on storage peak power, requiring up to 40% less power than conventional virtual inertia approach for the same performance.},
author = {Jiang, Yan and Cohn, Eliza and Vorobev, Petr and Mallada, Enrique},
doi = {10.1109/TPWRS.2021.3072833},
grants = {CAREER-1752362;CPS-2136324},
journal = {IEEE Transactions on Power Systems},
month = {11},
number = {6},
pages = {5006-5019},
record = {early access Apr 2021, accepted Mar 2021, revised Oct 2020, submitted May 2020},
title = {Storage-Based Frequency Shaping Control},
url = {https://mallada.ece.jhu.edu/pubs/2021-TPS-JCVM.pdf},
volume = {36},
year = {2021}
}
Yan to join UW ECE as a postdoc
Yan will be joining Baosen’s group at UW to do a joint postdoc between UW and ASU. Congratulations!
ML Seminar @ JHU
I gave a talk on “Learning to be safe, in finite time: Multi-armed Bandits and Reinforcement Learning” at ML Seminar, Johns Hopkins University (Host: Raman Arora). Related publications include [1, 2]
[Bibtex] [Abstract] [Download PDF]
This paper aims to put forward the concept that learning to take safe actions in unknown environments, even with probability one guarantees, can be achieved without the need for an unbounded number of exploratory trials, provided that one is willing to relax its optimality requirements mildly. We focus on the canonical multi-armed bandit problem and seek to study the exploration-preservation trade-off intrinsic within safe learning. More precisely, by defining a handicap metric that counts the number of unsafe actions, we provide an algorithm for discarding unsafe machines (or actions), with probability one, that achieves constant handicap. Our algorithm is rooted in the classical sequential probability ratio test, redefined here for continuing tasks. Under standard assumptions on sufficient exploration, our rule provably detects all unsafe machines in an (expected) finite number of rounds. The analysis also unveils a trade-off between the number of rounds needed to secure the environment and the probability of discarding safe machines. Our decision rule can wrap around any other algorithm to optimize a specific auxiliary goal since it provides a safe environment to search for (approximately) optimal policies. Simulations corroborate our theoretical findings and further illustrate the aforementioned trade-offs.
@inproceedings{cbm2021acc,
abstract = {This paper aims to put forward the concept that learning to take safe actions in unknown environments, even with probability one guarantees, can be achieved without the need for an unbounded number of exploratory trials, provided that one is willing to relax its optimality requirements mildly. We focus on the canonical multi-armed bandit problem and seek to study the exploration-preservation trade-off intrinsic within safe learning. More precisely, by defining a handicap metric that counts the number of unsafe actions, we provide an algorithm for discarding unsafe machines (or actions), with probability one, that achieves constant handicap.
Our algorithm is rooted in the classical sequential probability ratio test, redefined here for continuing tasks. Under standard assumptions on sufficient exploration, our rule provably detects all unsafe machines in an (expected) finite number of rounds. The analysis also unveils a trade-off between the number of rounds needed to secure the environment and the probability of discarding safe machines. Our decision rule can wrap around any other algorithm to optimize a specific auxiliary goal since it provides a safe environment to search for (approximately) optimal policies. Simulations corroborate our theoretical findings and further illustrate the aforementioned trade-offs.},
author = {Castellano, Agustin and Bazerque, Juan and Mallada, Enrique},
booktitle = {American Control Conference (ACC)},
doi = {10.23919/ACC50511.2021.9482829},
grants = {CPS-1544771, CAREER-1752362, TRIPODS-1934979},
month = {5},
pages = {909-916},
record = {submitted Sep. 2020, accepted Jan. 2021},
title = {Learning to be safe, in finite time},
url = {https://mallada.ece.jhu.edu/pubs/2021-ACC-CBM.pdf},
year = {2021}
}
ECE Research Colloquium @ UW
I gave a talk on “Embracing Low Inertia in Power System Frequency Control: A Dynamic Droop Approach” at ECE Research Colloquium, University of Washington (Hosts: Brian Johnson, and Baosen Zhang). Related publications include [1, 2, 3]
[Bibtex] [Abstract] [Download PDF]
The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define –and compute in closed form– several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.
