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A Dream World of Success Stories
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2017 AlphaZero – Chess, Shogi, Go 2019 AlphaStar – Starcraft II2017 Google DeepMind’s DQN

OpenAI – Rubik’s Cube

Boston Dynamics

Waymo



Reality Kicks In 
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Fundamental challenge: The curse of dimensionality

▪ Statistical: No natural inductive bias for control

▪ Computational: Verifying non-negativity of polynomials

Sample complexity:

For 𝝐 = 𝟎. 𝟏 and 𝒅 = 𝟏𝟎𝟎, we 

would need 𝟏𝟎𝟏𝟎𝟎 points.
Atoms in the universe: 1078
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Copositive matrices: 

𝑥1
2 … 𝑥𝑑

2 𝐴 𝑥1
2 … 𝑥𝑑

2 T
≥ 0

Murty&Kadabi [1987]: Testing co-positivity is NP-Hard

Sum of Squares (SoS): 

 𝑧 𝑥 𝑇𝑄𝑧(𝑥) ≥ 0,    𝑧𝑖 𝑥 ∈ ℝ 𝑥 , 𝑥 ∈ ℝ𝑑 , 𝑄 ≽ 0

Artin [1927] (Hilbert’s 17th problem):

Non-negative polynomials are sum of square of rational functions

Sampling in 𝒅 dimension with resolution 𝝐:



Methodological challenges

• Focused on a design-then-deploy philosophy
• Most methods have a strict separation between 

control synthesis and deployment

• Synthesis usually aims for the best (optimal) 
controller 
•  Lack of exploration of the benefits of designing 

sub-optimal controllers

 

• Policy parameters can drastically affect the 
system's behavior
• The params to behavior maps are highly sensitive 

to perturbations
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RL:

Optimal Control:

analysis
synthesis

and
verification

deployment

𝑥1
′ (𝑡)

𝑥3
′ (𝑡)

𝑥2
′ (𝑡)

θ θ′ 𝑥2(𝑡)

𝑥3(𝑡)

𝑥1(𝑡)
Θ 𝒳ℬ:  Θ → 𝒳



Research Goals

• To develop analysis and design methods that 
trade off complexity and performance.

• To allow for continual improvement, without the 
need for redesign, retune, or retrain

• To design control policies with controlled 
sensitivity to parameter changes
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𝑥2
′ (𝑡)

Θ

θ θ′ 𝑥2(𝑡)

𝑥3(𝑡)

𝑥1(𝑡)
𝒳ℬ:  Θ → 𝒳 𝑥1

′ (𝑡)

𝑥3
′ (𝑡)



•  Continual data-driven verification methods
•Recurrent Lyapunov Functions

•  Control directly from data via Chain Policies
•  Stabilization, Optimal Control, and Reach Problems

This talk: Two Key Goals
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Problem setup
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Continuous time dynamical system:  ሶ𝑥 𝑡 = 𝑓(𝑥(𝑡)) 
• Initial condition 𝑥0 = 𝑥(0), solution at time 𝑡: 𝜙(𝑡, 𝑥0).

Asymptotic behavior: 𝝎-Limit Set 𝜔 𝑥
  



Invariant sets

A set 𝒮 ⊆ ℝ𝑑  is positively invariant if and only if:  𝑥0 ∈ 𝒮 → 𝜙 𝑡, 𝑥0 ∈ 𝒮, ∀𝑡 ≥ 0   
Any trajectory starting in the set remains in inside it for all times

Source: K. Ghorbal, K. and A. Sogokon, Characterizing positively invariant sets: Inductive and topological methods. Journal of Symbolic Computation, 2022
Enrique Mallada (JHU) 9



Recurrent sets: Letting things go, and come back
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Property of Recurrent Sets

• ℛ need not be connected

• ℛ does not require 𝑓 to point inwards on all 𝜕ℛ

 

Recurrent sets, while not invariant, 
guarantee that solutions that start in this set, 
will come back infinitely often, forever!   Recurrent set ℛ: 

A recurrent trajectory:

A set ℛ ⊆ ℝ𝑑  is recurrent if for any 𝑥0 ∈ ℛ and 𝑡 ≥ 0, ∃𝑡′ ≥ 𝑡 s.t. 𝜙 𝑡′, 𝑥0 ∈ ℛ. 

