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The Future Grid

g«i%(‘?{/ M a0 g

*[]

=
-
oo (24
=
D
|-
 mlg

- @ @ | - I - %%—.—. II: I\,‘.‘ {R‘ B &
. . 2 @? - B & |
5 III III\III\ [ & a 8o |
/J& LY e )r §E LR >r>r>r
® pom || ® RAe
ngcncmtor ﬁLﬁ ﬁi& ﬁi‘ hY ngcncrator =n mn “:“;‘:“I‘:“T“‘ “:‘-;‘:“I::-;-‘
@ =inverter — @ =inverter ' '
Present grid Future

 dispatchable generation
* highinertial response

* strong voltage support
 well known physics

variable and distributed generation
limited inertia levels

weak voltage support

proprietary control laws (black box)
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[1] Lin et al. Research roadmap on grid-forming inverters. Technical report, National Renewable
Energy Lab.(NREL), Golden CO, 2020
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The Future Grid
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* How should we control a grid with limited
Future inertial/voltage support?

variable and distributed generation
limited inertia levels

weak voltage support instabilities?
proprietary control laws (black box)

* How should we prevent the onset of IBR induced

[1] Lin et al. Research roadmap on grid-forming inverters. Technical report, National Renewable
Energy Lab.(NREL), Golden CO, 2020




Thrust II — Model and Integration of IBRs

Topic 2.1 — Modeling IBR-dominated systems

Topic 2.2 — Stability analysis under uncertainty

Topic 2.3 — IBR control design for grid shaping

Topic 2.4 — Integrate stability with operations & services

Thrust goals: to make inverter-based resources predictable, certifiable, and dispatchable
contributors to grid stability and ancillary services in future low-inertia power systems.
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Thrust II — Model and Integration of IBRs

* Topic 2.1 — Modeling IBR-dominated systems

* Topic 2.2 — Stability analysis under uncertainty

* Topic 2.3 — IBR control design for grid shaping

* Topic 2.4 — Integrate stability with operations & services

T2.1 Goal: Develop scalable dynamic models and identification methods that
accurately capture IBR-driven instabilities and their operating-point
dependence.
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Thrust II — Model and Integration of IBRs

* Topic 2.1 — Modeling IBR-dominated systems
* Topic 2.2 — Stability analysis under uncertainty
* Topic 2.3 — IBR control design for grid shaping

* Topic 2.4 — Integrate stability with operations & services

T2.2 Goal: Develop small-signal stability analysis methods that account for
modeling uncertainty induced by IBR vendor heterogeneity & variable
operating conditions.
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Thrust II — Model and Integration of IBRs

Topic 2.1 — Modeling IBR-dominated systems

Topic 2.2 — Stability analysis under uncertainty

Topic 2.3 — IBR control design for grid shaping

Topic 2.4 — Integrate stability with operations & services

T2.3 Goal: Redesign IBR control loops for grid-following & -forming modes
to leverage flexibility to mitigate IBR-driven instabilities /performance
degradation.
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Thrust II — Model and Integration of IBRs

* Topic 2.1 — Modeling IBR-dominated systems

* Topic 2.2 — Stability analysis under uncertainty

* Topic 2.3 — IBR control design for grid shaping

* Topic 2.4 — Integrate stability with operations & services

T2.4 Goal: Embed stability constraints and inverter-based services directly into
orid dispatch and ancillary service design.

IBR Enabled Operations
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Decentralized Stability Analysis of
IBR-Rich Power Systems
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Oscillation Events Involving IBRs
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IBR-induced Sub Synchronous Oscillations ﬂm

* When do SSOs occut?

* Series-compensated corridors (SSCI)
* Weak grids (low SCR, high impedance)
* Clusters of IBRs in remote areas

Challenge: How to develop a framework to prevent, predict, and manage S8 Os across

grid planning, real-time operation, and compliance testing?

* What do SSOs depend on?

* Network state: impedance, SCR, topology, compensation level
* Control configuration: PLL dynamics, outer/plant controllers, GFL. vs GFM
* Operating point: power flow direction, voltage setpoints, dispatch
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Understanding SSOs: What we know

* Hopf bifurcation as the onset mechanism Hopf bifurcation
* SSOs emerge through Hopf bifurcations. y
* This means linearized small-signal models f/
are sufficient to capture the transition to fa -
instability. -
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Understanding SSOs: What we know and can do

* Hopf bifurcation as the onset mechanism iena(s) poc
grid

* SSOs emerge through Hopf bifurcations. >
* This means linearized small-signal models I i Zgrid(s)
are sufficient to capture the transition to I
instability. ® Zinn(s) | Veco(s) (O Veria(s)
|
L -
* Impedance models can capture SSOs
* At the Point of Interconnection, stability can f )
be analyzed by comparing inverter and grid |1 Z grid (8)
impedances. _ \ /
igrid(8) Vbcoo(s)
1
Vece(s) = ——5—7 Verial(s)-

1+ ZI];R(S)




Understanding SSOs: What we know and can do [ JTH

* Hopf bifurcation as the onset mechanism

* SSOs emerge through Hopf bifurcations. tgrid () PCC

>
* This means linearized small-signal models I i Zgrid(s)
are sufficient to capture the transition to I
instability. ® Z1gr(s) | Vecce(s)
|
L "
* Impedance models can capture SSOs Nyquist Plot

* At the Point of Interconnection, stability can
be analyzed by comparing inverter and grid
impedances.

