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Challenges of “modern” Policy Optimization (P.O.) ﬁ@mw

P.O. in continuous spaces: % 1y ! ;
* Largely based on policy gradients. iyl IR —

e Choice of parametrization: a ~ N (ua(s),05(s))
* Limits expressivity.
* Local improvement.
* May yield non-smooth landscapes.

1(6)

P.O. in finite spaces was great!
* Policy Iteration = Policy eval. + Policy improvement.

eval. 7'(s) € argmax Q™ (s, a
m = QN(s,a) (5) acA (5 ) Non-smooth landscapes 2

 Monotonic improvement everywhere V™ (s) > V7(s) Vs € S.

[1] Tao Wang, Sylvia Hebert, Sicun Gao, Mollification effects of policy gradient, ICML 24
[2] —, Fractal landscapes in policy optimization, NeurlPS 23
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Could we get:
1. Benefits of policy iteration
2. Avoid drawbacks of gradient methods?
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Problem Setup

Goal: find optimal policy

II]SLX J(Q) = Esnwp,anwﬂ'ﬂ (so) [Qﬂ& (SU? G’U)}
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Problem Setup %ﬁ

Goal: find optimal nonparametric policy

IIISX J(W’D) ‘= Esnmﬂaagwwp(m) [QWD (501 a’U)]

Dataset: D = {(s;, a, Q;)}Ell Qi =D, V' (st,ar)

ASSy ==t~ - ~ distance s
1. How can we leverage these transitions to learn a policy?

/
(2. What guarantees can we get when we add more transitions? *“ )

L 3, Where should we add transitions to improve performance?

. *
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Overview of our method %ﬁ"

Add expert trajectory p No

Get dataset
D
D = {(si,as, Qz)}lz=|1

T = (SOaG'OaQO)Sl)al)Ql’ o )

Build lower bound :
; . Greedy policy

—>7(s) A argmaj( Qu (s, a)—> Sufficient data?
ac

- O, )
*

si, @i, Q) T

Yes
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1. How can we use these transitions
to learn a nonparametric policy?
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Building bounds & Nonparametric Policy 12Ny

Expert data: we have D = {(s;,a;, Q:)}}°! , where:a; = 7(s;); Q; = Q" (84, a;)

1=1"7

 Use data to define lower bounds on optimal values:

Vio(s) £ max {Qi—L-ds(s,s:)} Qu(s,a) 2 max {Qi—L-(ds(ss:) +da(a,a:)))

* Nonparametric Policy:

7(s) = argmax Qu(s,a) = a;/
ac.A

« Remark: Note argmax always gives actions in dataset (s, @;/, Qi)

* Question: What can we say about V™(s) ?



Nonparametric policy improves over lower bound %ﬁ

Policy Evaluation:
* Nonparametric 7 satisfies Vs € S':

Vib(s) < V7 (s) < V*(s) Vib(s)

| S &7 54 45 S

Policy Improvement:
 Given data sets D, D’ withD C D’

More data = better lower bounds

Wb(s) é ‘/]{)(3) Vs e S /7 Improvement on

/7 added points

V(s <V™(s') Vs e D'\D

e Strict on neighbors of new data: Vs € N(s')

1 ri I :
51 M(s) '\-&_’?Tlrltrll:h?hemnhanﬂ

(“:Data must come from trajectories) 8




Add expert trajectory No

Get dataset
D
D= {(s'ia Qaq, QZ)}fL:ll

4
T = (So,aoaQo,Sbath--.)

Build lower bound )
é - Greedy policy

—>7(s) A argmeajc Qu (s, a)—> Sufficient data?
a

- O, )

* (s,a,0) T

Yes
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1. How to learn a policy?

Build lower bound Greedv pboli
. reedy policy Policy Evaluation

—>(s) = argmax Qu(s,6)—> 15 (5) < V7 (s)

Get dataset
D
D= {(8i7ai7 QZ)}!J,zll

strict improvement

2. What guarantees with more transitions?

More data = better lower bounds

Vib (S) < ‘/I{)(S) Vses /7 Improvement on i
Vr(s) <VT(s) Vs eD\D

- i 1 r
N{s') % ar'strictly better than TT

3. Where to add transitions?
*  Only where sufficient improvement is guaranteed: A(s) = V™(s) — V" (s)

10



Algorithm

Input: Lipschitz constant L

For each episode do:

1.
2.

sup |V*(s) - V™(s)| <

SES[]

Sample s ~ p(Sp)
If A(s) >¢

« Run optimal trajectory with m*
T = (80, @0, Qo, 81,01, Q1, - - .)
* Repeat: add tuples to dataset (fromz = ())
D < DU{(si,a:,Qi)} "
Until: A(SZ) <eE.

1.0 1

-1.04

Else:

* Continue
Convergence guarantees?
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Dataset Size
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Experiments

Number of balls

1st m actuated

* Weusethe 1lgr n m environments from DeepMind’s Control Suite

lgr 2 1
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Experiments

 Weusethe 1gr n m environments from DeepMind’s Control Suite

* Resultsonlqgr 2

5000

4000

w
Q
=}
o

Dataset Size

1000

— NPP | i
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e Remarks:

* Incremental learning: No catastrophic forgetting.
* Improvement across entire state space (not in expectation).
* Only valuable data is added (harder to find at times passes)

_1:

10

Vib (8) — Vin(s)

~== Targetgap (£)

Gap achieved (w.h.p.)
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Suboptimality distribution: V™ —V *
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Incremental Learning

after 10 episode... after 100 episode...

after 30K+

atter 1000 episodes...

optimal control
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Incremental Learning

after 30K+
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Conclusions %ﬁ,}

* Proposed nonparametric policy based on expert demonstrations
* Policy is greedy w.r.t. lower bound on Q*, satisfies:

i) policy evaluation inequality (everywhere)

ii) (strict) policy improvement (on new data)
+ Data collection only where it’s needed.

* Experiments show incremental learning, no catastrophic forgetting

Future work

* Sub-expert demonstrations.

* Bootstrapping with lower bounds.
* Stochastic MDPs.

16



Thank you!

Questions?

Reinforcement

EP Learning

Check out our paper

Check out our Github repo

W
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