

Nonparametric Policy Improvement in Continuous Action Spaces via Expert Demonstrations

Enrique Mallada

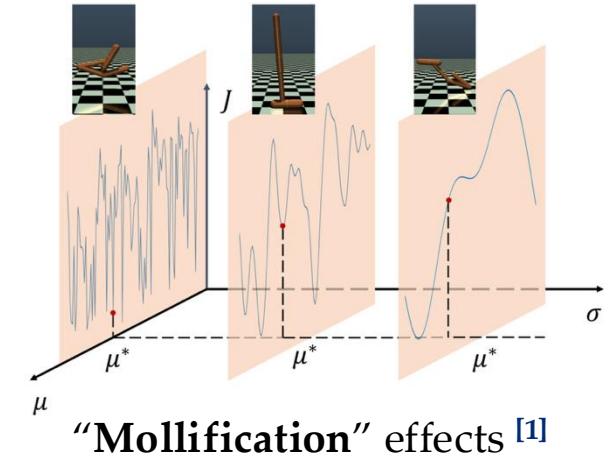
Informs

October 26th, 2025

Challenges of “modern” Policy Optimization (P.O.)

P.O. in continuous spaces:

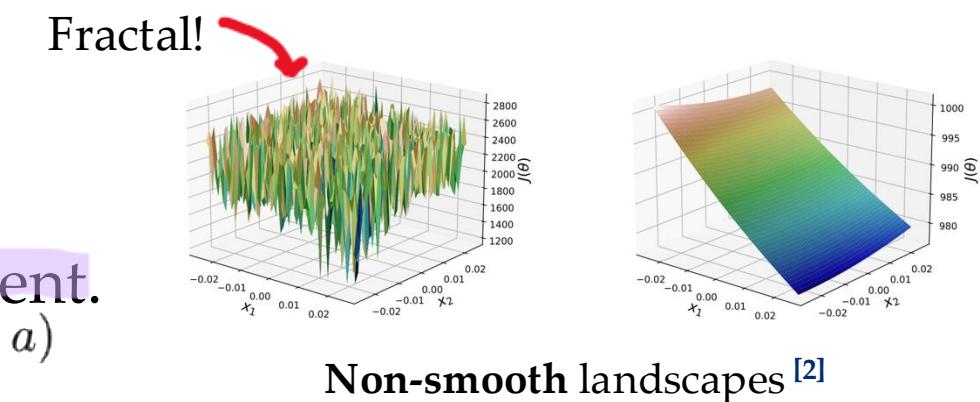
- Largely based on **policy gradients**.
- Choice of **parametrization**: $a \sim \mathcal{N}(\mu_\theta(s), \sigma_\theta^2(s))$
 - Limits expressivity.
 - Local improvement.
 - May yield non-smooth landscapes.



“Mollification” effects [1]

P.O. in finite spaces was great!

- Policy Iteration = Policy eval. + Policy improvement.
$$\pi \xrightarrow{\text{eval.}} Q^\pi(s, a) \quad \pi'(s) \in \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q^\pi(s, a)$$
- Monotonic improvement **everywhere** $V^{\pi'}(s) \geq V^\pi(s) \quad \forall s \in \mathcal{S}$.



[1] Tao Wang, Sylvia Hebert, Sicun Gao, Mollification effects of policy gradient, ICML 24

[2] —, Fractal landscapes in policy optimization, NeurIPS 23

Could we get:

- 1. Benefits of policy iteration**
- 2. Avoid drawbacks of gradient methods?**

Acknowledgements

Agustin Castellano

Sohrab Rezaei

Jared Markowitz

Problem Setup

Goal: find optimal policy

$$\max_{\theta} J(\theta) := E_{s_0 \sim \rho, a_0 \sim \pi_{\theta}(s_0)} \left[Q^{\pi_{\theta}}(s_0, a_0) \right]$$

Problem Setup

Goal: find optimal **nonparametric** policy

$$\max_{\mathcal{D}} J(\pi_{\mathcal{D}}) := E_{s_0 \sim \rho, a_0 \sim \pi_{\mathcal{D}}(s_0)} \left[Q^{\pi_{\mathcal{D}}}(s_0, a_0) \right]$$

