

Nonparametric Analysis and Control of Dynamical Systems

Recurrence and Policy Improvement

Enrique Mallada

University of Texas A&M
September 19th, 2025

Acknowledgements

Yue Shen

Roy Siegelmann

Agustin Castellano

Sohrab Rezaei

Fernando Paganini

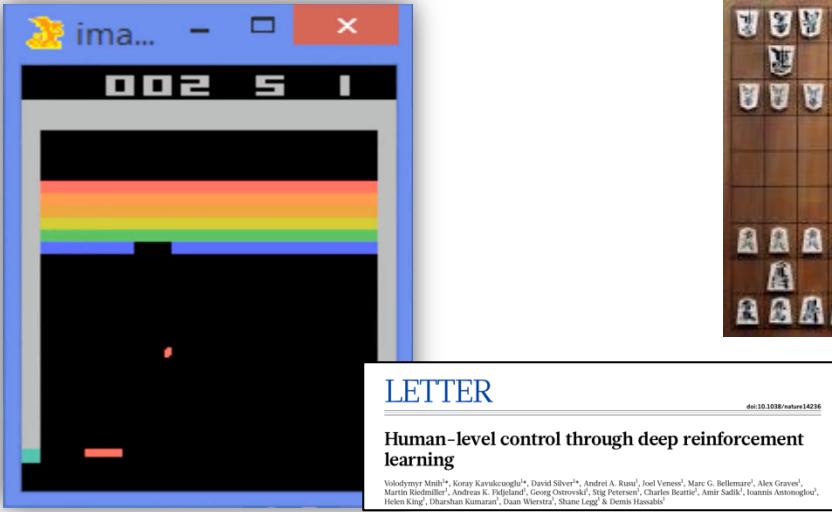
Maxim Bichuch

Hussein Sibai

Jared Markowitz

A Dream World of Success Stories

2017 Google DeepMind's DQN



2017 AlphaZero – Chess, Shogi, Go

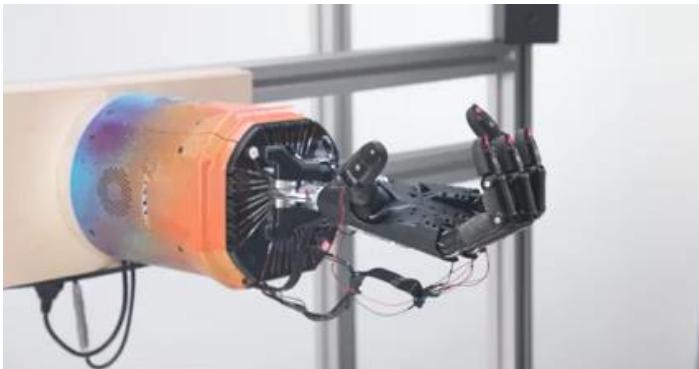
2019 AlphaStar – Starcraft II

Article
Grandmaster level in StarCraft II using multi-agent reinforcement learning

<https://doi.org/10.1038/s41586-019-1724-z>
Received: 30 August 2019
Accepted: 10 October 2019
Published online: 30 October 2019

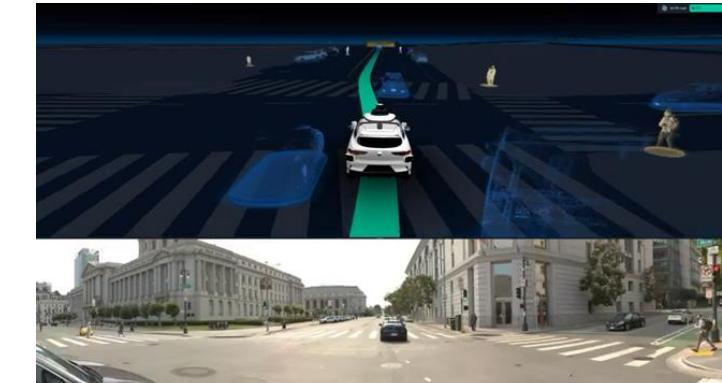
Omid Vinyals^{1,2*}, Igor Babuschkin^{1,2}, Wojciech M. Czarnecki^{1,2}, Michael Mathieu^{1,2}, Andrew Dudzik^{1,2}, Junyoung Chung¹, David H. Choi³, Richard Powell⁴, Timo Ewalds^{1,2}, Petko Georgiev^{1,2}, Jozefuk Oh¹, Dan Huber¹, Manuel Kroiss¹, Ivo Danihelka^{1,2}, Antin Heid¹, David M. Held¹, John Schulman¹, Alexander S. Wachnowski¹, Rémi Lebouf¹, Tobias Polhan¹, Valentin Dalibard¹, David Budden¹, Yury Sulsky¹, James Mollor¹, Tom L. Paine¹, Capogar Gulcehre¹, Ziyu Wang¹, Tobias Pfaff¹, Yuheng Wang¹, Roman Ring¹, Darr Yogatama¹, David Wiesner¹, Katrina McKinney¹, Oliver Smith¹, Tom Schaul¹, Timothy Lillicrap¹, Koray Kavukcuoglu¹, Demis Hassabis¹, Chris Apperly¹ & David Silver^{1,2*}

OpenAI – Rubik's Cube



Boston Dynamics

Waymo



Reality Kicks In

GARY MARCUS BUSINESS 08.14.2019 09:00 AM

Angry Residents, Abrupt Stops: Waymo Vehicles Are Still Causing Problems in Arizona

RAY STERN | MARCH 31, 2021 | 8:26AM

DeepMind's Losses and the Future of Artificial Intelligence

Alphabet's DeepMind unit, conqueror of Go and other games, is losing lots of money. Continued deficits could imperil investments in AI.

ARIAN MARSHALL BUSINESS 12.07.2020 04:06 PM

Uber Gives Up on the Self-Driving Dream

The ride-hail giant invested more than \$1 billion in autonomous vehicles. Now it's selling the unit to Aurora, which makes self-driving tech.

Tesla Recalls Nearly All Vehicles Due to Autopilot Failures

Tesla disagrees with feds' analysis of glitches

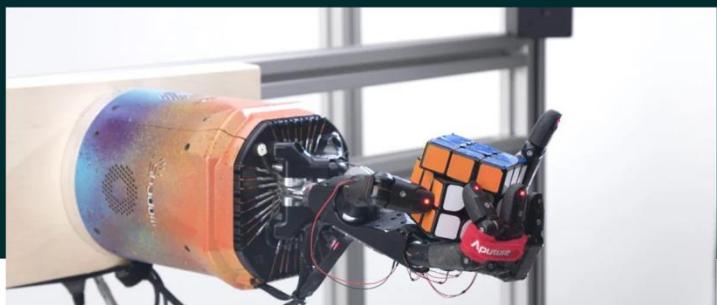
BY LINA FISHER, 2:54PM, WED. DEC. 13, 2023

CRUISE KNEW ITS SELF-DRIVING CARS HAD PROBLEMS RECOGNIZING CHILDREN — AND KEPT THEM ON THE STREETS

According to internal materials reviewed by The Intercept, Cruise cars were also in danger of driving into holes in the road.

OpenAI disbands its robotics research team

Kyle Wiggers @Kyle_L_Wiggers July 16, 2021 11:24 AM



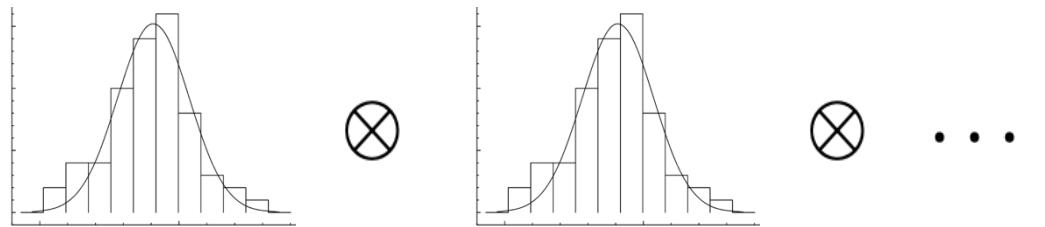
Self-driving Uber car that hit and killed woman did not recognize that pedestrians jaywalk

The automated car lacked "the capability to classify an object as a pedestrian unless that object was near a crosswalk," an NTSB report said.

Fundamental challenge: The curse of dimensionality

■ Statistical: No clear inductive bias

Sampling in d dimension with resolution ϵ :



Sample complexity:

$$O(\epsilon^{-d})$$

For $\epsilon = 0.1$ and $d = 100$, we would need 10^{100} points.
Atoms in the universe: 10^{78}

■ Computational: Verifying non-negativity of polynomials

Copositive matrices:

$$[x_1^2 \dots x_d^2] A [x_1^2 \dots x_d^2]^T \geq 0$$

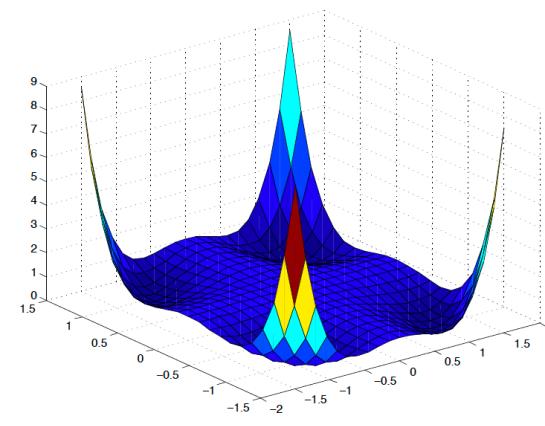
Murty & Kadabi [1987]: Testing co-positivity is NP-Hard

Sum of Squares (SoS):

$$z(x)^T Q z(x) \geq 0, \quad z_i(x) \in \mathbb{R}[x], \quad x \in \mathbb{R}^d, \quad Q \succeq 0$$

Artin [1927] (Hilbert's 17th problem):

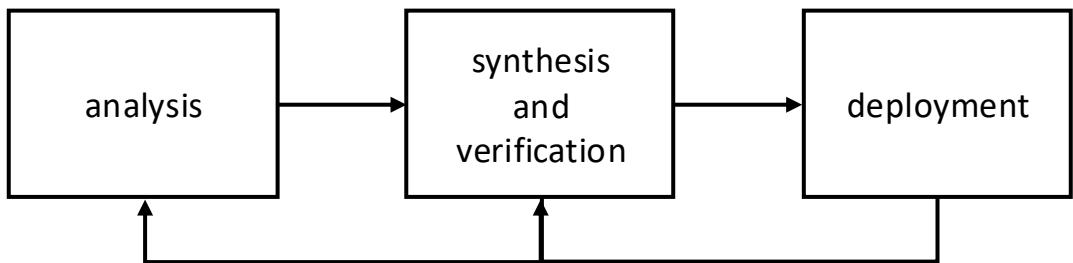
Non-negative polynomials are sum of square of *rational* functions



Motzkin [1967]:
 $p = x^4y^2 + x^2y^4 + 1 - 3x^2y^2$
is nonnegative,
not a sum of squares,
but $(x^2 + y^2)^2 p$ is SoS

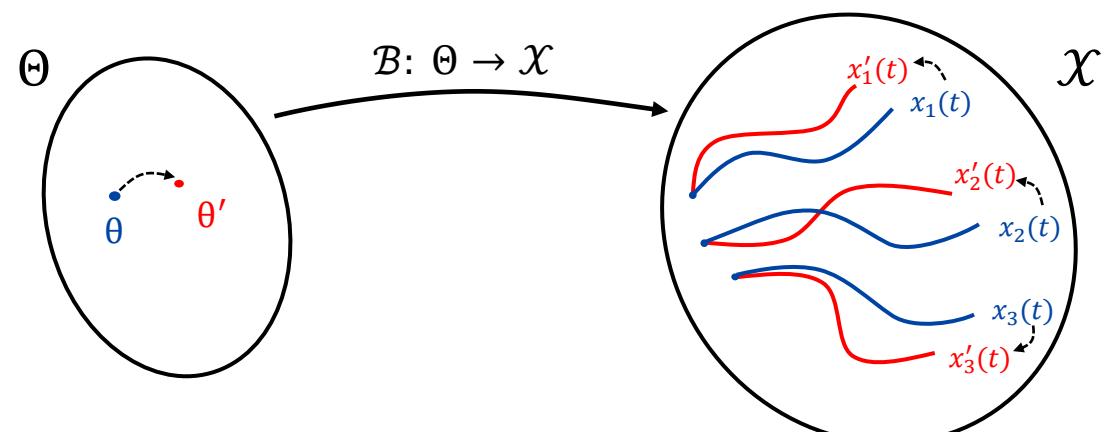
Methodological challenges

- Focused on a ***design-then-deploy*** philosophy
 - Most methods have a strict separation between control synthesis and deployment
- Synthesis usually aims for the ***best*** (optimal) controller
 - Lack of exploration of the benefits of designing sub-optimal controllers
- Policy ***parameters*** can ***drastically affect*** the system's ***behavior***
 - The params to behavior maps are highly sensitive to perturbations



$$\begin{aligned} \text{RL: } \max_{\pi} \quad & J(\pi) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right] \\ \text{s.t. } \quad & s_{t+1} \sim P(\cdot | s_t, a_t), \quad a_t \sim \pi(\cdot | s_t) \end{aligned}$$

$$\begin{aligned} \text{Optimal Control: } \min_{u(\cdot)} \quad & J = \int_0^T L(x(t), u(t), t) dt + \Phi(x(T)) \\ \text{s.t. } \quad & \dot{x}(t) = f(x(t), u(t), t), \quad x(0) = x_0 \end{aligned}$$



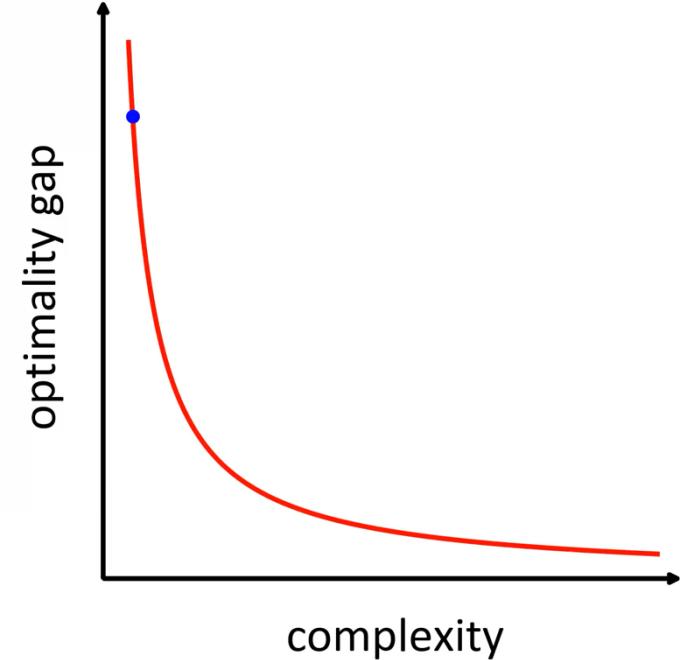
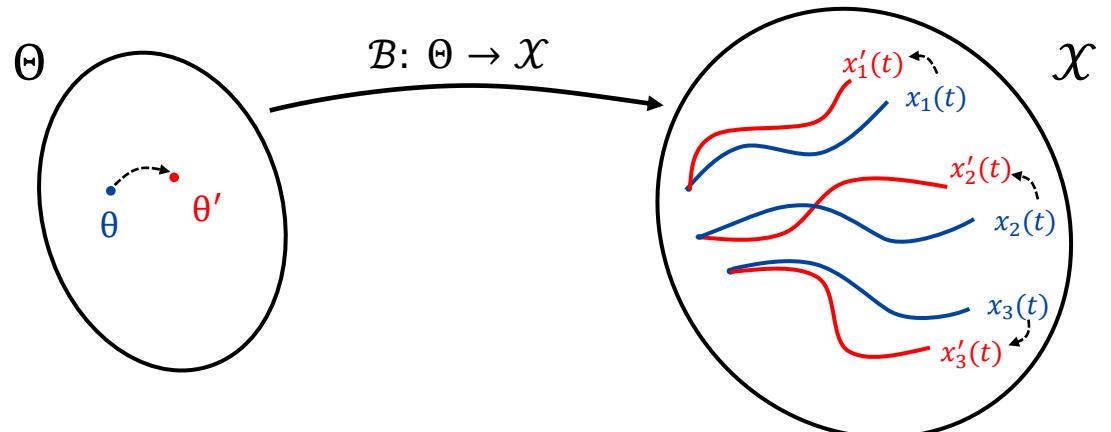
Aspirational Goals

To design policies as nature does...

refining post deployment self improving, with each trial discarding poor decisions reinforcing good ones

Research Goals

- To develop analysis and design methods that *trade off complexity and performance*.
- To allow for *continual improvement*, without the need for redesign, retune, or retrain
- To design control policies with controlled sensitivity to parameter changes



Outline

- **Nonparametric Analysis of Dynamical Systems**
 - *Stability*: Recurrent Lyapunov Functions
 - *Safety*: Recurrent Barrier Functions
- **Nonparametric Control Policies**
 - Making Decisions Directly from Data
 - A Policy Improvement Theorem

Outline

- **Nonparametric Analysis of Dynamical Systems**
 - *Stability*: Recurrent Lyapunov Functions
 - *Safety*: Recurrent Barrier Functions
- **Nonparametric Control Policies**
 - Making Decisions Directly from Data
 - A Policy Improvement Theorem

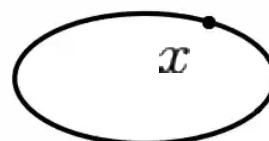
Problem setup

Continuous time dynamical system: $\dot{x}(t) = f(x(t))$

- Initial condition $x_0 = x(0)$, solution at time t : $\phi(t, x_0)$.

| **Asymptotic behavior: Ω -Limit Set $\Omega(f)$**

| $x \in \Omega(f) \iff \exists x_0, \{t_n\}_{n \geq 0}, \text{ s.t. } \lim_{n \rightarrow \infty} t_n = \infty \text{ and } \lim_{n \rightarrow \infty} \phi(t_n, x_0) = x$



Problem setup

Continuous time dynamical system: $\dot{x}(t) = f(x(t))$

- Initial condition $x_0 = x(0)$, solution at time t : $\phi(t, x_0)$.

