2 papers accepted to L-CSS

Our papers on grid-forming frequency shaping control [1] and on reduced order model for coherent generators [2] have been accepted to the IEEE Control Systems Letters (L-CSS)!

[1] [doi] Y. Jiang, A. Bernstein, P. Vorobev, and E. Mallada, “Grid-forming frequency shaping control in low inertia power systems,” IEEE Control Systems Letters (L-CSS), vol. 5, iss. 6, pp. 1988-1993, 2021.
[Bibtex] [Abstract] [Download PDF]

We introduce a novel framework to approximate the aggregate frequency dynamics of coherent synchronous generators. By leveraging recent results on dynamics concentration of tightly connected networks, we develop a hierarchy of reduced order models –based on frequency weighted balanced truncation– that accurately approximate the aggregate system response. Our results outperform existing aggregation techniques and can be shown to monotonically improve the approximation as the hierarchy order increases.

@article{jbvm2021lcss,
  abstract = {We introduce a novel framework to approximate the aggregate frequency dynamics of coherent synchronous generators. By leveraging recent results on dynamics concentration of tightly connected networks, we develop a hierarchy of reduced order models --based on frequency weighted balanced truncation-- that accurately approximate the aggregate system response. Our results outperform existing aggregation techniques and can be shown to monotonically improve the approximation as the hierarchy order increases.},
  author = {Jiang, Yan and Bernstein, Andrey and Vorobev, Petr and Mallada, Enrique},
  doi = {10.1109/LCSYS.2020.3044551},
  grants = {CAREER-1752362, AMPS-1736448, TRIPODS-1934979, EPCN-1711188},
  journal = {IEEE Control Systems Letters (L-CSS)},
  month = {12},
  note = {also in ACC 2021},
  number = {6},
  pages = {1988-1993},
  record = {early access Dec 2020, accepted Nov 2020, revised Nov 2020, submitted Sep 2020},
  title = {Grid-forming frequency shaping control in low inertia power systems},
  url = {https://mallada.ece.jhu.edu/pubs/2021-LCSS-JBVM.pdf},
  volume = {5},
  year = {2021}
}
[2] [doi] H. Min, F. Paganini, and E. Mallada, “Accurate Reduced Order Models for Coherent Heterogeneous Generators,” IEEE Control Systems Letters (L-CSS), vol. 5, iss. 5, pp. 1741-1746, 2021.
[Bibtex] [Abstract] [Download PDF]

We introduce a novel framework to approximate the aggregate frequency dynamics of coherent synchronous generators. By leveraging recent results on dynamics concentration of tightly connected networks, we develop a hierarchy of reduced order models –based on frequency weighted balanced truncation– that accurately approximate the aggregate system response. Our results outperform existing aggregation techniques and can be shown to monotonically improve the approximation as the hierarchy order increases.

@article{mpm2021lcss,
  abstract = {We introduce a novel framework to approximate the aggregate frequency dynamics of coherent synchronous generators. By leveraging recent results on dynamics concentration of tightly connected networks, we develop a hierarchy of reduced order models --based on frequency weighted balanced truncation-- that accurately approximate the aggregate system response. Our results outperform existing aggregation techniques and can be shown to monotonically improve the approximation as the hierarchy order increases.},
  author = {Min, Hancheng and Paganini, Fernando and Mallada, Enrique},
  doi = {10.1109/LCSYS.2020.3043733},
  grants = {CAREER-1752362, CPS-1544771, ENERGISE-DE-EE0008006, AMPS-1736448, TRIPODS-1934979, EPCN-1711188, ARO-W911NF-17-1-0092},
  journal = {IEEE Control Systems Letters (L-CSS)},
  month = {11},
  note = {also in ACC 2021},
  number = {5},
  pages = {1741-1746},
  record = {early accesss Nov 2020, accepted Nov 2020, revised Nov 2020, submitted Sep 2020},
  title = {Accurate Reduced Order Models for Coherent Heterogeneous Generators},
  url = {https://mallada.ece.jhu.edu/pubs/2021-LCSS-MPM.pdf},
  volume = {5},
  year = {2021}
}