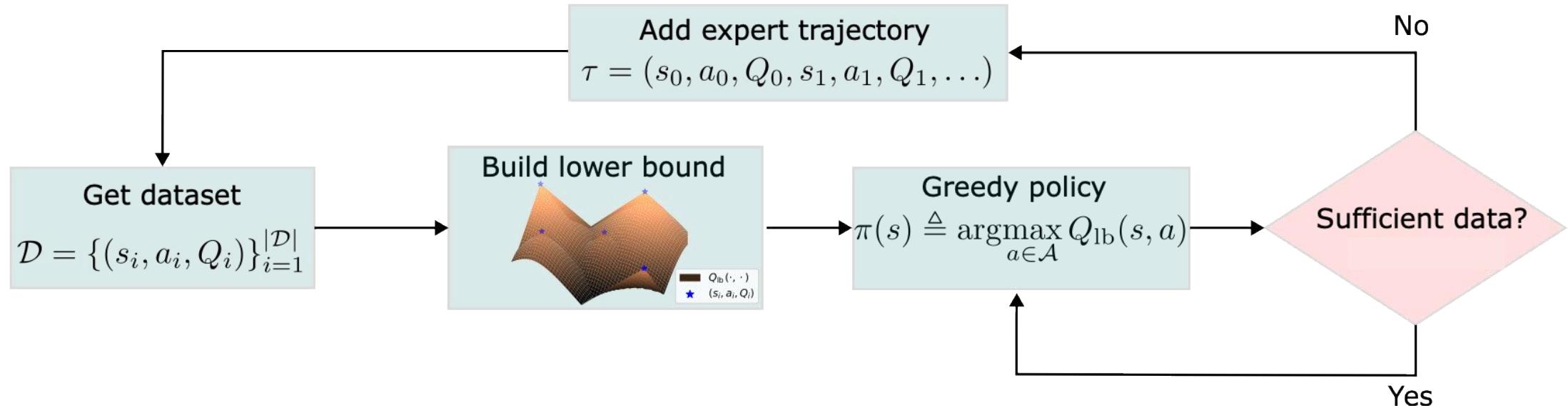
Data set: $\mathcal{D} = \{(s_i, a_i, Q_i)\}_{i=1}^{|\mathcal{D}|}$ $Q_i := \sum_t \gamma^t r(s_t, a_t)$

Assumptions:

1. How can we leverage these transitions to learn a policy?
2. What guarantees can we get when we add more transitions?
3. Where should we add transitions to improve performance?

Expectations. we have $s = \{(s_i, a_i, \omega_i)\}_{i=1}^n$, where $\omega_i = \dots \omega_i, \omega_i = Q^*(s_i, a_i)$

Overview of our method



1. How can we use these transitions
to learn a nonparametric policy?

Building bounds & Nonparametric Policy

Expert data: we have $\mathcal{D} = \{(s_i, a_i, Q_i)\}_{i=1}^{|\mathcal{D}|}$, where: $a_i = \pi^\star(s_i)$; $Q_i = Q^\star(s_i, a_i)$

- Use data to define **lower bounds** on optimal values:

$$V_{\text{lb}}(s) \triangleq \max_{1 \leq i \leq |\mathcal{D}|} \{Q_i - L \cdot d_{\mathcal{S}}(s, s_i)\} \quad Q_{\text{lb}}(s, a) \triangleq \max_{1 \leq i \leq |\mathcal{D}|} \{Q_i - L \cdot (d_{\mathcal{S}}(s, s_i) + d_{\mathcal{A}}(a, a_i))\}$$

- **Nonparametric Policy:**

$$\pi(s) \triangleq \operatorname{argmax}_{a \in \mathcal{A}} Q_{\text{lb}}(s, a) = a_{i'}$$

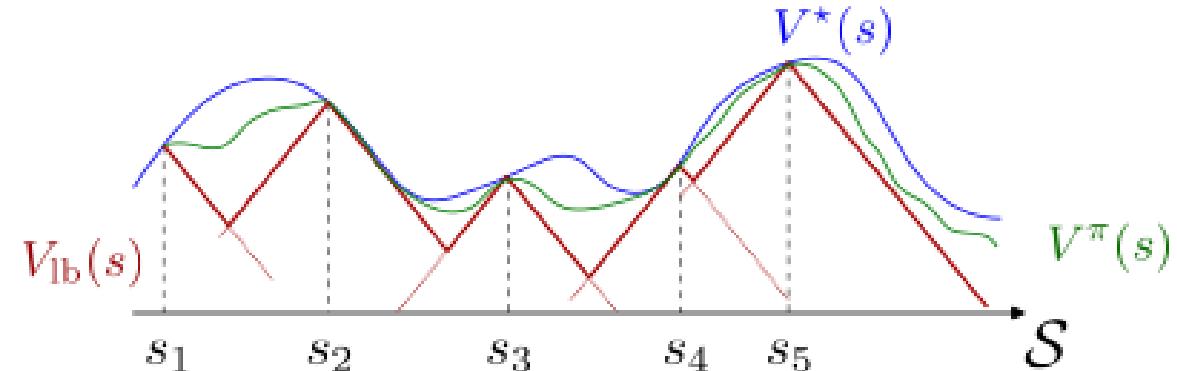
- **Remark:** Note argmax always gives actions in dataset $(s_{i'}, a_{i'}, Q_{i'})$
- **Question:** What can we say about $V^\pi(s)$?