Goal: Use recurrent sets as functional substitutes of invariant sets



Lyapunov’s Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

Challenge: Couples shape of 𝑉 and vector field 𝑓
• Towards decoupling the 𝑉 − 𝑓 geometry

• Controlling regions where ሶ𝑉 ≥ 0 [Karafyllis ‘09, Liu et al ‘20] 
• Higher order conditions: 𝑔(𝑉 𝑞 , … , ሶ𝑉, 𝑉) ≤ 0 [Butz ‘69, Gunderson ’71, Ahmadi ’06, Meigoli ‘12]
• Discretization approach: 𝑉 𝑥 𝑇 ≤ 𝑉(𝑥(0)) [Coron et al ‘94, Aeyels et. al ‘98, Karafyllis ‘12]
• Multiple Lyapunov Functions: {𝑉𝑗: 𝑗 ∈ 𝑘 } [Ahmadi et al ‘14]
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Theorem [Lyapunov ‘1892]. Given 𝑉: ℝ𝑑 →

ℝ≥0 , with 𝑉 𝑥 > 0, ∀𝑥 ∈ ℝ𝑑\ 𝑥∗ , then:

• ሶ𝑉 ≤ 0 → 𝑥∗ stable

• ሶ𝑉 < 0 → 𝑥∗ as. stable
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            _
A Butz. Higher order derivatives of Lyapunov functions. IEEE Transactions on automatic control, 1969
Gunderson. A comparison lemma for higher order trajectory derivatives. Proceedings of the American Mathematical Society,  1971
Coron, Lionel Rosier. A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Syst., Estimation, Control, 1994
Aeyels, Peuteman. A new asymptotic stability criterion for nonlinear time-variant differential equations. IEEE Transactions on automatic control, 1998
Ahmadi. Non-monotonic Lyapunov functions for stability of nonlinear and switched systems: theory and computation, 2008
Karafyllis, Kravaris, Kalogerakis. Relaxed Lyapunov criteria for robust global stabilisation of non-linear systems. International Journal of Control, 2009
Meigoli, Nikravesh. Stability analysis of nonlinear systems using higher order derivatives of Lyapunov function candidates. Systems & Control Letters, 2012 
Karafyllis. Can we prove stability by using a positive definite function with non sign-definite derivative? IMA Journal of Mathematical Control and Information, 2012
Ahmadi, Jungers, Parrilo, Roozbehani. Joint spectral radius and path-complete graph Lyapunov functions. SIAM Journal on Control and Optimization, 2014
Liu, Liberzon, Zharnitsky. Almost Lyapunov functions for nonlinear systems. Automatica, 2020



Recurrent Lyapunov Functions 

A continuous function 𝑉: ℝ𝑑 → ℝ+ is a Recurrent Lyapunov Function if

t

Preliminaries:

•  Sub-level sets {𝑉(𝑥) ≤ 𝑐} are 𝝉-recurrent sets.

𝑉≤𝑐

𝜏𝜏

Definition: A set ℛ ⊆ ℝ𝑑  is 𝝉-recurrent if for any 𝑥0 ∈ ℛ and 𝑡 ≥ 0, ∃𝑡′ ∈ (𝑡, 𝑡 + 𝜏] s.t. 𝜙 𝑡′, 𝑥0 ∈ ℛ. 

Time elapsed ≤ 𝝉
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Recurrent Lyapunov Functions 

A continuous function 𝑉: ℝ𝑑 → ℝ+ is a Recurrent Lyapunov Function if

t

Preliminaries:

•  Sub-level sets {𝑉(𝑥) ≤ 𝑐} are 𝝉-recurrent sets.

•  When 𝑓 is 𝐿-Lipschitz, one can trap trajectories.

