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The Future Grid
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Present grid Future
* dispatchable generation e variable and distributed generation
* highinertial response * limited inertia levels
e strong voltage support  weak voltage support

proprietary control laws (black box)
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well known physics
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Future

* variable and distributed generation
* limited inertia levels

 weak voltage support

proprietary control laws (black box)

Enrlque Mallada (J HU)

Selected challenges

* increased system uncertainty

* sensitivity to disturbances

 new forms of instabilities, induced by inverter-
based resources

 need to compensate for reduced inertia
grid strength

Research questions:

* How should we control a grid with limited
inertial/voltage support?

* How should we prevent the onset of IBR induced
instabilities?




Two Core Challenges

 Mitigation of IBR-induced small-signal instabilities
* Decentralized Stability Analysis
e Efficiency-Robustness Trade-offs

* Reliable operation during large-signal disturbance
e Safety-critical nonlinear control design
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Oscillation Events Involving IBRs
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IBR-induced Sub Synchronous Oscillations

* When do SSOs occur?
* Series-compensated corridors (SSCI)
* Weak grids (low SCR, high impedance)
* Clusters of IBRs in remote areas

Challenge: How to develop a framework to prevent, predict, and manage S SOs across

grid planning, real-time operation, and compliance testing?

* What do SSOs depend on?

* Network state: impedance, SCR, topology, compensation level
* Control configuration: PLL dynamics, outer/plant controllers, GFL vs GFM
* Operating point: power flow direction, voltage setpoints, dispatch




Understanding SSOs: What we know

* Hopf bifurcation as the onset mechanism

* SSOs emerge through Hopt bifurcations.

* This means linearized small-signal models
are sufficient to capture the transition to

instability.

Hawaii (2021)
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Understanding SSOs: What we know and can do m

* Hopf bifurcation as the onset mechanism ()
* SSOs emerge through Hopf bifurcations. I grid . Pcf

* This means linearized small-signal models Zgrid(8)
are sufficient to capture the transition to !
1nstab1hty. @ ZIBR(S) |‘VPCC(S) @ Vgrid(s)
|
‘L »
* Impedance models can capture SSOs
* At the Point of Interconnection, stability can f )
be analyzed by comparing inverter and grid 1 Z grid (s)
impedances. _ \ y
igria(8) Vecoc(s)
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Understanding SSOs: What we know and can do m

* SSOs emerge through Hopt bifurcations. I 2

* This means linearized small-signal models
are sufficient to capture the transition to |

Zgrid(s)

instability. @ Z1BR(S) :‘VPOC(S) @ Verid(s)

-

* Impedance models can capture SSOs Nyquist Plot

* At the Point of Interconnection, stability can
be analyzed by comparing inverter and grid
impedances.

v

Z grid(s) I
ZiBr(S)

explains why weak grids (high Z;,;4) are more
prone to instability.

 Nyquist loop-gain criterion L(s) =

1
VPCC(S) — Zgria(s) Vgrid(s)'
1+ Z1BRr(8)




Challenges of Impedance Stability Analysis

« Ztor depends on:

* Vendor Technology
¢ Setpoints (Pl ) Ql)

rd
P
-
.

A érid depends on:
* Location where it is measured
* Network Topology
* Power Flows (Pet) Onet)
* Other connected devices L ia(8) # Zérid(s)




Robust, Decentralized Small-Signal Analysis m

* Goal: Develop small-signal stability analysis methods that account for
IBR’s impedance variations & network operating conditions.

