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A Dream World of Success Stories
2017 Google DeepMind’s DQN 2017 AlphaZero — Chess, Shogl Go 2019 AlphaStar — Starcraft Il
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; Article
v Grandmaster level in StarCraft Il using
s (ARl multi-agent reinforcementlearning

LETTER

Human-level control through deep reinforcement
learning

OpenAl — Rubik’s Cube
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Real ity Kic ks In Angry Residents, Abrupt Stops: Waymo Vehicles Are Still
Causing Problems in Arizona

RAY STERN | MARCH 31, 2021 | 8:26AM
BUSINESS ©8.14.2819 B3:88 AM

DeepMind's Losses and the Future of Artificial Intelligence

Alphabet’s DeepMind unit, conqueror of Go and other games, is losing lots of money. Continued deficits could imperil investments in Al.

BUSINESS 12.87.2828 B4:86 PM
Uber Gives Up on the Self-Driving Dream

The ride-hail giant invested more than $1 billion in autonomous vehicles. Now it’s selling the unit to Aurora, which makes self-driving tech.

CRUISE KNEW ITS SELF-DRIVING CARS
Tesla Recalls Nearly All Vehicles Due to HAD PROBLEMS RECOGNIZING CHILDREN
Autopilot Failures — AND KEPT THEM ON THE STREETS

According to internal materials reviewed by The Intercept, Cruise
cars were also in danger of driving into holes in the road.

Tesla disagrees with feds' analysis of glitches

BY LINA FISHER, 2:54PM, WED. DEC. 13, 2023

Self-driving Uber car that hit and killed
woman did not recognize that pedestrians

jaywalk

The automated car lacked "the capability to classify an object as a pedestrian unless that object

OpenAl disbands its robotics research team

Kyle Wiggers  @Kyle_L_Wiggers July 16,2021 11:24 AM f ¥ in

was near a crosswalk,” an NTSB report said.
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Fundamental challenge: The curse of dimensionality

= Statistical: No natural inductive bias for control
Sampling in d dimension with resolution €:

e Ll oo L

= Computational: Verifying non-negativity of polynomials

Copositive matrices:

\
Sample complexity: |
I
|

O(e™9)

(
l
l
|

Fore=0.1andd = 100, we

would need 101°? points.
Atoms in the universe: 1078

[x2 ..x2)A[x2 ..x2] >0

Murty&Kadabi [1987]: Testing co-positivity is NP-Hard Motzkin [1967]:
p = xy2 4 x2y4 11— 3x2y2

is nonnegative,

Sum of Squares (SoS):
z(x)TQz(x) =0, z;(x) €R[x], x e R%,Q =0
Artin [1927] (Hilbert’s 17 problem):

not a sum of squares,
but (x? + y?)?p is SoS

Non-negative polynomials are sum of square of rational functions
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Methodological challenges

* Focused on a design-then-deploy philosophy

* Most methods have a strict separation between
control synthesis and deployment

 Synthesis usually aims for the best (optimal)
controller

* Lack of exploration of the benefits of designing
sub-optimal controllers

* Policy parameters can drastically affect the
system's behavior

* The params to behavior maps are highly sensitive
to perturbations

Enrique Mallada (JHU)
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max J(m) = Ex {Zf’iﬂ ~tr(se, at)}

st. sey1~ P( | st,at), ae~m(-|st)

RL:

min J = J; L(a(t),(t),) dt + 2(x(T)

Optimal Control:
s.t. .’L‘(t) — f(l'(t),ﬂ(t), t), *T(U) = Lo

B: - X




Research Goals

* To develop analysis and design methods that
trade off complexity and performance.

* To allow for continual improvement, without the
need for redesign, retune, or retrain

* To design control policies with controlled

sensitivity to parameter changes o

Enrique Mallada (JHU)
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This talk: Two Key Goals

e Continual data-driven verification methods
* Recurrent Lyapunov Functions

e Control directly from data via Chain Policies
e Stabilization, Optimal Control, and Reach Problems



This talk: Two Key Goals

e Continual data-driven verification methods
* Recurrent Lyapunov Functions



Problem setup

Continuous time dynamical system: x(t) = f(x(t))
. Initial condition xy = x(0), solution at time t: ¢ (t, xy).

lAsymptotlc behavior: w-Limit Set w(x) :
: r € w(xg) <= I{tn}n>0, s.t. lim ¢, = o0 and lim ¢(t,,x0) =z |
- !

n—00 n—r0o0
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Invariant sets

Aset S € R? is positively invariant if and only if: xo €S = ¢(t,x,) €S, Vt =0
Any trajectory starting in the set remains in inside it for all times

Source: K. Ghorbal, K. and A. Sogokon, Characterizing positively invariant sets: Inductive and topological methods. Journal of Symbolic Computation, 2022
Enrique Mallada (JHU)



Recurrent sets: Letting things go, and come back

A set R € R% is recurrent if forany x, € Rand t > 0, 3t’ > ts.t. p(t’, x,) € R.