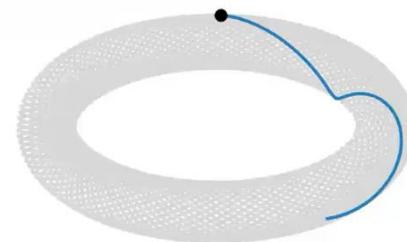
Ω -Limit Set $\Omega(f)$:

$x \in \Omega(f) \iff \exists x_0, \{t_n\}_{n \geq 0}$, s.t. $\lim_{n \rightarrow \infty} t_n = \infty$ and $\lim_{n \rightarrow \infty} \phi(t_n, x_0) = x$

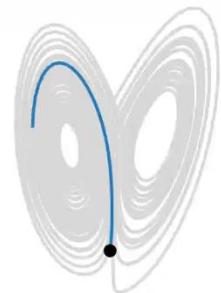
Types of Ω -limit set

equilibrium

limit cycle



limit torus



chaotic attractor

Remark: invariance is a shared property, thus a natural tool for analysis

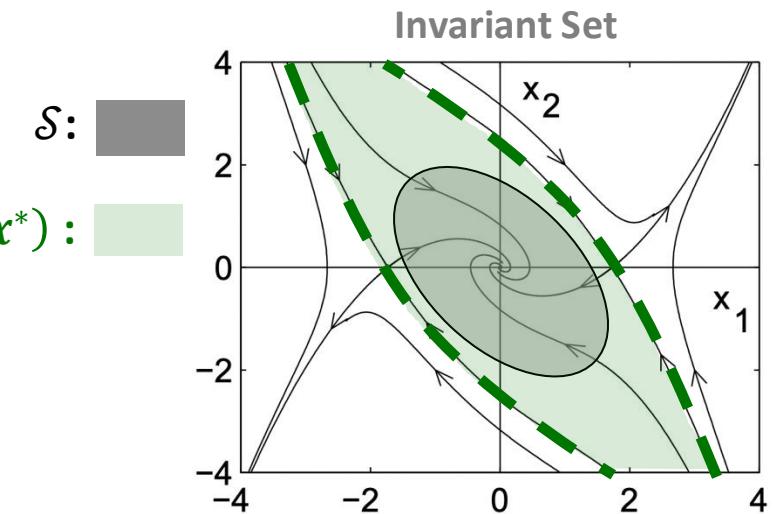
Invariant sets: Merits

A set $\mathcal{S} \subseteq \mathbb{R}^d$ is **positively invariant** if and only if: $x_0 \in \mathcal{S} \rightarrow \phi(t, x_0) \in \mathcal{S}, \forall t \geq 0$

Any trajectory starting in the set remains in inside it for all times

- **Invariant sets approximate regions of attraction**

Compact invariant set \mathcal{S} , containing **only** $\{x^*\} = \Omega(f) \cap \mathcal{S}$ must be in the region of attraction $\mathcal{A}(x^*)$ ($\mathcal{S} \subset \mathcal{A}(x^*)$)



Invariant sets: Merits

A set $\mathcal{S} \subseteq \mathbb{R}^d$ is **positively invariant** if and only if: $x_0 \in \mathcal{S} \rightarrow \phi(t, x_0) \in \mathcal{S}, \forall t \geq 0$

Any trajectory starting in the set remains in inside it for all times

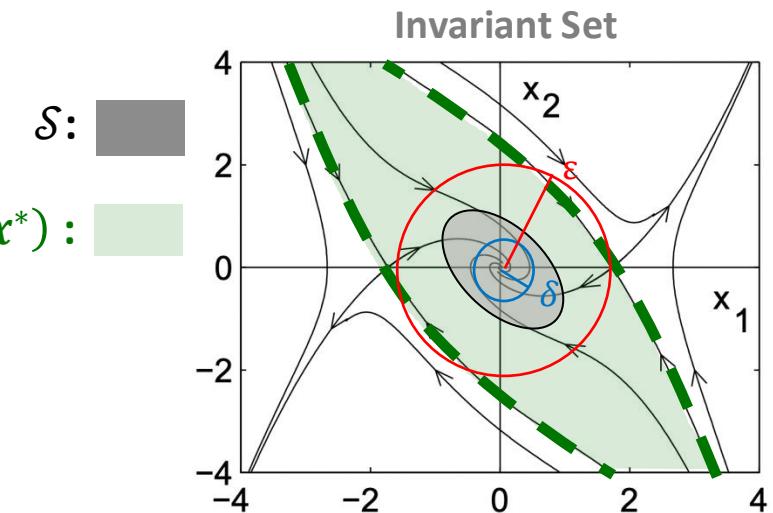
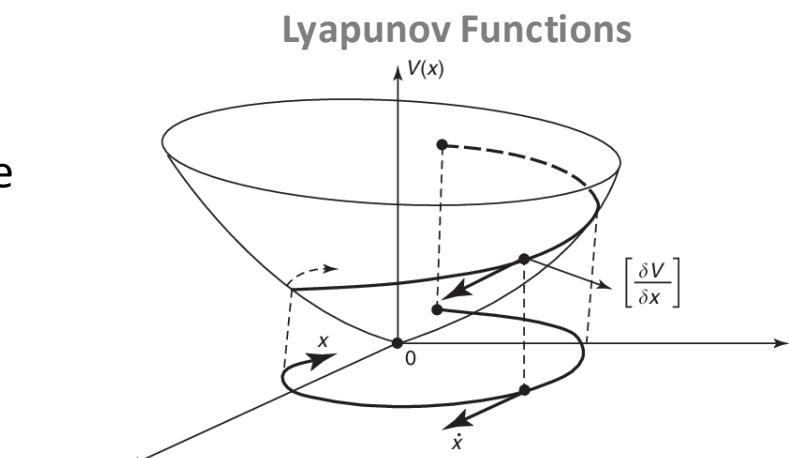
- **Invariant sets approximate regions of attraction**

Compact invariant set \mathcal{S} , containing **only** $\{x^*\} = \Omega(f) \cap \mathcal{S}$ must be in the region of attraction $\mathcal{A}(x^*)$ ($\mathcal{S} \subset \mathcal{A}(x^*)$)

- **Invariant sets guarantee stability**

Lyapunov stability: solutions starting "close enough" to the equilibrium remain "close enough"

Asymptotic stability: solutions that start close enough, remain close enough, and eventually converge to equilibrium.



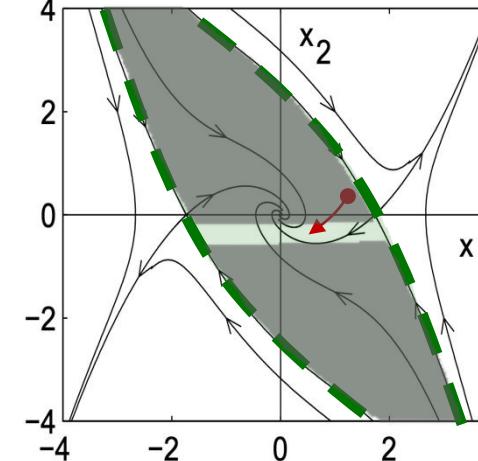
Invariant sets: Challenges

A set $\mathcal{S} \subseteq \mathbb{R}^d$ is **positively invariant** if and only if: $x_0 \in \mathcal{S} \rightarrow \phi(t, x_0) \in \mathcal{S}, \forall t \geq 0$

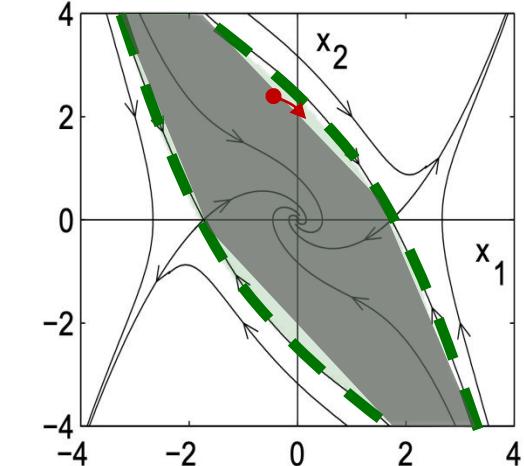
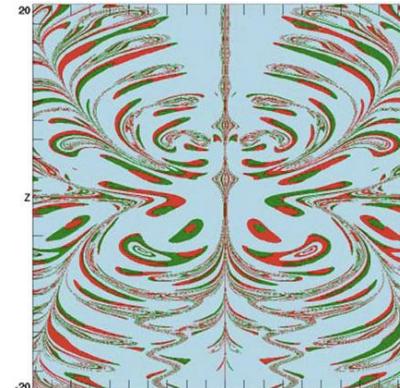
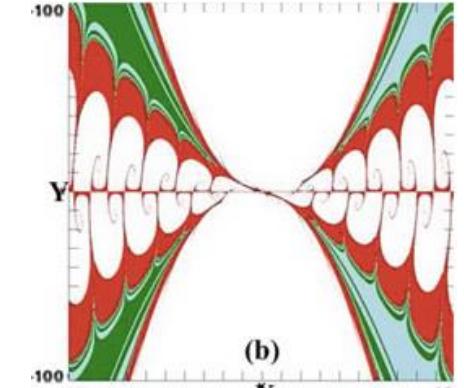
Any trajectory starting in the set remains in inside it for all times

- **\mathcal{S} is topologically constrained**
 - If $\mathcal{S} \cap \Omega(f) = \{x^*\}$, then \mathcal{S} is connected
- **\mathcal{S} is geometrically constrained**
 - f should not point outwards for $x \in \partial\mathcal{S}$
- **\mathcal{S} geometry can be wild**
 - $\mathcal{A}(\Omega(f))$ can be fractal

$\mathcal{S}:$
 $\mathcal{A}(x^*):$ 



A not invariant trajectory:
Basin of $\Omega(f)$



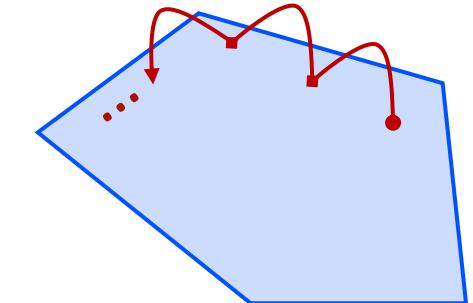
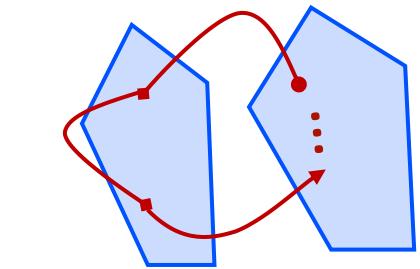
Recurrent sets: Letting things go, and come back

A set $\mathcal{R} \subseteq \mathbb{R}^d$ is **recurrent** if for any $x_0 \in \mathcal{R}$ and $t \geq 0$, $\exists t' \geq t$ s.t. $\phi(t', x_0) \in \mathcal{R}$.

Property of Recurrent Sets

- \mathcal{R} need **not** be **connected**
- \mathcal{R} does **not** require f to **point inwards** on all $\partial\mathcal{R}$

Recurrent sets, while not invariant, guarantee that solutions that start in this set, will come back **infinitely often, forever!**



Recurrent set \mathcal{R} :

A recurrent trajectory:

Question: Can we use recurrent sets as functional substitutes of invariant sets?

Outline

- **Nonparametric Analysis of Dynamical Systems**
 - *Stability*: Recurrent Lyapunov Functions
 - *Safety*: Recurrent Barrier Functions
- **Nonparametric Control Policies**
 - Making Decisions Directly from Data
 - A Policy Improvement Theorem

Outline

- **Nonparametric Analysis of Dynamical Systems**
 - *Stability*: Recurrent Lyapunov Functions
 - *Safety*: Recurrent Barrier Functions
- **Nonparametric Control Policies**
 - Making Decisions Directly from Data
 - A Policy Improvement Theorem

Roy Siegelmann

Yue Shen

Fernando Paganini

Nonparametric Stability Analysis

R. Siegelmann, Y. Shen, F. Paganini, and E. Mallada, “A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions”, CDC 2023

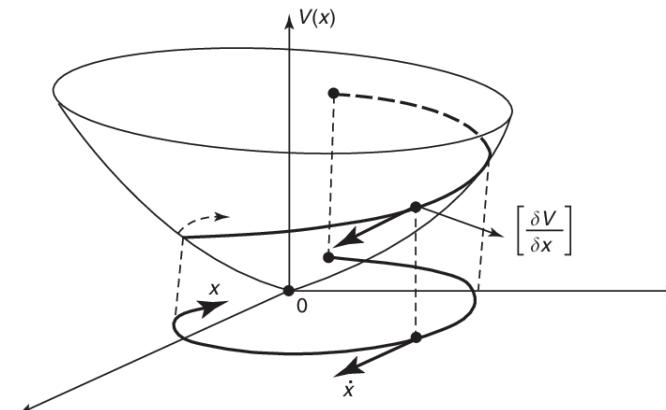
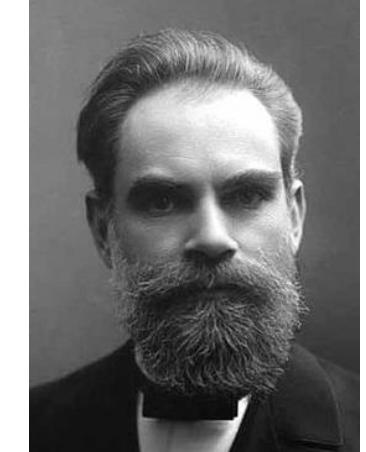
R. Siegelmann, Y. Shen, F. Paganini, and E. Mallada, “Recurrent Lyapunov Functions”, TAC 2025, submitted

Lyapunov's Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

Theorem [Lyapunov '1892]. Given $V: \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$, with $V(x) > 0, \forall x \in \mathbb{R}^d \setminus \{x^*\}$, then:

- $\dot{V} \leq 0 \rightarrow x^* \text{ stable}$
- $\dot{V} < 0 \rightarrow x^* \text{ as. stable}$



Challenge: Couples shape of V and vector field f

- Towards decoupling the $V - f$ geometry
 - Controlling regions where $\dot{V} \geq 0$ [Karafyllis '09, Liu et al '20]
 - Higher order conditions: $g(V^{(q)}, \dots, \dot{V}, V) \leq 0$ [Butz '69, Gunderson '71, Ahmadi '06, Meigoli '12]
 - Discretization approach: $V(x(T)) \leq V(x(0))$ [Coron et al '94, Aeyels et. al '98, Karafyllis '12]
 - Multiple Lyapunov Functions: $\{V_j: j \in [k]\}$ [Ahmadi et al '14]

A Butz. Higher order derivatives of Lyapunov functions. IEEE Transactions on automatic control, 1969

Gunderson. A comparison lemma for higher order trajectory derivatives. Proceedings of the American Mathematical Society, 1971

Coron, Lionel Rosier. A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Syst., Estimation, Control, 1994

Aeyels, Peuteman. A new asymptotic stability criterion for nonlinear time-variant differential equations. IEEE Transactions on automatic control, 1998

Ahmadi. Non-monotonic Lyapunov functions for stability of nonlinear and switched systems: theory and computation, 2008

Karafyllis, Kravaris, Kalogerakis. Relaxed Lyapunov criteria for robust global stabilisation of non-linear systems. International Journal of Control, 2009

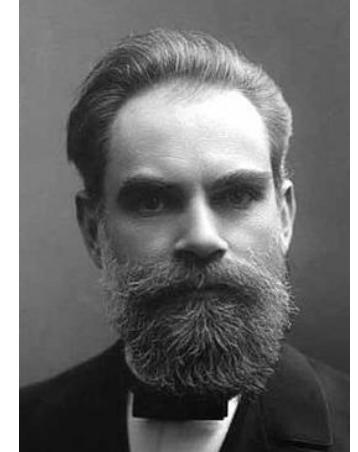
Meigoli, Nikravesh. Stability analysis of nonlinear systems using higher order derivatives of Lyapunov function candidates. Systems & Control Letters, 2012

Karafyllis. Can we prove stability by using a positive definite function with non sign-definite derivative? IMA Journal of Mathematical Control and Information, 2012

Ahmadi, Jungers, Parrilo, Rozbehani. Joint spectral radius and path-complete graph Lyapunov functions. SIAM Journal on Control and Optimization, 2014

Liu, Liberzon, Zharnitsky. Almost Lyapunov functions for nonlinear systems. Automatica, 2020

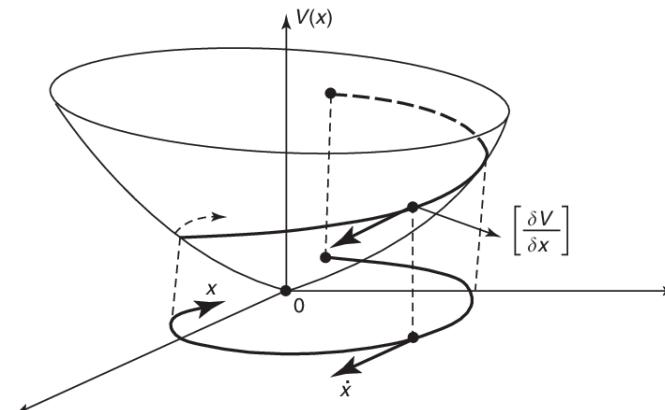
Lyapunov's Direct Method



Key idea: Make sub-level sets invariant to trap trajectories

Theorem [Lyapunov '1892]. Given $V: \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$, with $V(x) > 0, \forall x \in \mathbb{R}^d \setminus \{x^*\}$, then:

- $\dot{V} \leq 0 \rightarrow x^* \text{ stable}$
- $\dot{V} < 0 \rightarrow x^* \text{ as. stable}$



Challenge: Couples shape of V and vector field f

- Towards decoupling the $V - f$ geometry
 - Controlling regions where $\dot{V} \geq 0$ [Karafyllis '09, Liu et al '20]
 - Higher order conditions: $g(V^{(q)}, \dots, \dot{V}, V) \leq 0$ [Butz '69, Gunderson '71, Ahmadi '06, Meigoli '12]
 - Discretization approach: $V(x(T)) \leq V(x(0))$ [Coron et al '94, Aeyels et. al '98, Karafyllis '12]
 - Multiple Lyapunov Functions: $\{V_j: j \in [k]\}$ [Ahmadi et al '14]

Question: Can we provide stability conditions based on recurrence?

