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Abstract— The ability to achieve coordinated behavior –
engineered or emergent– on networked systems has attracted
widespread interest over several fields. This has led to remark-
able advances on the development of a theoretical understand-
ing of the conditions under which agents within a network can
reach agreement (consensus) or develop coordinated behaviors
such as synchronization. However, fewer advances have been
made toward explaining another commonly observed phenom-
ena in tightly-connected networks systems: output responses
of nodes in the networks are almost identical to each other
despite heterogeneity in their individual dynamics. In this paper,
we leverage tools from high-dimensional probability to provide
an initial answer to this phenomena. More precisely, we show
that for linear networks of nodal random transfer functions,
as the network size and connectivity grows, every node in the
network follows the same response to an input or disturbance –
irrespectively of the source of this input. We term this behavior
as dynamics concentration since it stems from the fact that the
network transfer matrix uniformly converges in probability,
i.e., it concentrates, to a unique dynamic response determined
by the distribution of the random transfer function of each
node. We further discuss the implications of our analysis in
the context of model reduction and robustness, and provide
numerical evidence that similar phenomena occur in small
deterministic networks over a properly defined frequency band.

I. INTRODUCTION

Coordinated behavior in network systems has been a pop-
ular subject of research in many fields, such as physics [1],
chemistry [2], social sciences [3], and biology [4]. Within
engineering, coordination is essential for proper operation of
many networked systems including power networks [5], [6],
data and sensor networks [7], [8], and autonomous trans-
portation [9]–[12]. While there exist many expressions of
this behavior in network systems, two forms of coordination
have particularly received thorough attention by the control
community: Consensus and synchronization.

Consensus [3], [9]–[11], [13], [14], on one hand, refers
to the ability of the network nodes to asymptotically reach
a common value over some quantities of interest. Many
extensions of this problem include the study of robustness
and performance of consensus networks in the presence
of noise [10], [11], time-delay [13], [14], and switching
graph topology [14]. Synchronization [4], [7], [8], [12], [15]–
[17], on the other hand, refers to the ability of network
nodes to follow a commonly defined trajectory. Although
for nonlinear systems synchronization is a structurally stable
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phenomenon, in the linear case [12], [15]–[17], synchroniza-
tion requires the existence of a common internal model that
acts as a virtual leader [16], [17].

A less studied phenomenon, that is empirically observed,
is a coherent response within large-scale tightly-connected
networks in which every node identically reacts to pertur-
bations, irrespectively from the nature or location of the
disturbance. For example, in tightly-connected power net-
works, generator dynamics across the network tend to react
coherently to system disturbances [18]–[20]. However, while
in the case of swing dynamics, reduced order models provide
good approximations [18], for generators with heterogeneous
turbine time constants, a good low order approximation is
difficult to find [20]. Among other contributions, this work
aims to explain this difference.

In this paper, we introduce a new framework to analyze
the aggregated dynamics of large networks. We consider a
network consisting of heterogeneous linear nodes intercon-
nected through a weighted graph Laplacian matrix, with the
node dynamics represented by random transfer functions. We
show that, whenever the algebraic connectivity of the graph
is polynomial in the network size n, the transfer matrix of
the network converges in probability as n grows to infinity
to a common scalar transfer function spanning the consensus
subspace. Notably, the resulting scalar transfer function is
deterministic and can be determined by the harmonic ex-
pectation of the individual nodal dynamics. We term this
behavior dynamics concentration, due to the mathematical
principle that explains this phenomenon, i.e., concentration
of measure [21].

The implications of our results are manifold. Firstly, it
extends the notions of consensus and synchronization to
scenarios in which coherent behavior can be achieved even
in the presence of disturbances that are arbitrary in source or
shape. Secondly, unlike output synchronization that requires
the existence of a common internal model within each node,
dynamics concentration can be achieved despite heterogene-
ity on the individual dynamics or lack of a common internal
model. Thirdly, due to the stochastic nature of our analysis,
many networks that a priori may look quite different in
composition and topology, exhibit exactly the same behavior.
Finally, the analysis further provides a principled methodol-
ogy to compute the concentrated dynamics, which as we will
show later may not always be represented by a reduced order
model.

The rest of the paper is organized as follows. In Section II,
we introduce some technical preliminaries such as the notion
of sub-Gaussian random variables and their concentration
inequalities and use this formalism to formulate our problem



statement. In Section III, the condition for uniform stochastic
convergence of the transfer matrix over compact sets is
given. In Section IV, we provide an application of our
analysis to the problem of characterizing reduced models for
power networks. At last, we conclude this paper with more
discussions on the implications of this result.

Notation: For a vector x, ‖x‖ =
√
xTx denotes the 2-

norm of x, and for a matrix A, ‖A‖ denotes the spectral
norm and

¯
σ(A) denotes the least singular value of A. We

let In denote the identity matrix of order n, V ∗ denote
the conjugate transpose of matrix V , 1 denote [1, · · · , 1]T

with proper dimensions, and [n] denote the set {1, 2, · · · , n}.
Also, we write complex numbers as a+jb, where j =

√
−1.

For function ordering, we write f(n) = o(g(n)) if ∀m >
0, ∃n0 > 0 s.t. |f(n)| < mg(n) for n > n0. We write
f(n) = Ω(g(n)) if ∃m > 0, ∃n0 > 0 s.t. f(n) ≥ mg(n) for
n > n0.

II. PRELIMINARIES

A. Sub-Gaussian random variables
Firstly, we let (Ω,F ,P) be the probability space, where

Ω is the sample space, F = 2Ω is the event set and P
is a probability measure on F . Wherever random variables
are introduced, we assume that those random variables are
properly defined in this probability space.

Throughout the paper, we work on a special family of
random variables: the sub-Gaussian random variables. One
way to define such random variables is the following.

Definition (Sub-Gaussian random variables). A random vari-
able X is a sub-Gaussian random variable if ∀t > 0:

P(|X| ≥ t) ≤ 2 exp
(
−ct2

)
for some c > 0.

Such random variables exhibit an exponentially decaying
tail probability, which gives good concentration results when
summing over sub-Gaussian random variables.

