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Distributed optimization decomposition for joint
economic dispatch and frequency regulation

Desmond Cai∗, Enrique Mallada† and Adam Wierman††

Abstract—Economic dispatch and frequency regulation are
typically viewed as fundamentally different problems in power
systems and, hence, are typically studied separately. In this paper,
we frame and study a joint problem that co-optimizes both
slow timescale economic dispatch resources and fast timescale
frequency regulation resources. We show how the joint problem
can be decomposed without loss of optimality into slow and
fast timescale sub-problems that have appealing interpretations
as the economic dispatch and frequency regulation problems
respectively. We solve the fast timescale sub-problem using a
distributed frequency control algorithm that preserves network
stability during transients. We solve the slow timescale sub-
problem using an efficient market mechanism that coordinates
with the fast timescale sub-problem. We investigate the perfor-
mance of our approach on the IEEE 24-bus reliability test system.

Index Terms—Economic dispatch, frequency regulation, opti-
mization decomposition, markets.

I. INTRODUCTION

ONE of the major objectives of every Independent System
Operator (ISO) is to schedule generation to meet demand

at every time instant [2]–[4]. This is a challenging task –
it involves responding rapidly to supply-demand imbalances,
minimizing generation costs, and respecting operating limi-
tations (such as ramp constraints, capacity constraints, and
line constraints). Due to the complexity of this global system
operation problem, it is typically divided into two separate
problems: economic dispatch, which focuses on control of
slower timescale resources and is solved using market mech-
anisms, and frequency regulation, which focuses on control
of faster timescale resources and is solved using engineered
controllers. Economic dispatch and frequency regulation are
typically studied independently of each other.

Economic dispatch operates at the timescale of 5 minutes
or longer and focuses on cost efficiency. In particular, the
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economic dispatch problem seeks to optimally schedule gen-
erators to minimize total generation costs. Economic dispatch
has a long history [2], [5]–[9]. It is currently implemented
using a market mechanism known as supply function bidding.
In this mechanism, generators submit supply functions to the
ISO which specify (as a function of price) the quantity a
generator is willing to produce. The ISO solves a centralized
optimization problem (over single or multiple time periods) to
schedule generators to minimize system costs while satisfying
demand and slow timescale operating constraints (such as line
constraints, capacity constraints, ramping constraints, security
constraints, etc.). Each generator is compensated at the loca-
tional marginal price (LMP) which reflect the system cost of
serving an incremental unit of demand at its node.

Frequency regulation operates at a faster timescale (from a
few minutes to 30 seconds) and focuses on stability rather
than efficiency. In particular, the ISO seeks to restore the
nominal frequency in the system by rescheduling fast ramping
generators. Frequency regulation has a long history [3], [10],
[11]. It is currently implemented by a mechanism known as
Automatic Generation Control (AGC). In this mechanism, the
ISO computes the aggregate generation that would rebalance
power within each independent control area (and hence restore
nominal frequency) and allocates the imbalance generation
among generators based on the solution of the previous
economic dispatch run [2]. These allocations determine the set-
points in a distributed control algorithm that drives the power
system to a stable operating point using local information on
frequency deviations. Similar to dispatch resources, regulation
resources are compensated at the applicable LMP. Note that,
since the economic dispatch mechanism runs every 5 minutes,
the applicable LMPs would be those from the most recent
economic dispatch run.

A. Contributions of this paper

While economic dispatch and frequency regulation each
have large and active literatures, these literatures are typically
disparate, with the exception of studies on the design of
hierarchical control in power systems [12]–[17]. The latter
studies typically propose solutions to efficiently integrate pri-
mary, secondary (frequency regulation), and tertiary (economic
dispatch) control. Another related stream of literature involves
the analysis and design of frequency regulation controllers
(including AGC) that converge to the solution of a cost
minimization problem [18], [19]. However, these studies do
not explain how to integrate the controllers with slower
timescale dispatch mechanisms. To date, we are not aware of
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any analysis of whether the existing combination of economic
dispatch and frequency regulation solves the global system
operator’s goal of dispatching generation resources efficiently
across both timescales. The goal of this paper is to study this
as well as present one framework for a principled top-down
approach for the design of economic dispatch and frequency
regulation.

Our main result provides an initial answer. In the context
of a DC power flow model and two classes of generators
(dispatch and regulation), we show that the global system oper-
ator’s problem can be decomposed into two sub-problems that
correspond to the economic dispatch and frequency regulation
timescales, without loss of optimality, as long as the ISO is
able to estimate the difference between the average LMP in
the frequency regulation periods and the LMP in the economic
dispatch period (Theorem 1). This result can be viewed as
a first-principles justification for the existing separation of
power systems control into economic dispatch and frequency
regulation problems. Moreover, this result provides a guide
to modify the existing architecture to optimally control power
systems across timescales. In particular, using this result, we
design an optimal control policy for frequency regulation and
an optimal market mechanism for economic dispatch, in a way
such that the control and market mechanisms jointly solve
the global system operator’s problem. Our mechanims differ
from existing economic dispatch and frequency regulation
mechanisms in important ways.

In the case of frequency regulation (Section IV), our mech-
anism has a key advantage over the AGC mechanism in that
our mechanism is efficient. The frequency regulation controller
proposed in this paper is built on the distributed controller
in [20], [21] and controls generation based on information
about generators’ costs in a way such that the power system
converges to an operating point that minimizes system costs.
On the other hand, AGC allocates generation based on par-
ticipation factors, which might not reflect actual costs, and
hence the resulting allocation might not be efficient. In [18],
the authors proposed a modification of the participation factors
so that the AGC mechanism is cost efficient. However, unlike
our mechanism, the mechanism in [18] does not respect line
constraints. Another related work is [19], in which the authors
showed that droop controllers can be designed to converge
asymptotically to the solution of a cost minimization problem.
However, their mechanism does not respect line constraints or
capacity constraints.

In the case of economic dispatch (Section V), our mecha-
nism has a key advantage over the existing economic dispatch
operations in that it coordinates efficiently with the frequency
regulation timescale. This coordination does not require ad-
ditional communication in the market beyond the existing
mechanism used in practice. This coordination involves two
main components. First, our economic dispatch mechanism
communicates the supply function bids from the generators
to the frequency regulation mechanism, which uses them in
the distributed controllers to allocate frequency regulation
resources efficiently. In contrast, the AGC mechanism allocates
frequency regulation resources without regard to generation
costs. Second, our economic dispatch mechanism accounts
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Fig. 1: Example of a scenario tree with S = 16 outcomes over
K = 5 periods. The outcomes are numbered 1, . . . , S.

for the value that economic dispatch resources provide to
frequency regulation. It does so by adjusting the resource costs
in the economic dispatch objective based on the difference
between the LMP in the frequency regulation periods and that
in the economic dispatch period. In contrast, the existing eco-
nomic dispatch objective does not perform this adjustment and
hence might allocate economic dispatch resources inefficiently.

In practice, the ISO is unlikely to be able to estimate
exactly the adjustment it should make to the economic dis-
patch objective. In Section VI, we investigate numerically the
potential benefits of our proposed mechanism on the IEEE
24-bus reliability test system.

II. SYSTEM MODEL

Our aim is to understand how the combination of economic
dispatch and frequency regulation can dispatch generation
resources efficiently across both timescales. To this end, we
formulate a model of the global objective that includes balanc-
ing supply and demand at both timescales. We use a DC power
flow model and consider two generation types – dispatch and
regulation – which differ in responsiveness.

Consider a connected network consisting of a set of nodes
N and a set of links L. We focus on a single economic dispatch
interval of the real-time market which is typically 5 minutes
in existing markets. We partition this time interval into K
discrete periods numbered 1, . . . ,K. In general, the length of
each period may range from as little as seconds to as long as
minutes. However, in this work, we focus on the case where
each period is on the order tens of seconds.

A. Stochastic demand

We use a stochastic demand model motivated by the frame-
works in [22]–[24]. Assume that there is a set of possible
demand outcomes S that can be described by a scenario tree
(an example is given in Fig. 1). For each outcome s ∈ S, let
ds,n ∈ R denote the real power demand at node n ∈ N and
ds := (ds,n, n ∈ N) ∈ RN denote the vector of demands at
all nodes. In addition, let κ(s) ∈ {1, . . . ,K} denote the period
of this outcome and ps denote the probability of this outcome
conditioned on the information that the period is κ(s). Hence,∑

{s|κ(s)=k} ps = 1 for each k ∈ {1, . . . ,K}. Without loss
of generality, we assume that κ(1) = 1 and p1 = 1. That is,
there exists an outcome labeled 1 ∈ S associated with period
1 and the demand in that period is deterministic.
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B. Generation

We assume that each node n ∈ N has two generators
– a dispatch generator and a regulation generator – where
the regulation generator is more responsive than the dispatch
generator.1 To model the differing responsiveness, we assume
that the dispatch generator produces at a constant level over
the entire economic dispatch interval while the regulation
generator may change its production level every period after
uncertain demand is realized [25]. Our results extend to the
setting where the dispatch generator has ramp constraints;
the latter can be modelled by linearly prorating its allocation
over the entire economic dispatch interval. Since this feature
does not provide new insights, and yet introduces significant
complexity to the notations, we assume in this work that the
dispatch generator is only subject to instantaneous capacity
constraints. Formally, we assume that the dispatch generator
produces qdn ∈ R in all outcomes, and the regulation generator
produces qrn ∈ R in period 1 and qrn + rrs,n ∈ R in each
subsequent outcome s ∈ S \ {1}. Hence, qrn and rrs,n can be
interpreted as the regulation generator’s setpoint and recourse
respectively. To simplify notations, we define a dummy vari-
able rr1,n := 0 so that we may write the regulation generator’s
production in period 1 as qrn + rr1,n. We assume that the
regulation and dispatch generators have capacity constraints
[
¯
qrn, q̄

r
n] and [

¯
qdn, q̄

d
n] respectively, and incur costs crn(q

r
n+rrs,n)

and cdn(q
d
n) respectively in period κ(s), where the functions

crn : [
¯
qrn, q̄

r
n]→R+ and cdn : [

¯
qdn, q̄

d
n]→R+ are strictly convex

and continuously differentiable.
Define vectors qr := (qrn, n ∈ N), rrs := (rrs,n, n ∈ N),

qd := (qdn, n ∈ N),
¯
qr := (

¯
qrn, n ∈ N),

¯
qd := (

¯
qdn, n ∈ N),

q̄r := (q̄rn, n ∈ N), q̄d := (q̄dn, n ∈ N). Then the generation
constraints in outcome s ∈ S are given by:

¯
qd ≤ qd ≤ q̄d, (1)

¯
qr ≤ qr + rrs ≤ q̄r. (2)

We also let the vector rr := (rrs, s ∈ S).