7 (s) Zi(s) Zgrid(s) ; Z?BR(S)
< ° L4 S | zri S
* Key properties: BR(%) | Zaia o o
. . .o ] S I
* Requires individual tests on Zgg Vi, e Network i —|I£‘
.o ; —|q | L
* Handles variation of Zgp N

* Characterizes valid grid operating

* Trade-off conservativeness
between operating conditions and
IBR dynamic constraints

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE TCNS 2019 .
PESGM 24] Siahaan, M, Geng, Decentralized Stability Criteria for Grid-Forming Control in Inverter-Based Power Systems PES-GM |
2024
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* Goal: Develop small-signal stability analysis methods that account for
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Robust, Decentralized Small-Signal Analysis

* Goal: Develop small-signal stability analysis methods that account for
IBR’s impedance variations & network operating conditions.
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Trade-off: Robustness vs Efficiency

EPICS

* Analysis unveils a fundamental trade-off: expanding the dispatch
region demands stricter limits on inverter frequency-domain behavior.
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Trade-off: Robustness vs Efficiency

EPIGS

* Analysis unveils a fundamental trade-off: expanding the dispatch
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Stable Operating Points Stable IBR Region
A

ZIiBR(S)

Z

Pnet» Qnet

- —

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE TCNS 2019

PESGM 24] Siahaan, M, Geng, Decentralized Stability Criteria for Grid-Forming Control in Inverter-Based Power Systems PES-GM
2024




What We Know — and What’s Still Open

What’s Known

* Linear small-signal models are sufficient

* SSOs emerge via Hopf bifurcations — linearized models around operating points capture instability onset.

* Accuracy over dynamic frequencies is sufficient
*  Models only need to capture inverter behavior around sub-synchronous frequency ranges of interest.

* Impedance-based margins are valid and certifiable
* Frequency-domain criteria define meaningful stability margins and can be applied using black-box models, preserving vendor IP.

? Many Questions Remain Open
* Generalizing analysis for more realistic models

* Current analysis introduces simplifying assumptions that need to be removed.

* How should dynamic testing be standardized?
* What scan conditions (frequency range, injection size, operating points) should be required?

* How do we account for dispatch and operating point variability?
* Do we need impedance envelopes? Adaptive margins? Parametric certificates?

* Should compliance be static or operationally adaptive?
* Should dispatch constraints or tuning flexibility be part of certification?

* How do we balance robustness and flexibility?
*  What is the minimal stability margin that still allows meaningful operational freedom?

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE TCNS 2019
PESGM 24] Siahaan, M, Geng, Decentralized Stability Criteria for Grid-Forming Control in Inverter-Based Power Systems PES-GM
2024
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Why large-signal dynamics matter?

22

* Nonlinearity and discrete events are ubiquitous in power systems. Accurate

handling of them is vital to have any chance of replicating complex power
system behavior.

* Large-signal dynamics 1s essential for reliable operation of inverter-dominated
power systems.

* Higher complexity, nonlinearity, and variability.

* Enables stability and safety under faults, grid disturbances, and transients.



Control Obijectives versus Safety?

* A framework to combine “control objectives” and “safety”’[1][2]:
* Design a nominal controller to meet control objectives (GFM).
* How can we encode “safety” into that controller?
* Design a safety filter to ensure safety.

[1] Ames et. al. (2014), Control Barrier Function based Quadratic Programs with Application to Adaptive Cruise Control (CDC 2014)
[2] Kundu, Geng, et. al. (2019), Distributed barrier certificates for safe operation of inverter-based microgrids (ACC 2019)



Droop-Based Grid-Forming Inverter Model
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V¢ q and V. 4 are controlled variables (voltage at the PCC)
Ut q and Vg g are control inputs (terminal voltage of the VSC)

Vg,a and Vg 4 are grid voltage components treated as exogenous disturbances
R, L are unknown network elements

d-q component dynamics

bea(t) = wpw()veq(t) + % (ica(£) —iga(t))
f

Deq(1) = —wpw(t)vea(t) + ‘2—;’ (ieq (1) —igq(D))
(z—: (vea(?) —vea(t)) - %wbit,d(r)

(1) = =00 (Dia(0)+ 52 (1q(0) = veq(0) - %wat,q(r)

t,a(f) = wpw(1)ing(t) +

lg.d(t) = wWpw(t)igq(t) + %(vc,d(l‘) —vga(t)) - %wbig,d(t)

fga(0) = ~0u0(D)iga(D) + 22 (veq (1) = V(1)) - T 0biga()



Satety-Critical Nonlinear GFM Control

* Nonlinear backstepping-based GFM controller that guarantees performance during
transients and steady-state:
* Ensures robust voltage regulation even under faults.
* Agnostic to grid disturbances and ensures practical regulation.