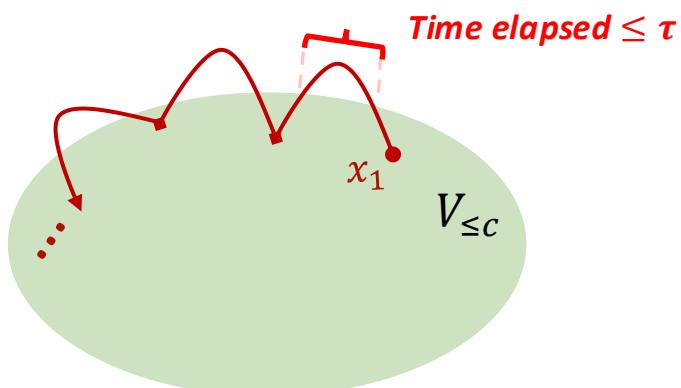
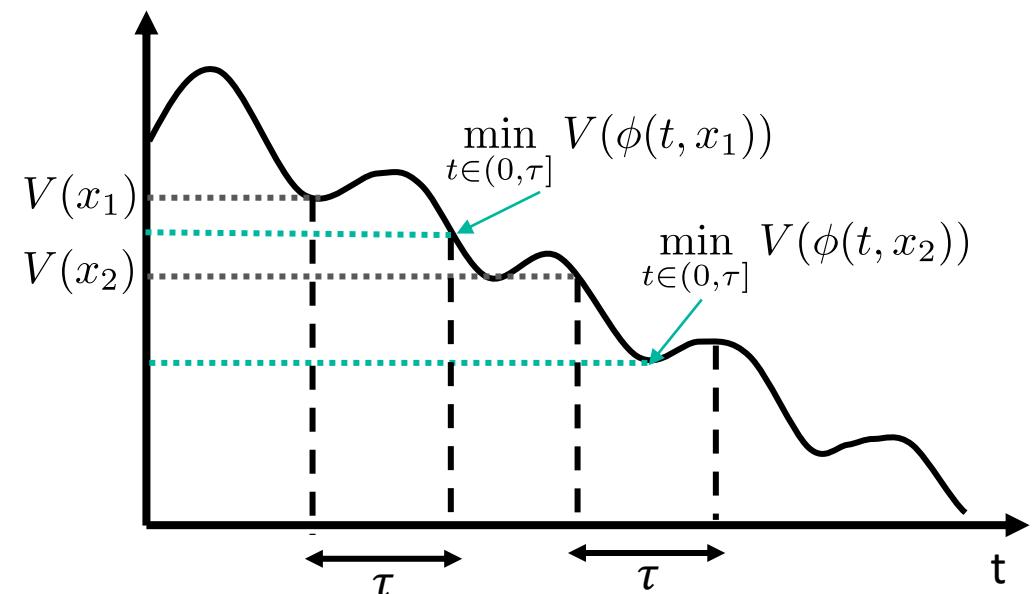
Recurrent Lyapunov Functions

A continuous function $V: \mathbb{R}^d \rightarrow \mathbb{R}_+$ is a **Recurrent Lyapunov Function** if

$$\mathcal{L}_f^{(0, \tau]} V(x) := \min_{t \in (0, \tau]} V(\phi(t, x)) - V(x) \leq 0 \quad \forall x \in \mathbb{R}^d$$

Preliminaries:

- Sub-level sets $\{V(x) \leq c\}$ are τ -recurrent sets.



Definition: A set $\mathcal{R} \subseteq \mathbb{R}^d$ is **τ -recurrent** if for any $x_0 \in \mathcal{R}$ and $t \geq 0$, $\exists t' \in (t, t + \tau]$ s.t. $\phi(t', x_0) \in \mathcal{R}$.

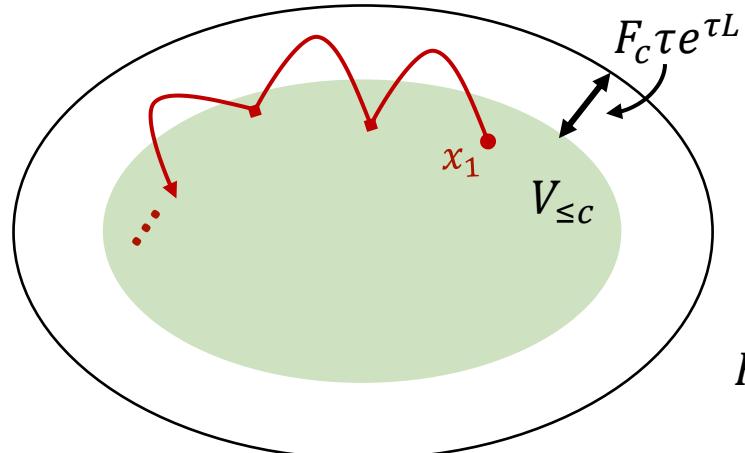
Recurrent Lyapunov Functions

A continuous function $V: \mathbb{R}^d \rightarrow \mathbb{R}_+$ is a **Recurrent Lyapunov Function** if

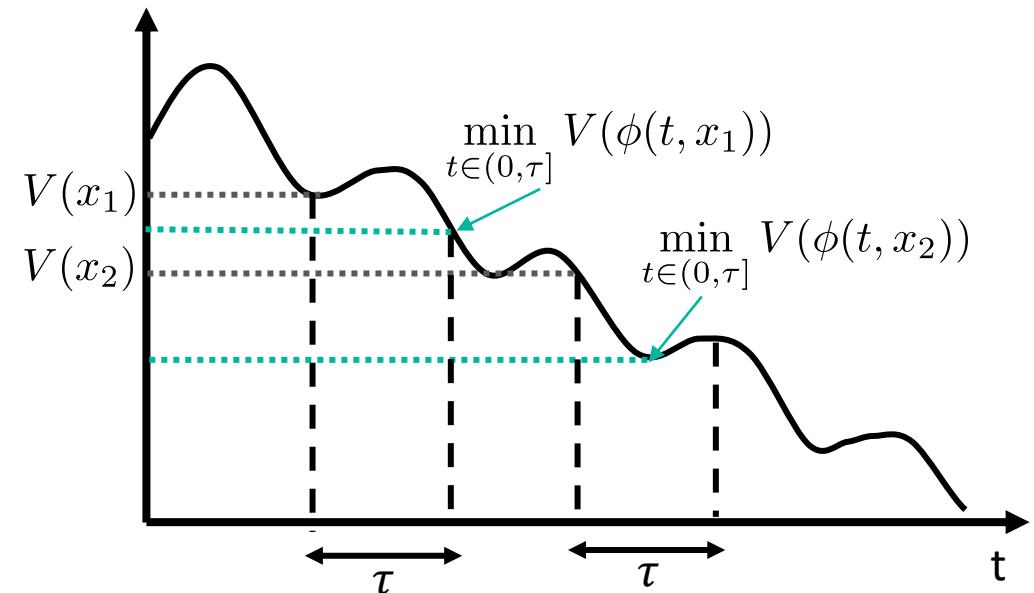
$$\mathcal{L}_f^{(0, \tau]} V(x) := \min_{t \in (0, \tau]} V(\phi(t, x)) - V(x) \leq 0 \quad \forall x \in \mathbb{R}^d$$

Preliminaries:

- Sub-level sets $\{V(x) \leq c\}$ are τ -recurrent sets.
- When f is L -Lipschitz, one can trap trajectories.



$$F_c = \max_{x \in V_{\leq c}} \|f(x)\|$$



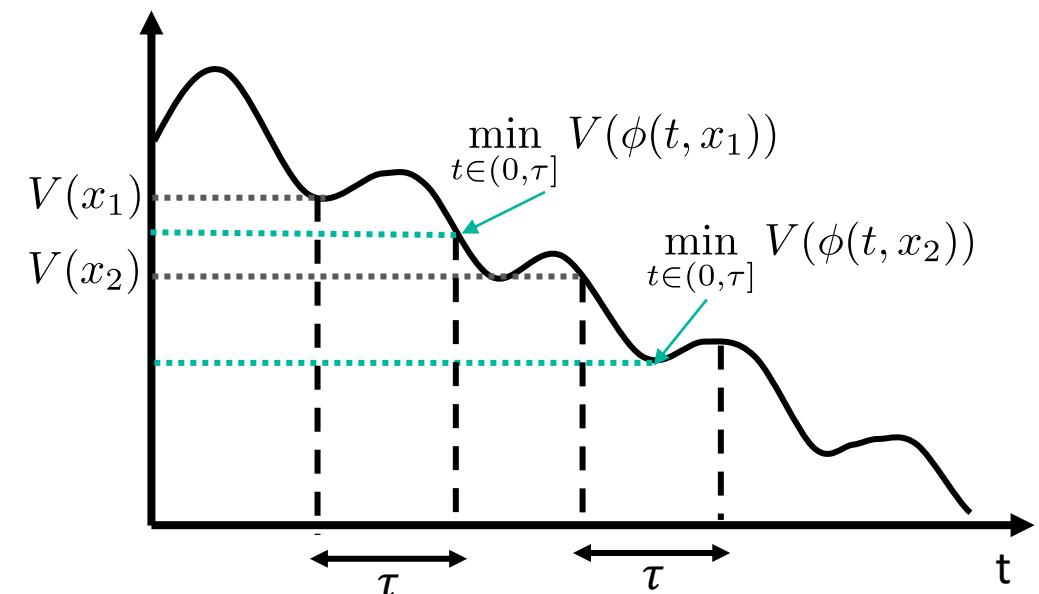
Recurrent Lyapunov Functions

A continuous function $V: \mathbb{R}^d \rightarrow \mathbb{R}_+$ is a **Recurrent Lyapunov Function** if

$$\mathcal{L}_f^{(0, \tau]} V(x) := \min_{t \in (0, \tau]} V(\phi(t, x)) - V(x) \leq 0 \quad \forall x \in \mathbb{R}^d$$

Theorem [CDC 23]: Let $V: \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$ be a Recurrent Lyapunov Function and let f be L -Lipschitz

- Then, the equilibrium x^* is stable.



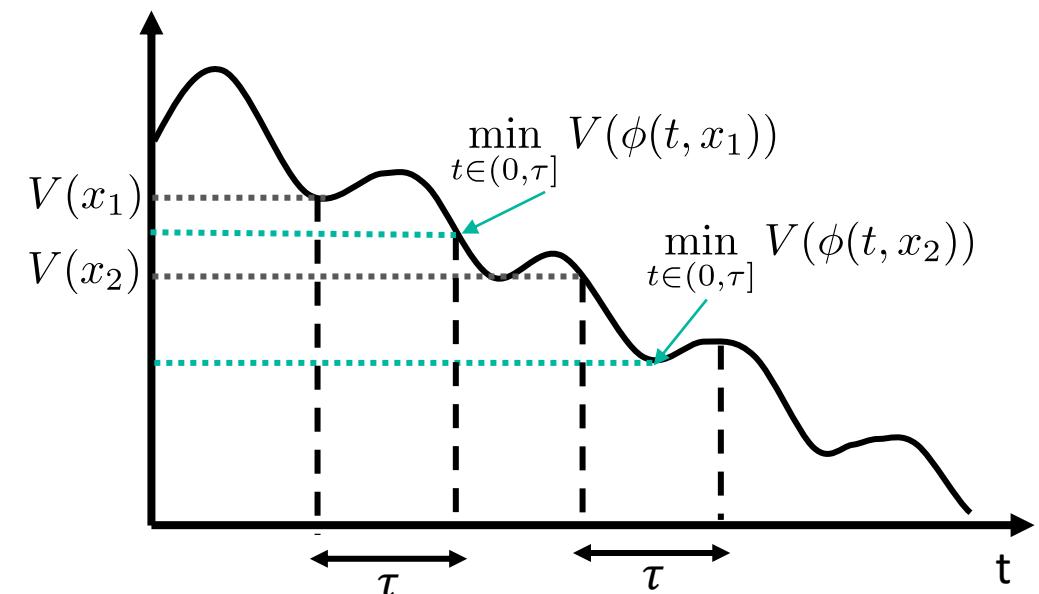
Recurrent Lyapunov Functions

A continuous function $V: \mathbb{R}^d \rightarrow \mathbb{R}_+$ is a **Recurrent Lyapunov Function** if

$$\mathcal{L}_f^{(0, \tau]} V(x) := \min_{t \in (0, \tau]} V(\phi(t, x)) - V(x) < 0 \quad \forall x \in \mathbb{R}^d$$

Theorem [CDC 23]: Let $V: \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$ be a Recurrent Lyapunov Function and let f be L -Lipschitz

- Then, the equilibrium x^* is stable.
- Further, if the inequality is **strict**, then x^* is asymptotically stable!



Exponential Stability Analysis

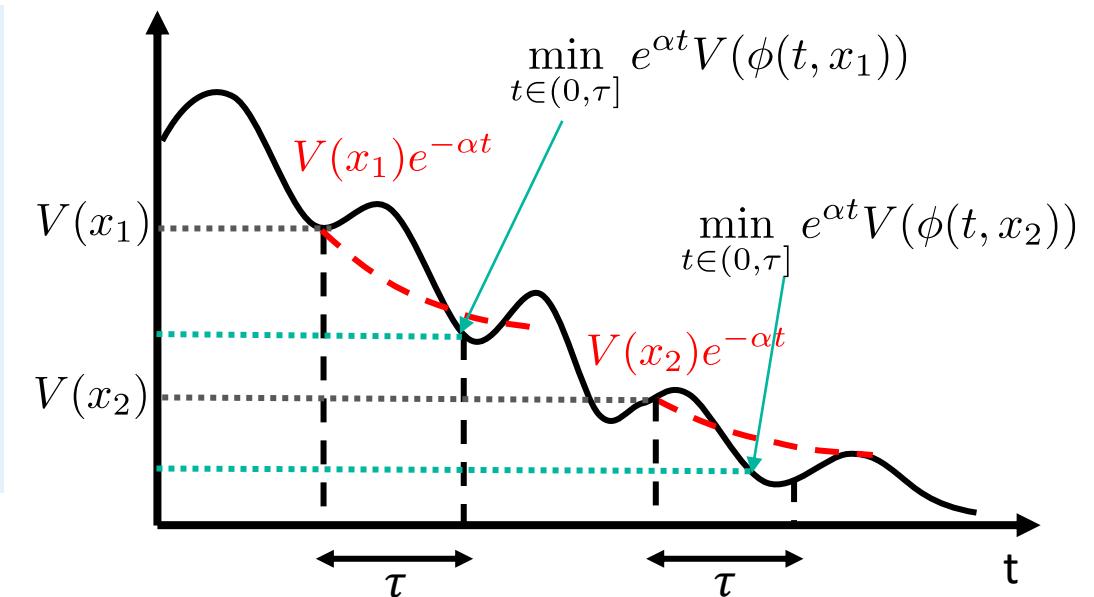
The function $V: \mathbb{R}^d \rightarrow \mathbb{R}_+$ is **α -Exponential Recurrent Lyapunov Function** if

$$L_{f, \leftarrow}^{(0, \infty)} V(x) := \min_{t \geq (0, \infty)} e^{-\alpha t} V(\varphi(t, x)) - V(x) \leq 0 \quad \forall x \in \mathbb{R}^d$$

Theorem [CDC 23]: Let $V: \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$ satisfy

$$\alpha_1 \|x - x^*\| \leq V(x) \leq \alpha_2 \|x - x^*\|.$$

Then, if V is **α -Exponential Recurrent Lyapunov Function**, x^* is α -exponentially stable.



Norm-based Converse Theorem

Theorem: Assume x^* is λ -exponentially stable: $\exists K, \lambda > 0$ such that:

$$\|\phi(t, x) - x^*\| \leq K e^{-\lambda t} \|x - x^*\|, \quad \forall x \in \mathbb{R}^d.$$

Then, $V(x) = \|x - x^*\|$ is α -Exponential Recurrent Lyapunov Function, i.e.,

$$\min_{t \in (0, \tau]} e^{\alpha t} \|\phi(t, x) - x^*\| - \|x - x^*\| \leq 0, \quad \forall x \in \mathbb{R}^d,$$

whenever $\alpha < \lambda$ and $\tau \geq \frac{1}{\lambda - \alpha} \ln K$.