C. Network constraints

Note that qd+qr+rds−ds is the vector of nodal injections
for s ∈ S. Thus, the supply-demand balance constraint is:

1>(qd + qr + rrs − ds) = 0, (3)

where 1 ∈ RN denotes the vector of all ones.
We adopt the DC power flow model for line flows. Let θs,n

denote the phase angle of node n. Without loss of generality,
assign each link l an arbitrary orientation and let i(l) and j(l)
denote the tail and head of the link respectively. Let Bl denote
the sensitivity of the flow with respect to changes in the phase
difference θs,i(l) − θs,j(l) and let vs,l denote its power flow.
Define the vectors θs := (θs,n, n ∈ N) and vs := (vs,l, l ∈ L)

1Our results may be extended to settings where a node has more than one
of each type of generator, or there is only one type of generator at a node,
or there are no generators at a node. The assumption that each node has
exactly one of both types of generators is made to simplify the notations and
derivations. In our case study, we will validate our approach via simulations
on the IEEE 24-bus reliability test system, in which certain nodes have only
one type of generator or have no generator.

and the matrix B := diag(Bl, l ∈ L). Then, the line flows are
given by vs = BC>θs where C ∈ RN×L is the incidence
matrix of the directed graph. And the injections are:

qd + qr + rrs − ds = Cvs = Lθs, (4)

where L := CBC>.
Note that (3) and (4) are equivalent. For any set of injections

that satisfy (3), we can always find θs that satisfies (4).
Conversely, since 1>C = 0, any injections that satisfy (4)
also satisfy (3). Hence, the line flows can be written in terms
of the power injections:

vs = BC>L†(qd + qr + rrs − ds),

where L† denotes the pseudo-inverse of L. Let H := BC>L†.
Let fl denote the capacity of line l and define the vector f :=
(fl, l ∈ L). Then the line flow constraints are:

−f ≤ H
(
qd + qr + rrs − ds

)
≤ f . (5)

To simplify notations, we define the set Ω(ds) of feasible
generation for a given demand vector ds as:

Ω(ds) :=
{
(qd,qr, rrs) : (1), (2), (3), (5) holds

}
.

D. System operator’s objective

The global system operator’s objective is to allocate the dis-
patch and regulation generations (qd,qr, rr) to minimize the
expected cost of satisfying demand and operating constraints.
This is formalized as follows.

SY STEM : min
qd,qr,rr

∑
s∈S

ps
∑
n∈N

(
cdn(q

d
n) + crn(q

r
n + rrs,n)

)
s.t. (qd,qr, rrs) ∈ Ω(ds), ∀s ∈ S,

rr1 = 0.

This optimization is solved at the beginning of the economic
dispatch interval. We assume that this optimization is feasible.
Note that SY STEM differs from the existing economic
dispatch mechanism, which minimizes the costs of satisfying
the forecasted demand at the end of the economic dispatch
interval. Observe that SY STEM is a stochastic optimization
problem. Although it is in general computationally challenging
to solve, the design of algorithms for such problems is an
active research area in the power systems and optimization
communities [26], [27]. The goals of this work, however, are
to formulate a global system operation problem and decom-
pose it into subproblems in a way that provide insights into
optimal design of economic dispatch and frequency regulation
mechanisms.

Let λs and (
¯
µs, µ̄s) be the Lagrange multipliers associated

with constraints (3) and (5) respectively in SY STEM . Then,
the function π : R× R2L

+ → RN , defined by:

π(λs,
¯
µs, µ̄s) := λs1+H>(

¯
µs − µ̄s), (6)

gives the nodal prices in outcome s ∈ S.
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III. ARCHITECTURAL DECOMPOSITION

Our main result is a decomposition of SY STEM into
setpoint and recourse sub-problems. Importantly, our decom-
position identifies a rigorous connection between the setpoint
and recourse sub-problems that ensures that the combination
solves SY STEM . In particular, our decomposition divides
SY STEM into sub-problems ED and FR defined by:

ED(d1) : min
qd,qr

∑
n∈N

(
Kcdn(q

d
n) +Kcrn(q

r
n)− δnq

d
n

)
s.t. (qd,qr,0) ∈ Ω(d1),

FR(qd,qr,ds) : min
rrs

∑
n∈N

crn(q
r
n + rrs,n)

s.t. (qd,qr, rrs) ∈ Ω(ds),

where δ ∈ RN is a constant. ED(d1) is implemented in time
period 1 and FR(qd,qr,ds) is implemented in subsequent
time periods κ(s) > 1.

We denote the first optimization problem by ED, since it
optimizes only generation setpoints (qd,qr) assuming con-
stant demand d1 over the K time periods, and hence it is on
the same timescale as the existing economic dispatch mech-
anism. We denote the second optimization problem by FR,
since it optimizes regulation generators’ recourse production
rrs in subsequent time periods, and hence it is on the same
timescale as the existing frequency regulation mechanism.

Definition 1. We say that SY STEM can be optimally
decomposed into ED-FR if (qd,qr, rr) is an optimal so-
lution to SY STEM if and only if rr1 = 0, (qd,qr) is an
optimal solution to ED(d1), and rrs is an optimal solution to
FR(qd,qr,ds) for all s ∈ S.

Theorem 1 (Decomposition). Let λs and (
¯
µs, µ̄s) be any

Lagrange multipliers associated with constraints (3) and (5)
respectively in SY STEM .
(a) If δ is the average, over all time periods, of the difference

between the expected nodal prices in each period and that
in period 1, that is, for each n ∈ N ,

δn =
∑
s∈S

ps
(
πn(λs,

¯
µs, µ̄s)− πn(λ1,

¯
µ1, µ̄1)

)
, (7)

then SY STEM can be optimally decomposed into
ED-FR.

(b) If SY STEM can be optimally decomposed into
ED-FR, then for all n such that

¯
qdn < qdn < q̄dn and

¯
qrn < qr1,n < q̄rn, (7) holds.

The proof of Theorem 1 is given in the Appendix. The
result follows from analyzing the Karush-Kuhn-Tucker (KKT)
conditions of the system operator’s problem and those of ED
and FR. As SY STEM , ED, and FR are all convex, the
KKT conditions are necessary and sufficient for optimality.
Upon substituting (7) into the KKT conditions, one can show
that any solution to the KKT conditions of SY STEM is
also a solution to the KKT conditions of ED-FR, and vice
versa. As mentioned, we denote the two sub-problems by
ED and FR because they focus on the economic dispatch
and frequency regulation timescales respectively. Hence, these
sub-problems can serve as guides for the optimal design of

economic dispatch and frequency regulation mechanisms. The
insights are immediate in the case of economic dispatch and
we show how ED leads to an improved market mechanism
in Section V. However, the insights may not be as clear in
the case of frequency regulation. We show in Section IV that
FR can in fact be solved via distributed frequency control
algorithms, although these algorithms deviate from current
practice that do not optimize generation costs.

The most important feature of Theorem 1 is that, one
way to choose generation setpoints optimally at the economic
dispatch timescale, is to include, in the optimization objective,
an offset of the dispatch generators’ marginal costs by the
expected changes in nodal prices during the frequency regu-
lation timescale. The latter can be interpreted as the expected
changes in the marginal value of dispatch generation. Hence,
if the latter is zero, then generation setpoints can be chosen
optimally at the economic dispatch timescale without regard
to the behavior of the system in the frequency regulation
timescale [1].

A byproduct of our decomposition is the insight that the
stochastic optimization problem SY STEM may be solved
by solving a sequence of deterministic subproblems ED(d1)
and FR(qd,qr,ds) if the system operator is able to predict
the RHS of (7). Note that ED(d1) has the same complexity
as the existing economic dispatch mechanism; and we will
show in the next section that FR(qd,qr,ds) can be solved
using a distributed frequency control algorithm. Therefore, the
computations of the subproblems have the same complexity as
existing operations.

An important extension of this work is to design algorithms
to iteratively estimate the RHS of (7) online. Such approaches
resemble value function iterations in dynamic programming.
Also important is to understand the suboptimality of the
solutions under estimation errors in the RHS of (7). Note
that negative estimation errors cause ED(d1) to use less than
optimal dispatch resources (and more than optimal regulation
resources) and vice versa. In such situations, the dispatch gen-
eration qd might not be optimal, and therefore FR(qd,qr,ds)
might not be feasible. To ensure that FR(qd,qr,ds) is
feasible, we may modify ED(d1) into a robust optimization
problem by adding constraints (qd,qr, rrs) ∈ Ω(ds) for all
s ∈ S \ {1}. The size of such a problem is exponential in S
but can be reduced using the technique in [28]. Note that this
should not be viewed as a drawback of our decomposition,
as the current practice based on AGC might also not be
feasible. In practice, the risks of infeasibility are mitigated
using reserves. Moreover, our decomposition has the advan-
tage that it coordinates the economic dispatch and frequency
regulation resources efficiently, and hence, may reduce reserve
requirements.