Transient Behavior (1+R2+ v all2,)

kL2 (14e%©)
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t—400



Satety-Critical Nonlinear GFM Control

* Control Barrier Function (CBF)—-based safety filter to enforce strict current safety.

Consider

X = f(x)+g(x)u

Safety set

C={xeR"|h(x)>0}, h:R">R

Safety > Control Objectives

w(x) = argmin  [|u— tnom (¥)||”

uclRm

subject to  L¢h(x)+ Lgh(x)u+yh(x) > 0.



Simulation Results with Current Limiting

1.4 3
—Safe BS
—Safe PI
L2p - - ( ‘ ************************* - 250
1 U
2L
2 —15
0.6 > A/\
1
o4l -
0.2 —Safe BS 0.5
—Safe PI
- Im:—n(
0 | | 0
0 5 10 15 0 i) 10
time (s) time (s)
Fig. Magnitude of terminal current iy of VSC Fig. Voltage v at PCC.

27



Grid-following

Source: Sushobhan Chatterjee
and Sijia Geng. "Voltage Stability
of Inverter-Based Systems:
Impact of Parameters and
Irrelevance of Line Dynamics."
IEEE PowerTech, 2025.

Unified

Source: Sijia Geng, and lan A.
Hiskens. "Unified grid-forming/
following inverter control." IEEE
Open Access Journal of Power
and Energy, 2022.

Grid-forming
Source: Sushobhan Chatterjee
and Sijia Geng. "Effects of Line
Dynamics on the Stability Margin
to Hopf Bifurcation in Grid-
Forming Inverters.” IREP 2025

and Sustainable Energy, Grids
and Networks (SEGAN), 2025.

 Current source: Injects active & reactive

power to the grid.

* “Follow”: Frequency is set to be
synchronized with the existing grid voltage
waveform using a phase-locked loop.

» Drawbacks: No black-start capability;
Poorly damped oscillations in weak

network.
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General IBR structure

* IBR architecture can generally be
represented using a unified | IBR
schematic given here (dg-frame). vse 5 e

3 the . —» R Ly Y > RIL vg£0°
- Grid interacting functions: PLL (for uDCT—— —] e I”C ol @
GFL), droops (for GFM), etc. S — el ] |

. > Grid Interacting
l : = —»| Functions
» Quter-loop controller: Power/DC- § m“"CT T T benee o T b ot
side voltage (for GFL), DC-side/AC- PWM z'i g
. 1 Y
side voltage (for GFM), etc. ; \ b aa}—
| on Tt.dq Ue,dq
3 v Utdq Inner‘-'l.oo Zik 0::er-Loo zz
* Inner-loop controller: Usually ; [t dhel——— Controier [ Controller |
current. T

[PowerTech2025] Chatterjee, Geng, "Voltage Stability of Inverter-Based Systems: Impact of Parameters and Irrelevance of Line Dynamics." IEEE PowerTech, 2025.
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What We Know — and What’s Still Open

What’s Known

* Ensures safety for individual GFM inverter connected to the grid.

* Tradeoff between performance and safety during transients and steady-state.

* Safetyis critical and performance becomes secondary.

? Many Questions Remain Open

* Generalizing analysis for a network with heterogenous IBRs.
* How to generalize the framework to handle arbitrary IBR control schemes? Often time without

detailed model? Interoperability among heterogeneous IBR controls.

* Provides theoretical certificates which can be used to tune controllable parametets
to comply with/inform grid codes.

* How do we account for nonlinear and hybrid dynamics into operation problem?

* Do we need to consider stability in the operation problem?

[ACC 19] Kundu, Geng, et. al. Distributed barrier certificates for safe operation of inverter-based microgrids (ACC 2019).
[OAJPE 22] Geng, Hiskens. "Unified grid-forming/following inverter control." IEEE Open Access Journal of Power and Energy, 2022.




Thanks!
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