Nonparametric policy *improves* over lower bound

Policy Evaluation^{*}:

- Nonparametric π satisfies $\forall s \in \mathcal{S}$:

$$V_{lb}(s) \leq V^\pi(s) \leq V^*(s)$$



Policy Improvement^{*}:

- Given data sets $\mathcal{D}, \mathcal{D}'$ with $\mathcal{D} \subset \mathcal{D}'$

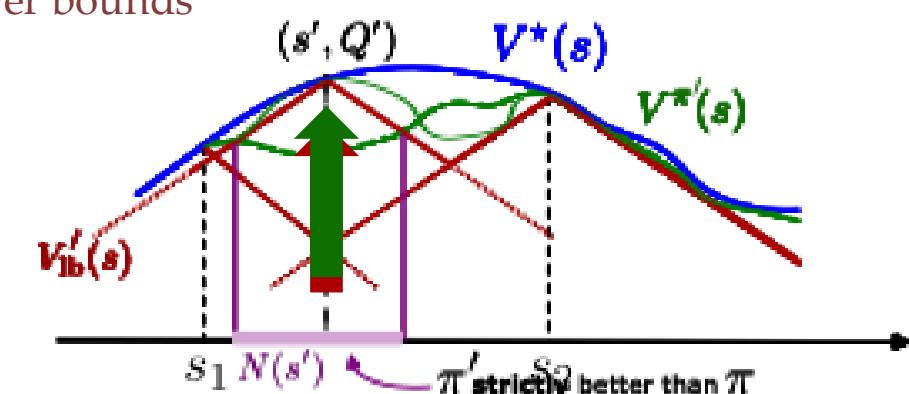
$$V_{lb}(s) \leq V'_{lb}(s) \quad \forall s \in \mathcal{S}$$

$$V^\pi(s') \leq V^{\pi'}(s') \quad \forall s' \in \mathcal{D}' \setminus \mathcal{D}$$