Property of Recurrent Sets
* R need not be connected

* R does not require f to point inwards on all R

| Recurrent sets, while not invariant,

|
|
| guarantee that solutions that start in this set, :
: will come back infinitely often, forever! :

Recurrent set R:

A recurrent trajectory: <

Goal: Use recurrent sets as functional substitutes of invariant sets

Enrique Mallada (JHU) 10



Lyapunov’s Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

L V(%)

Theorem [Lyapunov ‘1892]. Given V: R% —
Rso, with V(x) > 0,Vx € R¥\{x*}, then:
« V<0 - x*stable ],
« V <0 - x*as. stable "'

Tt
I
]
!

Challenge: Couples shape of IV and vector field f

* Towards decoupling the IV — f geometry
« Controlling regions where V > 0 [Karafyllis ‘09, Liu et al ‘20]
* Higher order conditions: g(V(Q), .V, ) < 0 [Butz ‘69, Gunderson 71, Ahmadi '06, Meigoli ‘12]
* Discretization approach: V(x(T)) < V(x(0)) [Coron et al ‘94, Aeyels et. al ‘98, Karafyllis ‘12]
* Multiple Lyapunov Functions: {V;: j € [k]} [Ahmadi et al ‘14]

A Butz. Higher order derivatives of Lyapunov functions. IEEE Transactions on automatic control, 1969

Gunderson. A comparison lemma for higher order trajectory derivatives. Proceedings of the American Mathematical Society, 1971

Coron, Lionel Rosier. A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Syst., Estimation, Control, 1994

Aeyels, Peuteman. A new asymptotic stability criterion for nonlinear time-variant differential equations. IEEE Transactions on automatic control, 1998

Ahmadi. Non-monotonic Lyapunov functions for stability of nonlinear and switched systems: theory and computation, 2008

Karafyllis, Kravaris, Kalogerakis. Relaxed Lyapunov criteria for robust global stabilisation of non-linear systems. International Journal of Control, 2009

Meigoli, Nikravesh. Stability analysis of nonlinear systems using higher order derivatives of Lyapunov function candidates. Systems & Control Letters, 2012
Karafyllis. Can we prove stability by using a positive definite function with non sign-definite derivative? IMA Journal of Mathematical Control and Information, 2012
Ahmadi, Jungers, Parrilo, Roozbehani. Joint spectral radius and path-complete graph Lyapunov functions. SIAM Journal on Control and Optimization, 2014

Liu, Liberzon, Zharnitsky. AlImost Lyapunov functions for nonlinear systems. Automatica, 2020
Enrique Mallada (JHU)
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Recurrent Lyapunov Functions

A continuous function V: R% — R, is a Recurrent Lyapunov Function if

ﬁ}O’T]V(:E) .= min V(¢(t,z)) — V(z) <0 Vz € R?

te(0,7]

Preliminaries: 4

* Sub-level sets {V(x) < c} are T-recurrent sets.

—~—
M

Time elapsed < T

V<C

Definition: A set R € R is T-recurrent if for any x, € Rand t > 0, 3t’ € (t,t + 1] s.t. p(t', x,) € R.

Enrique Mallada (JHU) 12



Recurrent Lyapunov Functions

A continuous function V: R% — R, is a Recurrent Lyapunov Function if

EEP’T]V(:E) .= min V(¢(t,z)) — V(z) <0 Vz € R?

te(0,7]

Preliminaries: 4
* Sub-level sets {V(x) < c} are T-recurrent sets.
* When f is L-Lipschitz, one can trap trajectories.

TL
E.te

F, =ggillf(x)ll

Enrique Mallada (JHU) 12



Recurrent Lyapunov Functions

A continuous function V: R% — R, is a Recurrent Lyapunov Function if

E}O’T]V(m) .= min V(¢(t,z)) — V(z) <0 Vz € R?
te(0,7]

Theorem [CDC 23]: Let V: R — R, be a

Recurrent Lyapunov Function and let f be L-
Lipschitz

* Then, the equilibrium x™ is stable.