Theorem 1 provides a rigorous way to think about archi-
tectural design of power networks. Theorem 1 is close in
spirit to work in communication networks that use optimiza-
tion decomposition to justify and optimize protocol layer-
ing [29]–[31]. In the latter, different protocol layers coordinate
by communicating primal and dual variables between sub-
optimization problems. It is an interesting open direction as
to whether these mechanisms can be applied to coordinate
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between ED and FR, since the sub-optimizations in protocol
layering use instantaneous primal and dual variables while ED
uses expected prices.

IV. DISTRIBUTED FREQUENCY REGULATION

This section illustrates how to implement the solution to
FR using distributed frequency regulation controllers. Besides
achieving optimality, a practical implementation should pre-
serve network stability, be robust to unexpected system events,
aggregate network information in a distributed manner, and
satisfy constraints (2), (3) and (5). The distributed algorithm
that we provide in this section satisfies all the above character-
istics. It can be interpreted as performing distributed frequency
regulation by sending different regulation signals to each bus.

A. Dynamic model

Before introducing our algorithm we add dynamics to our
system model to describe the system behavior within a single
time period. Let t denote the time evolution within the time
period of outcome s, and assume without loss of generality that
t ∈ (k, k + 1] where k = κ(s). Let rrs(t) := (rrs,n(t), n ∈ N)
denote the recourse quantities generated by the regulation
generators at time t. For the purpose of the analysis, we
assume that dispatch generation and demand do not change
within the time period. And we will use simulations to study
the performance of the proposed mechanism in a setting where
demand is changing continuously.

Then, the system changes within the time period are gov-
erned by the swing equations which we assume to be:

θ̇s(t) = ωs(t); (8a)

Mω̇s(t) = qd + qr + rrs(t)− ds −Dωs(t)− Lθs(t), (8b)

where ωs(t) := (ωs,n(t), n ∈ N) are the frequency deviations
from the nominal value at time t, θs(t) := (θs,n(t), n ∈ N)
are the phase angles at time t, M := diag(M1, . . . ,MN )
where Mn is the aggregate inertia of the generators at node
n, and D := diag(D1, . . . , DN ) where Dn is the aggregate
damping of the generators at node n. The notation ẋ denotes
the time derivative, i.e. ẋ = dx/dt. Equation (8) is a linearized
version of the nonlinear network dynamics [3], [32], and
has been widely used in the design of frequency regulation
controllers. See, e.g., [11], [33].

B. Distributed frequency regulation

We now introduce a distributed, continuous-time algorithm
that provably solves FR while preserving system stability. Our
solution is based on a novel reverse and forward engineering
approach for distributed control design in power systems [18],
[21], [34]–[37]. The algorithm operates as follows. Each
regulation generator n updates its power generation using

rrs,n(t) = [cr′−1
n (−ωs,n(t)− πr

s,n(t))]
q̄rn−qrn

¯
qrn−qrn

, (9)

where cr′n (x) = ∂
∂xc

r
n(x) and cr′−1

n denotes its inverse. The
projection [r]

q̄rn−qrn

¯
qrn−qrn

ensures that
¯
qrn − qrn ≤ r ≤ q̄rn − qrn (or

equivalently
¯
qrn ≤ r+ qrn ≤ q̄rn) and πr

s,n(t) is a control signal
generated using:

DFR : π̇r
s(t) = ζπ

(
qd + qr + rrs(t)− ds −Lφs(t)

)
; (10a)

˙̄µs(t) = ζµ̄
[
BC>φs(t)− f

]+
µ̄s
; (10b)

¯
µ̇s(t) = ζ¯

µ
[
− f −BC>φs(t)

]+
¯
µs
; (10c)

φ̇s(t) = χφ
(
Lπp

s(t)−CB(µ̄s(t)−
¯
µs(t))

)
, (10d)

where ζπ := diag(ζπ1 , . . . , ζ
π
N ), ζµ̄ := diag(ζ µ̄1 , . . . , ζ

µ̄
L),

ζ¯
µ := diag(ζ¯

µ

1 , . . . , ζ¯
µ

L), χφ := diag(χφ
1 , . . . , χ

φ
N ) denote

the respective control gains. The element-wise projection
[y]+x := ([yn]

+
xn
, n ∈ N) ensures that the dynamics ẋ = [y]+x

have a solution x(t) that remains in the positive orthant, that
is, [yn]

+
xn

= 0 if xn = 0 and yn < 0, and [yn]
+
xn

= yn
otherwise.

The proposed solution (9) – (10) can be interpreted as
a frequency regulation algorithm in which each regulation
generator receives a different regulation signal (9) depending
on its location in the network. The key step in the design
of DFR is reformulating FR into the following equivalent
optimization problem:

FR′(qd, qr,ds) :

min
rrs,ωs,vs,φs

∑
n∈N

(
crn(q

r
n + rrs,n) +Dnω

2
s,n/2

)
s.t. qd + qr + rrs − ds −Dωs = Cvs; (11a)

qd + qr + rrs − ds = Lφs; (11b)

− f ≤ BC>φs ≤ f ; (11c)

¯
qr ≤ qr ≤ q̄r. (11d)

Recall from Section II-C that vs denote line flows. Constraint
(11a) is reformulated from the per node supply-demand bal-
ance constraint (4), and makes explicit the fact that, whenever
supply and demand do not match, the mismatch is compen-
sated by a change in the frequency. Constraint (11b) ensures
that ωs = 0 at the optimal solution so that supply and de-
mand are balanced. Constraint (11c) imposes line flow limits.
However, instead of using actual line flows vs, these limits
are imposed on virtual flows BC>φs, which are identical to
line flows at the optimal solution [21].

It can be shown that FR′ has a primal-dual algorithm
that contains the component (8) resembling power network
dynamics and the components (9) – (10) that can be imple-
mented via distributed communication and computation. This
new problem FR′ also makes explicit the role of frequency
in maintaining supply-demand balance.

The next proposition formally relates the optimal solutions
of FR and FR′ and guarantees the optimality of (9) – (10).

Proposition 1 (Optimality). Let rrs and (rr′s ,ω
′
s,v

′
s,φ

′
s) be

optimal solutions of FR and FR′ respectively. Then, the
following statements are true: (i) Frequency restoration: ω′

s =
0; (ii) Generation equivalence: rrs = rr′s ; (iii) Line flow
equivalence: H

(
qd + qr + rrs − ds

)
= BC>φ′

s. Moreover,
there exists θ′

s ∈ RN and y′
s ∈ RL, satisfying Cy′

s = 0,
such that v′

s = BC>θ′
s + y′

s and BC>φ′
s = BC>θ′

s. And
(rr′s ,ω

′
s,θ

′
s,φ

′
s,π

r′
s ,

¯
µ′

s, µ̄
′
s) is an equilibrium point of (8) –
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(10) if and only if (rr′s ,ω
′
s,v

′
s,φ

′
s,π

r′
s ,

¯
µ′

s, µ̄
′
s) is a primal-

dual optimal solution of FR′, where ω′
s, πr′

s , and (
¯
µ′

s, µ̄
′
s)

are the Lagrange multipliers associated with constraints (11a),
(11b), and (11c), respectively.

The proof of Proposition 1 is given in the Appendix. What
remains is to guarantee the convergence of the distributed
frequency regulation algorithm.

Proposition 2 (Convergence). If crn is twice continuous dif-
ferentiable with cr′′n ≥ α > 0 (i.e., α-strictly convex) and
crn(q

r
n + rrs,n)→+∞ as qrn + rrs,n →{

¯
qrn, q̄

r
n}, then rrs(t) in

(8) – (10) converge globally to an optimal solution of FR.

The proof of Proposition 2 follows from [21] and
uses the machinery developed in [38] to handle projec-
tions (10b) – (10c). By substituting the line flows vs(t) =
BC>θs(t) into (8) and eliminating θs(t), we can show that
the entire system (8) – (10) is a primal-dual algorithm of
FR′ (see [21, Theorem 5]). Therefore, Theorem 10 in [21]
guarantees global asymptotic convergence to an equilibrium
point which by Proposition 1 is an optimal solution of both
FR′ and FR. Our setup is simpler than the controllers
in [21], which had additional states, but the same proof
technique applies. Although Proposition 2 requires costs to
blow up as regulation generations approach minimum and
maximum capacities, this assumption is not restrictive, as it
can be achieved by adding a barrier function to the actual
cost before implementing in the controllers. Moreover, as our
mechanism is distributed, it can be implemented on large
scale systems with minimal computational requirements and
guaranteed convergence. However, further studies have to be
performed on the convergence properties of the algorithm as
the system size increases, and how the speed of convergence is
affected by the cost functions of the generators and the design
of the control gains.

V. MARKET MECHANISM FOR ECONOMIC DISPATCH

This section illustrates how to implement the solution to
ED through a market mechanism for economic dispatch. The
mechanism works in the following manner. In the first time
period, the ISO collects supply function bids from generators
(both dispatch and regulation) and uses those bids to solve
ED. Then, in subsequent time periods, the ISO uses the
regulation generators’ supply function bids to implement the
controller in (9). This mechanism is efficient if SY STEM can
be decomposed into ED-FR and does not require any more
communication than the existing market mechanisms used in
practice.