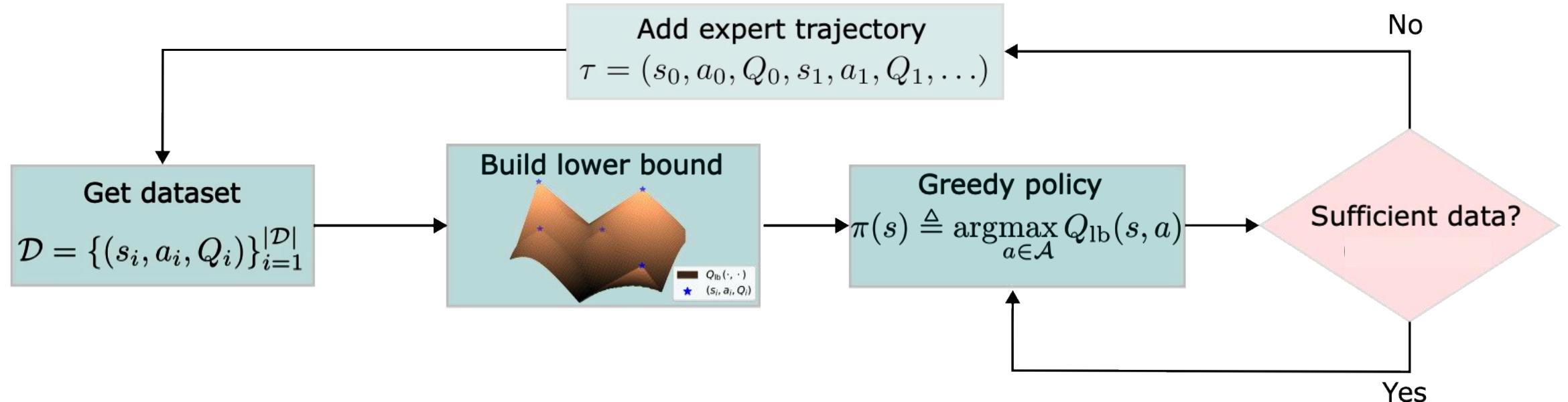
More data = better lower bounds

Improvement on added points

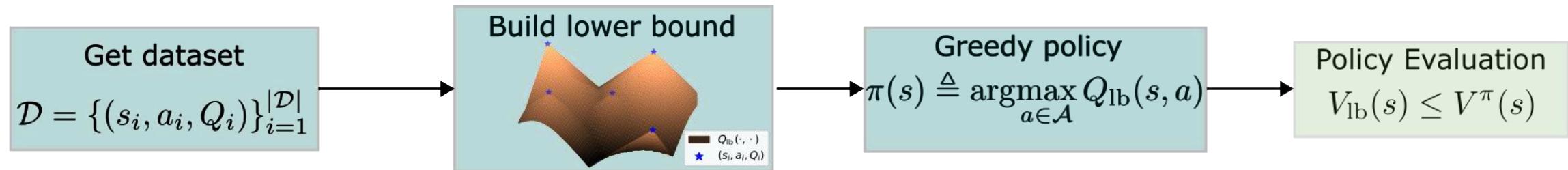
- Strict on neighbors of new data: $\forall s \in N(s')$



^{*}:Data must come from trajectories)

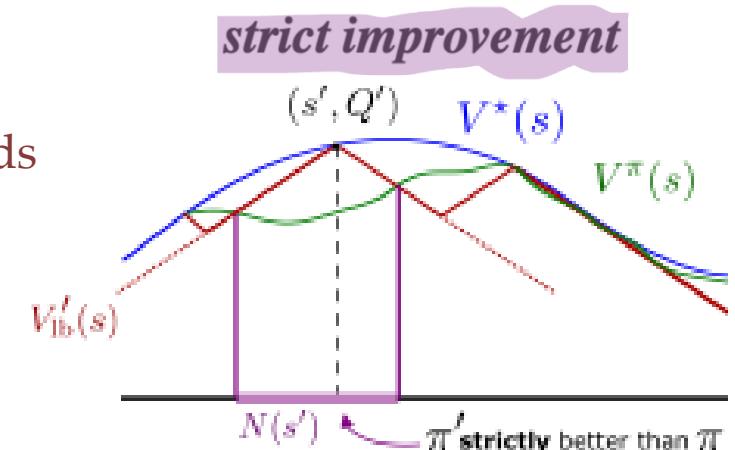


1. How to learn a policy?



2. What guarantees with more transitions?

$$\begin{aligned}
 V_{lb}(s) &\leq V'_{lb}(s) \quad \forall s \in \mathcal{S} & \text{More data = better lower bounds} \\
 V^\pi(s') &\leq V^{\pi'}(s') \quad \forall s' \in \mathcal{D}' \setminus \mathcal{D} & \text{Improvement on added points}
 \end{aligned}$$



3. Where to add transitions?

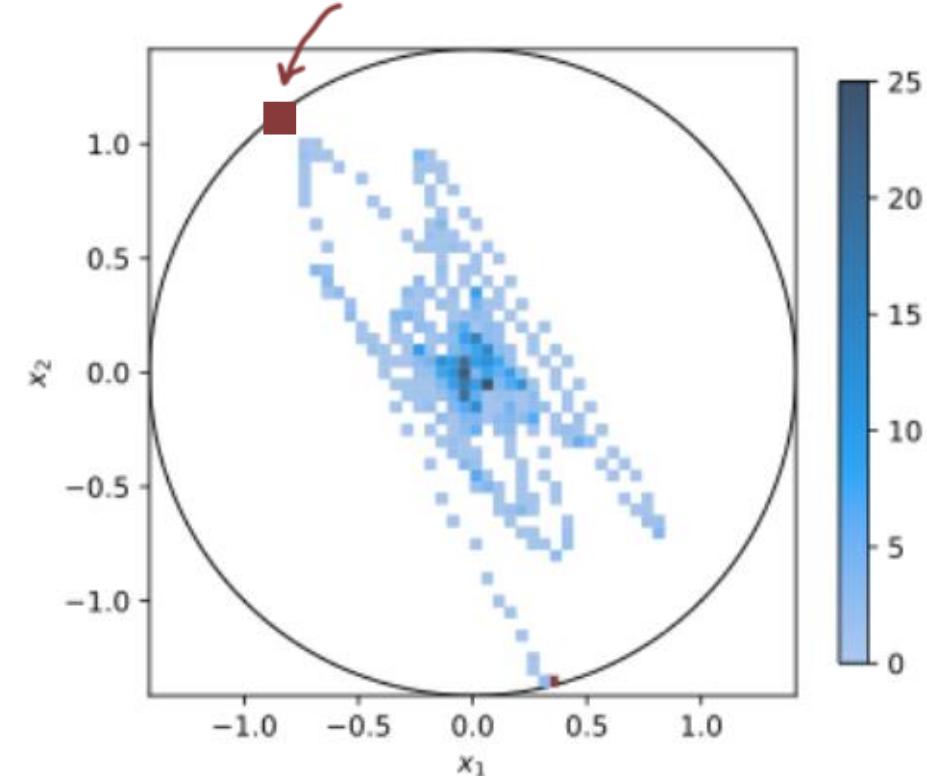
- Only *where sufficient improvement* is guaranteed: $\Delta(s) = V^*(s) - V^\pi(s)$