@article{pm2020tac,
abstract = {The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define --and compute in closed form-- several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.},
author = {Paganini, Fernando and Mallada, Enrique},
doi = {10.1109/TAC.2019.2942536},
grants = {CPS-1544771, AMPS-1736448, EPCN-1711188, CAREER-1752362, ENERGISE-DE-EE0008006},
journal = {IEEE Transactions on Automatic Control},
month = {7},
number = {7},
pages = {3007-3022},
title = {Global analysis of synchronization performance for power systems: bridging the theory-practice gap},
url = {https://mallada.ece.jhu.edu/pubs/2020-TAC-PM.pdf},
volume = {67},
year = {2020}
}
[Bibtex] [Abstract] [Download PDF]
A widely embraced approach to mitigate the dynamic degradation in low-inertia power systems is to mimic generation response using grid-connected inverters to restore the grid’s stiffness. In this paper, we seek to challenge this approach and advocate for a principled design based on a systematic analysis of the performance trade-offs of inverterbased frequency control. With this aim, we perform a qualitative and quantitative study comparing the effect of conventional control strategies –droop control (DC) and virtual inertia (VI)– on several performance metrics induced by L2 and L∞ signal norms. By extending a recently proposed modal decomposition method, we capture the effect of step and stochastic power disturbances, and frequency measurement noise, on the overall transient and steady-state behavior of the system. Our analysis unveils several limitations of these solutions, such as the inability of DC to improve dynamic frequency response without increasing steady-state control effort, or the large frequency variance that VI introduces in the presence of measurement noise. We further propose a novel dynam-i-c Droop controller (iDroop) that overcomes the limitations of DC and VI. More precisely, we show that iDroop can be tuned to achieve high noise rejection, fast system-wide synchronization, or frequency overshoot (Nadir) elimination without affecting the steady-state control effort share, and propose a tuning recommendation that strikes a balance among these objectives. Extensive numerical experimentation shows that the proposed tuning is effective even when our proportionality assumptions are not valid, and that the particular tuning used for Nadir elimination strikes a good trade-off among various performance metrics.
@article{jpm2021tac,
abstract = {A widely embraced approach to mitigate the dynamic degradation in low-inertia power systems is to mimic generation response using grid-connected inverters to restore
the grid's stiffness. In this paper, we seek to challenge this approach and advocate for a principled design based on a systematic analysis of the performance trade-offs of inverterbased frequency control. With this aim, we perform a qualitative
and quantitative study comparing the effect of conventional
control strategies --droop control (DC) and virtual inertia (VI)--
on several performance metrics induced by L2 and L∞ signal
norms. By extending a recently proposed modal decomposition
method, we capture the effect of step and stochastic power
disturbances, and frequency measurement noise, on the overall
transient and steady-state behavior of the system. Our analysis
unveils several limitations of these solutions, such as the inability of DC to improve dynamic frequency response without
increasing steady-state control effort, or the large frequency
variance that VI introduces in the presence of measurement
noise. We further propose a novel dynam-i-c Droop controller
(iDroop) that overcomes the limitations of DC and VI. More
precisely, we show that iDroop can be tuned to achieve high
noise rejection, fast system-wide synchronization, or frequency
overshoot (Nadir) elimination without affecting the steady-state
control effort share, and propose a tuning recommendation that
strikes a balance among these objectives. Extensive numerical
experimentation shows that the proposed tuning is effective even
when our proportionality assumptions are not valid, and that
the particular tuning used for Nadir elimination strikes a good
trade-off among various performance metrics.},
author = {Jiang, Yan and Pates, Richard and Mallada, Enrique},
doi = {10.1109/TAC.2020.3034198},
grants = {ENERGISE-DE-EE0008006, EPCN-1711188,AMPS-1736448, CPS-1544771, CAREER-1752362, AMPS-1736448, ARO-W911NF-17-1-0092},
journal = {IEEE Transactions on Automatic Control},
month = {8},
number = {8},
pages = {3518-3533},
record = {available online Nov. 2020, accepted Aug. 2020, revised Mar. 2020, submitted Aug. 2019},
title = {Dynamic Droop Control in Low Inertia Power Systems},
url = {https://mallada.ece.jhu.edu/pubs/2021-TAC-JPM.pdf},
volume = {66},
year = {2021}
}
[Bibtex] [Abstract] [Download PDF]
With the decrease in system inertia, frequency security becomes an issue for power systems around the world. Energy storage systems (ESS), due to their excellent ramping capabilities, are considered as a natural choice for the improvement of frequency response following major contingencies. In this manuscript, we propose a new strategy for energy storage — frequency shaping control — that allows to completely eliminate the frequency Nadir, one of the main issue in frequency security, and at the same time tune the rate of change of frequency (RoCoF) to a desired value. With Nadir eliminated, the frequency security assessment can be performed via simple algebraic calculations, as opposed to dynamic simulations for conventional control strategies. Moreover, our proposed control is also very efficient in terms of the requirements on storage peak power, requiring up to 40% less power than conventional virtual inertia approach for the same performance.