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023

Enrique Mallada (JHU)
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Recurrent Lyapunov Functions

A continuous function V: R% — R, is a Recurrent Lyapunov Function if

EEP’T]V(:E) .= min V(¢(t,z)) — V(z) <0 Vz € R?
te(0,7]

Theorem [CDC 23]: Let V: R — R, be a

Recurrent Lyapunov Function and let f be L-

Lipschitz

* Then, the equilibrium x™ is stable.

* Further, if the inequality is strict, then x™ is
asymptotically stable!

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023

Enrique Mallada (JHU) 12



Exponential Stability Analysis

The function V: R% — R, is a-Exponential Recurrent Lyapunov Function if

LV (x) = t 2rr(1(|)nE]79*’t V(e(t,x)) - V(x) <0 8x 2 RY

Theorem [CDC 23]: Let V:R% - R, satisfy

Then, if V is a-Exponential Recurrent
Lyapunov Function, x* is a-exponentially
stable.

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023

Enrique Mallada (JHU) 13



Norm-based Converse Theorem

Theorem: Assume x™ is A-exponentially stable: 3 K, 4 > 0 such that:
||¢(t,X)—x*| SKe"“Hx—x*I , Vx € R4,
Then, V(x) = ||x — x|

is a-Exponential Recurrent Lyapunov Function, i.e.,

min e“t|l¢(t, x) — x*| <0, Vx € R9,

te(0,7]

— |lx — x*|

whenever a <A and T = ﬁln K.

Remarks:
* The rate @ must be strictly smaller than the rate of convergence A (trading off optimality).

* Any norm is a Lyapunov function!

Question: How to verify RLF conditions?



Trajectory-based Verification

Proposition [CDC 23]: Let ||-|| be any norm and x* = 0. Then, whenever

min e“t(||gl)(x, t)|| + re”) < ||x|| —r

te(0,7]

forally with ||y — x|| <

min e ||p(y, D] < |y

te(o,t]

Remarks:
* Only requires a trajectory of length

* Trades off between radius r and verified
performance

 Amenable for parallel computations using
GPUs

Enrique Mallada (JHU)

A

¢y, 1)

¢ (7, x)

15



Nonparametric Stability Verification via GPUs

* Basic Algorithm:
* Consider V(x) = ||x — x*||w
* Build a grid of hypercubes surrounding x*

* Test grid center points:
* Simulate trajectories of length
* Find a s.t. the verified radius isr = £/2

* Hypercube not verified, splitin 3¢ parts
* Repeat testing of new points

B split g {
P - ‘
i . }4/3

Enrique Mallada (JHU)
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Nonparametric Stability Verification via GPUs

* Basic Algorithm: . .
 Consider V(x) = ||x — x™||

* Build a grid of hypercubes surrounding x*

* Test grid center points:
* Simulate trajectories of length
* Find a s.t. the verified radiusisr = £/2

* Hypercube not verified, splitin 3¢ parts g g
* Repeat testing of new points
* Exponentially expand to outer layer

* Repeat testing in new layer ’ ’
[} [}
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Nonparametric Stability Verification via GPUs

* Basic Algorithm:
 Consider V(x) = ||x — x*|| »

* Build a grid of hypercubes surrounding x*

* Test grid center points:
* Simulate trajectories of length

* Find a s.t. the verified radiusisr = £/2

I I
L]

* Hypercube not verified, split in 3¢ parts

* Repeat testing of new points

* Exponentially expand to outer layer

* Repeat testing in new layer

Q: How many samples are needed?
If x* is A-exp. stable

o 2)

1—kela-Dr

<1

Wlth q — 1+e(L+CZ)T

Enrique Mallada (JHU)



Nonparametric Stability Verification via GPUs

* Basic Algorithm: : . X

 Consider V(x) = ||x — x*|| » . /_\

* Build a grid of hypercubes surrounding x*
* Test grid center points: : Xa . c

* Simulate trajectories of length

* Find a s.t. the verified radiusisr = £/2 el
* Hypercube not verified, splitin 34 parts . - 11 -1- \

* Repeat testing of new points

* Exponentially expand to outer layer \ B I G o o \

* Repeat testing in new layer \\
T~
* Two Alg. Variations: : : \ : : )
* Alg. 1: Find largest a4 for region X AN
* Alg. 2: Find region X, for given a \ /