A. Market model

We assume that generators are price-takers. Let πd
n denote

the price paid to dispatch generator n in each period and πr
s,n

denote the price paid to regulation generator n in outcome
s. Then, the expected profit of the dispatch and regulation
generators at node n are: Note that the regulation generator’s
profit is a function of its total production qrn + rrs,n in
each outcome s ∈ S. The supply function bids indicate the

quantities the generators are willing to produce at every price.2

We assume that these bids are chosen from a parameterized
family of functions. In particular, for node n, we represent
the dispatch and regulation generators’ supply functions by
parameters αd

n > 0 and αr
n > 0 respectively, and these

bids indicate that the dispatch generator is willing to supply
the quantity qdn = [αd

ns
d
n(π

d
n)]

q̄dn

¯
qdn

in the first time period
and the regulation generator is willing to supply the quantity
qrn + rrs,n = [αr

ns
r
n(π

r
s,n)]

q̄rn

¯
qrn

in outcome s, for some fixed
functions sdn : [

¯
qdn, q̄

d
n] → R+ and srn : [

¯
qrn, q̄

r
n] → R+.3

We also assume that sdn(π
d
n) 6= 0 for all πd

n ∈ R and
srn(π

r
s,n) 6= 0 for all πr

s,n ∈ R.4 The generators choose
their bids to maximize their profits subject to their capacity
constraints. Note that the regulation generator submits only
one supply function for all possible outcomes. Hence, its bid
in the economic dispatch timescale is also used as its bid in
the frequency regulation timescale.

The system operator interprets bids αd
n and αr

n as signals
that the dispatch and regulation generators at node n have
marginal costs πd

n and πr
s,n respectively when supplying

quantities αd
ns

d
n(π

d
n) and αr

ns
r
n(π

r
s,n) respectively. Hence, it

associates with the generators the following bid cost functions:

ĉdn(q
d
n) :=

∫ qdn

¯
qdn

(sdn)
−1(w/αd

n) dw, (12)

ĉrn(q
r
n) :=

∫ qrn

¯
qrn

(srn)
−1(w/αr

n) dw. (13)

Let αd := (αd
n, n ∈ N) and αr := (αr

n, n ∈ N) denote
the vectors of bids. Given bids (αd,αr), the system operator
solves ED to minimize expected bid costs. The prices for
the regulation generator in the first time period are the nodal
prices in ED while the prices for the dispatch generator are
the nodal prices offset by δ. Then, in each subsequent outcome
s ∈ S, the system operator implements the controller in (9)
using regulation generators’ bid costs. The prices are the nodal
prices in FR (which are computed by DFR).

B. Market equilibrium

Our focus is on understanding the efficiency of the mech-
anism. Formally, we consider the following notion of a com-
petitive equilibrium.

2In practice, supply function bids are, in fact, functions from quantity to
minimum acceptable price. This is not captured by our model because it would
involved multi-valued maps instead of functions. Nevertheless, in line with
previous work [7], [39]–[42], we will use supply functions that map price to
quantities in this paper.

3Numerous studies have explored different functional forms of the supply
functions and their impact on market efficiency, e.g., see [7], [39]–[42]. The
focus of this work is on illustrating that ED can be implemented using a sim-
ple market mechanism. Hence, we restrict ourselves to linearly parameterized
supply functions and leave the analyses of other more sophisticated supply
functions to future work. We refer the reader to [41] for some appealing
properties of linearly parameterized supply functions.

4This assumption is a technical condition to avoid the degenerate situation
where a generator’s supply quantity is not sensitive to its bid parameter which
would occur if sdn(π

d
n) = 0 or srn(π

r
s,n) = 0.
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Definition 2. We say that bids (αd,αr) are a competitive
equilibrium if there exists prices πd ∈ RN and πr = (πr

s, s ∈
S) ∈ RNS such that:
(a) For all n, αd

n is an optimal solution to:

max
α̂d

n>0
PFd

n

(
[α̂d

ns
d
n(π

d
n)]

q̄dn

¯
qdn
, πd

n

)
.

(b) For all n, αr
n is an optimal solution to:

max
α̂r

n>0
PFr

n

(
([α̂r

ns
r
n(π

r
s,n)]

q̄rn

¯
qrn
, πr

s,n), s ∈ S
)
.

(c) πd = (1/K)
(
π(λ1,

¯
µ1, µ̄1) + δ

)
and πr

1 =
(1/K)π(λ1,

¯
µ1, µ̄1) where λ1 and (

¯
µ1, µ̄1) are

the Lagrange multipliers associated with constraints (3)
and (5) respectively in:

ˆED(d1) : min
qd,qr

∑
n∈N

(
Kĉdn(q

d
n) +Kĉrn(q

r
n)− δnq

d
n

)
s.t. (qd,qr,0) ∈ Ω(d1).

(d) For all s ∈ S, πr
s = π(λs,

¯
µs, µ̄s) where λs and

(
¯
µs, µ̄s) are the Lagrange multipliers associated with

constraints (3) and (5) respectively in:

ˆFR(qd,qr,ds) : min
rrs

∑
n∈N

ĉrn(q
r
n + rrs,n)

s.t. (qd,qr, rrs) ∈ Ω(ds),

where qd =
(
[αd

ns
d
n(π

d
n)]

q̄dn

¯
qdn
, n ∈ N

)
and qr =(

[αr
ns

r
n(π

r
1,n)]

q̄rn

¯
qrn
, n ∈ N

)
.

At each node n ∈ N , the dispatch and regulation genera-
tors produce at setpoints [αd

ns
d
n(π

d
n)]

q̄dn

¯
qdn

and [αr
ns

r
n(π

r
1,n)]

q̄rn

¯
qrn

respectively in period 1, and the regulation generator produces
an additional quantity [αr

ns
r
n(π

r
s,n)]

q̄rn

¯
qrn

− [αr
ns

r
n(π

r
1,n)]

q̄rn

¯
qrn

in
outcome s ∈ S.

The following is our main result for this section. It high-
lights that, as a consequence of Theorem 1, any competitive
equilibrium is efficient.

Proposition 3 (Efficiency). Suppose that, for each n ∈ N ,
the functions sdn(·) = cd′−1

n (·)/γd
n and srn(·) = cr′−1

n (·)/γp
n

for some constants γd
n, γ

r
n > 0. Let λs and (

¯
µs, µ̄s) be the

Lagrange multipliers associated with constraints (3) and (5)
respectively in SY STEM . Suppose that (7) holds. Then:
(a) Any competitive equilibrium has a production schedule

that solves SY STEM .
(b) Any production schedule that solves SY STEM can be

sustained by a competitive equilibrium.

Proposition 3 resembles classical welfare theorems,
e.g., [41], [43]–[45]. However, it differs from typical compet-
itive equilibria frameworks because each regulation generator
is restricted to bidding a single supply function over the entire
economic dispatch interval even though there are multiple fast
timescale instances. The latter creates challenges in guaran-
teeing existence and efficiency of equilibria that do not arise
in typical competitive equilibria frameworks. In particular, the
space of bid functions needs to be sufficiently expressive for
generators to convey their costs over multiple fast timescale

instances via a single bid function. Proposition 3 circumvented
this challenge by restricting supply functions to be in the linear
space of regulation generators’ true cost functions. An impor-
tant extension is to understand the existence and efficiency of
equilibria under less restrictive bid spaces. Proposition 3 also
highlights that nodal pricing is not always efficient and that the
pricing mechanism needs to be jointly designed and analyzed
with decomposition principles in order to achieve efficiency.

VI. CASE STUDY

In this section, we compare the proposed mechanism to
the current practice using a case study on the IEEE 24-bus
reliability test system [46]. For each demand node, we use
the values from the data as the demand at time t = 0, and we
generate 100 samples of a zero-mean random process to obtain
the demands over the 5-minute interval. Fig. 3 shows how the
total system demand evolves for the 100 samples. Therefore,
system demand increases/decreases by up to 20 MW over
the 5-minute interval which is consistent with practice. We
construct the scenario tree for the economic dispatch problem
in the following manner. We assume that the 5-minute interval
is partitioned into K = 20 time periods; therefore, each time
period lasts 15 seconds. We subsample the demand trajectories
at 15-second intervals and assign equal probabilities to all
subsampled trajectories. Therefore, the scenario tree is a tall
tree, where the root node has 100 children, and all other nodes
either have one child or is a leaf node.

Table I summarizes the properties of the generators on the
system. We assume that hydro and combustion turbine (CT)
generators are regulation resources while all other generators
are dispatch resources.5 There are 6 hydro units that each
generate between 10 to 50 MW and 4 CT units that each
generate between 16 to 20 MW. To satisfy the convergence
conditions in Proposition 2, we assume that the distributed
controllers for the hydro and CT resources are operated with
cost functions as shown in Fig. 2. These are obtained by adding
barrier functions to the original linear cost functions in the
test system data. We assume a damping of 2.0 p.u. for all
generators.

Recall that the demand evolution has zero mean. Therefore,
in the current practice, the economic dispatch mechanism will

5Notice that certain nodes have only one type of generator or no generator.
It is straightforward to extend Theorem 1 and Proposition 3 to such a setting.
However, to extend Propositions 1 and 2 to such a setting requires the
following modification to the DFR algorithm:

π̇r
s(t) = ζπ

(
qd + qr + rrs(t)− ds −Lφs(t)

)
; (14a)

˙̄µs(t) = ζµ̄
[
BC>φs(t)− f

]+
µ̄s

; (14b)

¯
µ̇s(t) = ζ¯

µ[− f −BC>φs(t)
]+
¯
µs

; (14c)

φ̇s(t) = χφ
(
Lπp

s(t)−CB
(
µ̄s(t)−

¯
µs(t) +BC>φs(t)− ρs(t)

))
,

(14d)

ρ̇s(t) = χρ
(
BC>φs(t)− ρs(t)

)
, (14e)

where ρs,e is a new state variable associated with each line. The new
algorithm (14) is equivalent to modifying FR′ by adding 1

2
||ρ−BC>φ||2

in the objective and adding ρs as a new optimization variable. While this
change does not modify the optimal solution, it provides additional convexity
that ensures convergence of the primal-dual algorithm when generators are
not present at every bus.
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TABLE I: Generators on test system.