Remarks:

- The rate α must be strictly smaller than the rate of convergence λ (trading off optimality).
- Any norm is a Lyapunov function!

Question: Is the struggle for its search over?

Trajectory-based Verification

Proposition [CDC 23]: Let $\|\cdot\|$ be any norm and $x^* = 0$. Then, whenever

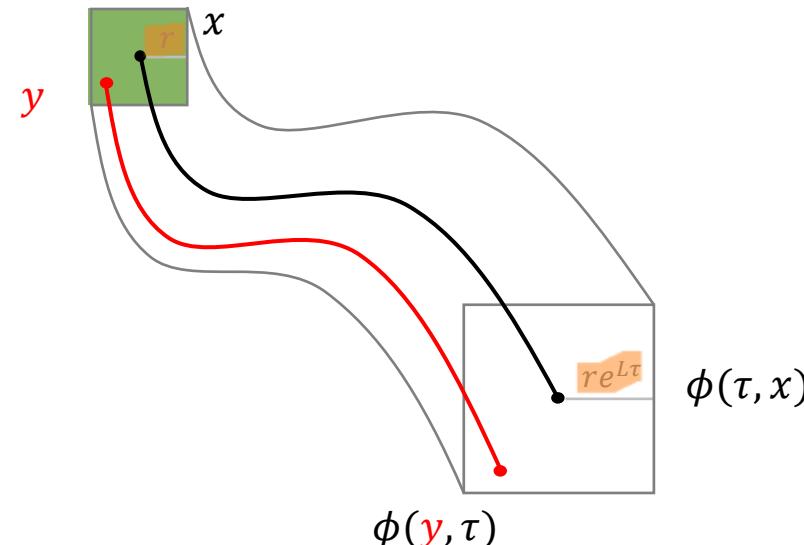
$$\min_{t \in (0, \tau]} e^{\alpha t} (\|\phi(x, t)\| + r e^{L t}) \leq \|x\| - r$$

for all y with $\|y - x\| \leq r$

$$\min_{t \in (0, \tau]} e^{\alpha t} \|\phi(y, t)\| \leq \|y\|$$

Remarks:

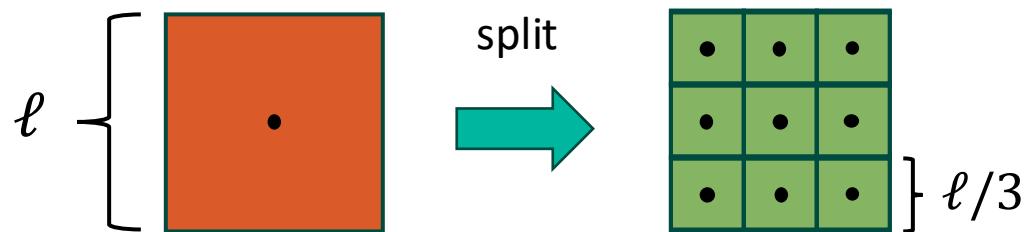
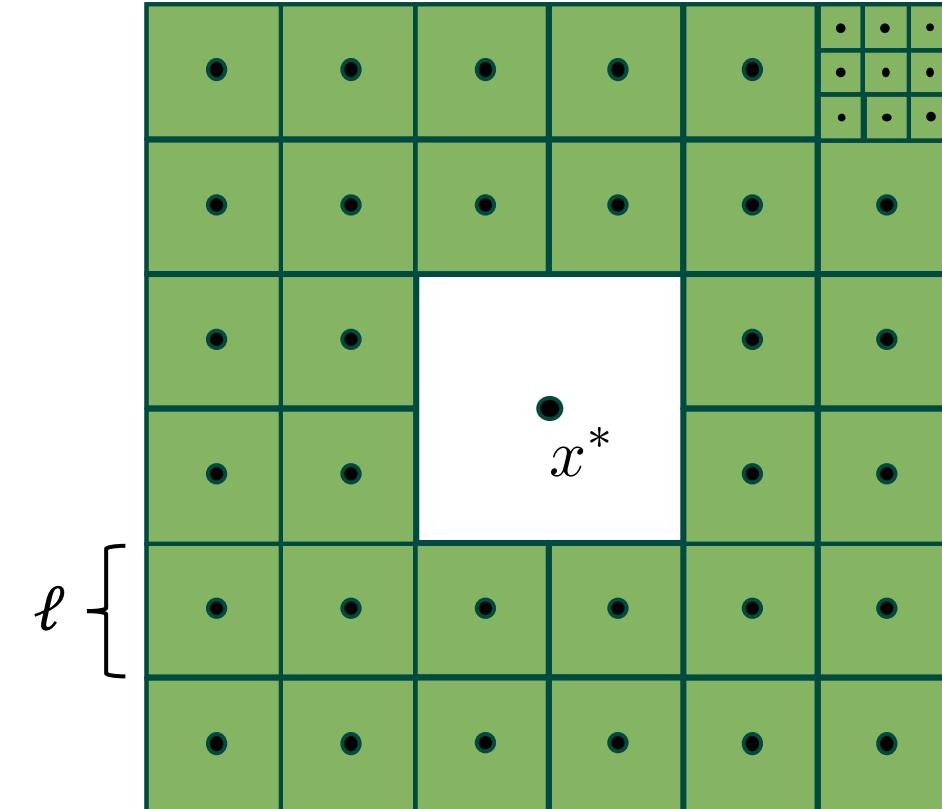
- Only requires a trajectory of length τ
- Trades off between **radius r** and verified **performance α**
- Amenable for parallel computations **using GPUs**



Nonparametric Stability Verification via GPUs

- **Basic Algorithm:**

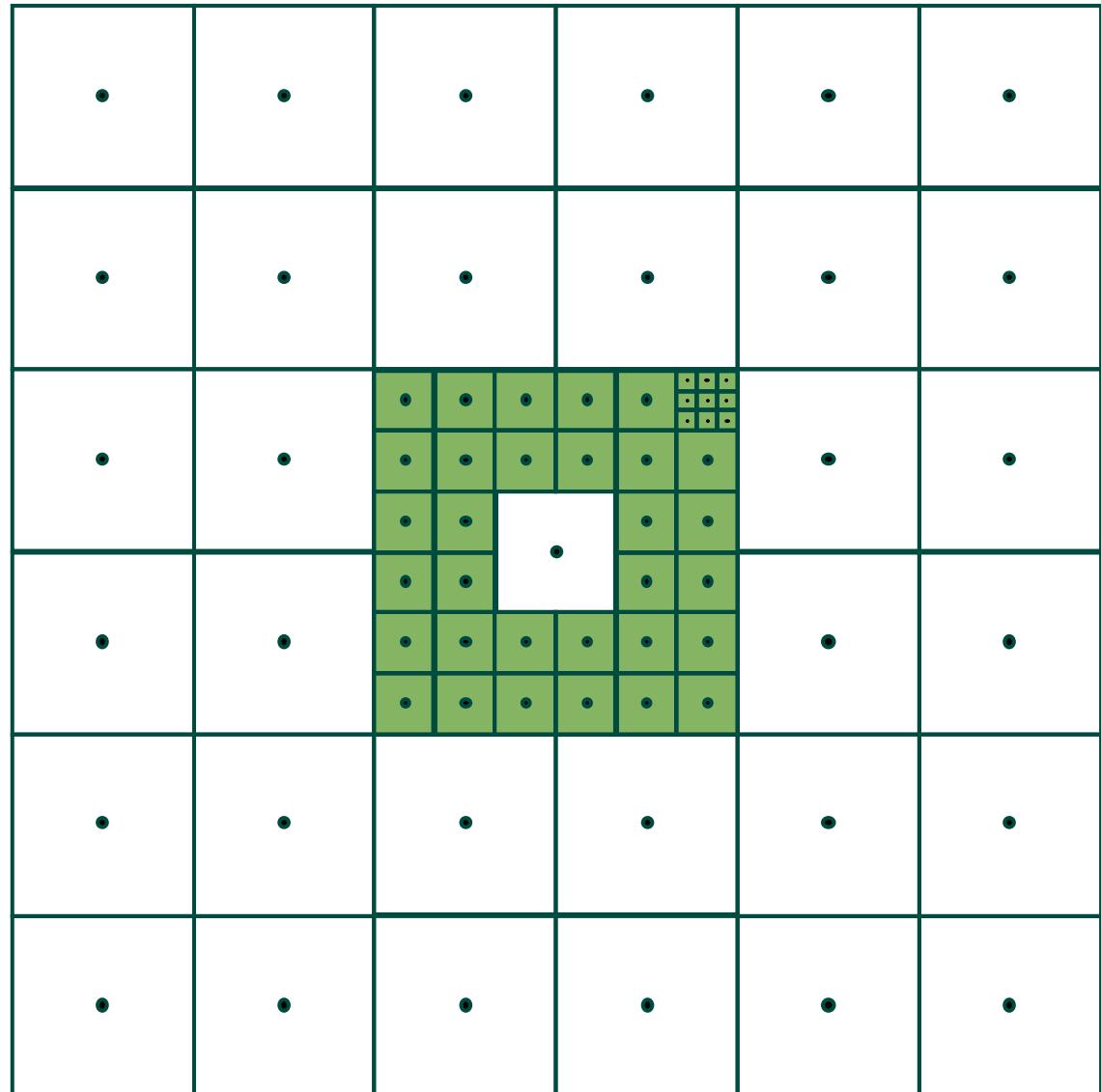
- Consider $V(x) = ||x - x^*||_\infty$
- Build a grid of hypercubes surrounding x^*
- Test grid center points:
 - Simulate trajectories of length τ
 - Find α s.t. the verified radius is $r \geq \ell/2$
- Hypercube **not verified, split in 3^d parts**
- Repeat testing of new points



Nonparametric Stability Verification via GPUs

- **Basic Algorithm:**

- Consider $V(x) = ||x - x^*||_\infty$
- Build a grid of hypercubes surrounding x^*
- Test grid center points:
 - Simulate trajectories of length τ
 - Find α s.t. the verified radius is $r \geq \ell/2$
- Hypercube **not verified, split in 3^d parts**
- Repeat testing of new points
- **Exponentially expand** to outer layer
- Repeat testing in new layer



Nonparametric Stability Verification via GPUs

- **Basic Algorithm:**

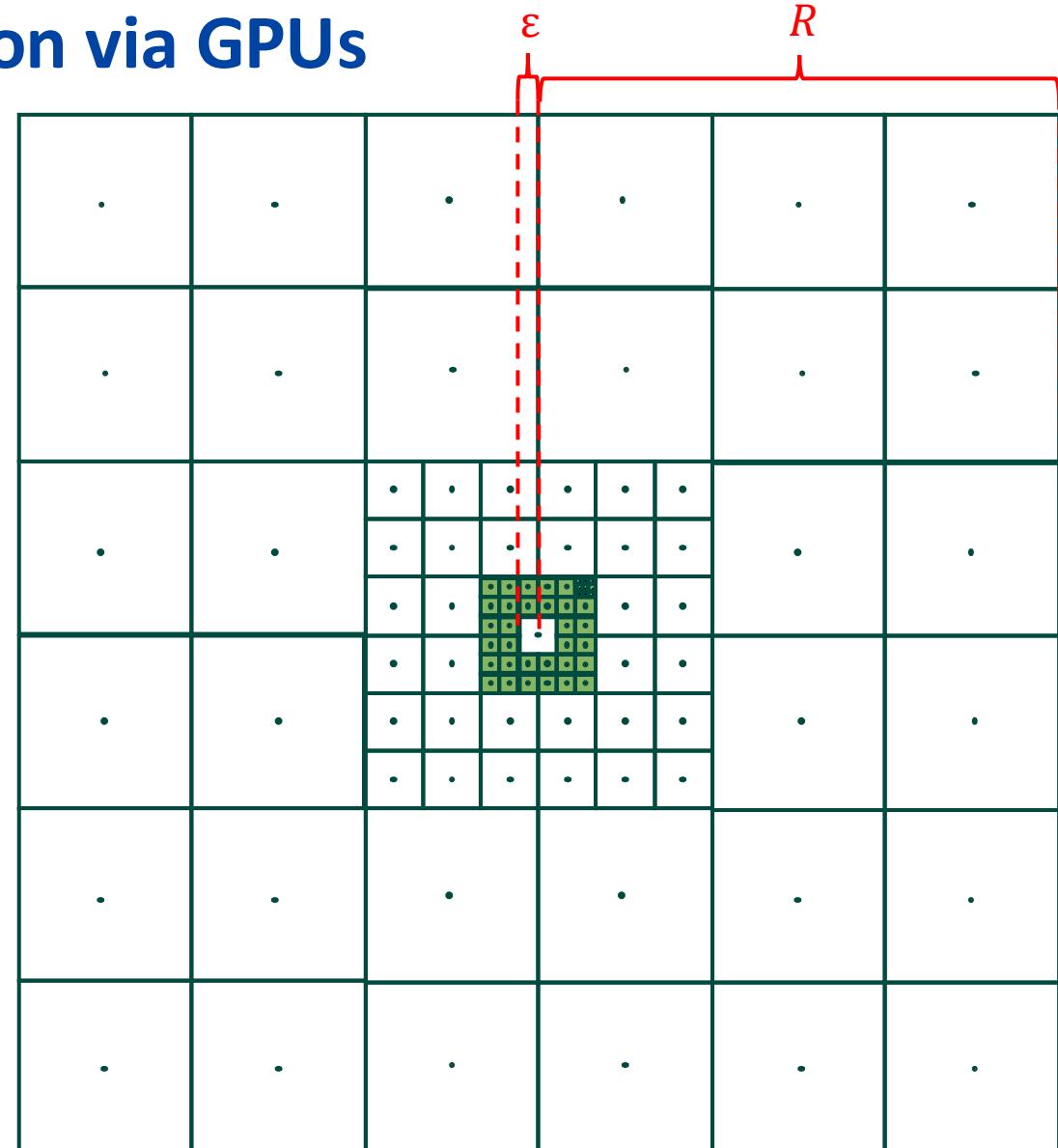
- Consider $V(x) = \|x - x^*\|_\infty$
- Build a grid of hypercubes surrounding x^*
- Test grid center points:
 - Simulate trajectories of length τ
 - Find α s.t. the verified radius is $r \geq \ell/2$
- Hypercube **not verified, split in 3^d parts**
- Repeat testing of new points
- **Exponentially expand** to outer layer
- Repeat testing in new layer

Q: How many samples are needed?

If x^* is λ -exp. stable

$$\mathcal{O}\left(q^{-d} \log\left(\frac{R}{\varepsilon}\right)\right)$$

with $q = \frac{1 - K e^{(\alpha - \lambda)\tau}}{1 + e^{(L + \alpha)\tau}} < 1$.



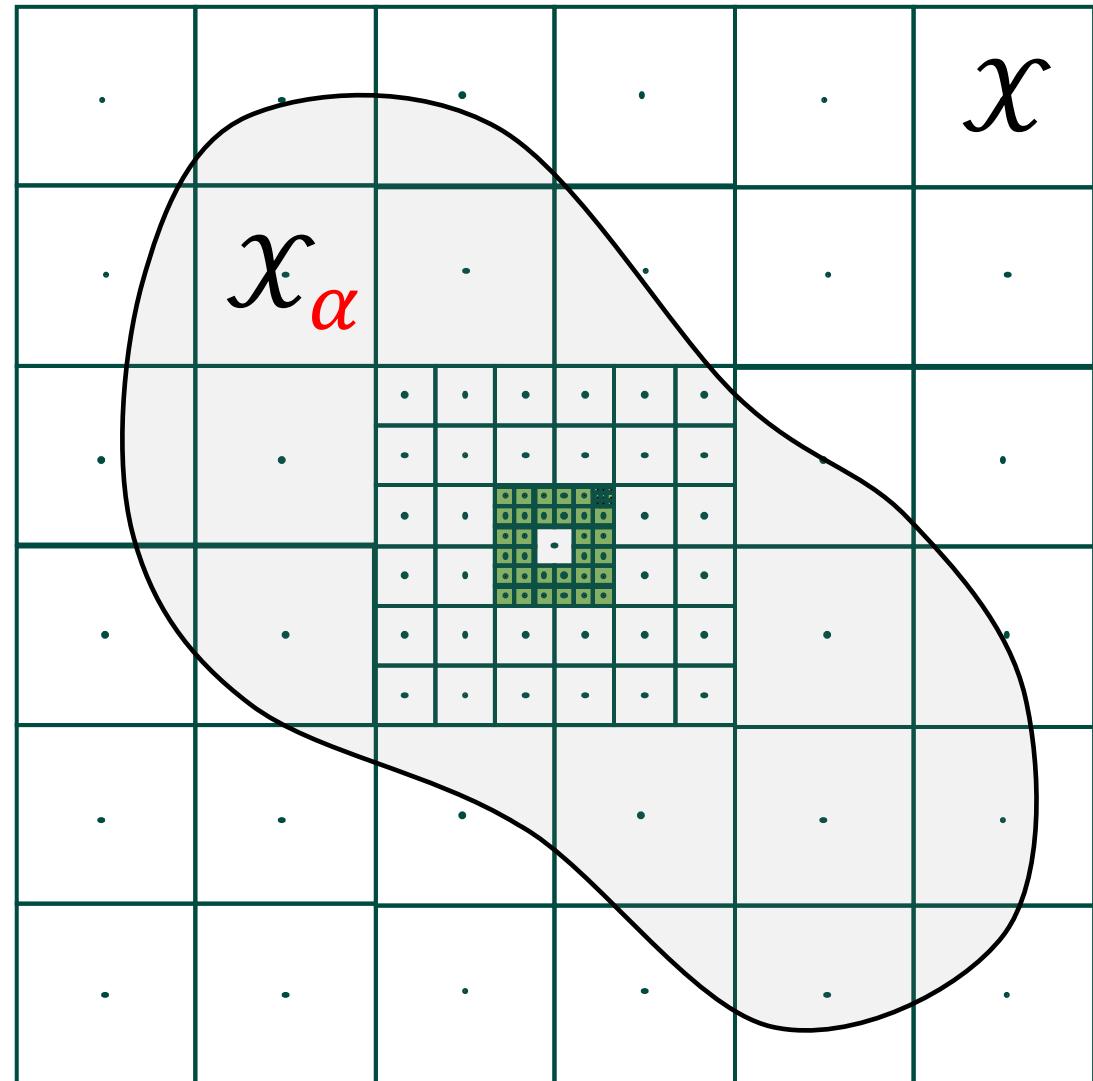
Nonparametric Stability Verification via GPUs