Zgrid(s)

Z1BR(S)

Zgrid(s) |
Z1Br(S)

explains why weak grids (high Zg.;4) are more
prone to instability.

* Nyquist loop-gain criterion L(s) =

1
VPCC(S) - Zgrid(s) Vgrid(s)-
T Z1BR(8)
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Challenges of Impedance Stability Analysis

« Ztor depends on:

* Vendor Technology
* Setpoints (P;, Q;)

Z érid depends on:

e [.ocation where it is measured

* Network Topology
* Power Flows (Ppet) Qnet)
* Other connected devices L a(s) # Zgﬂd(s)




Robust, Decentralized Small-Signal Analysis

* Goal: Develop small-signal stability analysis methods that account for
IBR’s impedance variations & network operating conditions.

. : erid(s) ! ZIjBR(S)
1es: Zian (8) 1 Zia(s) 8 .
* Key properties: for () | o . o
. . . . 1 - RRE IS 1
* Requires individual tests on Zjgp N q vy ¢ Network i —ILJ,‘
. . ’ \\l
 Handles variation of Z[gp N

* Characterizes valid grid operating

conditions (Ppet, Qnet) _|q

* Trade-off conservativeness
between operating conditions and
IBR dynamic constraints

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE TCNS 2019
[GM 24] Siahaan, M, Geng, Decentralized Stability Criteria for Grid-Forming Control in Inverter-Based Power Systems PES-GM 2024
[PwrUP 26] Wang, Chatterjee, Geng, Pates, M “Decentralized Stability Certificates for Small-Signal Stability in IBR-Dominated Grids:
The Role of Reactive Power.” in preparation



Robust, Decentralized Small-Signal Analysis

* Goal: Develop small-signal stability analysis methods that account for
IBR’s impedance variations & network operating conditions.

* Key properties: Zipr(8) 1 Zgria(s)

* Requires individual tests on Z [BR

 Handles variation of Z[gp

* Characterizes valid grid operating
conditions (Ppe¢, Onet)

* Trade-off conservativeness
between operating conditions and
IBR dynamic constraints
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Robust, Decentralized, Small-Signal Analysis

* Goal: Develop small-signal stability analysis methods that account for
IBR’s impedance variations & network operating conditions.

Stable Operating Points Stable IBR Region U
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Robust, Decentralized, Small-Signal Analysis

* Goal: Develop small-signal stability analysis methods that account for
IBR’s impedance variations & network operating conditions.

Stable Operating Points Stable IBR Region U
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Power System Model
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* Multi-converter transmission system e o ﬂ 26, Alny|
* Lossless inductive lines b;; = ‘
S R
* Linearized power and log-polar E
coordinates
IBR

¢ APij;AQij,A1H|Ui|,A9i,Aln|Uj|,A9j TN —

* Static line model 1
Static Line s -
AP; MG T i = byl | ; El;m . 6 ]
AQi| [T Jij] [Aln]ug | Hnbi Sy T eos

* IBR model: APji | lJﬁ J;,—J Ab; —cosfl;  sinfy
« GFM converter with filtered droop control ~ LA@s Alno|] i = dylulies —sindy; - msﬂul
* Internal converter dynamics are neglected
GFM IBR

(time-scale separation)
* Linearize power and log-polar coordinates [ Ad; ] = @,(s) [_ﬁj’l
« AP, AQ;, Alnlv|, A6, Alnlui A,

EW_I‘UP 26] Wang, Chatterjee, Geng, Pates, M “Decentralized Stability Certificates for Small-Signal Stability in IBR-Dominated Grids:

The Role of Reactive Power.” in preparation



State Dependent Decentralized Certificate
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Theorem (informal):

The network interconnection is stable whenever one can find scalars d;; > 0 satisfying:

Network State Condition: For all transmission lines IBR Constraint: For all IBRs

2
i QJ!) & \J(Qu '-?jtj i 2 \K(Qu @Jlj i ke ] — d..
+ 4 4 - +44 —— ey kg < 1, Ky o= iy
(hljlttlllj . ( |._r|1- ”'i'-'Jl t":;l"—"t'lh—";l EUSIIHU-} :_rl‘-:“trjl bi_;ll"—"t“*-’_;l i J_EJ !

EW_I'UP 26] Wang, Chatterjee, Geng, Pates, M “Decentralized Stability Certificates for Small-Signal Stability in IBR-Dominated Grids:

The Role of Reactive Power.” in preparation




Trade-off: Robustness vs Efficiency

* Analysis unveils a fundamental trade-off: expanding the dispatch
region demands stricter limits on inverter frequency-domain behavior.

Stable Operating Points Stable IBR Region
A
ZIiBR(S)
Pret) Qnet :1 :
Network State Condition: For all transmission lines IBR Constraint: For all IBRs

2
me;—cz;e)z - \/(ﬂ-f—@ﬁj* diy 2 \/(Q-;—Qﬁjz di; el N g
+ 4 4 - + 4 + ey kg < 1, Ky o= iy
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The Role of Reactive Power.” in preparation
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