Algorithm

Input: Lipschitz constant L

For each episode **do**:

1. Sample $s \sim \rho(\mathcal{S}_0)$
2. If $\Delta(s) > \varepsilon$:
 - Run optimal trajectory with π^*
 $\tau = (s_0, a_0, Q_0, s_1, a_1, Q_1, \dots)$
 - **Repeat:** add tuples to dataset (from $i = 0$)
 $\mathcal{D} \leftarrow \mathcal{D} \cup \{(s_i, a_i, Q_i)\}$
3. Until: $\Delta(s_i) \ll \varepsilon$.
3. Else:
 - **Continue**



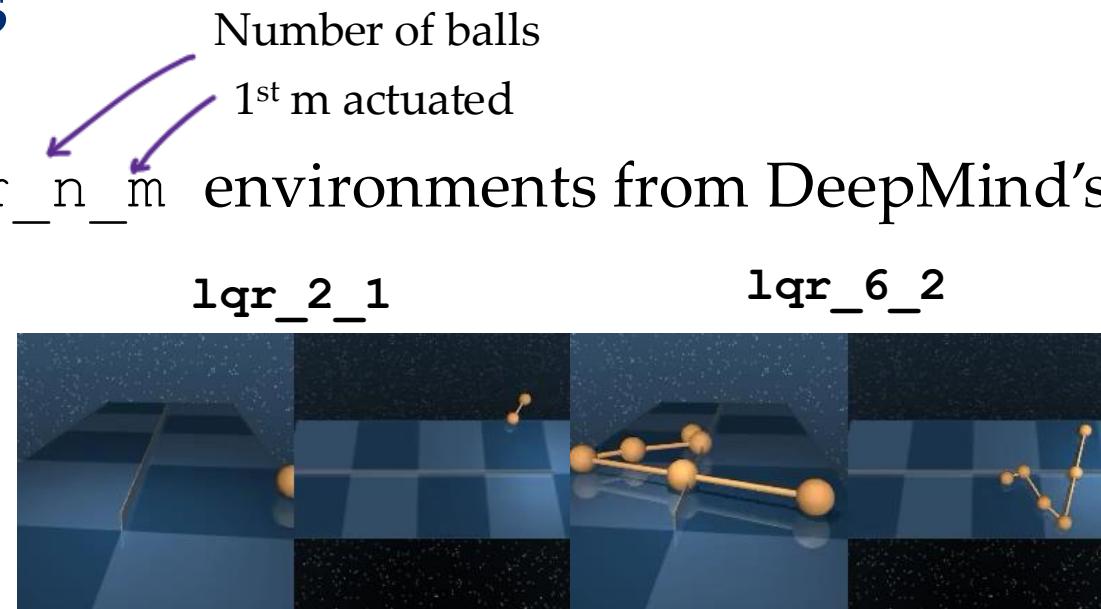
Convergence guarantees?