𝑉≤𝑐

𝜏𝜏

𝐹𝑐𝜏𝑒𝜏𝐿

𝐹𝑐 = max
𝑥∈𝑉≤𝑐

 | 𝑓 𝑥 |
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Recurrent Lyapunov Functions 

A continuous function 𝑉: ℝ𝑑 → ℝ+ is a Recurrent Lyapunov Function if
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t𝜏𝜏

            _
Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023

Theorem [CDC 23]: Let 𝑉: ℝ𝑑 → ℝ≥0 be a 

Recurrent Lyapunov Function and let 𝑓 be L-

Lipschitz

• Then, the equilibrium 𝑥∗ is stable.

 



Recurrent Lyapunov Functions 

A continuous function 𝑉: ℝ𝑑 → ℝ+ is a Recurrent Lyapunov Function if
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t𝜏𝜏

            _
Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023

Theorem [CDC 23]: Let 𝑉: ℝ𝑑 → ℝ≥0 be a 

Recurrent Lyapunov Function and let 𝑓 be L-

Lipschitz

• Then, the equilibrium 𝑥∗ is stable.

• Further, if the inequality is strict, then 𝑥∗ is 

asymptotically stable! 



Exponential Stability Analysis

The function 𝑉: ℝ𝑑 → ℝ+ is 𝜶-Exponential Recurrent Lyapunov Function if
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t𝜏

            _
Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023

𝜏

Theorem [CDC 23]: Let 𝑉: ℝ𝑑 → ℝ≥0 satisfy 

𝛼1 𝑥 − 𝑥∗ ≤ 𝑉 𝑥 ≤ 𝛼2 𝑥 − 𝑥∗ .

Then, if  𝑉 is 𝛼-Exponential Recurrent 

Lyapunov Function, 𝑥∗ is 𝛼-exponentially 

stable.



Norm-based Converse Theorem
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Theorem: Assume 𝑥∗ is 𝜆-exponentially stable:  ∃ 𝐾, 𝜆 > 0 such that:

𝜙 𝑡, 𝑥 − 𝑥∗ ≤ 𝐾𝑒−𝜆𝑡 𝑥 − 𝑥∗ , ∀𝑥 ∈ ℝ𝑑 .

Then, 𝑉 𝑥 = 𝑥 − 𝑥∗  is 𝛼-Exponential Recurrent Lyapunov Function , i.e.,

min
𝑡∈ 0,𝜏

 𝑒𝛼𝑡 𝜙 𝑡, 𝑥 − 𝑥∗ − 𝑥 − 𝑥∗ ≤ 0, ∀𝑥 ∈ ℝ𝑑 ,

whenever     𝛼 < 𝜆     and    𝜏 ≥
1

𝜆−𝛼
ln 𝐾.

Remarks:

• The rate 𝛼 must be strictly smaller than the rate of convergence 𝜆 (trading off optimality).

• Any norm is a Lyapunov function! 

Question: How to verify RLF conditions?



Trajectory-based Verification
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Proposition [CDC 23]: Let ⋅  be any norm and 𝑥∗ = 0. Then, whenever

for all 𝑦 with 𝑦 − 𝑥 ≤ 𝑟

min
𝑡∈ 0,𝜏

𝑒𝛼𝑡 𝜙 𝑥, 𝑡 + 𝑟𝑒𝐿𝑡 ≤ 𝑥 − 𝑟

min
𝑡∈ 0,𝜏

𝑒𝛼𝑡 𝜙 𝑦, 𝑡 ≤ 𝑦

Remarks:

• Only requires a trajectory of length 𝜏

• Trades off between radius 𝒓 and verified 
performance 𝜶

• Amenable for parallel computations using 
GPUs

𝑟

𝑟𝑒𝐿𝜏

𝑥

𝜙(𝜏, 𝑥)

𝑦

𝜙(𝑦, 𝜏)



• Basic Algorithm: 
• Consider 𝑉 𝑥 = | 𝑥 − 𝑥∗ |∞

• Build a grid of hypercubes surrounding 𝑥∗

• Test grid center points:
• Simulate trajectories of length 𝜏

• Find 𝛼 s.t. the verified radius is 𝑟 ≥ ℓ/2

• Hypercube not verified, split in 𝟑𝒅 parts

• Repeat testing of new points

Nonparametric Stability Verification via GPUs
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ℓ
ℓ

ℓ/3

split



• Basic Algorithm: 
• Consider 𝑉 𝑥 = | 𝑥 − 𝑥∗ |∞
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Q: How many samples are needed?
If 𝑥∗ is 𝜆-exp. stable

𝒪 𝑞−𝑑  log
𝑅

𝜀

with 𝑞 =
1−𝐾e 𝛼−𝜆 𝜏

1+e 𝐿+𝛼 𝜏 < 1.