A widely used bound on the tail probability of the sum is
given by:

Lemma 2.1 (Hoeffding’s inequality [22]). Let X1, · · · , Xn

be independent, mean zero, sub-gaussian random variables,
and let a = [a1, · · · , an]T ∈ Rn. Then ∀t > 0, the following
holds:

P

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− ct2

‖a‖2

)
for some c > 0.

We also provide a direct application of Hoeffding’s in-
equality to the random complex numbers:

Lemma 2.2. Let (Xi, Yi), i = 1, · · · , n be i.i.d. samples
from a joint distribution such that Xi, Yi are sub-gaussian
random variables, and let a = [a1, · · · , an]T ∈ Cn. Then
∀t > 0, the following holds:

P

(∣∣∣∣∣
n∑
i=1

ai(Xi + jYi)

∣∣∣∣∣ ≥ t
)
≤ 8 exp

(
− ct2

‖a‖2

)

for some c > 0.

The proof is shown in appendix.

B. Problem Statement

Consider a network consisting of n nodes, indexed by i ∈
[n] with the block diagram structure in Fig.1. We use G(s) =
diag{gi(s)}, with gi(s), i ∈ [n], to represent the dynamics
of the nodes. L(s) is a generalized dynamic Laplacian matrix
of the graph describing the network interconnection. More
precisely, L(s) is defined as transfer matrix such that ∀s0 ∈
C, L(s0) is a complex normal matrix with simple eigenvalue
λ = 0. In most applications, L(s) = L ∈ Rn×n for some
fixed graph Laplacian L.

G(s)

L(s)

u y

−

Fig. 1. Block Diagram of General Networked Dynamical Systems

Many existing networks can be represented represented
by this structure: For the first-order consensus [9], the node
dynamics is given by gi(s) = 1

s . For transportation networks,
gi(s) are the vehicle dynamics. The Laplacian L(s) = L is
static for these two cases. For power networks [6], gi(s) are
the dynamics of the generators and L(s) = 1

sLB where LB
is a Laplacian matrix representing the sensitivity of power
injection w.r.t. bus phase angles.

The transfer matrix from u to y is given by:

T (s) = (In +G(s)L(s))−1G(s)

= (In + diag{gi(s)}L(s))−1diag{gi(s)}

Since L(s) is a normal complex matrix,

L(s) = V (s)Λ(s)V ∗(s) , (1)

where V (s)V ∗(s) = V ∗(s)V (s) = In, and Λ(s) =
diag{λi(s)} with 0 = λ1(s) < |λ2(s)| ≤ · · · ≤ |λn(s)|.
Using (1), we rewrite T (s) as

T (s) = (In + diag{gi(s)}L(s))−1diag{gi(s)}
= (diag{g−1

i (s)}+ L(s))−1

= (diag{g−1
i (s)}+ V (s)Λ(s)V ∗(s))−1

= V (s)(V ∗(s)diag{g−1
i (s)}V (s) + Λ(s))−1V ∗(s)

(2)

When considering the convergence of the transfer matrix
of networked dynamical systems, as the network size n
grows, it is intuitive to assume the node dynamics gi(s)
are generated randomly according to a particular distribution
and discuss the convergence in probability. In practice, the
assumed distribution is modeled from physical parameters
of the nodes. For example, we may assume that nodes



dynamics are given by random rational transfer functions
whose coefficients are random variables.

Remark. For networks with deterministic nodes, notice that
we can always assume the deterministic dynamics are ran-
dom samples drawn from some unknown distributions, hence
the empirical distribution is a reasonable approximation
given some mild requirements on the statistics of the sam-
ples.

We particularly focus on the convergence of T (s) over a
compact region S ⊂ C where for s0 ∈ S, both the real
and imaginary part of g−1

i (s0) are sub-Gaussian random
variables. Let

ḡ(s) : =E−1[g−1
i (s)] (3)

=[ERe(g−1
i (s))+jEIm(g−1

i (s))]−1

We will show that for networks with algebraic connectivity
infs∈S |λ2(s)| = Ω(np) for some p ∈ (0, 1], as the network
size n increases, T (s) converges uniformly to 1

n ḡ(s)11T in
probability over S, i.e., ∀ε > 0

lim
n→∞

P

(
sup
s∈S

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ ≥ ε) = 0

or using the following notation:

sup
s∈S

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ P−→ 0 as n→∞

Thus, since the output response of a stable system can be
obtained by inverse Laplace transform on the imaginary
axis, for low frequency disturbances or input signals, having
uniform convergence of T (s) within a low frequency band
on the imaginary axis, implies that, with high probability,
the network output response is close to the output response
of 1

n ḡ(s)11T , i.e., the output responses of nodes in the
networks are almost identical to each other, despite of the
heterogeneity in their individual dynamics.

III. DYNAMICS CONCENTRATION OF LARGE-SCALE
NETWORKS

We term the uniform convergence of T (s) over low fre-
quency bands as dynamics concentration because nodes with
heterogeneous dynamics exhibit identical responses to low
frequency disturbance, irrespectively of the source or shape
of the disturbance. In this section, we firstly show point-wise
convergence of T (s) given the algebraic connectivity of the
network is sufficiently large. Then we provide conditions for
uniform convergence of T (s) over a compact subset of the
complex plane.

A. Point-wise convergence in probability

For convenience, we assume at s = s0, g−1
i (s0) =

Xi+ jYi where the {(Xi, Yi)}ni=1 pairs are independent and
Xi, Yi are sub-Gaussian random variables. Moreover, we let
L(s0) = L, with unitary decomposition:

L = V ΛV ∗, Λ = diag{λi} , (4)

Then we have:

T (s0) = V (V ∗diag{g−1
i (s0)}V + Λ)−1V ∗

= V (V ∗diag{Xi + jYi}V + Λ)−1V ∗ := T (5)

We also define µ := EXi + jEYi = ḡ−1(s0). Then the
point-wise convergence in probability of T (s) at s = s0

is equivalent to∥∥∥∥T − 1

n
µ−111T

∥∥∥∥ P−→ 0 as n→∞ ,

which is simply the convergence of a random complex matrix
in probability. To show convergence then, we firstly define

H = V ∗diag{Xi + jYi}V + Λ (6)

Since the first eigenvector of L is v1 = 1√
n
1, it follows that∥∥∥∥T − 1

n
µ−111T

∥∥∥∥ = ‖T − µ−1V e1e
T
1 V
∗‖

=
∥∥V (H−1 − µ−1e1e

T
1

)
V ∗
∥∥

=
∥∥H−1 − µ−1e1e

T
1

∥∥ (7)

where e1 is the first column of identity matrix. The remaining
is straightforward: we get an explicit form for H−1 and
bound the tail probability of

∥∥H−1 − µ−1e1e
T
1

∥∥ by o(1)
terms.