$$\sup_{s \in \mathcal{S}_0} |V^*(s) - V^\pi(s)| \leq \varepsilon$$

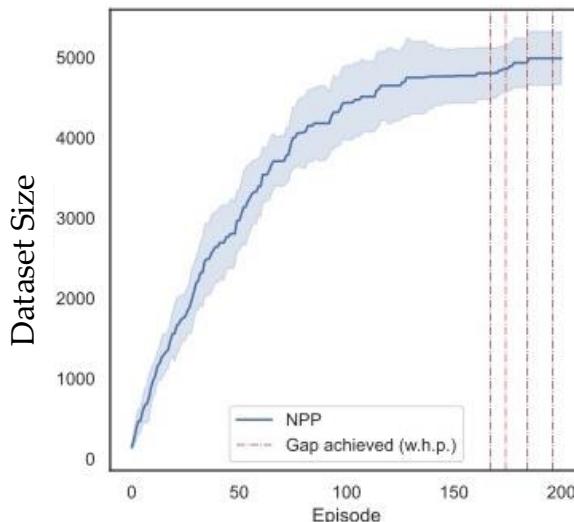
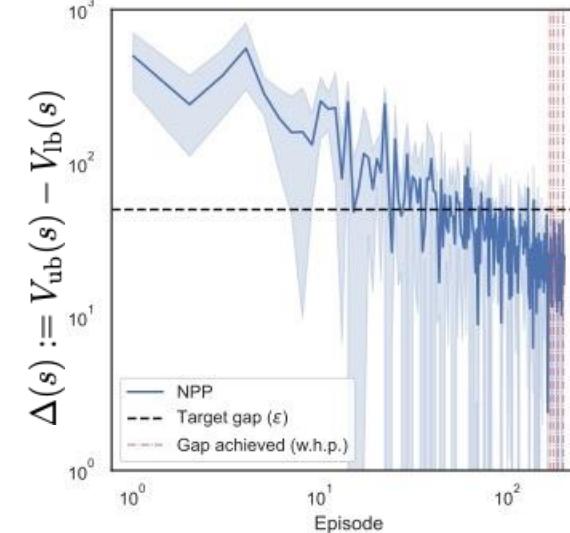
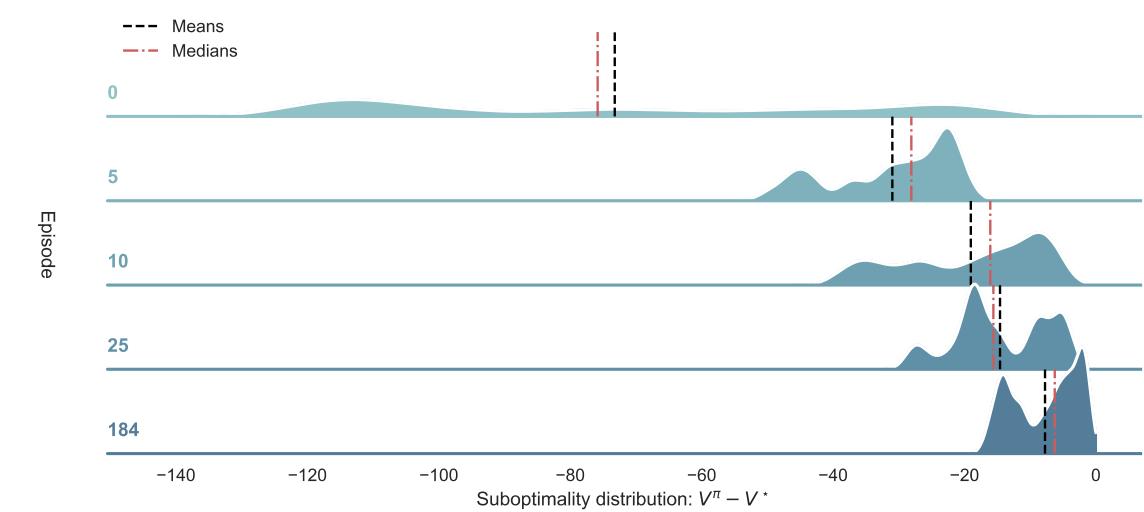
w.p. $\geq 1 - \delta$ in $\mathcal{O}\left(N_{\text{cover}}\left(\frac{\varepsilon}{4L}\right) \log N_{\text{cover}}\left(\frac{\varepsilon}{4L}\right) \log \frac{1}{\delta}\right)$ episodes.