𝑅ε



• Basic Algorithm: 
• Consider 𝑉 𝑥 = | 𝑥 − 𝑥∗ |∞

• Build a grid of hypercubes surrounding 𝑥∗

• Test grid center points:
• Simulate trajectories of length 𝜏

• Find 𝛼 s.t. the verified radius is 𝑟 ≥ ℓ/2

• Hypercube not verified, split in 𝟑𝒅 parts

• Repeat testing of new points
• Exponentially expand to outer layer

• Repeat testing in new layer

• Two Alg. Variations:
• Alg. 1: Find largest 𝛼max for region 𝒳

• Alg. 2: Find region 𝒳𝛼  for given 𝛼

Nonparametric Stability Verification via GPUs
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𝒳

𝒳𝛼



Numerical Illustration – Find Best 𝜶

Consider the 2-d non-linear system:

with 𝐵𝑖𝑗 ∼ 𝒩(0, 𝜎2)
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ሶ𝑥 =
0 2

−1 −1
𝑥 + 𝐵

𝑥1
2

𝑥1𝑥2

𝑥2
2

𝜎 = 0.3 𝛼max = 0.470



Numerical Illustration – Find region 𝒳𝜶

Consider the system of n Kuramoto oscillators: 

Enrique Mallada (JHU) 18

Parameters: 𝑛 = 3 and  𝛼 = 1

System dimension: 𝑑 = 𝑛 − 1
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Problem Setup

• For initial state 𝑥 ∈ 𝒳 and piecewise continuous control 𝑢: 0, 𝜏 → 𝒰 

• Consider the controlled system
ሶ𝑥 = 𝑓 𝑥, 𝑢

19

𝑥 𝜙(𝜏, 𝑥, 𝑢)

𝜙(𝑡, 𝑥, 𝑢)

𝒳 𝒰
𝑢(0)

𝑢(𝜏)

𝑢: 0, 𝜏 → 𝒰

𝑢(𝑡)

with solution 𝜙(𝑡, 𝑥, 𝑢) starting at 𝑥 and under control 𝑢.
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Control via Chain Policies

Desired Properties

A chain policy 𝜋 ≔ (𝒜, 𝜄𝒟) is well-posed whenever 𝜋 
guarantees:

• Completeness: For any 𝑥0 ∈ 𝒳 the sequence
𝑥𝑛+1: = 𝜙 𝜏𝜄𝒟 𝑥𝑛

, 𝑥𝑛, 𝑣𝜄𝒟 𝑥𝑛
𝑡𝑛+1 ≔ 𝑡𝑛 + 𝜏𝜄𝒟 𝑥𝑛

is well defined for all 𝑛 ≥ 0.

• Liveliness: The induced trajectory 𝜙𝜋 𝑡, 𝑥0  satisfies some 
“good” property infinitely often, and forever (𝑡𝑛 → ∞).
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𝑡0 𝜏2 𝜏1𝜏3

𝑣2

𝑣1

𝑣3

Chain policies consist of:

Control Alphabet:

                 𝒜 ≔ 𝑣𝑖 ∶ 0, 𝜏𝑖 → 𝑈 𝑖=1
𝑀

Assignment Rule:

                  𝜄𝒟: 𝑥 ∈ 𝒳 ↦ 𝑖 ∈ {0, … , 𝒜 },

based on data set 𝒟 = 𝑥𝑘 , 𝑣𝑘 ∈ 𝒜, 𝜃𝑘 𝑘=1
𝑁

𝑥0 𝑥1: = 𝜙(𝑥0, 𝑣1, 𝜏1)