Enrique Mallada (JHU) 16



Numerical lllustration — Find Best

Consider the 2-d non-linear system:

j~N(O,O'2)

og=0.3

0

i=|_,

2
_1]X+B X1X9

Amax = 0.470

Phase Portrait
1.00 {— 1001 @ 027 ==~~~ NN\
o @ 00F| === SSmSNaSaN NN\ \\Q\\«}«
0.75 1= 0751 @ 0.03 N X
e ® o001 NN
0.50 f 0.50 - ;‘ : :: :
0.25 1 0251 ;| _—
’ * 1 Al
> 0.00 0.004 } 4 !
: \ 5
~0.25 1\ ~0.25 - Q Q i
\) \ X f
-0.50 . _0_50 - - -
% ey, QD Sl
-0.75 DA ~0.75 1 N N = o P
<1.00 d—v—= N __1.00_\\\\\\\\\\\\\\\\\“‘-—h
-1.00 -0.75 -0.50 -0.2! -1.00 -0.75 —0.50 —0.25 000 025 050 075 1.00

Time per Iteration

1.50 1.75 2.00 2.25 2.50 275 3.00 3.25 3.50

Enrique Mallada (JHU)
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Two Key Goals

e Continual data-driven verification methods
* Recurrent Lyapunov Functions



Two Key Goals

e Continual data-driven verification methods
* Recurrent Lyapunov Functions

e Control directly from data via Chain Policies
e Stabilization, Optimal Control, and Reach Problems



Problem Setup

* For initial state x € X and piecewise continuous control u: (0, 7] — U
* Consider the controlled system
x = f(x,u)

with solution ¢ (t, x, 1) starting at x and under control 1.

Enrique Mallada (JHU)
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Control via Chain Policies

Chain policies consist of:

Control Alphabet: /\/\/
: (2] :

A= {v; : (0,7;] » U},

UZ ] :
Assignment Rule: tp () | o
p:x € X - i€{0,..,|Al} i L

based on data set D = {(xy, vy € A, ) }r-1 0 T3 T, ot

Desired Properties

A chain policy T := (A, Lp) is well-posed whenever

guarantees: Xo xX1:= P (xg,V1,T1)

* Completeness: For any x, € X the sequence
Xn+1: = (l)(TLD(xn)» Xns vtg(xn))
. _ tnt1 =ty T Tip(xy)
is well defined for all n = 0.
- : : - X2:= p(Xo, V1 " V3, Ty + 13)
* Liveliness: The induced trajectory ¢, (¢, x,) satisfies some
“good” property infinitely often, and forever (t,, = ).

Enriqgue Mallada (JHU) 20



Practical Stabilization via Chain Policies

Goal:
* Find = (A: = {v;}}L,, 1p) suchthat Vx € X:

et x,u) —x*|| < Ke™ ™|l — x|

Assignment Rule: R

e Data set: D: = {(xk: vi,, rk)}l;l:l xkﬂx, V; -V, T + 7)) e

* Normalized Nearest Neighbor:

ip(x) = arg minM
b iefo,..N} Ti V(o)
V(z1)
Liveliness Property: Recurrent CLF V()
X
* Foralx € V.., 3v; € A such that :
min e“tV(gb(t X v-)) < V(x) Vi(za)
te(0,7;] S = g
t

Artstein, Stabilization with relaxed controls, International Journal of Control, 1983
Sontag, A Lyapunov-like characterization of asymptotic controllability SIAM J. Control Opt. 1983
Siegelmann and M, Data-driven Practical Stabilization of Nonlinear Systems via Chain Policies: Sample Complexity and Incremental Learning, 2025, submitted to ACC.
Enrique Mallada (JHU) 21



[lx=2il],, o

Practical Stabilization via Chain Policies Asgmt. Rule: 1p(x) = arg min

i{o,..,M} i
* Practical stabilization of inverted pendulum Data set: D: = { (%, Vi 1) }
* Weighted co-norm: || - ||, oo
» Cell condition: Vx € C, = {x:||x — xkllW,oo < 1;}, there exists v;_s.t.
e ATk (gb(rk,x, vik)) <V(x) and ¢(7y,x, vik) eU; G

6

o [ E——

- B 6

- =

] T =

N = = I — = 4

.. - e >

i TR g
] i E— — = = =
o = I— —— —
—am - __ 0
o] =59 1

e

o - 0 . 2n —2 5 5 p 5 3

Time (s)
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o o o | x—x;] o
Chain Policy Refinement Asgmt. Rule:  1p(x) = gz%mlb?#
1€10,..., t
* Practical stabilization of inverted pendulum Data set: D: = { (%, Vi 1) }
* Weighted co-norm: || - ||, oo