Experiments

- We use the lqr_n_m environments from DeepMind's Control Suite

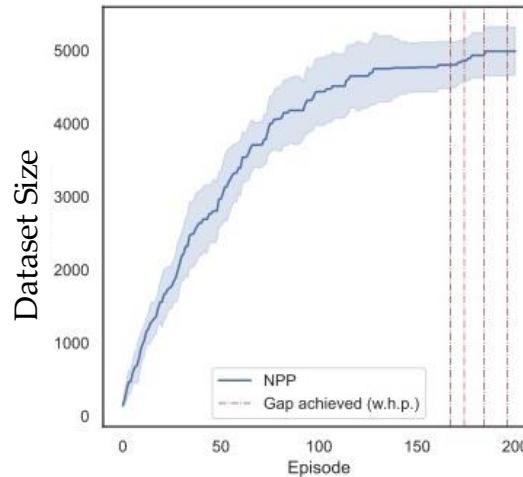
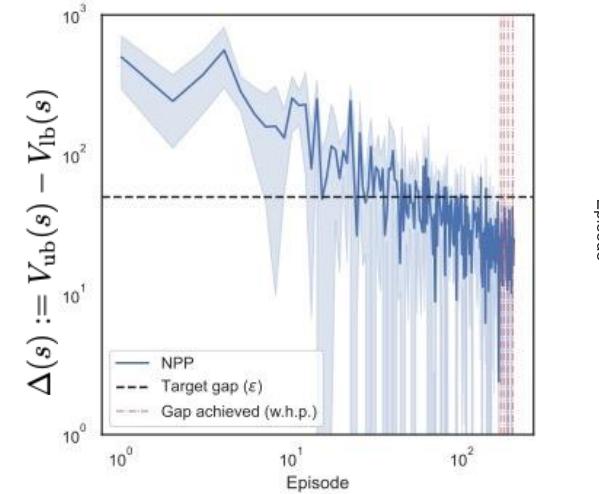
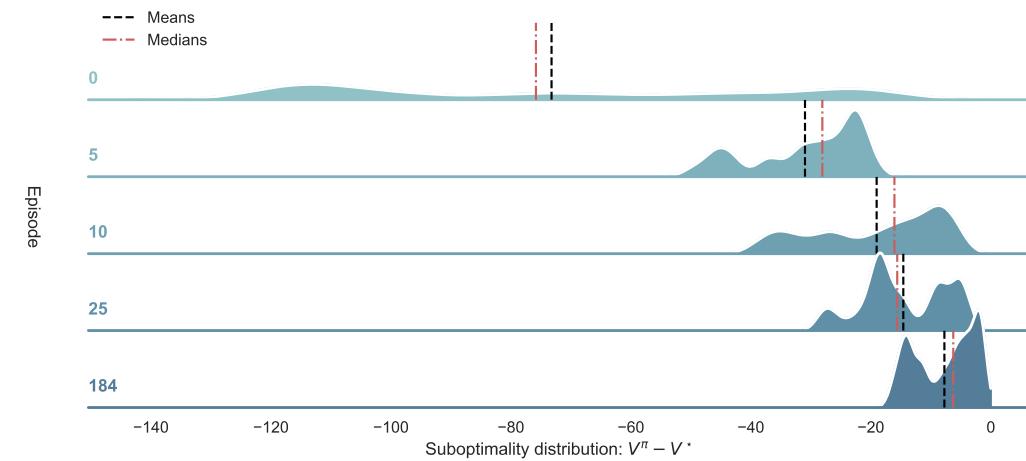


- Results on ***lqr_2_1***:



Experiments

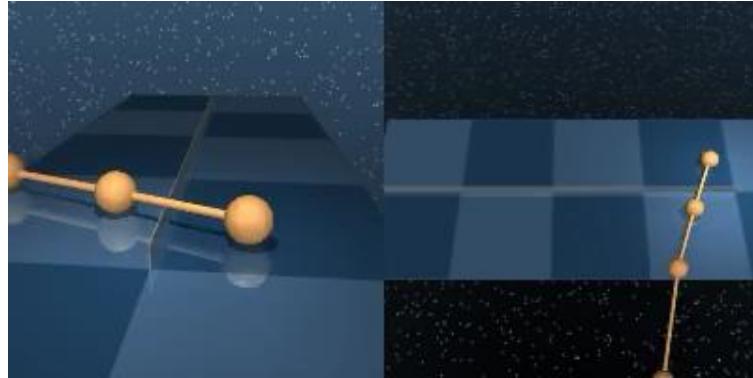
- We use the `lqr_n_m` environments from DeepMind's Control Suite
- Results on `lqr_2_1`:



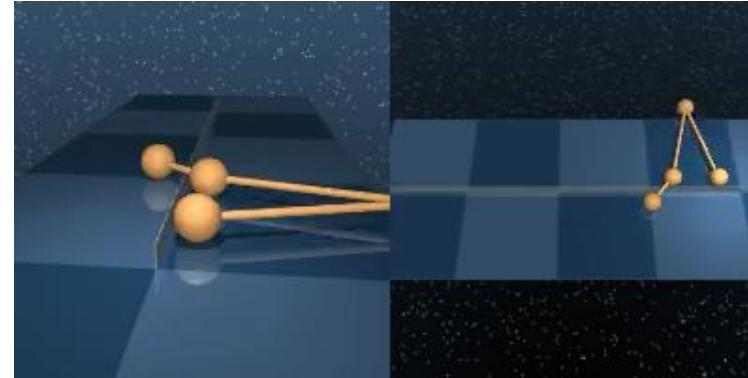
- **Remarks:**
 - **Incremental learning:** No catastrophic forgetting.
 - **Improvement across entire state space** (not in expectation).
 - **Only valuable data is added** (harder to find at times passes)