𝑥2: = 𝜙(𝑥0, 𝑣1 ⋅ 𝑣3, 𝜏1 + 𝜏3)

𝑥3

𝜄𝒟(𝑥0)𝜄𝒟(𝑥1)𝜄𝒟(𝑥2)



Practical Stabilization via Chain Policies

Goal: 

• Find 𝜋 = (𝒜: = 𝑣𝑖 𝑖=1
𝑀 , 𝜄𝒟) such that  ∀𝑥 ∈ 𝒳: 

 ||𝜙 𝑡, 𝑥, 𝑢 − 𝑥∗|| ≤ 𝐾𝑒−𝛼𝑡| 𝑥 − 𝑥∗|

Assignment Rule:
• Given 𝑥 ∈ 𝒳 and data set 

𝒟: = 𝑥𝑘 , 𝑣𝑖𝑘
, 𝑟𝑘

select controls using

𝜄𝒟 𝑥 =  arg min
𝑖∈ 0,…,𝑀

𝑥 − 𝑥𝑖

𝑟𝑖

Liveliness Property: Recurrent CLF
• For al 𝑥 ∈ 𝑉≤𝑐, ∃𝑣𝑖 ∈ 𝒜 such that

min
𝑡∈ 0,𝜏𝑖

𝑒𝛼𝑡𝑉 𝜙 𝑡, 𝑥, 𝑣𝑖 ≤ 𝑉(𝑥)
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𝑥

𝜙(𝑥𝑖 , 𝑣𝑖 , 𝜏𝑖)𝑥𝑖

𝜙(𝑥, 𝑣𝑖 , 𝜏𝑖)

𝑥𝑗

𝜙(𝑥, 𝑣𝑖 ⋅ 𝑣𝑗 , 𝜏𝑖 + 𝜏𝑗)

𝑥𝑘

t            _
Artstein, Stabilization with relaxed controls, International Journal of Control, 1983
Sontag,  A Lyapunov-like characterization of asymptotic controllability SIAM J. Control Opt. 1983
Siegelmann and M, Data-driven Practical Stabilization of Nonlinear Systems via Chain Policies: Sample Complexity and Incremental Learning, 2025, submitted to ACC.

Assignment Rule:

•  Data set: 𝒟: = 𝑥𝑘 , 𝑣𝑖𝑘
, 𝑟𝑘 𝑘=1

𝑁

•  Normalized Nearest Neighbor:

𝜄𝒟 𝑥 =  arg min
𝑖∈ 0,…,𝑁

𝑥 − 𝑥𝑖

𝑟𝑖

Liveliness Property: Recurrent CLF

•  For al 𝑥 ∈ 𝑉≤𝑐, ∃𝑣𝑖 ∈ 𝒜 such that

min
𝑡∈ 0,𝜏𝑖

𝑒𝛼𝑡𝑉 𝜙 𝑡, 𝑥, 𝑣𝑖 ≤ 𝑉(𝑥)

 



Practical Stabilization via Chain Policies

•  Practical stabilization of inverted pendulum
• Weighted ∞-norm: || ⋅ ||𝑤,∞

• Cell condition: ∀𝑥 ∈ 𝐶𝑘 = {𝑥: 𝑥 − 𝑥𝑘 𝑤,∞
≤ 𝑟𝑖}, there exists 𝑣𝑖𝑘

 s.t.

𝑒𝛼𝜏𝑘𝑉 𝜙 𝜏𝑘 , 𝑥, 𝑣𝑖𝑘
≤ 𝑉 𝑥  and 𝜙 𝜏𝑘 , 𝑥, 𝑣𝑖𝑘

∈ 𝑗ڂ 𝐶𝑗  
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Asgmt. Rule:    𝜄𝒟 𝑥 =  arg min
𝑖∈ 0,…,𝑀

𝑥−𝑥𝑖 𝑤,∞

𝑟𝑖

Data set:          𝒟: = 𝑥𝑘 , 𝑣𝑖𝑘
, 𝑟𝑘



Chain Policy Refinement
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 s.t.
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∈ 𝑗ڂ 𝐶𝑗  
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Asgmt. Rule:    𝜄𝒟 𝑥 =  arg min
𝑖∈ 0,…,𝑀