Unit Group Unit Type Number Production Marginal Cost Assignment
Range (MW) Range ($/MWh)

U12 Oil/Steam 5 [2.4, 12] [58.14, 64.446] Dispatch
U20 Oil/CT 4 [16, 20] See Fig. 2 Regulation
U50 Hydro 6 [10, 50] See Fig. 2 Regulation
U76 Coal/Steam 4 [15.2, 76] [16.511, 18.231] Dispatch

U100 Oil/Steam 3 [25, 100] [46.295, 54.196] Dispatch
U155 Coal/Steam 4 [54.3, 155] [13.294, 14.974] Dispatch
U197 Oil/Steam 3 [69, 197] [49.57, 51.405] Dispatch
U350 Coal/Steam 1 [140, 350] [13.22, 15.276] Dispatch
U400 Nuclear 2 [100, 400] [4.466, 4.594] Dispatch

(a) Hydro cost (b) Hydro control (c) CT cost (d) CT control

Fig. 2: Regulation cost and control functions.

be cleared based on the demand at time t = 0. Our simulations
will reveal that the current practice is suboptimal. To simulate
the current practice, we run ED(d1) with δn = 0, and assume
all regulation resources run the standard automatic generation
control (AGC) [3]:

ACEs(t) =
1

N
1>ωs(t), (15a)

q̇imb
s (t) = −ACE(t), (15b)

rrs(t) =
qimb
s (t)

1>qr
· qr. (15c)

Therefore, we assume that the entire network is one area
and there is zero net inter-area flow. In practice, AGC signals
are sent to the generators every few seconds. However, in our
simulations, we assume that these signals are sent continuously
as it is not our focus to study the impact of control delays.
We assume that each regulation resource reserves 10% of its
capacity for regulation service. Therefore, the hydro dispatch
ranges from 12.5 to 47.5 MW and the CT dispatch ranges from
17 to 19 MW. This provides a total regulation capacity of 19
MW in both directions (up and down). Since the maximum
change in demand over the 5-minute interval is about 20 MW,
in the worst case scenario, all regulation capacity will be used.

To focus the simulation on the gains due to efficient use
of regulation resources, we assume that at time t = 0, the
generators are operating at the solution of the economic dis-
patch problem (this is implemented by starting the simulation
at a large negative time t′ < 0, but using the demand at
time t = 0, where t′ is sufficiently negative such that the
dynamics have converged by time t = 0. Fig. 4 and 5 show,
for one demand trajectory, the evolution of the frequency at

the bus where the hydro resources are located, using the AGC
and DFR mechanisms proposed in Section IV, respectively.
Observe that both mechanisms are able to rebalance power
and maintain the nominal frequency. In fact, for this example,
AGC regulates frequency more successfully than DFR.

Fig. 6 shows the evolution of the prices in DFR. Unlike
AGC, which compensates frequency regulation based on the
LMP in the most recent economic dispatch run, the prices
in DFR adjusts dynamically to reflect real-time and local
conditions in the power system. Fig. 7 and 8 show an example
of hydro and CT production. These figures illustrate the
inefficiency of AGC – it is constrained to the usage of static
participation factors that do not take into account generators’
capacity constraints and line congestion. Therefore, AGC is
unable to utilize the regulation reserves efficiently. Although
hydro is significantly cheaper than CT, the system under
AGC is unable to substitute hydro for CT due to the static
participation factors. On the other hand, under DFR, the
system substitutes hydro for CT dynamically to reduce costs.

Next, we illustrate the potential monetary savings that can
be obtained under DFR compared to AGC. Fig. 9 shows a
histogram of the percentage reduction in the costs of hydro
and CT generation under DFR; Fig. 10 shows a histogram of
the percentage reduction in the costs of non-hydro and non-
CT generation under DFR; and Fig. 11 shows a histogram of
the percentage reduction in total generation costs under DFR.
Observe that DFR reduces hydro and CT costs by an average
of 2.5% due to more efficient usage of regulation resources in
real-time. Moreover, DFR also reduces dispatch costs of non-
hydro and non-CT resources by 0.7% due to more efficient
dispatch of those resources and avoiding the need to reserve
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Fig. 3: Demand Processes Fig. 4: Frequency evolution: AGC Fig. 5: Frequency evolution: DFR

Fig. 6: Price evolution: DFR Fig. 7: An example of hydro production Fig. 8: An example of CT production

Fig. 9: Histogram of reduction in costs
of hydro and CT generation under DFR

Fig. 10: Histogram of reduction in costs
of non-hydro and non-CT generation
under DFR

Fig. 11: Histogram of reduction in total
costs under DFR

capacity for regulation. Since hydro and CT costs comprise on
average 17.5% of total costs, the net savings on all generation
costs is an average of 1%. There are also further savings in
capacity costs that may be estimated at about 0.35% (based
on the fact that CAISO’s ancillary costs in 2015 is 0.7% of
energy costs and about half of ancillary costs is attributable to
regulation service [47]). Further studies should be performed
on other systems with different mix of generation resources. In
addition, recall that DFR has the added benefit of converging
to operating points that respect line limits, while AGC does

not guarantee this.

VII. CONCLUSION

This paper proposes an optimization decomposition ap-
proach for co-optimizing economic dispatch and frequency
regulation resources. It demonstrates that optimization decom-
position provides a rigorous way to design power system
operations to allocate resources efficiently across timescales.
Our main result, in Theorem 1, shows one way to choose gen-
eration setpoints optimally at the economic dispatch timescale,
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and provides a guide on how to design a principled architecture
for power system operations. In particular, using this result, we
design an optimal frequency control scheme and an optimal
economic dispatch mechanism, both of which differ from
existing approaches in crucial ways and reveal potential inef-
ficiencies in the latter. Hence, this paper underscores the need
to jointly analyze economic dispatch and frequency regulation
mechanisms when investigating the efficiency of the overall
system.
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NOMENCLATURE

A. Sets and Indices

S Set of outcomes (s ∈ S).
N Set of nodes in the network (n ∈ N ).
L Set of links in the network (l ∈ L).
K Number of discrete time periods in one economic

dispatch inteval (k = 1, . . . ,K).

B. Parameters

κ(s) Period associated with outcome s.
ps Probability of outcome s given that period is κ(s).

ds,n Real power demand at node n in outcome s.

cdn Cost function of dispatch generator n.
crn Cost function of regulation generator n.
Bl Sensitivity of flow on line l with respect to

phase difference between its buses.
C Incidence matrix of network.
H Matrix of shift factors.
fl Capacity of line l.

¯
qdn, q̄

d
n Minimum and maximum generation limits

of dispatch generator n.

¯
qrn, q̄

r
n Minimum and maximum generation limits

of regulation generator n.
Mn Aggregate inertia of generators at node n.
Dn Aggregate damping of generators at node n.

ζπn , ζ
µ̄
l , ζ¯

µ

l , χ
φ
n Control gains in distributed frequency

regulation algorithm.

sdn Basis supply function of dispatch generator n.
Specifies quantity as a function of price.

srn Basis supply function of regulation generator n.
Specifies quantity as a function of price.

C. Variables

qdn Setpoint of dispatch generator n.
qrn Setpoint of regulation generator n.

rrn,s Recourse of regulation generator n in outcome s.

θs,i Phase at bus i in outcome s.
λs Lagrange multiplier associated with demand-

supply constraint in outcome s.

¯
µs,l, µ̄s,l Lagrange multipliers associated with line-

flow constraint in outcome s.
ωs,n Frequency deviations from nominal.
πs,n Locational marginal price at node n in outcome s.

αd
n Bid of dispatch generator n. Indicates generator

is willing to supply
[
αd
ns

d
n(π

d
n)
]q̄dn
¯
qdn

at price πd
n.

αr
n Bid of dispatch generator n. Indicates generator

is willing to supply [αr
ns

r
n(π

r
n)]

q̄rn

¯
qrn

at price πr
n.

APPENDIX

Proof of Theorem 1. The result follows from analyzing the
Karush-Kuhn-Tucker (KKT) conditions of SY STEM , ED,
and FR. However, we first reformulate the problems as the
notations are simpler with the reformulations. Define qr

s :=
qr + rrs. Note that, due to the constraint that rr1 = 0, there
is a bijection between the set of feasible (qd,qr, rr) and the
set of feasible (qd,qr

1, . . . ,q
r
S). Hence, SY STEM can be

reformulated as:

min
qd,qr

1,...,q
r
S

∑
s∈S

ps
∑
n∈N

(
cdn(q

d
n) + crn(q

r
s,n)

)
s.t. (qd,qr

1,q
r
s − qr

1) ∈ Ω(ds), ∀s ∈ S.
(16)

Also, ED(d1) can be reformulated as:

min
qd,qr

1

∑
n∈N

(
Kcdn(q

d
n) +Kcrn(q

r
1,n)− δnq

d
n

)
s.t. (qd,qr

1,0) ∈ Ω(d1).
(17)

And, FR(qd,qr,ds) can be reformulated as:

min
qr
s

∑
n∈N

crn(q
r
s,n)

s.t. (qd,qr
1,q

r
s − qr

1) ∈ Ω(ds).
(18)

Hence, SY STEM can be optimally decomposed into
ED-FR if (qd,qr

1, . . . ,q
r
S) is an optimal solution to (16)

if and only if (qd,qr
1) is an optimal solution to (17) and qr

s

is an optimal solution to (18) for all s ∈ S.
Next, we prove (a). It is easy to see that (16) has compact

sub-level sets. Moreover, its objective function is strictly
convex. Hence, (16) has a unique optimal solution. By sim-
ilar arguments, we conclude that (17) has a unique optimal
solution, and that (18) has a unique optimal solution if
the set

{
qr
s ∈ RN : (qd,qr

1,q
r
s − qr

1) ∈ Ω(ds)
}

is non-empty.
Hence, to prove (a), it suffices to show the forward implication,
that is, if (7) holds, then (qd,qr

1, . . . ,q
r
S) is an optimal

solution to (16) implies that (qd,qr
1) is an optimal solution
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to (17) and qr
s is an optimal solution to (18) for all s ∈ S. The

reverse implication follows from the existence and uniqueness
of the optimal solutions.

