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The Future Grid

4

Present grid

• dispatchable generation
• high inertial response
• strong voltage support
• well known physics

  
 
 

______
[1] Lin et al. Research roadmap on grid-forming inverters. Technical report, National Renewable 
Energy Lab.(NREL), Golden CO, 2020 

*[1]

Future
• variable and distributed generation
• limited inertia levels
• weak voltage support
• proprietary control laws (black box)
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Future
• variable and distributed generation
• limited inertia levels
• weak voltage support
• proprietary control laws (black box)

*[1] Challenges
• increased system uncertainty
• sensitivity to disturbances
• new forms of instabilities, induced by inverter-

based resources
• need to compensate for reduced inertia

grid strength 

Research questions:

• How should we control a grid with limited 
inertial/voltage support?

• How should we prevent the onset of IBR induced 
instabilities? 

 

______
[1] Lin et al. Research roadmap on grid-forming inverters. Technical report, National Renewable 
Energy Lab.(NREL), Golden CO, 2020 



Thrust II – Model and Integration of  IBRs

United States                                   United Kingdom                     Australia

For more info: https://energyinstitute.jhu.edu/epics/ 

• Topic 2.1 – Modeling IBR-dominated systems

• Topic 2.2 – Stability analysis under uncertainty

• Topic 2.3 – IBR control design for grid shaping

• Topic 2.4 – Integrate stability with operations & services

Thrust goals: to make inverter-based resources predictable, certifiable, and dispatchable 

contributors to grid stability and ancillary services in future low-inertia power systems.

https://energyinstitute.jhu.edu/epics/


Thrust II – Model and Integration of  IBRs

T2.1 Goal: Develop scalable dynamic models and identification methods that 

accurately capture IBR-driven instabilities and their operating-point 

dependence.

• Topic 2.1 – Modeling IBR-dominated systems

• Topic 2.2 – Stability analysis under uncertainty

• Topic 2.3 – IBR control design for grid shaping

• Topic 2.4 – Integrate stability with operations & services

High-IBR Network Modeling
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T2.2 Goal: Develop small-signal stability analysis methods that account for 

modeling uncertainty induced by IBR vendor heterogeneity & variable 

operating conditions.

• Topic 2.1 – Modeling IBR-dominated systems

• Topic 2.2 – Stability analysis under uncertainty

• Topic 2.3 – IBR control design for grid shaping

• Topic 2.4 – Integrate stability with operations & services



Thrust II – Model and Integration of  IBRs

United States                                   United Kingdom                     Australia

T2.3 Goal: Redesign IBR control loops for grid-following & -forming modes 

to leverage flexibility to mitigate IBR-driven instabilities/performance 

degradation. 

• Topic 2.1 – Modeling IBR-dominated systems

• Topic 2.2 – Stability analysis under uncertainty

• Topic 2.3 – IBR control design for grid shaping

• Topic 2.4 – Integrate stability with operations & services



Thrust II – Model and Integration of  IBRs

United States                                   United Kingdom                     Australia

T2.4 Goal: Embed stability constraints and inverter-based services directly into 

grid dispatch and ancillary service design.

• Topic 2.1 – Modeling IBR-dominated systems

• Topic 2.2 – Stability analysis under uncertainty

• Topic 2.3 – IBR control design for grid shaping

• Topic 2.4 – Integrate stability with operations & services

IBR Enabled Operations



Decentralized Stability Analysis of 
IBR-Rich Power Systems
Richard Pates and Enrique Mallada, “Robust scale-free synthesis for frequency control in power systems,” IEEE Transactions on Control 
of  Network Systems, 2019

Zudika Siahaan, Enrique Mallada, and Sijia Geng. " Decentralized Stability Criteria for Grid-Forming Control in Inverter-Based Power 
Systems.” IEEE PES General Meeting, 2024

Zhimeng Wang, Sushobhan Chatterjee, Sijia Geng, Richad Pates, “Decentralized Stability Certificates for Small-Signal Stability in IBR-
Dominated Grids: The Role of  Reactive Power.” in preparation

Richard PatesSushobhan Chatterjee Sijia GengZhimeng Wang



Oscillation Events Involving IBRs
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IBR-induced Sub Synchronous Oscillations

• When do SSOs occur?
• Series-compensated corridors (SSCI)

• Weak grids (low SCR, high impedance)

• Clusters of  IBRs in remote areas

• After contingencies/topology changes (radialization)

• During commissioning or controller retuning

• What do SSOs depend on?
• Network state: impedance, SCR, topology, compensation level

• Control configuration: PLL dynamics, outer/plant controllers, GFL vs GFM

• Operating point: power flow direction, voltage setpoints, dispatch

•  

Challenge: How to develop a framework to prevent, predict, and manage SSOs across 

grid planning, real-time operation, and compliance testing?



• Hopf  bifurcation as the onset mechanism
• SSOs emerge through Hopf  bifurcations.

• This means linearized small-signal models 
are sufficient to capture the transition to 
instability.