To invert H , we let X̃i = Xi − EXi, and Ỹi = Yi − EYi,
then rewrite H as:

H = V ∗diag{X̃i + jỸi}V + diag{λi + µ} (8)

The matrix H can be regarded as a perturbed diagnal matrix
diag{λi + µ} with matrix D := V ∗diag{X̃i + jỸi}V . The
matrix D is regarded as a perturbation in the sense of the
following result:

Lemma 3.1. Let (X̃i, Ỹi), i = 1, · · · , n be i.i.d. samples
from a joint distribution such that X̃i, Ỹi are mean zero,
sub-gaussian random variables. Let D = V ∗diag{X̃i +
jỸi}V := [dkl], where V = [v1, · · · , vn]T is defined in (4).
The following inequalities hold:

1) ∀ε > 0

P (|d11| ≥ ε) ≤ 8 exp
(
−c1nε2

)
(9)

for some c1 > 0.
2) ∀ε > 0, ∀p > 0

P

(
n∑
k=1

|dk1|2 ≥ εnp
)
≤ c2
εnp

(10a)

P

(
n∑
l=1

|d1l|2 ≥ εnp
)
≤ c2
εnp

(10b)

for some c2 > 0.
3) ∀ε > 0, ∀p > 0

P (‖D‖ ≥ εnp) ≤ c3
√

log n

εnp
(11)

for some c3 > 0.



The proof is shown in the appendix. Lemma 3.1 suggests
that the perturbation matrix D exhibits good concentration
on its first row and column. We will exploit this property
with a proper form of H−1.

Define the following matrix:

D(1)(1) =

d22 · · · d2n

...
. . .

...
dn2 · · · dnn

 , Λ(1) = diag{λi}ni=2 (12)

by removing the first row and column of D and Λ. We then
write H as:

H =

[
h11 hT12

h21 H22

]
,

h11 = d11 + µ
h12 = [d12, · · · , d1n]T

h21 = [d21, · · · , dn1]T

H22 = D(1)(1) + Λ(1) + µIn−1

(13)
Then, the inverse of H is given by:

H−1 =

 1
a − 1

ah
T
12H

−1
22

− 1
aH
−1
22 h21 H−1

22 + 1
aH
−1
22 h21h

T
12H

−1
22


(14)

where a = h11 − hT12H
−1
22 h21.

With this explicit form of H−1, we bound the tail proba-
bility of ‖H−1 − µe1e

T
1 ‖ using the following lemma.

Lemma 3.2. Assume |λ2| = Ω(np) for some p ∈ (0, 1]. For
H as defined in (13), whenever µ 6= 0, given n large enough,
then ∀ε > 0, we have:

P
(∥∥H−1 − µ−1e1e

T
1

∥∥ ≥ ε)
≤ 8P (|d11| ≥ C1) + 34P (‖D‖ ≥ C2n

p)

+ 12P

(
n∑
k=1

|dk1|2 ≥ C2
3n

p

)
+ 12P

(
n∑
l=1

|d1l|2 ≥ C2
3n

p

)
(15)

for some C1, C2, C3 > 0 that depends on ε.

The proof is shown in the appendix. As suggested in
Lemma 3.1, all terms on the right-hand side of (15) are o(1).
By (7) and taking limit n → ∞ on both sides of (15), we
can then show the convergence in probability of T .

Theorem 3.3. Let (Xi, Yi), i = 1, · · · , n, be i.i.d. samples
from a joint distribution such that Xi, Yi are sub-gaussian
random variables, and denote µ := EXi + jEYi. Consider
a Laplacian matrix L = V ΛV ∗, as defined in (4), with
algebraic connectivity satisfying |λ2| = Ω(np) for some
p ∈ (0, 1]. Then given

T = V (V ∗diag{Xi + jYi}V + Λ)−1V ∗,

whenever µ 6= 0, we have, ∀ε > 0,

lim
n→+∞

P

(∥∥∥∥T − 1

n
µ−111T

∥∥∥∥ ≥ ε) = 0

We can now apply the theorem to show the point-wise
convergence of T (s) at certain s0.

Corollary 3.4. Let T (s) and ḡ(s) be defined as in (2)
and (3), respectively. Given s = s0, consider the (possibly
complex) network graph Laplacian L(s0) with algebraic
connectivity satisfying |λ2(s0)| = Ω(np) for some p ∈ (0, 1].
Suppose that g−1

i (s0) has both its real and imaginary part
given by sub-gaussian random variables, and s0 is not a pole
of ḡ(s). Then ∀ε > 0,

lim
n→+∞

P

(∥∥∥∥T (s0)− 1

n
ḡ(s0)11T

∥∥∥∥ ≥ ε) = 0

B. Uniform convergence in probability

For people who are familiar with real analysis, it is well-
known that the uniform convergence of function sequence
over a compact region not only requires point-wise con-
vergence, but also needs the equicontinuity of the function
sequence [23]. Similarly, for stochastic uniform convergence
of T (s), we have the following theorem:

Theorem 3.1. Let T (s) and ḡ(s) be defined as in (2) and
(3), respectively. Given S a compact subset of C, and ḡ(s)
is uniform continuous on S, then T (s) uniformly converges
in probability to 1

n ḡ(s)11T , i.e. ∀ε > 0

lim
n→∞

P

(
sup
s∈S

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ ≥ ε) = 0

if the following hold:
1) (Point-wise convergence) ∀s ∈ S and ∀ε > 0,

lim
n→∞

P

(∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ ≥ ε) = 0

2) (Stochastic equicontinuity) ∀ε > 0,

lim
δ→0

lim sup
n→∞

P

 sup
|s1−s2|<δ
s1,s2∈S

‖T (s1)− T (s2)‖ ≥ ε

 = 0

We only provide a proof sketch here. For details, please
refer to [24], where the uniform convergence of real-valued
random function sequence is discussed.