𝑥−𝑥𝑖 𝑤,∞

𝑟𝑖

Data set:          𝒟: = 𝑥𝑘 , 𝑣𝑖𝑘
, 𝑟𝑘



Data-driven MPC Acceleration

Goal: 
• Find 𝜋 = (𝒜, 𝜄𝒟) such that  ∀𝑠 ∈ 𝒮:
 

𝑉∗ 𝑠 − 𝑉𝜋(𝑠)  ≤ 𝜀

Assignment Rule:
• expert data set 

𝒟: = 𝑠𝑘 , 𝑣𝑖𝑘
≔ 𝜋∗(𝑠𝑘) ,  𝑄𝑘 ≔ 𝑉∗ 𝑠𝑘

select controls using

𝜄𝒟 𝑠 =  arg max
𝑘∈ 0,…,𝑀

 𝑄𝑘 + 𝜆 𝑠 − 𝑠𝑘

Liveliness Property: Bellman Inequality

𝑉lb 𝑠 ≤ 𝑟 𝑠, 𝑣𝜄𝒟 𝑠 + 𝑉lb 𝑓(𝑠, 𝑣𝜄𝒟 𝑠 )

  

Policy Improvement

Policy Evaluation:

            _
Castellano, Pan, M , Data-driven Acceleration of MPC with Guarantees, 2025, submitted to L4DC.
Castellano, Rezaei, Markovitz, M, Nonparametric Policy Improvement for Continuous Action Spaces via Expert Trajectories,” in RLC, 2025.

Assignment Rule:

•  Expert Data: 𝒟: = ቄ

ቅ

ቀ

ቁ

𝑠𝑘 , 𝑣𝑖𝑘
≔ 𝜋∗(𝑠𝑘) ,  𝑄𝑘 ≔

𝑉∗ 𝑠𝑘

•  Regularized NN:

𝜄𝒟 𝑠 =  arg max
𝑘∈ 0,…,𝑀

 𝑄𝑘 + 𝜆 𝑠 − 𝑠𝑘

Liveliness Property: Bellman Inequality

𝑉lb 𝑠 ≤ 𝑟 𝑠, 𝑣𝜄𝒟 𝑠 + 𝑉lb 𝑓(𝑠, 𝑣𝜄𝒟 𝑠 )

with, 𝑉lb 𝑥 = 𝑄𝜄𝒟 𝑥 + 𝜆 𝑠 − 𝑠𝜄𝒟 𝑥  .
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• We use the lqr_n_m environments from DeepMind’s Control Suite

Continual Policy Improvement

1st m actuated

Number of balls

lqr_2_1 lqr_6_2 

• Results on lqr_2_1:

D
at

as
et

 S
iz

e
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Continual Policy Improvement

after 100 episode… after 1000 episodes…

optimal controlafter 30K+

after 10 episode…
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Continual Policy Improvement

optimal controlafter 30K+
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Alternative: Symplectic Inductive Bias

• Physical systems obey much stricter rules and symmetries

Enrique Mallada (JHU) 23

Henri Poincaré

Hamiltonian Dynamics
• Continuous–time dynamics: 

• Invariant level-sets:

• Measure preservation (Liouville):

Poincaré Recurrence Theorem
• If the Hamiltonian flow preserves a finite measure 𝜇 on a bounded 

energy level set ℳ𝐸 ,
• Then, 𝜇-almost every point returns arbitrarily close to its initial state 

infinitely often:

Key idea: Leverage Hamiltonian recurrence minimize data needs 



Control of Hamiltonians via Chain Policies

Desired Properties

A chain policy 𝜋 ≔ (𝒜, 𝜄𝒟) is well-posed whenever 𝜋 
guarantees:

• Completeness: For any 𝑥0 ∈ 𝒳 the sequence
𝑥𝑛+1: = 𝜙 𝜏𝜄𝒟 𝑥𝑛

, 𝑥𝑛, 𝑣𝜄𝒟 𝑥𝑛
𝑡𝑛+1 ≔ 𝑡𝑛 + 𝜏𝜄𝒟 𝑥𝑛

is well defined for all 𝑛 ≥ 0.