- **Basic Algorithm:**

- Consider $V(x) = \|x - x^*\|_\infty$
- Build a grid of hypercubes surrounding x^*
- Test grid center points:
 - Simulate trajectories of length τ
 - Find α s.t. the verified radius is $r \geq \ell/2$
- Hypercube **not verified, split in 3^d parts**
- Repeat testing of new points
- **Exponentially expand** to outer layer
- Repeat testing in new layer

- **Two Alg. Variations:**

- Alg. 1: Find largest α_{\max} for region \mathcal{X}
- Alg. 2: Find region \mathcal{X}_α for given α



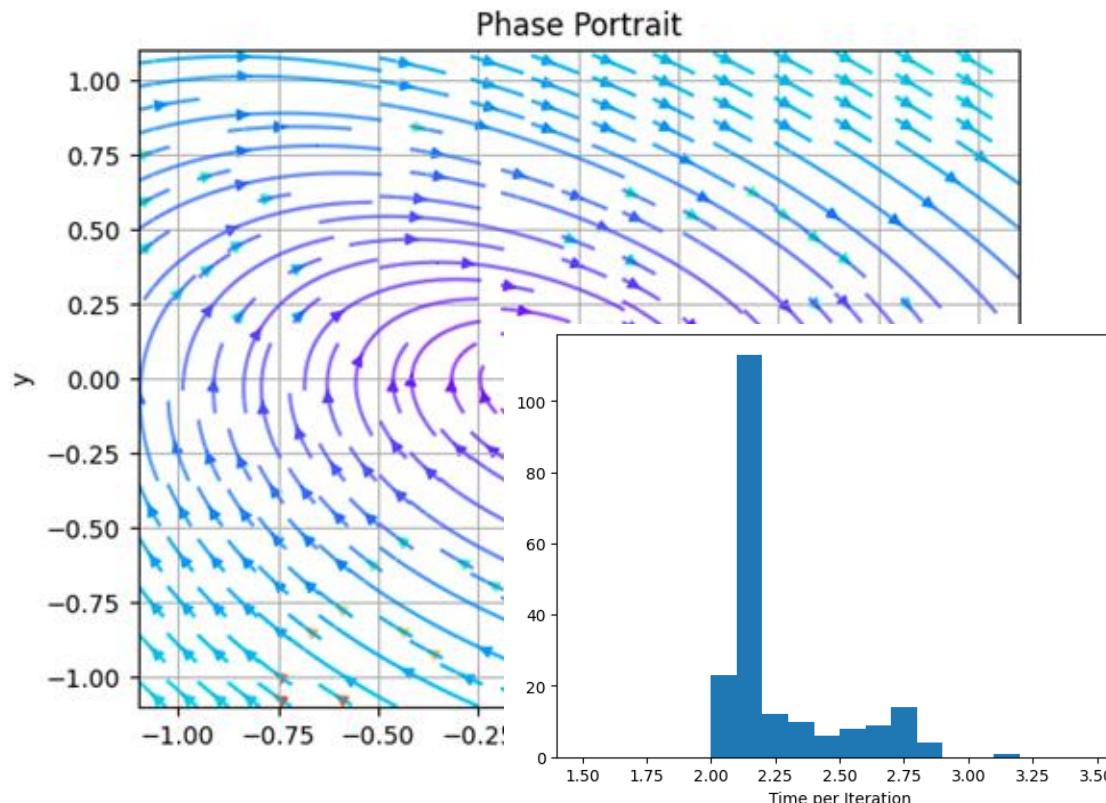
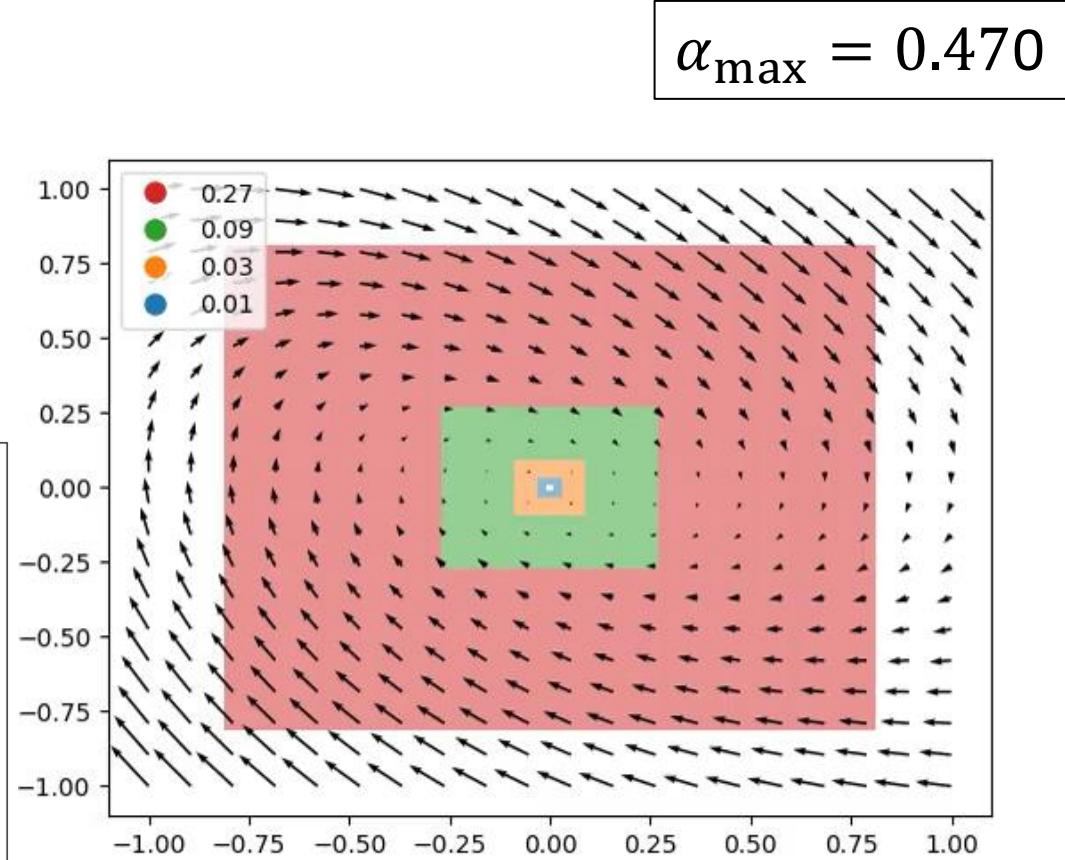
Numerical Illustration – Find Best α

Consider the 2-d non-linear system:
with $B_{ij} \sim \mathcal{N}(0, \sigma^2)$

$$\dot{x} = \begin{bmatrix} 0 & 2 \\ -1 & -1 \end{bmatrix} x + B \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}$$

$$\sigma = 0.3$$

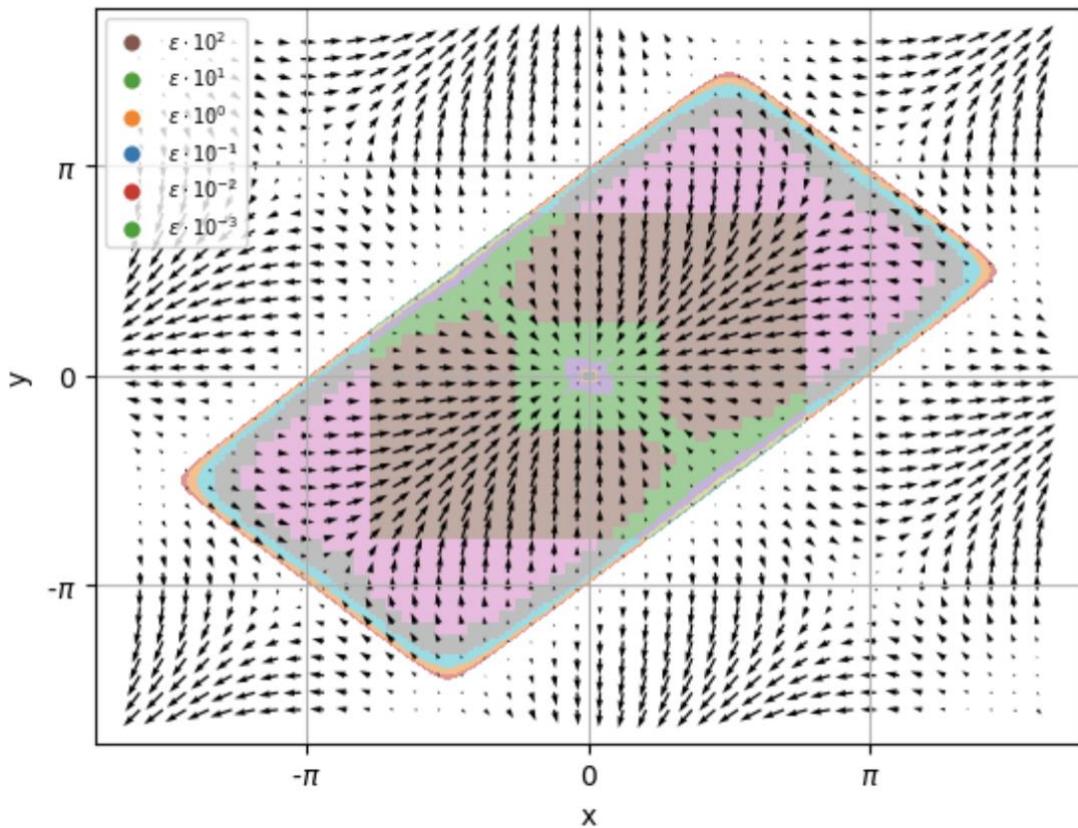
$$\alpha_{\max} = 0.470$$



Numerical Illustration – Find region \mathcal{X}_α

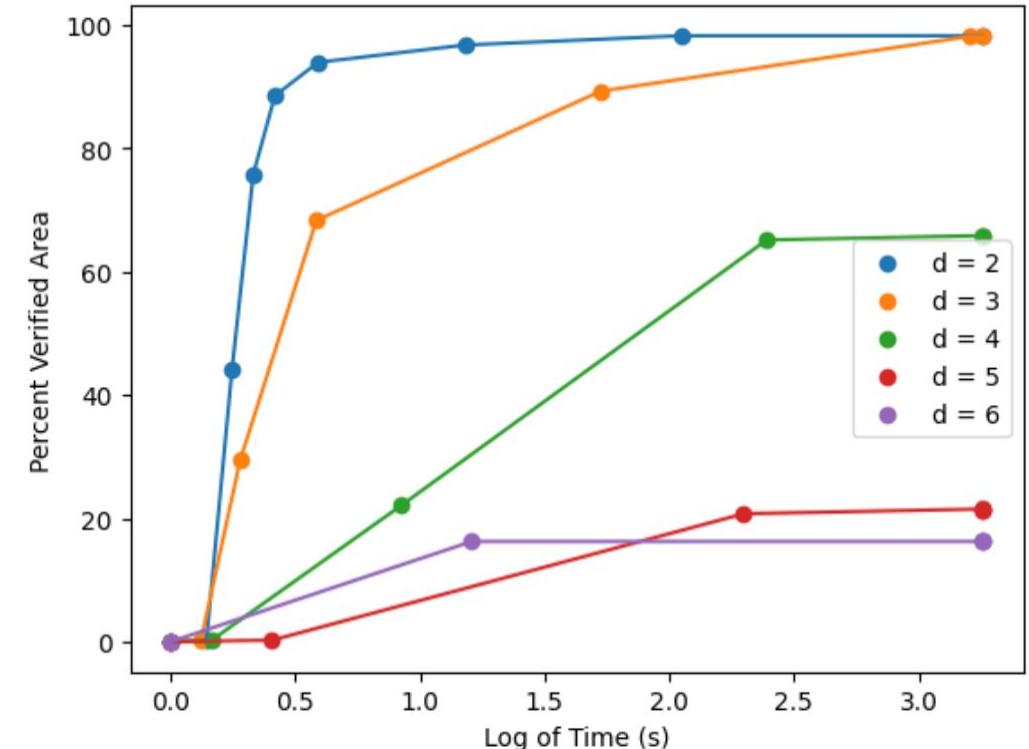
Consider the system of n Kuramoto oscillators:

Parameters: $n = 3$ and $\alpha = 1$



$$\dot{\theta}_i = \frac{k}{n} \sum_{j=1}^n \sin(\theta_j - \theta_i)$$

System dimension: $d = n - 1$



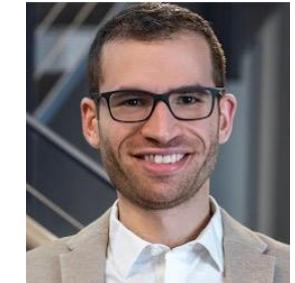
Outline

- **Nonparametric Analysis of Dynamical Systems**
 - *Stability*: Recurrent Lyapunov Functions
 - *Safety*: Recurrent Barrier Functions
- **Nonparametric Control Policies**
 - Making Decisions Directly from Data
 - A Policy Improvement Theorem

Outline

- **Nonparametric Analysis of Dynamical Systems**
 - *Stability*: Recurrent Lyapunov Functions
 - *Safety*: Recurrent Barrier Functions
- **Nonparametric Control Policies**
 - Making Decisions Directly from Data
 - A Policy Improvement Theorem

Yue Shen



Hussein Sibai

Nonparametric Safety Verification using Recurrence

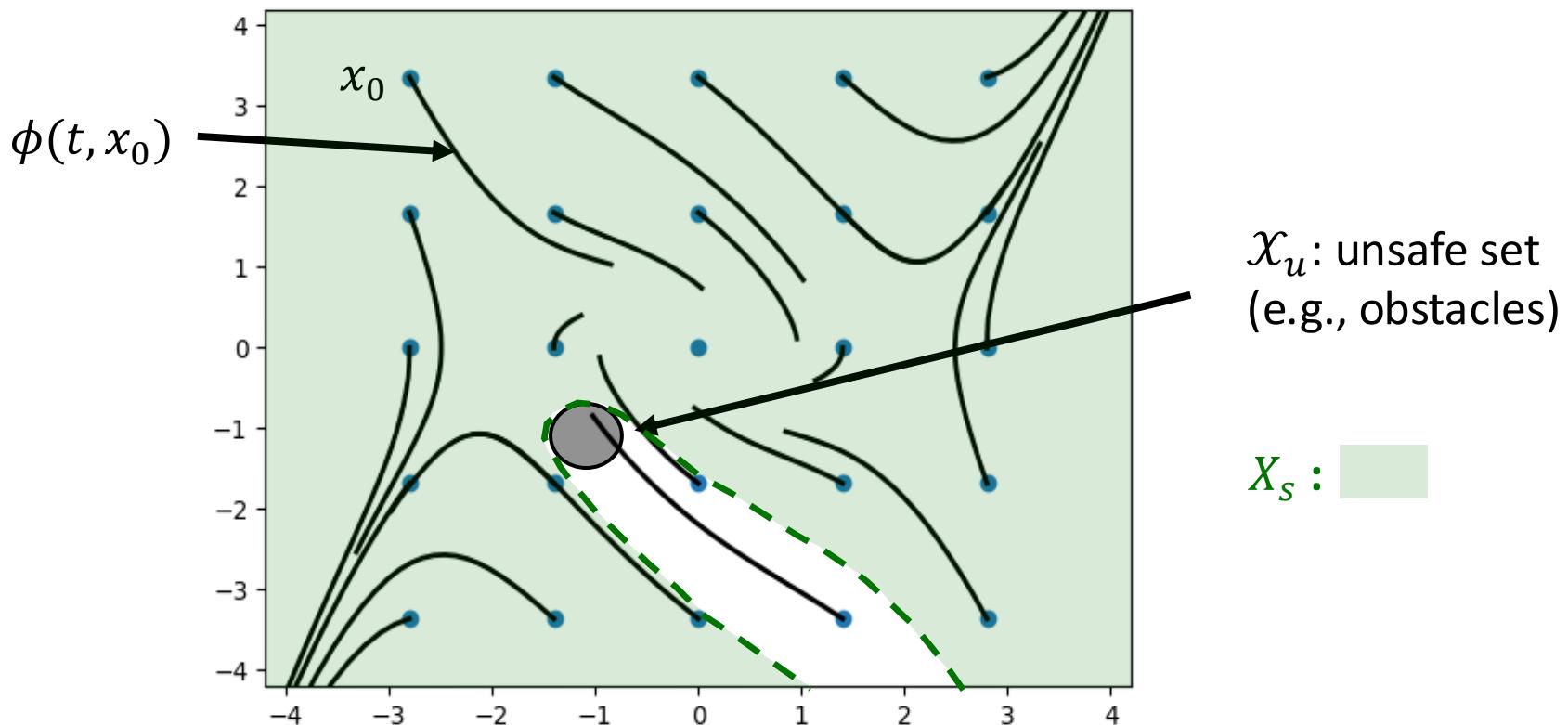
Y. Shen, H. Sibai, E. Mallada, "Generalized Barrier Functions: Integral Conditions and Recurrent Relaxations", in 60th Allerton Conference on Communication, Control, and Computing 2024