• Impedance models can capture SSOs
• At the Point of  Interconnection, stability can 

be analyzed by comparing inverter and grid 
impedances.

• Nyquist loop-gain criterion 𝐿 𝑠 =
𝑍𝑔𝑟𝑖𝑑(𝑠)

𝑍𝐼𝐵𝑅(𝑠)
 

explains why weak grids (high 𝑍𝑔𝑟𝑖𝑑) are more 
prone to instability.

Understanding SSOs: What we know

Scotland (2021)
Hawaii (2021)



Understanding SSOs: What we know and can do

• Hopf  bifurcation as the onset mechanism
• SSOs emerge through Hopf  bifurcations.

• This means linearized small-signal models 
are sufficient to capture the transition to 
instability.

• Impedance models can capture SSOs
• At the Point of  Interconnection, stability can 

be analyzed by comparing inverter and grid 
impedances.

• Nyquist loop-gain criterion 𝐿 𝑠 =
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Nyquist Plot



Challenges of  Impedance Stability Analysis

• 𝑍𝐼𝐵𝑅
𝑖  depends on:
• Vendor Technology

• Setpoints (𝑃𝑖  , 𝑄𝑖)

• 𝑍𝑔𝑟𝑖𝑑
𝑖  depends on:

• Location where it is measured

• Network Topology

• Power Flows (𝑃𝑛𝑒𝑡 , 𝑄𝑛𝑒𝑡)

• Other connected devices



• Goal: Develop small-signal stability analysis methods that account for 
IBR’s impedance variations & network operating conditions. 

• Key properties:

• Requires individual tests on 𝑍𝐼𝐵𝑅
𝑖

• Handles variation of  𝑍𝐼𝐵𝑅
𝑖

• Characterizes valid grid operating
conditions (𝑃𝑛𝑒𝑡 , 𝑄𝑛𝑒𝑡)

• Trade-off  conservativeness 
between operating conditions and
IBR dynamic constraints

Robust, Decentralized Small-Signal Analysis

____ 

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE TCNS 2019

[GM 24] Siahaan, M, Geng, Decentralized Stability Criteria for Grid-Forming Control in Inverter-Based Power Systems  PES-GM 2024

[PwrUP 26] Wang, Chatterjee, Geng, Pates, M “Decentralized Stability Certificates for Small-Signal Stability in IBR-Dominated Grids: 

The Role of  Reactive Power.” in preparation
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Robust, Decentralized, Small-Signal Analysis

• Goal: Develop small-signal stability analysis methods that account for 
IBR’s impedance variations & network operating conditions. 

𝑃𝑛𝑒𝑡, 𝑄𝑛𝑒𝑡

Stable Operating Points
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Stable IBR Region 
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Power System Model

• Multi-converter transmission system

• Lossless inductive lines 𝑏𝑖𝑗 =
1

𝐿𝑖𝑗𝜔0

• Linearized power and log-polar 
coordinates

•  Δ𝑃𝑖𝑗 , Δ𝑄𝑖𝑗 , Δln 𝑣𝑖 , Δ𝜃𝑖 , Δln 𝑣𝑗 , Δ𝜃𝑗

• Static line model

• IBR model:

• GFM converter with filtered droop control

• Internal converter dynamics are neglected 
(time-scale separation)

• Linearize power and log-polar coordinates

• Δ𝑃𝑖 , Δ𝑄𝑖 , Δ ln 𝑣𝑖 , Δ𝜃𝑖

____ 

[PwrUP 26] Wang, Chatterjee, Geng, Pates, M “Decentralized Stability Certificates for Small-Signal Stability in IBR-Dominated Grids: 

The Role of  Reactive Power.” in preparation

//

/

Static Line

GFM IBR



State Dependent Decentralized Certificate

____ 

[PwrUP 26] Wang, Chatterjee, Geng, Pates, M “Decentralized Stability Certificates for Small-Signal Stability in IBR-Dominated Grids: 

The Role of  Reactive Power.” in preparation

//

/

Static Line GFM IBR

Theorem (informal):
 The network interconnection is stable whenever one can find scalars 𝑑𝑖𝑗 ≥ 0 satisfying:

IBR Constraint: For all IBRsNetwork State Condition: For all transmission lines



Trade-off: Robustness vs Efficiency

• Analysis unveils a fundamental trade-off: expanding the dispatch 
region demands stricter limits on inverter frequency-domain behavior.

𝑃𝑛𝑒𝑡, 𝑄𝑛𝑒𝑡

Stable Operating Points

-1

Stable IBR Region 

____ 

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE TCNS 2019

[GM 24] Siahaan, M, Geng, Decentralized Stability Criteria for Grid-Forming Control in Inverter-Based Power Systems  PES-GM 2024

[PwrUP 26] Wang, Chatterjee, Geng, Pates, M “Decentralized Stability Certificates for Small-Signal Stability in IBR-Dominated Grids: 

The Role of  Reactive Power.” in preparation
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Thanks!
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