• Liveliness: The induced trajectory 𝜙𝜋 𝑡, 𝑥0  satisfies some 
“good” property infinitely often, and forever (𝑡𝑛 → ∞).

Enrique Mallada (JHU) 24

𝑡0 𝜏2 𝜏1𝜏3

𝑣2

𝑣1

𝑣3

𝜄𝒟(𝑥)

Chain policies consist of:

Control Alphabet:

                 𝒜 ≔ 𝑣𝑖 ∶ 0, 𝜏𝑖 → 𝑈 𝑖=1
𝑀

Assignment Rule:

                  𝜄𝒟: 𝑥 ∈ 𝒳 ↦ 𝑖 ∈ {0, … , 𝒜 },

based on data set 𝒟

𝑥0 𝑥1: = 𝜙(𝑥0, 𝑣1, 𝜏1)

𝑥2: = 𝜙(𝑥0, 𝑣1 ⋅ 𝑣3, 𝜏1 + 𝜏3)

𝑥3

𝑣0
𝜏0

• Completeness: Whenever 𝜄𝒟 𝑥 = ∅, do nothing, and wait



Solving Reach Problems in Hamiltonians

• Goal: Reach a neighborhood of the vertical position of a 
pendulum from any state with energy bounded by ഥ𝐻.

• Question: How many demonstrations are needed?
• Answer: Three is enough!
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Solving Reach Problems in Hamiltonians

• Goal: Reach a neighborhood of the vertical position of a 
pendulum from any state with energy bounded by ഥ𝐻.

• Question: How many demonstrations are needed?
• Answer: Three is enough!
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• Demonstrations:



Solving Reach Problems in Hamiltonians

• Goal: Reach a neighborhood of the vertical position of a 
pendulum from any state with energy bounded by ഥ𝐻.

• Question: How many demonstrations are needed?
• Answer: Three is enough!

• Chain policy: Only active when close to data
• green: chain policy active

• red: reached the desired set
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Solving Reach Problems in Hamiltonians

• Goal: Reach a neighborhood of the vertical pendulum 
position from any state with energy bounded by ഥ𝐻.
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Solving Reach Problems in Hamiltonians

• Goal: Reach a neighborhood of the vertical pendulum 
position from any state with energy bounded by ഥ𝐻.
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Research Goals

• To develop analysis and design methods that 
trade off complexity and performance.

• To allow for continual improvement, without the 
need for redesign, retune, or retrain

• To design control policies with controlled 
sensitivity to parameter changes

Enrique Mallada (JHU) 26

𝑥2
′ (𝑡)

Θ

θ θ′ 𝑥2(𝑡)

𝑥3(𝑡)

𝑥1(𝑡)
𝑋ℬ:  Θ → 𝑋 𝑥1

′ (𝑡)

𝑥3
′ (𝑡)



Thanks!
Related Publications:
1. Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-

monotonic Lyapunov functions, CDC 2023
2. Siegelmann, Shen, Paganini, M, Stability Analysis and Data-driven Verification via Recurrent Lyapunov Functions, 2025, 

submitted.
3. Sibai, M, Recurrence of nonlinear control systems: Entropy and bit rates, HSCC 2024, NAHS 2026
4. Shen, Sibai, M, Generalized Barrier Functions: Integral conditions and recurrent relaxations, Allerton 2024
5. Liu, M, Recurrent Control Barrier Functions: A Path Towards Nonparametric Safety Verification, in CDC 2025.*
6. Castellano, Rezaei, Markovitz, and M, Nonparametric Policy Improvement for Continuous Action Spaces via Expert 

Demonstrations, RLC 2025
7. Castellano, Pan, M , Data-driven Acceleration of MPC with Guarantees, 2025, submitted to L4DC.

Enrique Mallada
mallada@jhu.edu

http://mallada.ece.jhu.edu
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*invited session Fr C02.8
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