Sketch of proof. Since S is compact, for every δ > 0, there
exists a finite cover {x ∈ C : |x − si| < δ}, i = 1, · · · ,M
with si ∈ S, i = 1, · · · ,M .

One can show that, for every δ < 0, the following holds:

P

(
sup
s∈S

∥∥∥∥T (s)− 1

n
ḡ(s)11T

∥∥∥∥ ≥ ε)

≤ P

 sup
|s1−s2|<δ
s1,s2∈S

‖T (s1)− T (s2)‖ ≥ ε

3


+ P

 sup
|s1−s2|<δ
s1,s2∈S

‖ḡ(s1)− ḡ(s2)‖ ≥ ε

3


+

M∑
i=1

P

(∥∥∥∥T (si)−
1

n
ḡ(si)11T

∥∥∥∥ ≥ ε

3

)
(16)



For all η > 0, choose δ small enough such that: 1) By
uniform continuity of ḡ(s), the second term is zero; 2) By
stochastic equicontinuity of T (s),

lim sup
n→∞

P

 sup
|s1−s2|<δ
s1,s2∈S

‖T (s1)− T (s2)‖ ≥ ε

3

 <
η

2
(17)

Then for this δ, choose N > 0 such that for n ≥ N , the
first term is less than η

2 , by (17), and the third term is less
than η

2 , by point-wise convergence. Therefore we bound the
left-hand side of (16) by arbitrary small η for large n, which
shows the uniform convergence.

The stochastic equicontinuity, as its name suggests, is the
”stochastic version” of equicontinuity in the real analysis.
One would expect a ”stochastic version” of Lipschtz condi-
tion as sufficient to show stochastic equicontinuity:

Lemma 3.2. Let T (s) be defined as in (2). Suppose for some
sequence of random variables {Bn}, ‖T (s1) − T (s2)‖ ≤
Bn|s1−s2| holds for all s1, s2 ∈ S. Then T (s) is stochastic
equicontinuous on S, if

lim
M→∞

lim sup
n→∞

P (Bn ≥M) = 0

For details, please refer to [24]. Lastly, we provide con-
ditions on T (s), g−1

i (s) to ensure such {Bn} exists, hence
show the uniform convergence of T (s):

Theorem 3.3. Let T (s) and ḡ(s) be defined as in (2) and
(3), respectively. Given S a compact subset of C, and ḡ(s)
is uniform continuous on S. Suppose for some sequence of
random variables {B̃n}, maxi∈[n] |g−1

i (s1) − g−1
i (s2)| ≤

B̃n|s1 − s2| holds for all s1, s2 ∈ S. Then T (s) uniformly
converges in probability to 1

n ḡ(s)11T if the following hold:
1) T (s) converges point-wise in probability to 1

n ḡ11T

∀s ∈ S.
2)

lim
M→∞

lim sup
n→∞

P
(
B̃n ≥M

)
= 0 (18a)

lim
M→∞

lim sup
n→∞

P

(
sup
s∈S
‖T (s)‖ ≥M

)
= 0 (18b)

Proof. For all s1, s2 ∈ S, we have:

‖T (s1)− T (s2)‖
= ‖T (s1)(T−1(s2)− T−1(s1))T (s2)‖
≤ ‖T (s1)‖‖T (s2)‖‖diag{g−1

i (s1)− g−1
i (s2)}‖

≤
(

sup
s∈S
‖T (s)‖

)2

B̃n|s1 − s2|

by Lemma (A.1), we have:

P

((
sup
s∈S
‖T (s)‖

)2

B̃n ≥M

)

≤ 2P

(
sup
s∈S
‖T (s)‖ ≥M1/3

)
+ P

(
B̃n ≥M1/3

)

Taking limM→∞ lim supn→∞ on both sides:

lim
M→∞

lim sup
n→∞

P

((
sup
s∈S
‖T (s)‖

)2

B̃n ≥M

)
= 0

by Lemma 3.2, T (s) is stochastic equicontinuous on S.
Therefore, by Theorem 3.1, uniform convergence of T (s)
on S is proved.

Remark. For our purpose, the uniform convergence of T (s)
over a low frequency band S = {jw : w ∈ [−w0, w0]} is
sufficient for a stable network to exhibit synchronized output
under low frequency disturbance. And as one can expect,
the choice of a large enough network size n0 to synchronize
the output is frequency dependent, i.e. if we want uniform
convergence over a wider frequency band, n0 needs to be
larger.

IV. NUMERICAL VERIFICATION

We now provide two numerical examples of networked
dynamics that illustrate the uniform convergence of their
transfer matrix over low frequency band by numerical simu-
lation. We will further use our dynamics concentration results
propose a reduced order model for power networks.

A. Dynamics concentration in consensus networks

Consider the network in Fig.1 with the dynamics of each
node given by

gi(s) =
ki
s
.

This gives us the standard continuous time consensus net-
work [9]. Notice that when gi(s) is simulated by impulse
input δ(t), it is equivalent to setting initial condition at t = 0
of node i to be ki.

We sample ki from Unif(1, 5), then s
ki

is sub-Guassian
for any fixed s. The graph of the network is a k-regular ring,
i.e. every node is connected to its 2k+ 1 nearest neighbors.
We set the weight to be 1 for all edges and k ≈ 0.15n, then
each node is connected to roughly 1/3 of other nodes in the
network. It can be shown that the algebraic connectivity of
the graph Laplacian |λ2| is Ω(n) [25], then this network
should exhibit dynamics concentration, according to the
convergence result in Section III. The expected dynamics
is given by

ḡ(s) =
1

s

(
E

1

ki

)−1

=
4

ln 5

1

s

Suppose the network is subject to an impulse input u(t) =
δ(t)1. Then, the impulse response of ḡ(s) is given by ḡ(t) =

4
ln 5χ≥0(t), where χ≥0(t) is the unit step function.

We plot the impulse response for network with different
size n = 20, 50, 100, 500 in Fig. 2, along with ḡ(t) shown
by the red dashed line. It is clear in Fig. 2 that as the
network size grows, the network exhibits a more coherent
response and the consensus value gets close to the expected
average 4/ ln 5. Although such response can be explained
using standard consensus algorithm analysis, it can also be
viewed as the consequence of T (s) getting elementwise close
to the coherent dynamics ḡ(s) = 4

n ln 5
1
s .



