I gave a talk on “Embracing Low Inertia in Power System Frequency Control: A Dynamic Droop Approach” at KTH, Sweden. Related publications include [1, 2, 3]

[Bibtex] [Abstract] [Download PDF]

The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define –and compute in closed form– several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.

```
@article{pm2020tac,
abstract = {The issue of synchronization in the power grid is receiving renewed attention, as new energy sources with different dynamics enter the picture. Global metrics have been proposed to evaluate performance, and analyzed under highly simplified assumptions. In this paper we extend this approach to more realistic network scenarios, and more closely connect it with metrics used in power engineering practice. In particular, our analysis covers networks with generators of heterogeneous ratings and richer dynamic models of machines. Under a suitable proportionality assumption in the parameters, we show that the step response of bus frequencies can be decomposed in two components. The first component is a system-wide frequency that captures the aggregate grid behavior, and the residual component represents the individual bus frequency deviations from the aggregate. Using this decomposition, we define --and compute in closed form-- several metrics that capture dynamic behaviors that are of relevance for power engineers. In particular, using the system frequency, we define industry-style metrics (Nadir, RoCoF) that are evaluated through a representative machine. We further use the norm of the residual component to define a synchronization cost that can appropriately quantify inter-area oscillations. Finally, we employ robustness analysis tools to evaluate deviations from our proportionality assumption. We show that the system frequency still captures the grid steady-state deviation, and becomes an accurate reduced-order model of the grid as the network connectivity grows. Simulation studies with practically relevant data are included to validate the theory and further illustrate the impact of network structure and parameters on synchronization. Our analysis gives conclusions of practical interest, sometimes challenging the conventional wisdom in the field.},
author = {Paganini, Fernando and Mallada, Enrique},
doi = {10.1109/TAC.2019.2942536},
grants = {CPS-1544771, AMPS-1736448, EPCN-1711188, CAREER-1752362, ENERGISE-DE-EE0008006},
journal = {IEEE Transactions on Automatic Control},
month = {7},
number = {7},
pages = {3007-3022},
title = {Global analysis of synchronization performance for power systems: bridging the theory-practice gap},
url = {https://mallada.ece.jhu.edu/pubs/2020-TAC-PM.pdf},
volume = {67},
year = {2020}
}
```

[Bibtex] [Abstract] [Download PDF]

With the decrease in system inertia, frequency security becomes an issue for power systems around the world. Energy storage systems (ESS), due to their excellent ramping capabilities, are considered as a natural choice for the improvement of frequency response following major contingencies. In this manuscript, we propose a new strategy for energy storage — frequency shaping control — that allows to completely eliminate the frequency Nadir, one of the main issue in frequency security, and at the same time tune the rate of change of frequency (RoCoF) to a desired value. With Nadir eliminated, the frequency security assessment can be performed via simple algebraic calculations, as opposed to dynamic simulations for conventional control strategies. Moreover, our proposed control is also very efficient in terms of the requirements on storage peak power, requiring up to 40% less power than conventional virtual inertia approach for the same performance.

```
@article{jcvm2021tps,
abstract = {With the decrease in system inertia, frequency security becomes an issue for power systems around the world. Energy storage systems (ESS), due to their excellent ramping capabilities, are considered as a natural choice for the improvement of frequency response following major contingencies. In this manuscript, we propose a new strategy for energy storage -- frequency shaping control -- that allows to completely eliminate the frequency Nadir, one of the main issue in frequency security, and at the same time tune the rate of change of frequency (RoCoF) to a desired value. With Nadir eliminated, the frequency security assessment can be performed via simple algebraic calculations, as opposed to dynamic simulations for conventional control strategies. Moreover, our proposed control is also very efficient in terms of the requirements on storage peak power, requiring up to 40% less power than conventional virtual inertia approach for the same performance.},
author = {Jiang, Yan and Cohn, Eliza and Vorobev, Petr and Mallada, Enrique},
doi = {10.1109/TPWRS.2021.3072833},
grants = {CAREER-1752362;CPS-2136324},
journal = {IEEE Transactions on Power Systems},
month = {11},
number = {6},
pages = {5006-5019},
record = {early access Apr 2021, accepted Mar 2021, revised Oct 2020, submitted May 2020},
title = {Storage-Based Frequency Shaping Control},
url = {https://mallada.ece.jhu.edu/pubs/2021-TPS-JCVM.pdf},
volume = {36},
year = {2021}
}
```