» Cell condition: Vx € C, = {x:||x — xk||w _ <13}, there exists v;, stt.

edTky (gb(rk,x, vik)) <V(x) and ¢(7y,x, vik) eU; G

6

am

4

3m

2

lo(t, x, U]l

=2

—-3n

-5n

-6 T T T _2_
=2 - 0 m 2 0 2 4 6 3
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||x_xi||w’°°

Chain Policy Refinement Asgmt. Rule: 1p(x) = arg min——
* Practical stabilization of inverted pendulum Data set: D: = { (2, vy i)}
* Weighted co-norm: || - ||, oo

» Cell condition: Vx € C, = {x:||x — xk||w _ <13}, there exists v;, stt.

edTky (qb(rk,x, vik)) <V(x) and ¢(7y,x, vik) eU; G

6
I e . —
51T - _—
=0 °
21 4
L o======= —4
| L r— 3
0 x
T <
_n' - _e_
T =2
_Zn' -
_4n- -
= I—— — 0
pelly = 1 1 1 |
—Bm T T T
-2 m 0 m 2m 0 2 4 6 3

Time (s)
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Data-driven MPC Acceleration

Agustin Castellano Sohrab Rezaei Jared Markowitz
Goal: .
* Find T = (A, p) such that Vs € S V*(s) := m??.xzfytrtﬂ(st,vt) s.t.: sppr1 = f(s¢,04)
V*(s) —VT™(s) <e¢ =0 vy = m(s¢)
Policy Evaluation: Vip(s) < V7™ (s) < V*(s)
Assignment Rule: V7 (s)

* Expert Data: D: = {(sk,vik =1 (Sk), Qg =

v*(s))} Vio(s) V™ (s)
* Regularized NN: 51 2 SI‘J %4 85 S
ip(s) = o Qi+ Alls =il Policy Improvement
Liveliness Property: Bellman Inequality
Vb (s) < 7(s,vp9)) + Vin(F (5, Vi (5))
with, Vip(x) = Q) + 4 ||S — sl .

T f
N(s') ""--—'?'I':hil:l:hr better than 7T

Castellano, Pan, M, Data-driven Acceleration of MPC with Guarantees, 2025, submitted to L4DC.
Castellano, Rezaei, Markovitz, M, Nonparametric Policy Improvement for Continuous Action Spaces via Expert Trajectories,” in RLC, 2025.
Enriqgue Mallada (JHU) 22



Dataset Size

5000

4000

3000

2000

1000

Continual Policy Improvement

o

Number of balls
15t m actuated

* Weusethe 1gr n m environments from DeepMind’s Control Suite

— NPP | | =
Gap achieved (wh.p) || | |

0 50 100 150 200
Episode

lgr 2 1

-==~ Targetgap (£)
Gap achieved {(w.h.p.)

10° 10' 10°
Episode

Enrique Mallada (JHU)
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lgr 6 2

1
—-— Medians i :
|
I i
! |
! |
| .
1
1
1
10
25
184
-140 -120 -100 -80 -60 -40 -20
Suboptimality distribution: V™ —V *



Continual Policy Improvement

after 10 episode... atter 100 episode... atter 1000 episodes...

atter 30K+ optimal control

Enriqgue Mallada (JHU) 22



Continual Policy Improvement

after 30K+ optimal control

500000 | = NPP (ours)
——- Gap achieved w.h.p.
i
400000 i
%
| A % -
¢ 300000 i S i
%] | 0 [
b ! = 10 !
2 | G i
© I . i
0 200000 | | I > [N
I o !
i ® i
i o i
I 10 |
100000 : —— NPP (ours) :
i —— SAC i
: i = = Target gap (€) i :
0 i ii —-—- Gap achieved w.h.p. [ ]
i 1 i 107 [T
0 5000 10000 15000 20000 25000 30000 10" 102 10° 10°

Episode Episode
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Alternative: Symplectic Inductive Bias

* Physical systems obey much stricter rules and symmetries

Hamiltonian Dynamics
« Continuous—time dynamics: t=JVH(z) = ¢=V,H, p=-V,H.

* Invariant level-sets: H(xz(t)) = constant, z(t) e Mg :={z: H(z) = E}. Henri Poincaré

* Measure preservation (Liouville): G b = 4, div(JVH) = 0.

Poincaré Recurrence Theorem Torus with Quasiperiodic Orbit
* If the Hamiltonian flow preserves a finite measure u on a bounded count 0

energy level set M,
* Then, u-almost every point returns arbitrarily close to its initial state

infinitely often:

Ve >0, it <+ oo st ot z) — z|| < e.