Fig. 2. Dynamics Concentration in Consensus network

B. Dynamic concentration in power networks

We now look at the case of a power network and leverage
our analysis to provide an accurate low-frequency reduced
order model for power networks.

Consider the transfer matrix of power generator networks
[6] linearized around its equilibrium point, with the following
block diagrams:

G(s)

1
sLB

u y

−

Fig. 3. Block Diagram of Linearized Power Networks

Remark. The integration 1
s in the feedback loop does not

affect the convergence result around s = 0 because when
evaluating T (s) at a particular point s0 around 0, we notice
that 1

s0
actually scales up the algebraic connectivity of 1

sLB ,
which makes the network dynamics concentrate to a single
dynamic in the consensus subspace.

The generator dynamics gi(s) is given by,

gi(s) =
1

mis+ di
,

for the swing dynamics, where mi is the inertial and di is
the damping ratio.

For generators with turbine control, the transfer function
is given by,

gi(s) =
τis+ 1

(mis+ di)(τis+ 1) + r−1
i

,

where τi is the turbine constant, and ri is the droop coeffi-
cient. We use the Icelandic grid data available at [26] where

35 generators in total are connected to the grid, with only
some of them implementing turbine control.

According to our convergence result, for low frequencies
or tightly connected networks, the transfer matrix of the
network is close to 1

n g̃(s)11T , with

g̃(s) =

(
1

n

n∑
i=1

g−1
i (s)

)−1

i.e. we assume gi(s) are drawn from some unknown distri-
bution and use g̃(s) as an empirical approximation of ḡ(s).
Hence we expect g̃(s) to be a good candidate for a reduced
model of the whole network.

For generators without turbine control, the reduced model
is simply a single generator with its coefficients given by the
mean of coefficients among all nodes. However, notice that
for generators with turbine control, the reduced model g̃(s)
is with the same order as a single generator only when the
turbine constant τi are the same for all generators in the grid.
Every time a different τi is introduced, the order of g̃(s) will
be increased by 1.

In the Icelandic grid, the τi are not the same among
generators with turbine control. We will compare the output
of:

1) Reduced model 1
n ĝ(s)11T , ĝ(s) as a representative

generator:

ĝ(s) =
τ̄ s+ 1

(m̄s+ d̄)(τ̄ s+ 1) + r̄−1

with the coefficients:

m̄ =
1

n

n∑
i=1

mi, d̄ =
1

n

n∑
i=1

di

r̄−1 =
1

n

n∑
i=1

r−1
i , τ̄ =

1

|T |
∑
i∈T

τi

where T is the set of indices such that τi 6= 0;
2) Higher order reduced model 1

n g̃(s)11T , where

g̃(s) =

(
m̄s+ d̄+

1

n

∑
i∈T

r−1
i

τis+ 1

)−1

which is 4th order for Icelandic grid.
In Fig.4, we show the output response of the power

networks and our proposed reduced model under step u(t) =
−0.3e2 and sinusoidal u(t) = 0.2 sin(0.1πt)e2 disturbance.
It is clear that the generators have highly synchronized
response to the low frequency disturbance, which shows that
even in relatively small networks, the dynamics concentration
can be observed in low frequency range, mostly because
the integration in the feedback loop scales up |λ2| of the
Laplacian, forcing the dynamics of all nodes to concentrate.
However, we also observed less synchronized behavior when
the network is subject to a step disturbance. This is because
at high frequency ranges the integration in the feedback
loop scales down |λ2|, making the convergence result fail.
Consequently, generators have different responses to the high
frequency components of the step signal.



Fig. 4. Output response of the power networks and proposed reduced
models under step(above) and sinusoidal(below) disturbance. On the left
is the output response of each generator. On the right, black solid line: the
average output ȳ of all generators, red dashed line: output of reduced model
g̃(s), blue dashed line: output of reduced model ĝ(s)

Finally, when comparing the two proposed reduced mod-
els, the higher order reduced model is a much better ap-
proximation of the original model than a reduced model of
a single generator. For networks of generators with turbine
control, if τi varies among the network, then g̃(s) will have
as many poles as the size of the network! Then it is difficult
to find a good low order reduced models of such networks
as its size scales up.

V. CONCLUSION

In this paper, we consider a tightly-connected network
consisting of heterogeneous linear node dynamics repre-
sented by random transfer functions. We show that the
transfer matrix of the network converges in probability as n
grows to infinity to a common deterministic scalar transfer
function spanning the consensus subspace. We then provide
conditions under which such convergence is uniform over a
compact set, and numerically verified, for certain networks,
that dynamics concentration do occur in the low frequency
range.

There are many possible extension to the current anal-
ysis. Firstly, our results suggest that for tightly connected
networks, a common controller might perform as good as
individual controllers specified for each node, even when
nodes are with different types of dynamics. Secondly, another
interesting question is whether there are circumstances under
which the stability of the concentrated dynamics ḡ(s) imply
the stability of the whole network, given large enough net-
work size. It is our belief that this framework can potentially
provide new control design tools for large-scale networks.

APPENDIX

The following Lemmas will be used in the proof of Lemma
2.2, Lemma 3.2 and Theorem 3.3

Lemma A.1. Let X1, · · · , XM be non-negative random
variables, then for ε > 0, we have:

P

(
M∑
i=1

Xi ≥ ε

)
≤

M∑
i=1

P
(
Xi ≥

ε

M

)
(19a)

P

(
M∏
i=1

Xi ≥ ε

)
≤

M∑
i=1

P
(
Xi ≥ ε1/M

)
(19b)

Proof.