Incremental Learning

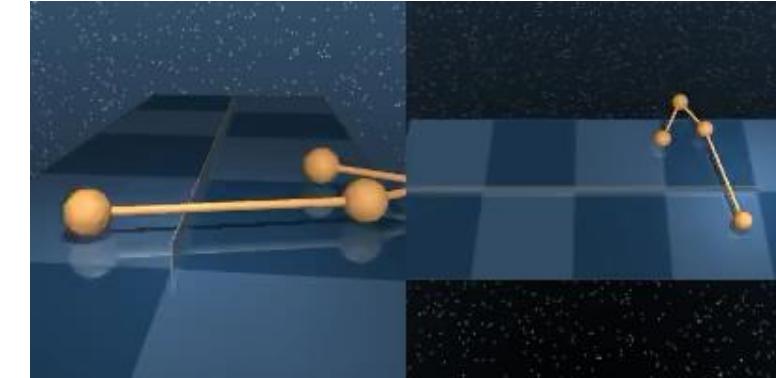
after 10 episode...



after 100 episode...

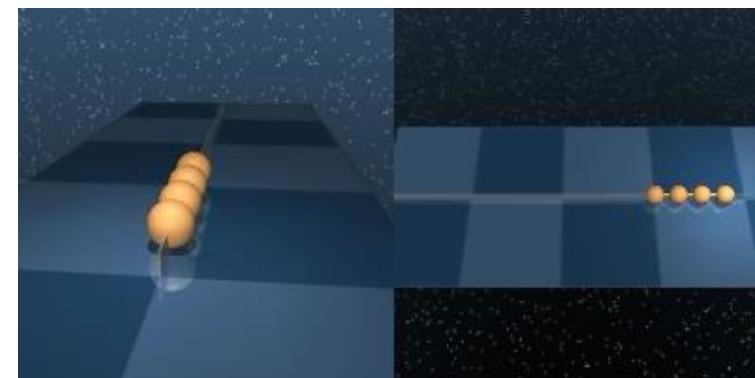


after 1000 episodes...



after 30K+

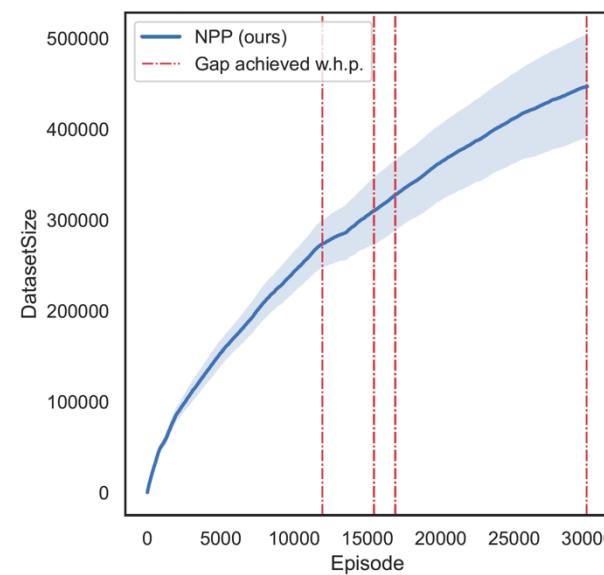
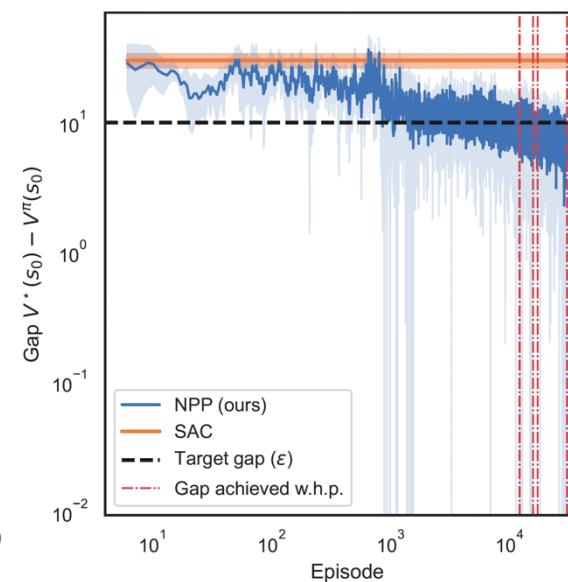
optimal control



Incremental Learning

after 30K+

optimal control



Conclusions

- Proposed **nonparametric policy** based on **expert demonstrations**
- Policy is **greedy** w.r.t. **lower bound** on Q^* , satisfies:
 - i) **policy evaluation inequality** (everywhere)
 - ii) (strict) **policy improvement** (on new data)
- **Data collection only where it's needed.**
- Experiments show **incremental learning, no catastrophic forgetting**

Future work

- Sub-expert demonstrations.
- Bootstrapping with lower bounds.
- Stochastic MDPs.

Thank you!

Questions?

Check out our paper

Check out our Github repo