Safety in Dynamical Systems

Consider the continuous-time dynamical system: $\dot{x} = f(x)$

- $\phi(t, x_0)$: solution at time t starting from x_0
- X_u : set of unsafe states

Goal: Find the safe set $\mathcal{X}_s := \{x_0 \in \mathbb{R}^d | \phi(t, x_0) \notin \mathcal{X}_u, \forall t \geq 0\}$



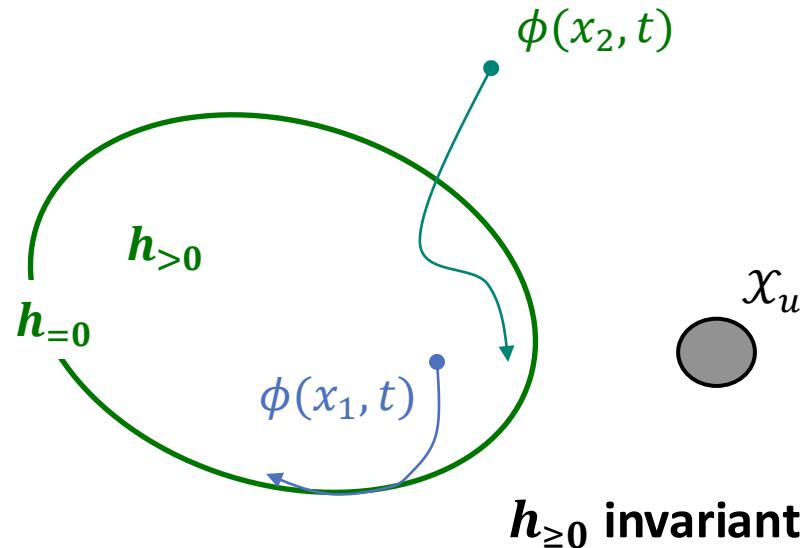
Barrier Functions

Barrier Function:

Let h be differentiable, $\gamma \in \mathcal{K}_e$, and

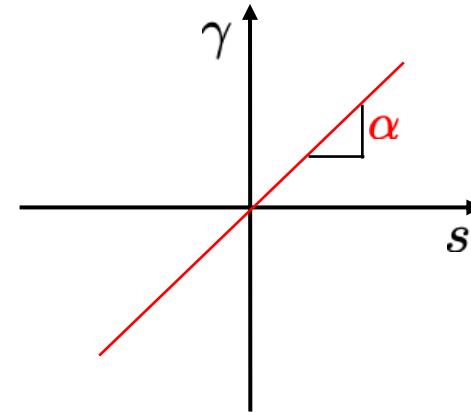
$$\dot{h}(x) \geq -\gamma(h(x))$$

then, $h_{\geq 0}$ is invariant



Extended Class \mathcal{K}_e :

- $\gamma \in \mathcal{K}_e$ iff $\gamma'(s) \geq 0$ and $\gamma(0) = 0$
- Example:



Recurrent Barrier Functions

Barrier Function:

Let h be differentiable, $\gamma \in \mathcal{K}_e$, and

$$\dot{h}(x) + \gamma(h(x)) \geq 0$$

then, $h_{\geq 0}$ is invariant

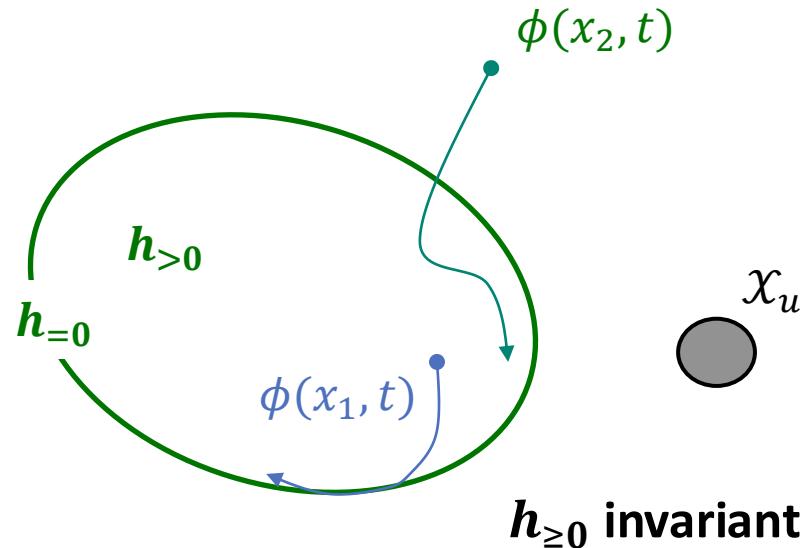
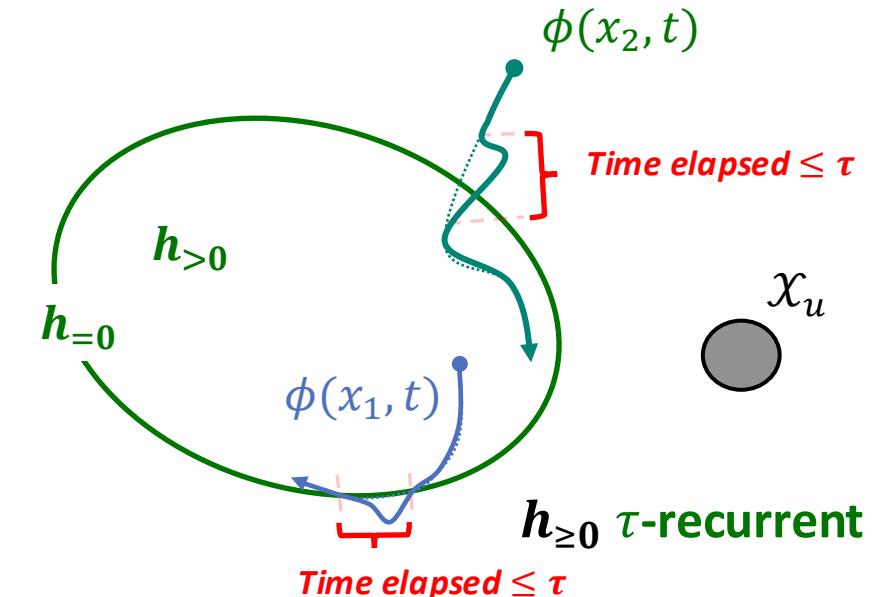
As $\tau \rightarrow 0$
By definition

Recurrent Barrier Function:

Let h be continuous, $\gamma \in \mathcal{K}_e$, and

$$\max_{t \in (0, \tau]} h(\phi(x, t)) + \int_0^t \gamma(h(\phi(x, s)) ds \geq h(x)$$

then, $h_{\geq 0}$ is τ -recurrent



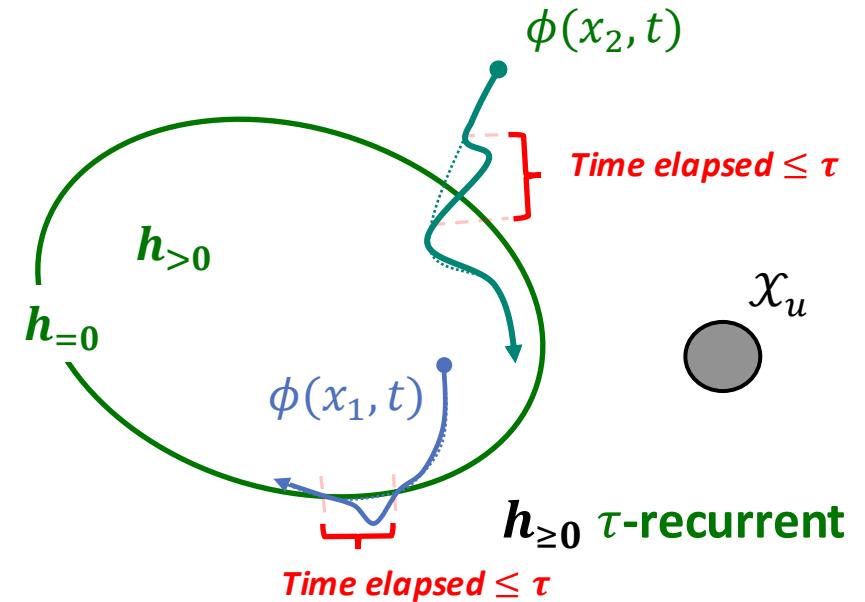
Recurrent Barrier Functions

Recurrent Barrier Function:

Let h be continuous, $\gamma \in \mathcal{K}_e$, and

$$\max_{t \in (0, \tau]} h(\phi(x, t)) + \int_0^t \gamma(h(\phi(x, s))) ds \geq h(x)$$

then, $h_{\geq 0}$ is τ -recurrent



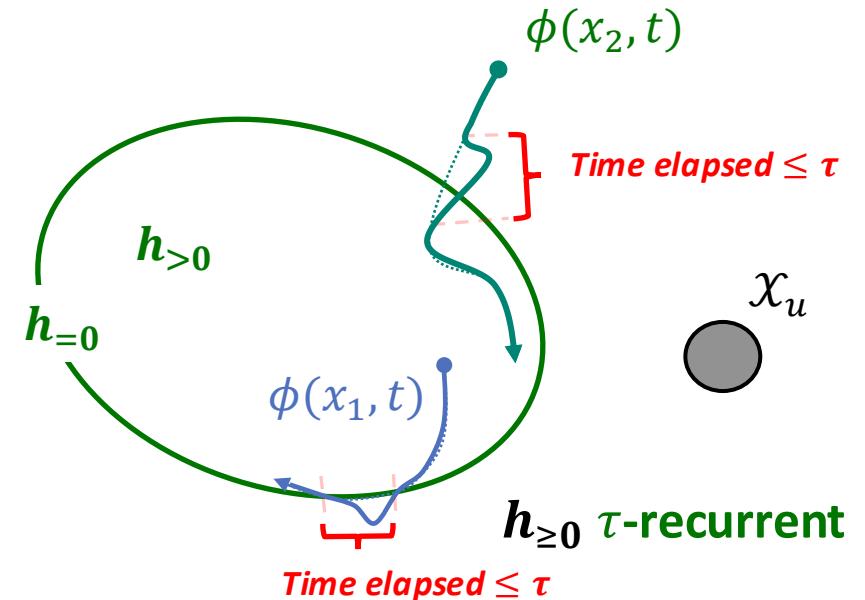
Recurrent Barrier Functions

Recurrent Barrier Function:

Let h be continuous, $\gamma \in \mathcal{K}_e$, and

$$\max_{t \in (0, \tau]} h(\phi(x, t)) + \int_0^t \gamma(h(\phi(x, s))) ds \geq h(x)$$

then, $h_{\geq 0}$ is τ -recurrent



Question: Do we gain anything from relaxing the invariance condition in BFs?

Claim: Given a set S_u containing the unsafe region X_u

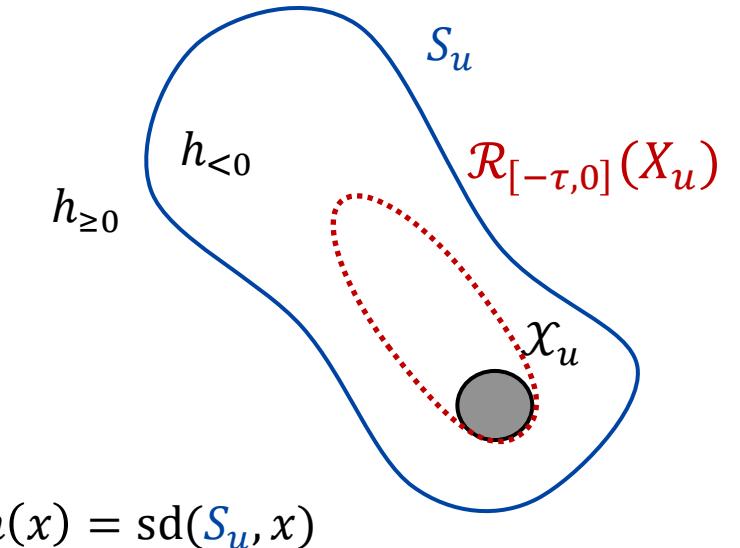
Recurrent Barrier Functions

Recurrent Barrier Function:

Let h be continuous, $\gamma \in \mathcal{K}_e$, and

$$\max_{t \in (0, \tau]} h(\phi(x, t)) + \int_0^t \gamma(h(\phi(x, s))) ds \geq h(x)$$

then, $h_{\geq 0}$ is **τ -recurrent**



Question: Do we gain anything from relaxing the invariance condition in BFs?

Claim: Given a set S_u containing the unsafe region X_u

- **Signed norm** of S_u is a good RBF Candidate: $h(x) = \text{sd}(S_u, x)$
- **Safety is guaranteed** whenever τ -backward reachable set: $\mathcal{R}_{[-\tau, 0]}(X_u) \subset S_u$

Data-Driven Safety Verification

Stage 1: τ – Backward reachability

- Find S_u with $\mathcal{R}_{[-\tau, 0]}(\mathcal{X}_u) \subset S_u$

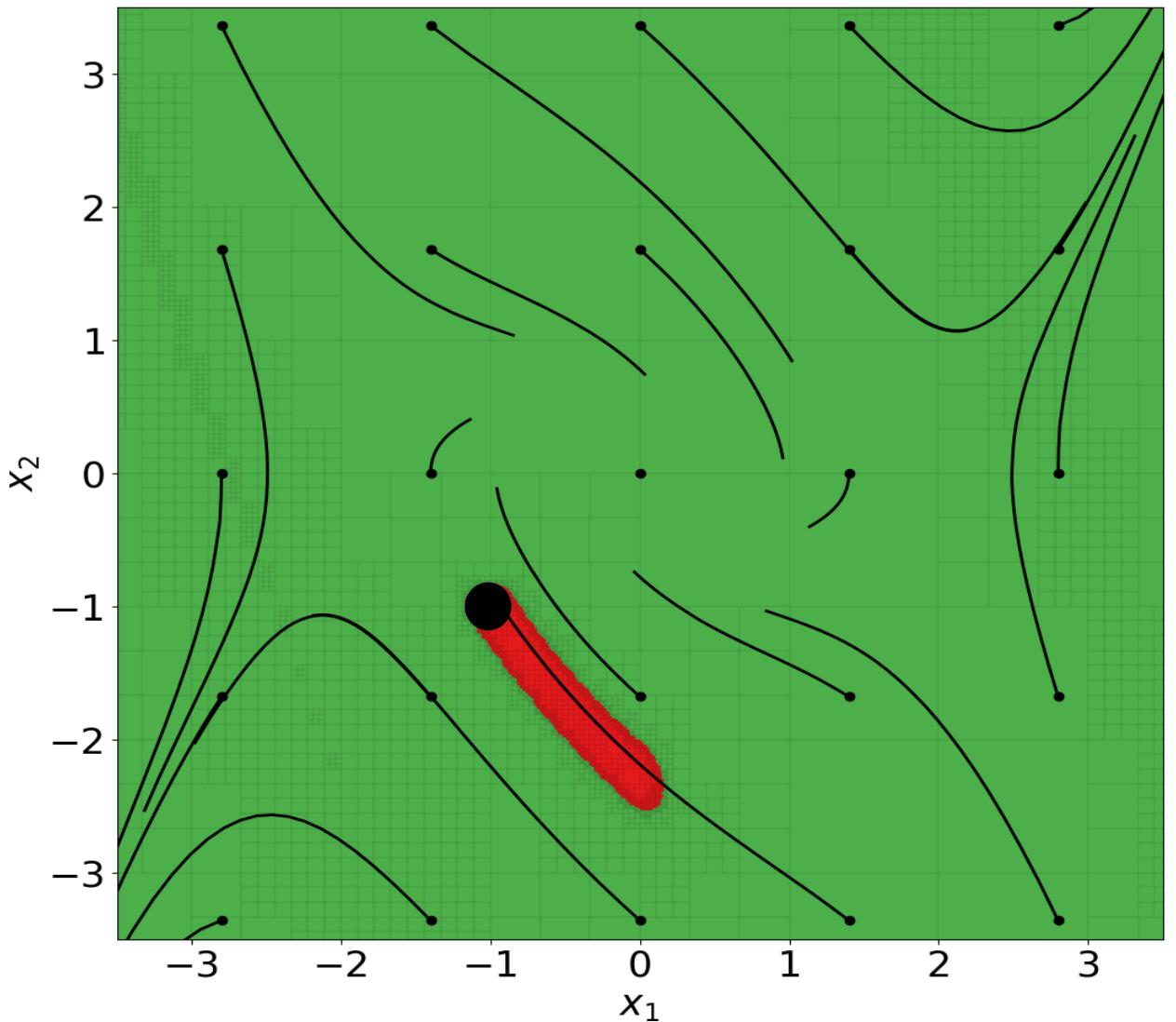
Stage 2: RBF condition

- Check $h(x) = \text{sd}(x, S_u)$ is RBF

r_{\min} : precision parameter

S_u :

X_u :