Let the Lagrangian of (16) be denoted by:

L(qd,qr
1, . . . ,q

r
S ,

¯
ξ, ξ̄,

¯
ν, ν̄,

¯
µ, µ̄,λ)

:=
∑
s∈S

ps
∑
n∈N

(
cdn(q

d
n) + crn(q

r
s,n)

)
+ Ld(qd,

¯
ξ, ξ̄)

+
∑
s∈S

psL
r(qr

s, ¯
νs, ν̄s) +

∑
s∈S

psL
f (qd,qr

s,
¯
µs, µ̄s)

−
∑
s∈S

psλs1
> (

qd + qr
s − ds

)
,

where:

Ld(qd,
¯
ξ, ξ̄) :=

¯
ξ>

(
¯
qd − qd

)
+ ξ̄>

(
qd − q̄d

)
Lr(qr

s, ¯
νs, ν̄s) :=

¯
ν>
s

(
¯
qr − qr

s

)
+ ν̄>

s (qr
s − q̄r)

Lf (qd,qr
s,
¯
µs, µ̄s) :=

¯
µ>

s

(
−f −H

(
qd + qr

s − ds

))
+ µ̄>

s

(
H

(
qd + qr

s − ds

)
− f

)
.

Note that we scaled the constraints by their probabilities, and

¯
ξ ∈ RN

+ , ξ̄ ∈ RN
+ ,

¯
ν = (

¯
νs, s ∈ S) ∈ RNS

+ , ν̄ = (ν̄s, s ∈
S) ∈ RNS

+ ,
¯
µ = (

¯
µs, s ∈ S) ∈ RLS

+ , µ̄ = (µ̄s, s ∈ S) ∈ RLS
+ ,

λ = (λs, s ∈ S) ∈ RS are appropriate Lagrange multipliers.
Since (16) has a convex objective and linear constraints,

from the KKT conditions, we infer that (qd,qr
1, . . . ,q

r
S) is an

optimal solution to (16) if and only if (qd,qr
1,q

r
s − qr

1) ∈
Ω(ds) for all s ∈ S and there exists

¯
ξ, ξ̄ ∈ RN

+ ,
¯
ν, ν̄ ∈

RNS
+ ,

¯
µ, µ̄ ∈ RLS

+ ,λ ∈ RS such that:(
Kcd′n (q

d
n), n ∈ N

)
+ ξ̄ −

¯
ξ −

∑
s∈S

psπ(λs,
¯
µs, µ̄s) = 0; (19a)

Ld(qd,
¯
ξ, ξ̄) = 0; (19b)(

cr′n (q
r
s,n), n ∈ N

)
+ ν̄s −

¯
νs − π(λs,

¯
µs, µ̄s) = 0; (19c)

Lr(qr
s, ¯
νs, ν̄s) = 0; (19d)

Lf (qd,qr
s,
¯
µs, µ̄s) = 0, (19e)

for all s ∈ S.
Similarly, (qd,qr

1) is an optimal solution to (17) if and only
if (qd,qr

1,0) ∈ Ω(d1) and there exists
¯
ξ, ξ̄ ∈ RN

+ ,
¯
ν1, ν̄1 ∈

RN
+ ,

¯
µ1, µ̄1 ∈ RL

+, λ1 ∈ R such that:(
Kcd′n (q

d
n), n ∈ N

)
+ ξ̄ −

¯
ξ − π(λ1,

¯
µ1, µ̄1)− δ = 0; (20a)

Ld(qd,
¯
ξ, ξ̄) = 0; (20b)(

Kcr′n (q
r
1,n), n ∈ N

)
+ ν̄1 −

¯
ν1 − π(λ1,

¯
µ1, µ̄1) = 0; (20c)

Lr(qr
1, ¯
ν1, ν̄1) = 0; (20d)

Lf (qd,qr
1,
¯
µ1, µ̄1) = 0. (20e)

And qr
s is an optimal solution to (18) if and only if

(qd,qr
1,q

r
s − qr

1) ∈ Ω(ds) and there exists
¯
νs, ν̄s ∈

RN
+ ,

¯
µs, µ̄s ∈ RL

+, λs ∈ R such that:(
cr′n (q

r
s,n), n ∈ N

)
+ ν̄s −

¯
νs − π(λs,

¯
µs, µ̄s) = 0; (21a)

Lp(qr
s, ¯
νs, ν̄s) = 0; (21b)

Lf (qd,qr
s,
¯
µs, µ̄s) = 0. (21c)

Suppose (qd,qr
1, . . . ,q

r
S) is an optimal solution to (16)

with associated Lagrange multipliers (
¯
ξ, ξ̄,

¯
ν, ν̄,

¯
µ, µ̄,λ).

Note that (qd,qr
1,0) ∈ Ω(d1). From the fact that the

variables (qd,
¯
ξ, ξ̄,

¯
µ, µ̄, λ) satisfy (19a) and (7) and the

fact that
∑

s∈S ps = K, we infer that the variables
(qd,

¯
ξ, ξ̄,K

¯
µ1,Kµ̄1,Kλ1) satisfy (20a). From the fact that

(qd,qr
s, ξ̄,

¯
ξ, ν̄s,

¯
νs, µ̄s,

¯
µs, λs) satisfy (19b) – (19e), we infer

that the variables (qd,qr
1, ξ̄,

¯
ξ,Kν̄1,K

¯
ν1,Kµ̄1,K

¯
µ1,Kλ1)

satisfy (20b) – (20e). Hence, (qd,qr
1) is an optimal solution

to (17). Note also that (qd,qr
1,q

r
s−qr

1) ∈ Ω(ds) for all s ∈ S.
From the fact that the variables (qd,qr

s, ¯
νs, ν̄s,

¯
µs, µ̄s, λs)

satisfy (19c) – (19e), we infer that those variables satisfy (21).
Hence, qr

s is an optimal solution to (18) for all s ∈ S.
Next, we prove (b). Let (qd,qr

1, . . . ,q
r
S) be a solution

to (16) such that (qd,qr
1) is a solution to (17). If

¯
qdn < qdn < q̄dn

and
¯
qrn < qr1,n < q̄rn, then the complementary slackness

conditions imply that
¯
ξn = ξ̄n = 0 and

¯
ν1,n = ν̄1,n = 0.

From the KKT conditions of (16), which are given by (19),
we infer that:

Kcd′n (q
d
n)−

∑
s∈S

psπn(λs,
¯
µs, µ̄s) = 0; (22)

cr′n (q
r
1,n)− πn(λ1,

¯
µ1, µ̄1) = 0, (23)

where (
¯
µs, µ̄s,λ) are the associated Lagrange multipliers.

From the KKT conditions of (17), which are given by (20),
we infer that:

Kcd′n (q
d
n)− πn(λ

′
1,
¯
µ′

1, µ̄
′
1)− δn = 0; (24)

Kcr′n (q
r
1,n)− πn(λ

′
1,
¯
µ′

1, µ̄
′
1) = 0, (25)

where (
¯
µ′

s, µ̄
′
s,λ

′) are the associated Lagrange multipliers. It
follows that:

δn =
∑
s∈S

psπn(λs,
¯
µs, µ̄s)− πn(λ

′
1,
¯
µ′

1, µ̄
′
1)

=
∑
s∈S

psπn(λs,
¯
µs, µ̄s)−Kπn(λ1,

¯
µ1, µ̄1)

=
∑
s∈S

ps
(
πn(λs,

¯
µs, µ̄s)− πn(λ1,

¯
µ1, µ̄1)

)
.

The first equality follows from comparing (22) and (24). The
second equality follows from comparing (23) and (25). The
last equality follows from the fact that

∑
s∈S ps = K.

Proof of Proposition 1. We provide a proof sketch of this re-
sult. The skipped details can be found in [21]. (i) follows from
the KKT conditions of FR′(qd,qr,ds) and is shown in [21,
Lemma 2]. Since ω′

s = 0, it follows from constraints (11a)
and (11b) of FR′(qd,qr,ds) that Lθ′

s = Lφ′
s, which, since

the null space of L is span{1}, implies that θ′
s = φ′

s+α1 for
some α ∈ R. This implies that BC>φ′

s = BC>θ′
s. Therefore,

without loss of generality, we can substitute constraint (11a)
in FR′(qd,qr,ds) by the constraint ωs = 0. Then, us-
ing the definition of H and the equivalence between (3)
and (4), we infer that the feasible sets of FR(qd,qr,ds)
and FR′(qd,qr,ds) are equivalent. Finally, since crn(·) is
strictly convex, by uniqueness of the optimal solutions, we
get (ii). Lastly, (iii) follows from the definition of H and
BC>φ′

s = BC>θ′
s. The final statement of the proposition

follows directly from [21, Theorem 8].
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Proof of Proposition 3. Our proof proceeds in 6 steps: (1)
Characterizing regulation generators’ optimal bids αr given
their prices πr; (2) Characterizing dispatch generators’ opti-
mal bids αd given their prices πd; (3) Characterizing prices
(πd,πr) given bids (αd,αr) using KKT conditions; (4)
Showing that, at an equilibrium, the production schedule is
the unique optimal solution to ˆED- ˆFR; (5) Showing that any
production schedule (qd,qr, rr) that solves SY STEM can
be obtained using bids (γd,γr) and the latter satisfy the equi-
librium characterizations in steps 1 to 3; and (6) Showing that
any bids (αd,αr) that satisfy the equilibrium characterizations
in steps 1 to 3 give the same production schedule as that under
bids (γd,γr) (which also solves SY STEM ). Note that part
(a) follows from step 6 and part (b) follows from step 5.