Key idea: Leverage Hamiltonian recurrence minimize data needs

Enriqgue Mallada (JHU) 23



Control of Hamiltonians via Chain Policies

Jixian Liu Zhuo OJyang

Chain policies consist of:

Control Alphabet: /\/‘\J
vl 1

A= {v; : (0,7;] » U},

. 1 (x V2 ' |
Assignment Rule: p (%) | !
lp:x €X - i€{0,..,|Al}, ’ L
0 ' . >
based on data set D 0 7 T, Tyt

Desired Properties

A chain policy T := (A, Lp) is well-posed whenever
guarantees: Xo xX1:= P (xg,V1,T1)

b
* Completeness: Péhamyves & () tHe@edaaathing, and wait ’ —
Xns1:= @ Tip () X0 Vigy ()
tnt1 =ty T Tip(xy)
is well defined for all n = 0.
Xpi= P(Xg, V1 - V3, Ty + 73)

* Liveliness: The induced trajectory ¢, (¢, x,) satisfies some
“good” property infinitely often, and forever (t,, = ).
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Solving Reach Problems in Hamiltonians

S

* Goal: Reach a neighborhood of the vertical position of a “idan Liu
pendulum from any state with energy bounded by H.
* Question: How many demonstrations are needed?
* Answer: Three is enough!
t=0.0s F )
w
2 0 &
-2 1 -2
10 -
5 o
. o
—10 A - . : . . T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

time (s)
Enrique Mallada (JHU)

ang. velocity

Zhuo Ou
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Solving Reach Problems in Hamiltonians

* Goal: Reach a neighborhood of the vertical position of a
pendulum from any state with energy bounded by H.

* Question: How many demonstrations are needed?
* Answer: Three is enough!

* Demonstrations:

t=0.00s t=0.00s

Enrique Mallada (JHU)

é(radjs‘l

Coverage Region of Chain Policy

n
8 (rad)

t=0.00s
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Solving Reach Problems in Hamiltonians

* Goal: Reach a neighborhood of the vertical position of a
pendulum from any state with energy bounded by H.

* Question: How many demonstrations are needed?
* Answer: Three is enough!

* Chain policy: Only active when close to data
* green: chain policy active
* red: reached the desired set

t=0.00s t=0.00s

Enrique Mallada (JHU)

Q{radjs‘l

Coverage Region of Chain Policy

n
8 (rad)

t=0.00s
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Solving Reach Problems in Hamiltonians

* Goal: Reach a neighborhood of the vertical pendulum
position from any state with energy bounded by H.

t=0.0s

angle

control

10 A

-10 A

10 A

—10 A

0.0 2.5

Enrique Mallada (JHU)
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17.5
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Solving Reach Problems in Hamiltonians

* Goal: Reach a neighborhood of the vertical pendulum
position from any state with energy bounded by H.

t=0.0s

o

angle

control

10 A

=10 A

10 A

—10 A

0.0 2.5

Enrique Mallada (JHU)

5.0

15

10.0
time (s)

12.5

15.0

17.5

20.0

ang. velocity
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Research Goals

* To develop analysis and design methods that
trade off complexity and performance.

* To allow for continual improvement, without the
need for redesign, retune, or retrain

* To design control policies with controlled

sensitivity to parameter changes o

Enrique Mallada (JHU)

optimality gap

complexity
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Thanks!

Related Publications:

1. Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-
monotonic Lyapunov functions, CDC 2023

2. Siegelmann, Shen, Paganini, M, Stability Analysis and Data-driven Verification via Recurrent Lyapunov Functions, 2025,

submitted.

Sibai, M, Recurrence of nonlinear control systems: Entropy and bit rates, HSCC 2024, NAHS 2026

Shen, Sibai, M, Generalized Barrier Functions: Integral conditions and recurrent relaxations, Allerton 2024

Liu, M, Recurrent Control Barrier Functions: A Path Towards Nonparametric Safety Verification, in CDC 2025.*

Castellano, Rezaei, Markovitz, and M, Nonparametric Policy Improvement for Continuous Action Spaces via Expert

Demonstrations, RLC 2025

7. Castellano, Pan, M, Data-driven Acceleration of MPC with Guarantees, 2025, submitted to L4DC.

o v kAW

Enriqgue Mallada ‘
mallada@jhu.edu Jixian Liu
http://mallada.ece.jhu.edu *invited session Fr C02.8
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