Data-Driven Safety Verification

Stage 1: τ – Backward reachability

- Find S_u with $\mathcal{R}_{[-\tau, 0]}(\mathcal{X}_u) \subset S_u$

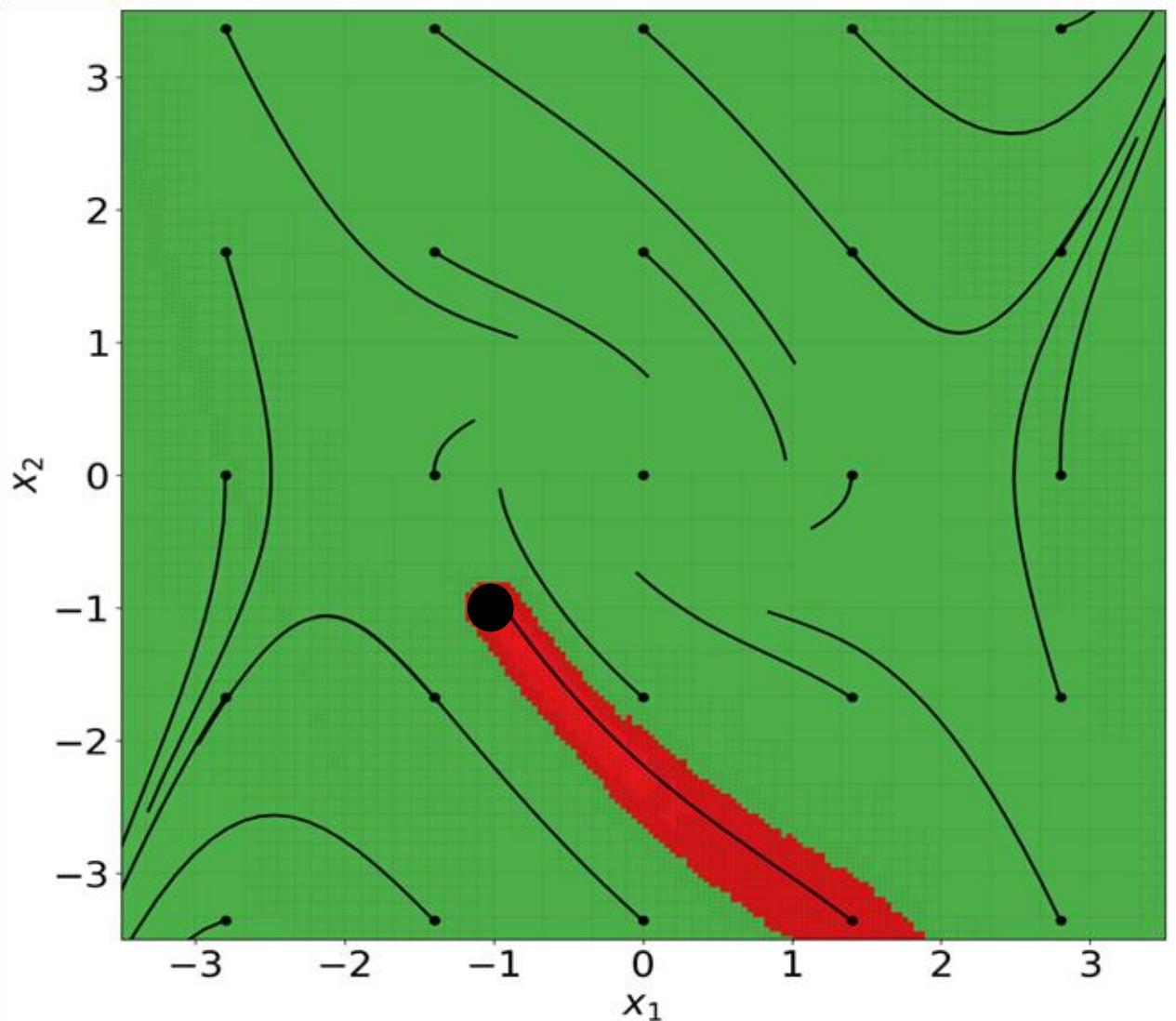
Stage 2: RBF condition

- Check $h(x) = \text{sd}(x, S_u)$ is RBF

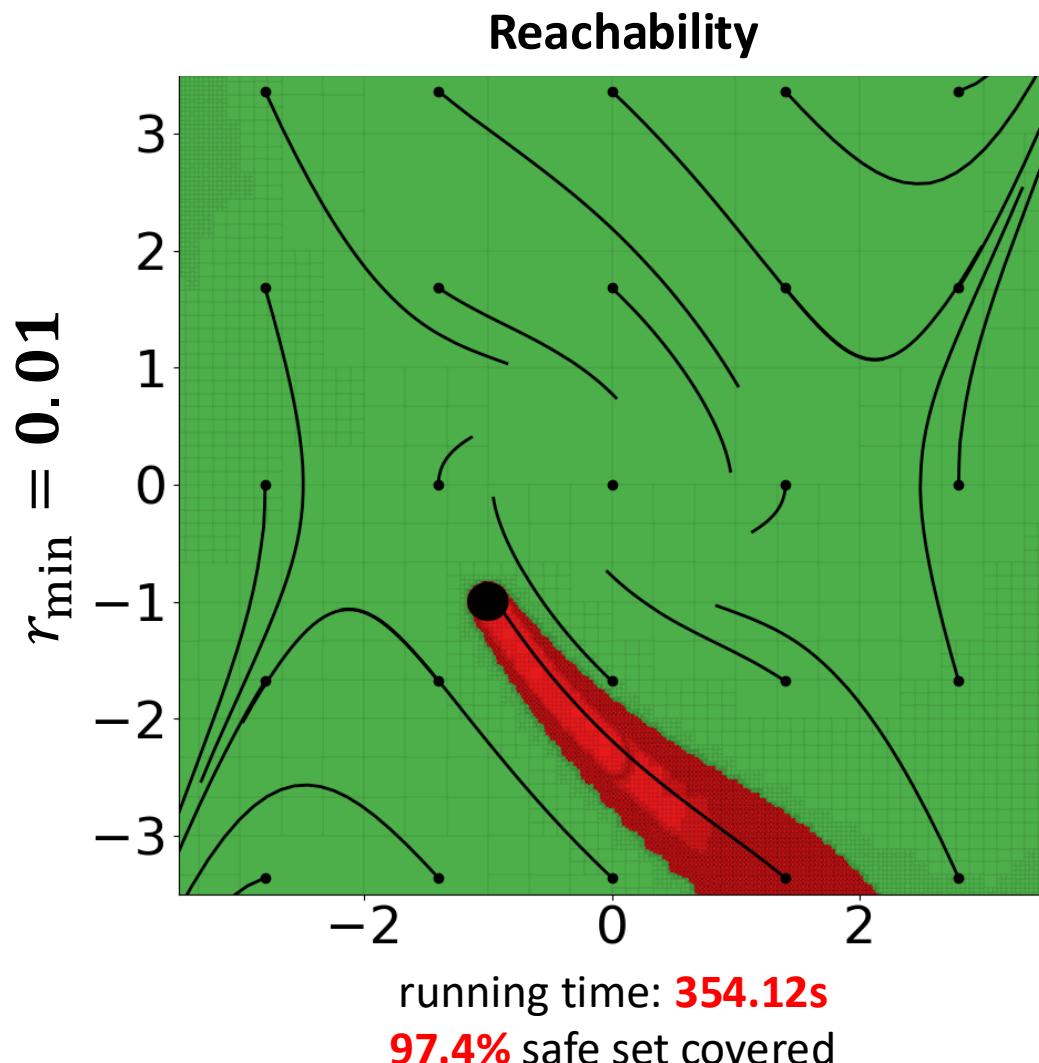
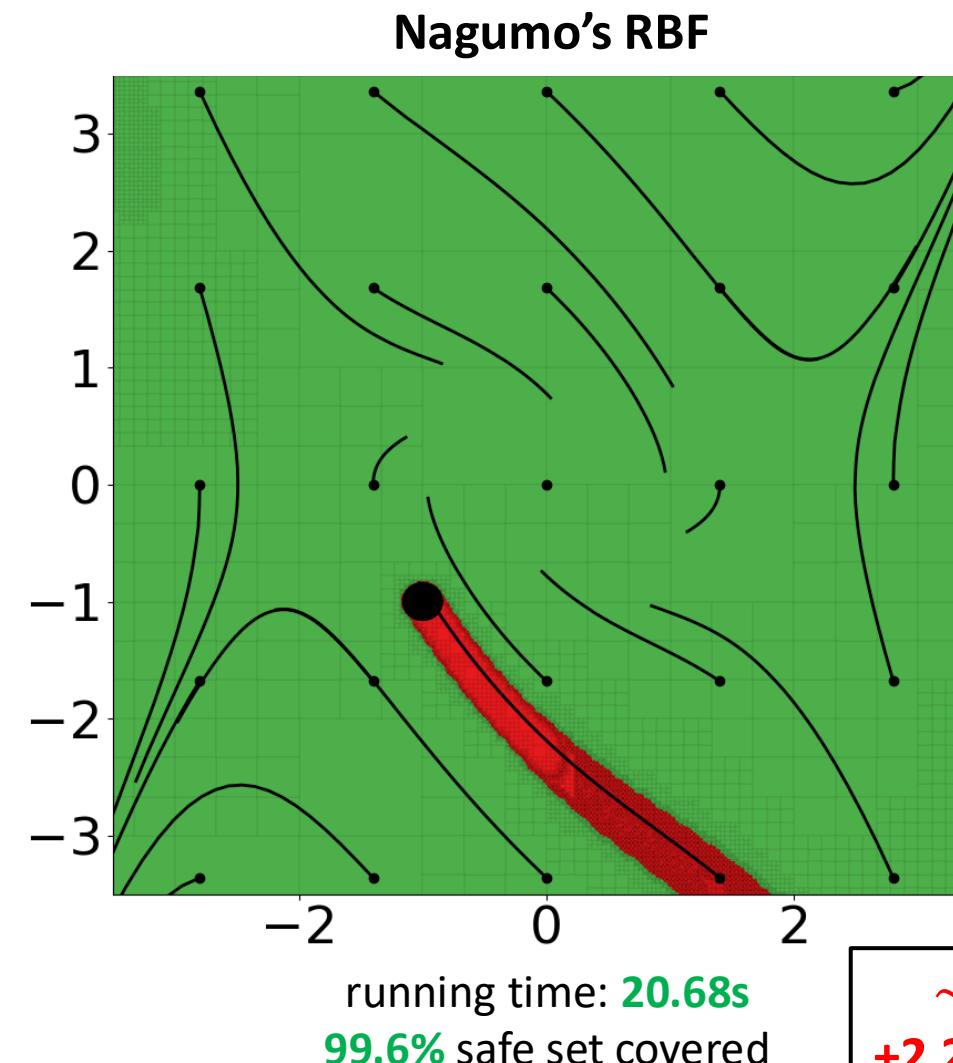
r_{\min} : precision parameter

S_u :

X_u :

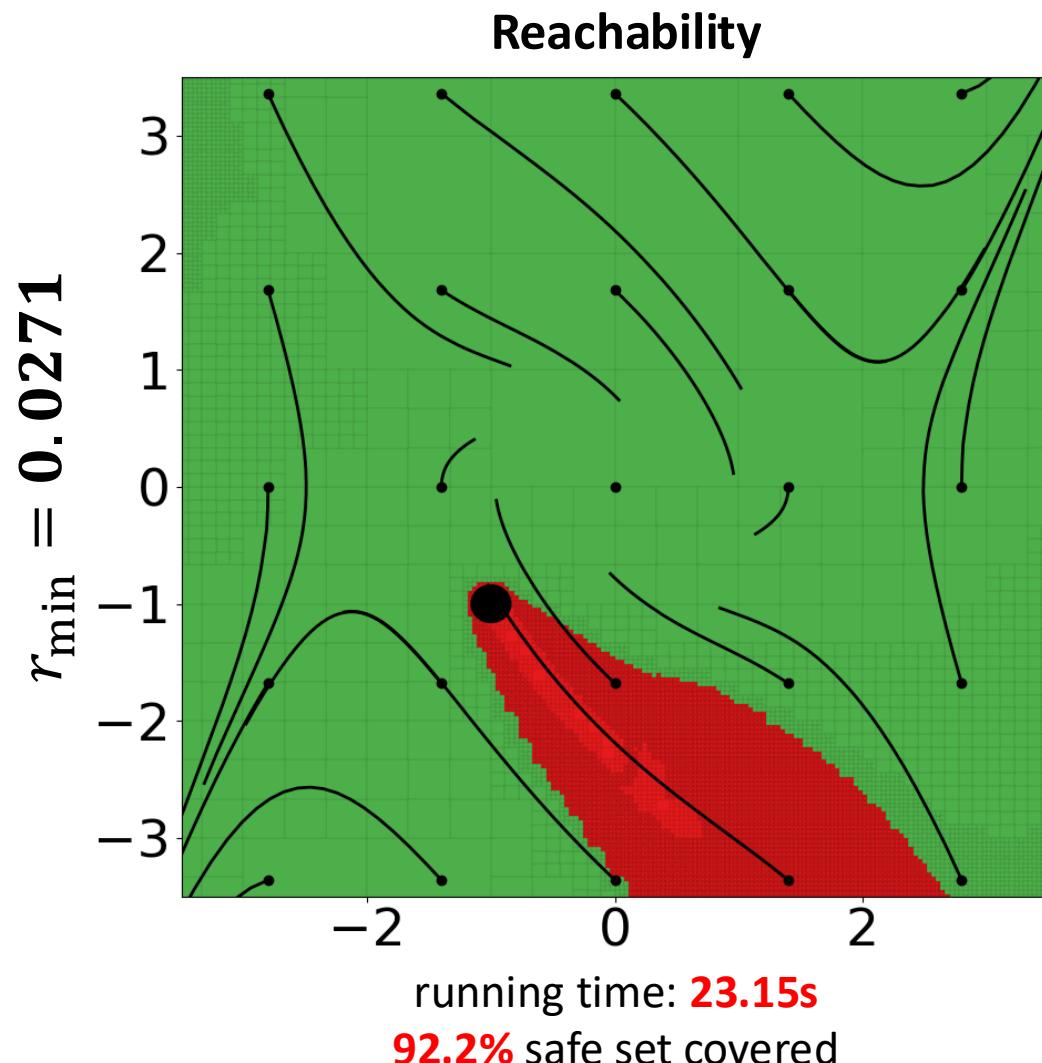
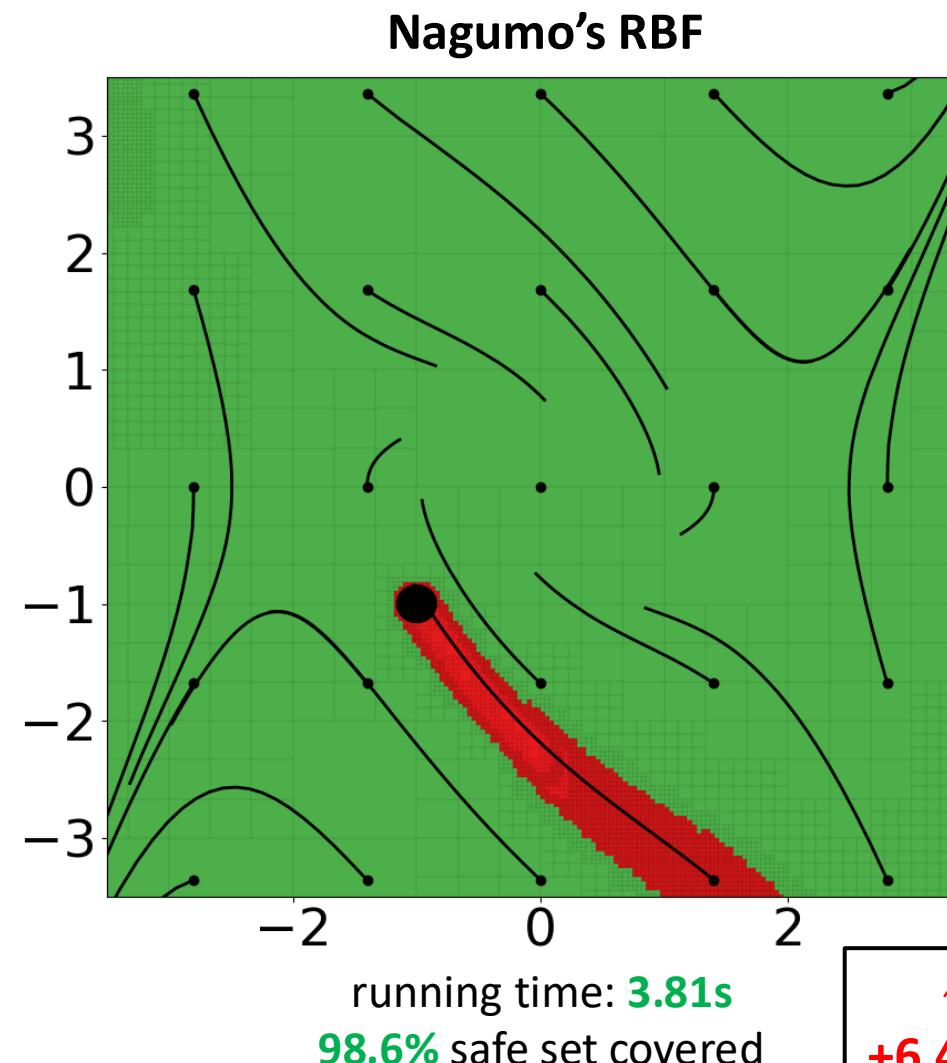