@article{jcvm2021tps,
abstract = {With the decrease in system inertia, frequency security becomes an issue for power systems around the world. Energy storage systems (ESS), due to their excellent ramping capabilities, are considered as a natural choice for the improvement of frequency response following major contingencies. In this manuscript, we propose a new strategy for energy storage -- frequency shaping control -- that allows to completely eliminate the frequency Nadir, one of the main issue in frequency security, and at the same time tune the rate of change of frequency (RoCoF) to a desired value. With Nadir eliminated, the frequency security assessment can be performed via simple algebraic calculations, as opposed to dynamic simulations for conventional control strategies. Moreover, our proposed control is also very efficient in terms of the requirements on storage peak power, requiring up to 40% less power than conventional virtual inertia approach for the same performance.},
author = {Jiang, Yan and Cohn, Eliza and Vorobev, Petr and Mallada, Enrique},
doi = {10.1109/TPWRS.2021.3072833},
grants = {CAREER-1752362;CPS-2136324},
journal = {IEEE Transactions on Power Systems},
month = {11},
number = {6},
pages = {5006-5019},
record = {early access Apr 2021, accepted Mar 2021, revised Oct 2020, submitted May 2020},
title = {Storage-Based Frequency Shaping Control},
url = {https://mallada.ece.jhu.edu/pubs/2021-TPS-JCVM.pdf},
volume = {36},
year = {2021}
}
Seminar @ Los Alamos National Laboratory
I gave a talk on “Embracing Low Inertia in Power System Frequency Control: A Dynamic Droop Approach” at the 4th Grid Science Winter School and Conference, Los Alamos National Laboratory. Related publications include [1, 2, 3]
[Bibtex] [Abstract] [Download PDF]
The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define –and compute in closed form– several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.
@article{pm2020tac,
abstract = {The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define --and compute in closed form-- several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.},
author = {Paganini, Fernando and Mallada, Enrique},
doi = {10.1109/TAC.2019.2942536},
grants = {CPS-1544771, AMPS-1736448, EPCN-1711188, CAREER-1752362, ENERGISE-DE-EE0008006},
journal = {IEEE Transactions on Automatic Control},
month = {7},
number = {7},
pages = {3007-3022},
title = {Global analysis of synchronization performance for power systems: bridging the theory-practice gap},
url = {https://mallada.ece.jhu.edu/pubs/2020-TAC-PM.pdf},
volume = {67},
year = {2020}
}
[Bibtex] [Abstract] [Download PDF]
A widely embraced approach to mitigate the dynamic degradation in low-inertia power systems is to mimic generation response using grid-connected inverters to restore the grid’s stiffness. In this paper, we seek to challenge this approach and advocate for a principled design based on a systematic analysis of the performance trade-offs of inverterbased frequency control. With this aim, we perform a qualitative and quantitative study comparing the effect of conventional control strategies –droop control (DC) and virtual inertia (VI)– on several performance metrics induced by L2 and L∞ signal norms. By extending a recently proposed modal decomposition method, we capture the effect of step and stochastic power disturbances, and frequency measurement noise, on the overall transient and steady-state behavior of the system. Our analysis unveils several limitations of these solutions, such as the inability of DC to improve dynamic frequency response without increasing steady-state control effort, or the large frequency variance that VI introduces in the presence of measurement noise. We further propose a novel dynam-i-c Droop controller (iDroop) that overcomes the limitations of DC and VI. More precisely, we show that iDroop can be tuned to achieve high noise rejection, fast system-wide synchronization, or frequency overshoot (Nadir) elimination without affecting the steady-state control effort share, and propose a tuning recommendation that strikes a balance among these objectives. Extensive numerical experimentation shows that the proposed tuning is effective even when our proportionality assumptions are not valid, and that the particular tuning used for Nadir elimination strikes a good trade-off among various performance metrics.