P

(
M∑
i=1

Xi ≥ ε

)
≤ P

(
max

1≤i≤M
Xi ≥

ε

M

)

= P

(
M⋃
i=1

{
Xi ≥

ε

M

})

≤
M∑
i=1

P
(
Xi ≥

ε

M

)
Similarly, since Xi ≥ 0

P

(
M∏
i=1

Xi ≥ ε

)
≤ P

(
max

1≤i≤M
Xi ≥ ε1/M

)

≤
M∑
i=1

P
(
Xi ≥ ε1/M

)

Lemma A.2. Let X,Y, Z,W1,W2 be non-negative random
variables. Suppose whenever Y 6= 0, 1

Y ≥ W1 −W2 holds,
then we have:

P (XY ≥ Z) ≤ P (W2 ≥W1) + P (X ≥ Z(W1 −W2))

Proof. when W2 < W1, by 1
Y ≥W1 −W2, we obtain:

Y ≤ 1

W1 −W2

Notice that the inequality above also holds for Y = 0 as
long as W2 < W1, hence,

P (XY ≥ Z) = P(({W2 ≥W1} ∩ {XY ≥ Z})∪
({W2 < W1} ∩ {XY ≥ Z}))

≤ P({W2 ≥W1} ∩ {XY ≥ Z})+
P(({W2 < W1} ∩ {XY ≥ Z})

≤ P(W2 ≥W1)+

P

(
{W2 < W1} ∩

{
X

W1 −W2
≥ Z

})
= P(W2 ≥W1) + P (X ≥ Z(W1 −W2))

Proof of Lemma 2.2. Firstly, we show that ∀t > 0

P

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ ≥ t
)

≤ P

(∣∣∣∣∣
n∑
i=1

Re(ai)Xi

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

Im(ai)Xi

∣∣∣∣∣ ≥ t
)



by Lemma A.1

≤ P

(∣∣∣∣∣
n∑
i=1

Re(ai)Xi

∣∣∣∣∣ ≥ t

2

)
+ P

(∣∣∣∣∣
n∑
i=1

Im(ai)Xi

∣∣∣∣∣ ≥ t

2

)
by Lemma 2.1, for some cx > 0 :

≤ 2 exp

(
− cxt

2

4
∑n
i=1Re

2(ai)

)
+ 2 exp

(
− cxt

2

4
∑n
i=1 Im

2(ai)

)
≤ 2 exp

(
− cxt

2

4‖a‖2

)
+ 2 exp

(
− cxt

2

4‖a‖2

)
= 4 exp

(
− cxt

2

4‖a‖2

)
Similarly, for some cy > 0:

P

(∣∣∣∣∣
n∑
i=1

aiYi

∣∣∣∣∣ ≥ t
)
≤ 4 exp

(
− cyt

2

4‖a‖2

)
Then we have:

P

(∣∣∣∣∣
n∑
i=1

ai(Xi + jYi)

∣∣∣∣∣ ≥ t
)

≤ P

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

aiYi

∣∣∣∣∣ ≥ t
)

by Lemma A.1

≤ P

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ ≥ t

2

)
+ P

(∣∣∣∣∣
n∑
i=1

aiYi

∣∣∣∣∣ ≥ t

2

)
apply the bounds we obtained above:

≤ 4 exp

(
− cxt

2

16‖a‖2

)
+ 4 exp

(
− cyt

2

16‖a‖2

)
≤ 8 exp

(
− ct2

‖a‖2

)
, where c = min

{ cx
16
,
cy
16

}

Proof of Lemma 3.1. Firstly, for every k ∈ [n] we have
dk1 =

∑n
i=1 v̄kiv1i(X̃i + jỸi), by Lemma 2.2, for ε > 0

we have

P

(∣∣∣∣∣
n∑
i=1

v̄kiv1i(X̃i + jỸi)

∣∣∣∣∣ ≥ ε
)
≤ 8 exp

(
− c1ε

2∑n
i=1 |v̄kiv1i|2

)
for some c1 > 0. Notice that v1 = 1/

√
n, then

n∑
i=1

|v̄kiv1i|2 =
1

n

n∑
i=1

|v̄ki|2 =
1

n

Then we have

P (|dk1| ≥ ε) ≤ 8 exp
(
−c1nε2

)
, ∀k ∈ [n]

which proves the firstly inequality. Similarly, for d1l =∑n
i=1 v̄1ivli(X̃i + jỸi), l ∈ [n], we have:

P (|d1l| ≥ ε) ≤ 8 exp
(
−c1nε2

)
, ∀l ∈ [n]

With the inequality above, the 2nd moment of dk1 is bounded
by:

E|dk1|2 =

∫ +∞

0

2tP (|dk1| ≥ t) dt

≤ 8

∫ +∞

0

2t exp
(
−c1nt2

)
dt =

8

c1n
:=

c2
n

From this, by Markov’s inequality, we have:

P

(
n∑
k=1

|dk1|2 ≥ εnp
)
≤
∑n
k=1 E|dk1|2

εnp
≤ c2
εnp

which gives inequality (10a), similarly for inequality (10b).
Now for the last inequality, since unitary matrix preserves

the spectral norm, it is straightforward to see that

‖D‖ = ‖V ∗diag{X̃i + jỸi}V ‖
= ‖diag{X̃i + jỸi}‖ = max

i∈[n]
|X̃i + jỸi|

We show that |X̃i + jỸi| is also sub-gaussian by noticing
that:

P
(
|X̃i + jỸi| > t

)
≤ P

(
|X̃i|+ |Ỹi| > t

)
and |Xi| + |Yi| is a sum of two sub-gaussian random
variables, hence sub-gaussian [22, Proposition 2.6.1]. For
sequence of sub-gaussian random variables, its expected
maximum is bounded by [22, Excercise 2.5.10]:

E max
i∈[n]
|X̃i + jỸi| ≤ c3

√
log n

for some c3 > 0. Then we have:

P (‖D‖ ≥ npε) = P

(
max
i∈[n]
|X̃i + Ỹi| ≥ npε

)
(Markov’s Inequality) ≤

E maxi∈[n] |X̃i + jỸi|
npε

≤ c3
√

log n

npε

Proof of Lemma 3.2. Firstly, notice that ‖H−1 − µ−1e1e
T
1 ‖

is bounded by the summation of the spectral norm of every
blocks of H−1:

‖H−1 − µ−1e1e
T
1 ‖

≤
∣∣∣∣1a − 1

µ

∣∣∣∣+

∥∥∥∥1

a
hT12H

−1
22

∥∥∥∥+

∥∥∥∥1

a
H−1

22 h21

∥∥∥∥
+

∥∥∥∥H−1
22 +

1

a
H−1

22 h21h
T
12H

−1
22

∥∥∥∥
≤
∣∣∣∣1a − 1

µ

∣∣∣∣+

∥∥∥∥1

a
hT12H

−1
22

∥∥∥∥+

∥∥∥∥1

a
H−1

22 h21

∥∥∥∥
+
∥∥H−1

22

∥∥+

∥∥∥∥1

a
H−1

22 h21h
T
12H

−1
22

∥∥∥∥ (20)

Then by Lemma (A.1), we have:

P
(∥∥H−1 − µ−1e1e

T
1

∥∥ ≥ ε)
≤ P

(∣∣∣∣1a − 1

µ

∣∣∣∣ ≥ ε

5

)
+ P

(
‖H−1

22 ‖ ≥
ε

5

)
+ P

(∥∥∥∥1

a
hT12H

−1
22

∥∥∥∥ ≥ ε

5

)
+ P

(∥∥∥∥1

a
H−1

22 h21

∥∥∥∥ ≥ ε

5

)
+ P

(∥∥∥∥1

a
H−1

22 h21h
T
12H

−1
22

∥∥∥∥ ≥ ε

5

)
(21)

The remaining proof is to bound the tail probabilities above.
Notice that ‖H−1

22 ‖ = 1

¯
σ(H22) By Weyl’s inequality [27,

Theorem III.2.1]:

|
¯
σ(H22)−

¯
σ(H22 −D(1)(1))| ≤ ‖D(1)(1)‖ (22)



Then we know that:
1

‖H−1
22 ‖

=
¯
σ(H22) ≥

¯
σ(H22 −D(1)(1))− ‖D(1)(1)‖

= min
2≤i≤n

|λi + µ| − ‖D(1)(1)‖

≥ min
2≤i≤n

|λi| − |µ| − ‖D(1)(1)‖

= |λ2| − |µ| − ‖D(1)(1)‖

Since |λ2| = Ω(np), then ∃m1 > 0 s.t. for some n1 > 0,
whenever n ≥ n1, |λ2| − |µ| ≥ m1n

p holds, which leads to:

1

‖H−1
22 ‖

≥ m1n
p − ‖D(1)(1)‖, n ≥ n1 (23)

For the bound on tail probability of ‖H−1
22 ‖, by Lemma A.2:

P
(
‖H−1

22 ‖ ≥
ε

5

)
≤ P

(
‖D(1)(1)‖ ≥ m1n

p
)

+ P
(

1 ≥ ε

5
m1n

p − ε

5
‖D(1)(1)‖

)
= P

(
‖D(1)(1)‖ ≥ m1n

p
)

+ P

(
‖D(1)(1)‖ ≥ m1n

p − 5

ε

)
≤ 2P

(
‖D(1)(1)‖ ≥ m1n

p − 5

ε

)
(24)

Because ∃0 < m2 < m1 s.t. when n ≥ n2, m1n
p − 5

ε ≥
m2n

p holds, we let n ≥ max{n1, n2}, to get:

P
(
‖H−1

22 ‖ ≥
ε

5

)
≤ 2P

(
‖D(1)(1)‖ ≥ m1n

p − 5

ε

)
≤ 2P

(
‖D(1)(1)‖ ≥ m2n

p
)

(25)

Now we turn to bound the relatively complex terms:

P

(∥∥∥∥1

a
hT12H

−1
22

∥∥∥∥ ≥ ε

5

)
= P

(∣∣∣∣1a − 1

µ
+

1

µ

∣∣∣∣ ∥∥hT12H
−1
22

∥∥ ≥ ε

5

)
≤ P

((∣∣∣∣1a − 1

µ

∣∣∣∣+

∣∣∣∣ 1µ
∣∣∣∣) ∥∥hT12H

−1
22

∥∥ ≥ ε

5

)
by Lemma A.1

≤ P

(∣∣∣∣1a − 1

µ

∣∣∣∣ ∥∥hT12H
−1
22

∥∥ ≥ ε

10

)
+ P

(∥∥hT12H
−1
22

∥∥ ≥ ε|µ|
10

)
apply Lemma A.1 again on first term

≤ P

(∣∣∣∣1a − 1

µ

∣∣∣∣ ≥√ ε

10

)
+ P

(∥∥hT12H
−1
22

∥∥ ≥√ ε

10

)
+ P

(∥∥hT12H
−1
22

∥∥ ≥ ε|µ|
10

)
≤ P

(∣∣∣∣1a − 1

µ

∣∣∣∣ ≥√ ε

10

)
+ 2P

(∥∥hT12H
−1
22

∥∥ ≥ ε1) (26)

where ε1 = min{ ε|µ|10 ,
√

ε
10}.

Similarly, we have:

P

(∥∥∥∥1

a
H−1

22 h21

∥∥∥∥ ≥ ε

5

)
≤ P

(∣∣∣∣1a − 1

µ

∣∣∣∣ ≥√ ε

10

)
+ 2P

(∥∥H−1
22 h21

∥∥ ≥ ε1) (27)

and

P

(∥∥∥∥1

a
H−1

22 h21h
T
12H

−1
22

∥∥∥∥ ≥ ε

5

)
≤ P

(∣∣∣∣1a − 1

µ

∣∣∣∣ ≥√ ε

10

)
+ 2P

(∥∥H−1
22 h21h

T
12H

−1
22

∥∥ ≥ ε1)
≤ P

(∣∣∣∣1a − 1

µ

∣∣∣∣ ≥√ ε

10

)
+ 2P

(∥∥H−1
22 h21

∥∥ ∥∥hT12H
−1
22

∥∥ ≥ ε1)
apply Lemma A.1 on second term

≤ P

(∣∣∣∣1a − 1

µ

∣∣∣∣ ≥√ ε

10

)
+ 2P

(∥∥hT12H
−1
22

∥∥ ≥ √ε1)+ 2P
(∥∥H−1

22 h21

∥∥ ≥ √ε1)
(28)