Step 1: Characterizing regulation generators’ optimal bids
αr given their prices πr. Since crn is strictly convex and
crn(q

r
s,n) → +∞ as qrs,n → {

¯
qrn, q̄

r
n}, cr′n is invertible. Let

σ :S→S be any permutation function that satisfies:

cr′−1
n (πr

σ(1),n) ≤ cr′−1
n (πr

σ(2),n) ≤ . . . ≤ cr′−1
n (πr

σ(S),n),

and let integers i, j ∈ {0, 1, . . . , S} be such that:

cr′−1
n (πr

σ(s),n) ≤
¯
qrn ∀s = 1, . . . , i; (26a)

¯
qrn < cr′−1

n (πr
σ(s),n) < q̄rn ∀s = i+ 1, . . . , j; (26b)

q̄rn ≤ cr′−1
n (πr

σ(s),n) ∀s = j + 1, . . . , S. (26c)

We now show that αr
n ∈ R++ maximizes PFr

n if and only if:

αr
ns

r
n(π

r
σ(s),n) ≤

¯
qrn ∀s = 1, . . . , i; (27a)

αr
ns

r
n(π

r
σ(s),n) = cr′−1

n (πr
σ(k),n) ∀s = i+ 1, . . . , j; (27b)

αr
ns

r
n(π

r
σ(s),n) ≥ q̄rn ∀s = j + 1, . . . , S. (27c)

For notational brevity, in the rest of this step, we abuse
notation and let:

qrs,n(α
r
n) = [αr

ns
r
n(π

r
σ(s),n)]

q̄rn

¯
qrn
.

To prove our characterization, it suffices to show that, given
any αr

n ∈ R++ that satisfies (27), the vector of per-outcome
profits(

πr
σ(s),nq

r
s,n(α

r
n)− crn

(
qrs,n(α

r
n)
)
, s ∈ S

)



(
πr
σ(s),nq

r
s,n(ᾱ

r
n)− crn

(
qrs,n(ᾱ

r
n)
)
, s ∈ S

)
(28)

for any ᾱp
n that does not satisfy (27). Since pσ(s) > 0 for all

s ∈ S, it then follows that:

PFr
n|αr

n
=

∑
s

pσ(s)

(
πr
σ(s),nq

r
s,n(α

r
n)− crn

(
qrs,n(α

r
n)
))

>
∑
s

pσ(s)

(
πr
σ(s),nq

r
s,n(ᾱ

r
n)− crn

(
qrs,n(ᾱ

r
n)
))

= PFr
n|ᾱr

n
.

Suppose s ∈ {1, . . . , i}. From (26a) and the fact that crn is
strictly convex, we infer that πr

σ(s),n ≤ cr′n (
¯
qrn). From (27a),

we infer that qrs,n(α
r
n) =

¯
qrn. Then:

crn(q
r
s,n(ᾱ

r
n))

≥ crn(
¯
qrn) + cr′n (

¯
qrn)

(
qrs,n(ᾱ

r
n)−

¯
qrn
)

≥ crn(
¯
qrn) + πr

σ(s),n

(
qrs,n(ᾱ

r
n)−

¯
qrn
)

= crn(q
r
s,n(α

r
n)) + πr

σ(s),n

(
qrs,n(ᾱ

r
n)− qrs,n(α

r
n)
)
,

where the first inequality follows from the fact that crn is
strictly convex, the second inequality follows from πr

σ(s),n ≤
cr′n (

¯
qrn) and qrs,n(ᾱ

r
n) ≥

¯
qrn, and the last equality follows from

qrs,n(α
r
n) =

¯
qrn. Furthermore, if qrs,n(ᾱ

r
n) >

¯
qrn, then the first

inequality is strict, and hence:

crn(q
r
s,n(ᾱ

r
n))

> crn(q
r
s,n(α

r
n)) + πr

σ(s),n

(
qrs,n(ᾱ

r
n)− qrs,n(α

r
n)
)
.

Suppose s ∈ {i+1, . . . , j}. From (26b) and (27b), we infer
that qrs,n(α

r
n) = cr′−1

n (πr
σ(s),n) and

¯
qrn < qrs,n(α

r
n) < q̄rn. From

¯
qrn < qrs,n(α

r
n) < q̄rn, and the fact that srn(π

r
σ(s),n) 6= 0 and

ᾱr
n 6= αr

n, we infer that qrs,n(ᾱ
r
n) 6= qrs,n(α

r
n). Then:

crn(q
r
s,n(ᾱ

r
n))

> crn(q
r
s,n(α

r
n)) + cr′n (q

r
s,n(α

r
n))

(
qrs,n(ᾱ

r
n)− qrs,n(α

r
n)
)

= crn(q
r
s,n(α

r
n)) + πr

σ(s),n

(
qrs,n(ᾱ

r
n)− qrs,n(α

r
n)
)
,

where the first inequality follows from the fact that crn is
strictly convex and qrs,n(ᾱ

r
n) 6= qrs,n(α

r
n) and the equality

follows from qrs,n(α
r
n) = cr′−1

n (πr
σ(s),n).

Suppose s ∈ {i+1, . . . , S}. From (26c) and the fact that crn
is strictly convex, we infer that πr

σ(s),n ≥ cr′n (q̄
r
n). From (27c),

we infer that qrs,n(α
r
n) = q̄rn. Then:

crn(q
r
s,n(ᾱ

r
n))

≥ crn(q̄
r
n) + cr′n (q̄

r
n)

(
qrs,n(ᾱ

r
n)− q̄rn

)
≥ crn(q̄

r
n) + πr

σ(s),n

(
qrs,n(ᾱ

r
n)− q̄rn

)
= crn(q

r
s,n(α

r
n)) + πr

σ(s),n

(
qrs,n(ᾱ

r
n)− qrs,n(α

r
n)
)
,

where the first inequality follows from the fact that crn is
strictly convex, the second inequality follows from πr

σ(s),n ≥
cr′n (q̄

r
n) and qrs,n(ᾱ

r
n) ≤ q̄rn, and the last equality follows from

qrs,n(α
r
n) = q̄rn. Furthermore, if qrs,n(ᾱ

r
n) < q̄rn, then the first

inequality is strict, and hence:

crn(q
r
s,n(ᾱ

r
n))

> crn(q
r
s,n(α

r
n)) + πr

σ(s),n

(
qrs,n(ᾱ

r
n)− qrs,n(α

r
n)
)
.

Hence, for all s ∈ S:

crn(q
r
s,n(ᾱ

r
n))

≥ crn(q
r
s,n(α

r
n)) + πr

σ(s),n

(
qrs,n(ᾱ

r
n − qrs,n(α

r
n)
)
. (29)

Moreover, this inequality is strict for some s ∈ S. If i < j, the
inequality is strict for s ∈ {i+1, . . . , j}. If i = j, then, since
ᾱr
n does not satisfy (27), there exists some s ∈ {1, . . . , i}

such that αr
ns

r
n(π

r
σ(s),n) >

¯
qrn or some s ∈ {i + 1, . . . , S}

such that αr
ns

r
n(π

r
σ(s),n) < q̄rn, and hence there exists some s ∈

{1, . . . , i} such that qrs,n(ᾱ
r
n) >

¯
qrn or some s ∈ {i+1, . . . , S}
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such that qrs,n(ᾱ
r
n) < q̄rn, and the inequality in (29) is strict

for that s. Hence, we conclude that:(
crn(q

r
s,n(ᾱ

r
n)), s ∈ S

)



(
crn(q

r
s,n(α

r
n)) + πr

σ(s),n

(
qrs,n(ᾱ

r
n)− qrs,n(α

r
n)
)
, s ∈ S

)
for any ᾱr

n that does not satisfy (27). By rearranging terms,
we obtain (28).

Step 2: Characterizing dispatch generators’ optimal bids
αd given their prices πd. Note that the profit maximization
problem for a dispatch generator is a special case of that
for a regulation generator with S = 1. By applying the
characterization in step 1, we infer that αd

n ∈ R++ maximizes
PFd

n if and only if:

αd
ns

d
n(π

d
n) ≤

¯
qdn, if cd′−1

n (πd
n) ≤

¯
qdn; (30a)

αd
n = γd

n, if
¯
qdn < cd′−1

n (πd
n) < q̄dn; (30b)

αd
ns

d
n(π

d
n) ≥ q̄dn, if q̄dn ≤ cd′−1

n (πd
n). (30c)

Step 3: Characterizing prices (πd,πr) given bids (αd,αr)
using KKT conditions. First, we take the same approach as in
the proof of Theorem 1 and reformulate ˆED and ˆFR before
applying the KKT conditions. Relabeling the variable qr to
qr
1 in ˆED gives:

min
qd,qr

1

∑
n∈N

(
Kĉdn(q

d
n) +Kĉrn(q

r
1,n)− δnq

d
n

)
s.t. (qd,qr

1,0) ∈ Ω(d1).
(31)

And substituting qr
s = qr + rrs in ˆFR gives:

min
qr
s

∑
n∈N

ĉrn(q
r
s,n)

s.t. (qd,qr
1,q

r
s − qr

1) ∈ Ω(ds).
(32)

Substituting sdn = cd′−1
n (·)/γd

n and srn = cr′−1
n (·)/γr

n into
the definition of ĉdn and ĉrn implies that:

ĉdn(q
d
n) =

∫ qdn

¯
qdn

cd′n ((γ
d
n/α

d
n)w) dw,

ĉrn(q
r
n) =

∫ qrn

¯
qrn

cr′n ((γ
r
n/α

r
n)w) dw.