@article{jpm2021tac,
abstract = {A widely embraced approach to mitigate the dynamic degradation in low-inertia power systems is to mimic generation response using grid-connected inverters to restore
the grid's stiffness. In this paper, we seek to challenge this approach and advocate for a principled design based on a systematic analysis of the performance trade-offs of inverterbased frequency control. With this aim, we perform a qualitative
and quantitative study comparing the effect of conventional
control strategies --droop control (DC) and virtual inertia (VI)--
on several performance metrics induced by L2 and L∞ signal
norms. By extending a recently proposed modal decomposition
method, we capture the effect of step and stochastic power
disturbances, and frequency measurement noise, on the overall
transient and steady-state behavior of the system. Our analysis
unveils several limitations of these solutions, such as the inability of DC to improve dynamic frequency response without
increasing steady-state control effort, or the large frequency
variance that VI introduces in the presence of measurement
noise. We further propose a novel dynam-i-c Droop controller
(iDroop) that overcomes the limitations of DC and VI. More
precisely, we show that iDroop can be tuned to achieve high
noise rejection, fast system-wide synchronization, or frequency
overshoot (Nadir) elimination without affecting the steady-state
control effort share, and propose a tuning recommendation that
strikes a balance among these objectives. Extensive numerical
experimentation shows that the proposed tuning is effective even
when our proportionality assumptions are not valid, and that
the particular tuning used for Nadir elimination strikes a good
trade-off among various performance metrics.},
author = {Jiang, Yan and Pates, Richard and Mallada, Enrique},
doi = {10.1109/TAC.2020.3034198},
grants = {ENERGISE-DE-EE0008006, EPCN-1711188,AMPS-1736448, CPS-1544771, CAREER-1752362, AMPS-1736448, ARO-W911NF-17-1-0092},
journal = {IEEE Transactions on Automatic Control},
month = {8},
number = {8},
pages = {3518-3533},
record = {available online Nov. 2020, accepted Aug. 2020, revised Mar. 2020, submitted Aug. 2019},
title = {Dynamic Droop Control in Low Inertia Power Systems},
url = {https://mallada.ece.jhu.edu/pubs/2021-TAC-JPM.pdf},
volume = {66},
year = {2021}
}
[Bibtex] [Abstract] [Download PDF]
With the decrease in system inertia, frequency security becomes an issue for power systems around the world. Energy storage systems (ESS), due to their excellent ramping capabilities, are considered as a natural choice for the improvement of frequency response following major contingencies. In this manuscript, we propose a new strategy for energy storage — frequency shaping control — that allows to completely eliminate the frequency Nadir, one of the main issue in frequency security, and at the same time tune the rate of change of frequency (RoCoF) to a desired value. With Nadir eliminated, the frequency security assessment can be performed via simple algebraic calculations, as opposed to dynamic simulations for conventional control strategies. Moreover, our proposed control is also very efficient in terms of the requirements on storage peak power, requiring up to 40% less power than conventional virtual inertia approach for the same performance.
@article{jcvm2021tps,
abstract = {With the decrease in system inertia, frequency security becomes an issue for power systems around the world. Energy storage systems (ESS), due to their excellent ramping capabilities, are considered as a natural choice for the improvement of frequency response following major contingencies. In this manuscript, we propose a new strategy for energy storage -- frequency shaping control -- that allows to completely eliminate the frequency Nadir, one of the main issue in frequency security, and at the same time tune the rate of change of frequency (RoCoF) to a desired value. With Nadir eliminated, the frequency security assessment can be performed via simple algebraic calculations, as opposed to dynamic simulations for conventional control strategies. Moreover, our proposed control is also very efficient in terms of the requirements on storage peak power, requiring up to 40% less power than conventional virtual inertia approach for the same performance.},
author = {Jiang, Yan and Cohn, Eliza and Vorobev, Petr and Mallada, Enrique},
doi = {10.1109/TPWRS.2021.3072833},
grants = {CAREER-1752362;CPS-2136324},
journal = {IEEE Transactions on Power Systems},
month = {11},
number = {6},
pages = {5006-5019},
record = {early access Apr 2021, accepted Mar 2021, revised Oct 2020, submitted May 2020},
title = {Storage-Based Frequency Shaping Control},
url = {https://mallada.ece.jhu.edu/pubs/2021-TPS-JCVM.pdf},
volume = {36},
year = {2021}
}