Then we continue to reduce the tail probability of
∣∣∣ 1a − 1

µ

∣∣∣,
notice that

|a| = |d11 + µ− hT12H
−1
22 h21| ≥ |µ| − |d11 − h12H

−1
22 h21|

then we let ε2 = min{
√

ε
10 ,

ε
5}

P

(∣∣∣∣1a − 1

µ

∣∣∣∣ ≥ ε2)
= P

(
|d11 − hT12H

−1
22 h21|

|a|
≥ ε2|µ|

)
by Lemma A.2

≤ P
(
|d11 − hT12H

−1
22 h21| ≥ |µ|

)
+ P

(
|d11 − hT12H

−1
22 h21| ≥

ε2|µ|2

1 + ε2|µ|

)
notice that |µ| ≥ ε2|µ|2

1 + ε2|µ|
≤ 2P

(
|d11 − hT12H

−1
22 h21| ≥ ε3

)
≤ 2P

(
|d11| ≥

ε3
2

)
+ 2P

(
|hT12H

−1
22 h21| ≥

ε3
2

)
(29)

where ε3 = ε2|µ|2
1+ε2|µ| . Apparently, we have:

P

(∣∣∣∣1a − 1

µ

∣∣∣∣ ≥ ε

5

)
≤ P

(∣∣∣∣1a − 1

µ

∣∣∣∣ ≥ ε2) (30a)

P

(∣∣∣∣1a − 1

µ

∣∣∣∣ ≥√ ε

10

)
≤ P

(∣∣∣∣1a − 1

µ

∣∣∣∣ ≥ ε2) (30b)

At last, we bound the tail probabilities of the terms contain-
ing H−1

22 by:

P
(
|hT12H

−1
22 h21| ≥

ε3
2

)
≤ P

(
2‖h12‖‖H−1

22 ‖‖h21‖ ≥ ε3
)

by Lemma A.2

≤ P
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‖D(1)(1)‖ ≥ m1n

p
)

+

P
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p − ε3D(1)(1)

)
≤ P
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‖D(1)(1)‖ ≥ m1n

p
)

+

P
(
2‖h12‖‖h21‖+ ε3D(1)(1) ≥ ε3m1n

p
)

Apply Lemma A.2 twice on second term

≤ P
(
‖D(1)(1)‖ ≥ m1n

p
)

+



P
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ε3
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p
)

+ P

(
‖D(1)(1)‖ ≥

1

2
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p

)
≤ 2P
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)
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√
ε3m1

2
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)
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√
ε3m1

2
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(31)

Similarly, we have:

P
(
‖hT12H

−1
22 ‖ ≥ ε1

)
≤ 2P

(
‖D(1)(1)‖ ≥

1

2
m1n

p

)
+ P

(
‖h12‖ ≥

ε1
2
m1n

p
)
(32)

and

P
(
‖H−1

22 h21‖ ≥ ε1
)

≤ 2P

(
‖D(1)(1)‖ ≥

1

2
m1n

p

)
+ P

(
‖h21‖ ≥

ε1
2
m1n

p
)
(33)

Bounds on P
(
‖hT12H

−1
22 ‖ ≥

√
ε1
)

and
P
(
‖H−1

22 h21‖ ≥
√
ε1
)

can be easily derived from (32)
and (33) respectively. But notice that ∃n3 > 0 s.t. when
n ≥ n3,

√
ε3m1

2 np/2 ≤ 1
2 min{ε1,

√
ε1}m1n

p, hence the tail
probabilities of ‖h12‖ and ‖h21‖ in (32)(33) are always
bounded by those in (31) when n large enough.

Combining the bounds in (25)-(33), when n ≥
max{n1, n2, n3}, we have the following:

P
(
‖H−1 − µ−1e1e

T
1 ‖ ≥ ε

)
≤ 8P (|d11| ≥ C1) + 34P

(
‖D(1)(1)‖ ≥ C2n

p
)

+ 12P
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+ 12P
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‖h21‖ ≥ C3n
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)

(34)

where

C1 =
ε3
2

; C2 = min{m1

2
,m2}; C3 =

√
ε3m1

2

Lastly, notice that ‖h12‖2 ≤
∑n
l=1 |d1l|2, ‖h21‖2 ≤∑n

k=1 |dk1|2 and ‖D(1)(1)‖ ≤ ‖D‖, by applying the fol-
lowing bounds:

P
(
‖h12‖ ≥ C3n

p/2
)

= P
(
‖h12‖2 ≥ C2

3n
p
)

≤ P

(
n∑
l=1

|d1l|2 ≥ C2
3n

p

)

P
(
‖h21‖ ≥ C3n

p/2
)
≤ P

(
n∑
k=1

|dk1|2 ≥ C2
3n

p

)
P
(
‖D(1)(1)‖ ≥ C2n

p
)
≤ P (‖D‖ ≥ C2n

p)

to (34), we finishes the proof.
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principle is necessary and sufficient for linear output synchronization,”
Automatica, vol. 47, no. 5, pp. 1068–1074, 2011.

[18] J. H. Chow, Power system coherency and model reduction. Springer,
2013.

[19] M. Ariff and B. C. Pal, “Coherency identification in interconnected
power systeman independent component analysis approach,” IEEE
Transactions on Power Systems, vol. 28, no. 2, pp. 1747–1755, 2013.

[20] S. S. Guggilam, C. Zhao, E. DallAnese, Y. C. Chen, and S. V. Dhople,
“Optimizing DER participation in inertial and primary-frequency
response,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5194–5205,
Sep. 2018.

[21] M. Ledoux, The concentration of measure phenomenon. American
Mathematical Soc., 2001, no. 89.

[22] R. Vershynin, High-dimensional probability: An introduction with
applications in data science. Cambridge University Press, 2018,
vol. 47.

[23] W. Rudin et al., Principles of mathematical analysis. McGraw-hill
New York, 1964, vol. 3.

[24] W. K. Newey, “Uniform convergence in probability and stochastic
equicontinuity,” Econometrica: Journal of the Econometric Society,
pp. 1161–1167, 1991.

[25] R. Olfati-Saber, “Algebraic connectivity ratio of ramanujan graphs,”
in 2007 American Control Conference. IEEE, 2007, pp. 4619–4624.

[26] U. of Edinburgh. Power systems test case archive. [Online]. Available:
https://www.maths.ed.ac.uk/optenergy/NetworkData/icelandDyn/

[27] R. Bhatia, Matrix analysis. Springer Science & Business Media,
2013, vol. 169.