Hence, (31) has a continuous and strictly convex objective and
linear constraints. Thus, from the KKT conditions, (qd,qr

1) is
an optimal solution to (31) if and only if (qd,qr

1,0) ∈ Ω(d1)
and there exists

¯
ξ, ξ̄ ∈ RN

+ ,
¯
ν1, ν̄1 ∈ RN

+ ,
¯
µ1, µ̄1 ∈ RL

+, λ1 ∈
R such that:(

Kcd′n ((γ
d
n/α

d
n)q

d
n), n ∈ N

)
+ ξ̄ −

¯
ξ −Kπd = 0; (33a)

Ld(qd,
¯
ξ, ξ̄) = 0; (33b)(

Kcr′n ((γ
r
n/α

r
n)q

r
1,n), n ∈ N

)
+ ν̄1 −

¯
ν1 −Kπr

1 = 0; (33c)

Lr(qr
1, ¯
ν1, ν̄1) = 0; (33d)

Lf (qd,qr
1,
¯
µ1, µ̄1) = 0, (33e)

where:

πd = (1/K)
(
π(λ1,

¯
µ1, µ̄1) + δ

)
; (33f)

πr
1 = (1/K)π(λ1,

¯
µ1, µ̄1). (33g)

Similarly, from the KKT conditions, qr
s is an optimal solution

to (32) if and only if (qd,qr
1,q

r
s − qr

1) ∈ Ω(ds) and there
exists

¯
νs, ν̄s ∈ RN

+ ,
¯
µs, µ̄s ∈ RL

+, λs ∈ R such that:(
cr′n ((γ

r
n/α

r
n)q

r
s,n), n ∈ N

)
+ ν̄s −

¯
νs − πr

s = 0; (34a)

Lr(qr
s, ¯
νs, ν̄s) = 0; (34b)

Lf (qd,qr
s,
¯
µs, µ̄s) = 0, (34c)

where:

πr
s = π(λs,

¯
µs,µs). (34d)

Step 4: Showing that, at an equilibrium, the production
schedule is the unique optimal solution to ˆED- ˆFR. Let
(qd,qr) be an optimal solution to ˆED(d1) and rrs be an
optimal solution to ˆFR(qd,qr,ds). We will show that:

qd =
(
[αd

ns
d
n(π

d
n)]

q̄dn

¯
qdn
, n ∈ N

)
;

qr =
(
[αr

ns
r
n(π

r
1,n)]

q̄rn

¯
qrn
, n ∈ N

)
;

rrs =
(
[αr

ns
r
n(π

r
s,n)]

q̄rn

¯
qrn

− [αr
ns

r
n(π

r
1,n)]

q̄rn

¯
qrn
, n ∈ N

)
.

It suffices to show that, if (qd,qr
1) is an optimal solution

to (31) and qr
s is an optimal solution to (32), then:

qd =
(
[αd

ns
d
n(π

d
n)]

q̄dn

¯
qdn
, n ∈ N

)
; (35)

qr
s =

(
[αr

ns
r
n(π

r
s,n)]

q̄rn

¯
qrn
, n ∈ N

)
. (36)

By rewriting (33a) for dispatch generator n, we infer that:

qdn = αd
ns

d
n

(
πd
n +

¯
ξn/K − ξ̄n/K

)
.

If
¯
qdn < qdn < q̄dn, then from (33b), we infer that ξ̄n =

¯
ξn = 0,

which implies that qdn = αd
ns

d
n(π

d
n). If qdn =

¯
qdn, then

from (33b), we infer that ξ̄n = 0 and
¯
ξn ≥ 0, which implies

that
¯
qdn = qdn = αd

ns
d
n(π

d
n +

¯
ξn/K) ≥ αd

ns
d
n(π

d
n), where the

last inequality follows from the fact that cdn is strictly convex.
If qdn = q̄dn, then from (33b), we infer that

¯
ξn = 0 and ξ̄n ≥ 0,

which implies that q̄dn = qdn = αd
ns

d
n(π

d
n−ξ̄n/K) ≤ αd

ns
d
n(π

d
n),

where the last inequality follows from the fact that cdn is
strictly convex. Hence, we conclude that qd is given by (35).
By making similar arguments, we conclude that qr

s is given
by (36).

Step 5: Showing that any production schedule (qd,qr, rr)
that solves SY STEM can be obtained using bids (γd,γr)
and the latter satisfy the characterizations in steps 1 to 3.
By Theorem 1, (qd,qr) is the unique solution to ED(d1)
and rrs is the unique solution to FR(qd,qr,ds). Under
bids (γd,γr), the problems ED(d1) and ˆED(d1) are
equivalent. Hence, (qd,qr) is the unique solution to ˆED,
and by step 4, the production in the first time period is
(qd,qr). Under bids (γd,γr), the problems FR(qd,qr,ds)
and ˆFR(qd,qr,ds) are equivalent. Hence, rrs is the unique
solution to ˆFR(qd,qr,ds), and by step 4, the recourse pro-
duction is rrs. Hence, the production schedule is (qd,qr, rr).

It suffices to show that bids (γd,γr) constitute an equilib-
rium. It is easy to check that αr = γr and αd = γd satisfy
conditions (27) and (30) respectively for any prices (πd,πr).
Hence, simply choose (πd,πr) based on equations (33)
and (34). This proves part (a) of the proposition.
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Step 6: Showing that any bids (αd,αr) that satisfy the
characterizations in steps 1 to 3 give the same dispatch as
that under bids (γd,γr). Suppose that (αd,αr) satisfy the
characterizations in step 4 with productions (qd,qr

1, . . . ,q
r
S),

Lagrange multipliers (
¯
ξ, ξ̄,

¯
ν, ν̄,

¯
µ, µ̄,λ), and prices (πd,πr).

We will construct
¯
ξ′, ξ̄′ ∈ RN

+ and
¯
ν′
1, ν̄

′
1 ∈ RN

+ such that:(
Kcd′n (q

d
n), n ∈ N

)
+ ξ̄′ −

¯
ξ′ −Kπd = 0; (37a)

Ld(qd,
¯
ξ′, ξ̄′) = 0; (37b)(

Kcr′n (q
r
1,n), n ∈ N

)
+ ν̄′

1 − ¯
ν′
1 −Kπr

1 = 0; (37c)

Lr(qr
1, ¯
ν′
1, ν̄

′
1) = 0, (37d)

and
¯
ν′
s, ν̄

′
s ∈ RN

+ for all s ∈ S \ {1} such that:(
cr′n (q

r
s,n), n ∈ N

)
+ ν̄′

s − ¯
ν′
s − πr

s = 0; (38a)

Lr(qr
s, ¯
ν′
s, ν̄

′
s) = 0, (38b)

which are the KKT conditions for (31) and (32) under bids
(γd,γr). Then, step 5 allows us to infer that the production
schedule is an optimal solution to SY STEM . Our construc-
tion is given by:

¯
ξ′n =

{
K

(
cd′n (

¯
qdn)− πd

n

)
, if qdn =

¯
qdn;

0, else,

ξ̄′n =

{
K

(
πd
n − cd′n (q̄

d
n)
)
, if qdn = q̄dn;

0, else,

¯
ν′1,n =

{
K

(
cr′n (

¯
qrn)− πr

1,n

)
, if qr1,n =

¯
qrn;

0, else,

ν̄′1,n =

{
K

(
πr
1,n − cr′n (q̄

r
n)
)
, if qr1,n = q̄rn;

0, else,

and:

¯
ν′s,n =

{
cr′n (

¯
qrn)− πr

s,n, if qrs,n =
¯
qrn;

0, else,

ν̄′s,n =

{
πr
s,n − cr′n (q̄

r
n), if qrs,n = q̄rn;

0, else,

for all s ∈ S \ {1}.
First, we show that

¯
ξ′, ξ̄′,

¯
ν′
s, ν̄

′
s ≥ 0. Suppose qdn =

¯
qdn.

Then, from (30a), we infer that cd′−1
n (πd

n) ≤
¯
qdn, and since

cdn is strictly convex, we infer that πd
n ≤ cd′n (

¯
qdn), and hence

¯
ξ′n ≥ 0. Suppose qdn = q̄dn. Then, from (30c), we infer that
cd′−1
n (πd

n) ≥ q̄dn, and since cdn is strictly convex, we infer that
πd
n ≥ cd′n (q̄

d
n), and hence ξ̄′n ≥ 0. By similar arguments, we

infer that
¯
ν′s,n ≥ 0 and ν̄′s,n ≥ 0.

Second, we show that this construction satisfies (37)
and (38). It is easy to check that the complementary slackness
conditions (37b), (37d), (38b) are satisfied. Suppose

¯
qdn <

cd′−1
n (πb

n) < q̄dn. From (30b), we infer that αd
n = γd

n. From
the fact that qdn =

[
αd
ns

d
n(π

d
n)
]q̄dn
¯
qdn

= cd′−1
n (πd

n), we infer that

¯
qdn < qdn < q̄dn. From (33b), we infer that

¯
ξn = ξ̄n = 0.

Substituting into (33a), we infer that our construction satis-
fies (37a). Suppose cd′−1

n (πd
n) ≤

¯
qdn. From (30a), we infer

that qdn =
¯
qdn. Hence, our construction satisfies (37a). Suppose

q̄dn ≤ cd′−1
n (πd

n). From (30c), we infer that qdn = q̄dn. Hence,

our construction satisfies (37a). Using similar arguments, we
can infer that our construction satisfies (37c) and (38a). This
proves part (b) of the proposition.