Numerical Validation: Reachability vs Recurrence

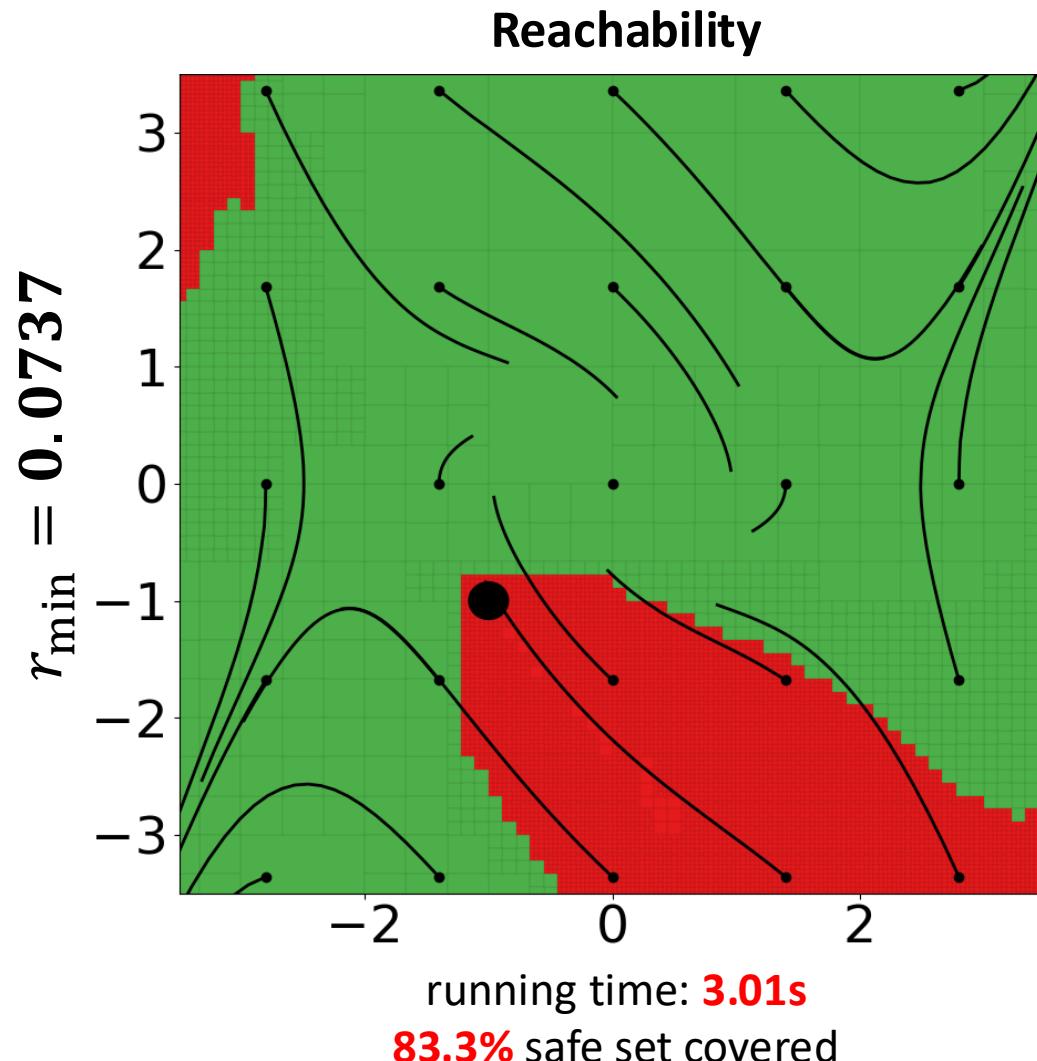
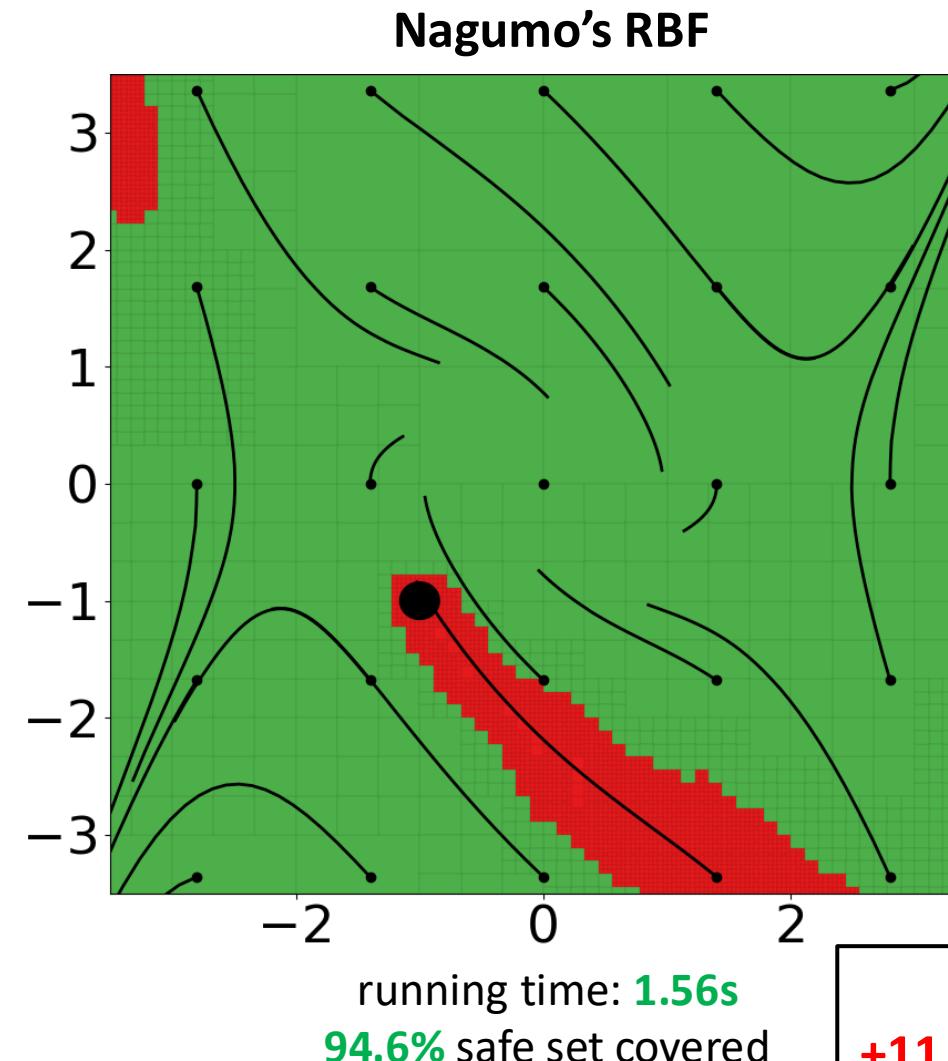


**~17x faster
+2.2% more area**

Numerical Validation: Reachability vs Recurrence

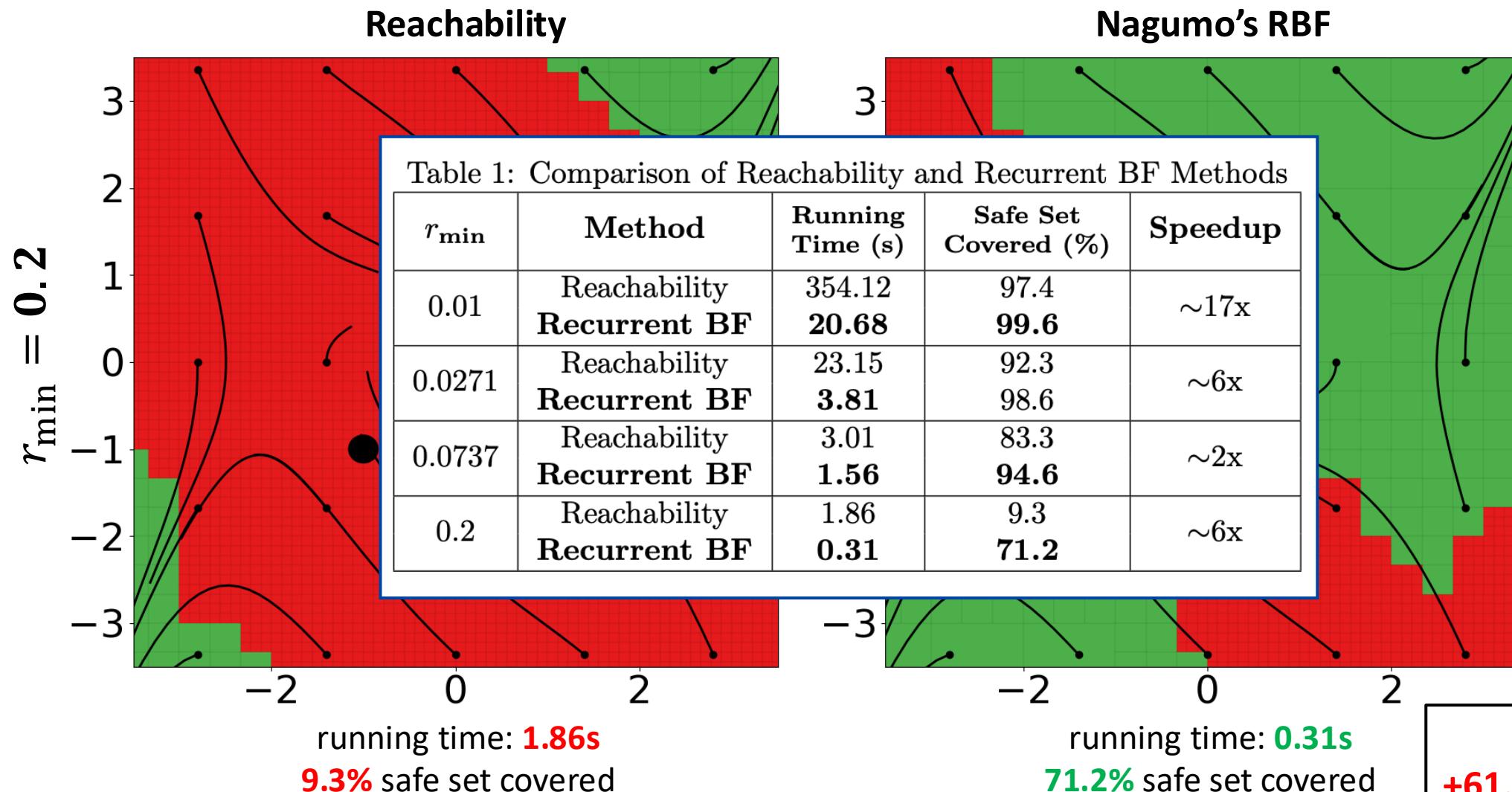


Numerical Validation: Reachability vs Recurrence



~2x faster
+11.2% more area

Numerical Validation: Reachability vs Recurrence



Outline

- **Nonparametric Analysis of Dynamical Systems**
 - *Stability*: Recurrent Lyapunov Functions
 - *Safety*: Recurrent Barrier Functions
- **Nonparametric Control Policies**
 - Making Decisions Directly from Data
 - A Policy Improvement Theorem

Outline

- **Nonparametric Analysis of Dynamical Systems**
 - *Stability*: Recurrent Lyapunov Functions
 - *Safety*: Recurrent Barrier Functions
- **Nonparametric Control Policies**
 - Making Decisions Directly from Data
 - A Policy Improvement Theorem

Classical policy improvement works in discrete spaces

“Policy improvement” is a fundamental building block of classical RL

Policy iteration = Policy evaluation + Policy improvement

Policy evaluation

- Given π , evaluate it to find $Q^\pi(\cdot, \cdot)$

- Can evaluate “separately” for each (s, a)
- Can store Q in a table

Policy improvement

- Given $Q^\pi(\cdot, \cdot)$, define: $\pi' : \mathcal{S} \rightarrow \mathcal{A} : \pi'(s) \in \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q^\pi(s, a)$

- Then:

$$V^{\pi'}(s) \geq V^\pi(s) \quad \forall s \in \mathcal{S}$$

- Given s , maximize an array of size $|\mathcal{A}|$

Rinse and repeat until $V^{\pi'} \equiv V^\pi \implies \pi = \pi' = \pi^*$

Policy Optimization in Continuous Action Spaces

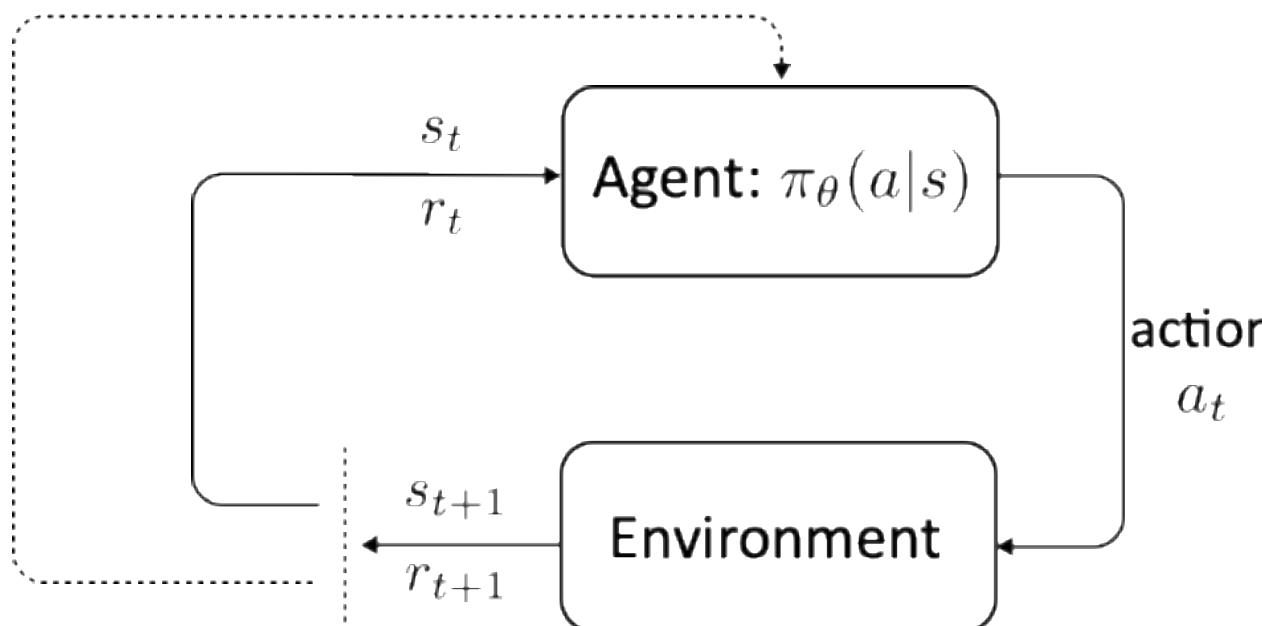
$$\max_{\theta} J(\theta)$$

Based on Policy Gradient:

- Use experience to approximate $\nabla_{\theta} J(\theta) \approx \hat{g}$

$$\hat{g} := \frac{1}{N} \sum_{i=1}^N \sum_{t=0}^T \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)} | s_t^{(i)}) \hat{R}_t^{(i)}$$

$$\text{update: } \theta_{k+1} = \theta_k + \eta \hat{g}$$



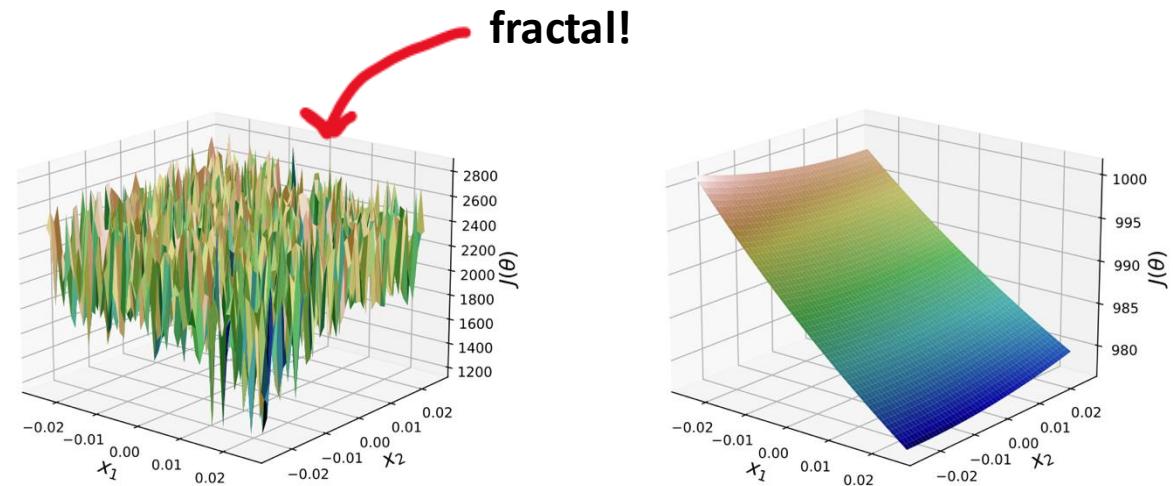
Many Challenges:

- Estimation variance
- Non-smoothness
- Fractal landscape
- Mollification
- ...

Fundamental challenges of Policy Optimization

Challenge: Fractal Optimization Landscapes

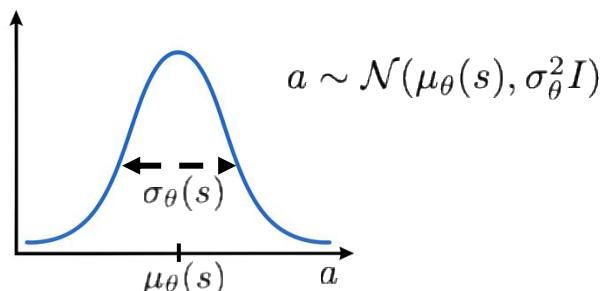
- **Goal:** $\max_{\theta} J(\theta) := E_{\pi_{\theta}, s_0 \sim \rho} [\sum_{t=0}^{\infty} \gamma^t r_t(s_t, a_t)]$
- **Approach:** $\theta_{k+1} = \theta_k + \eta \hat{\nabla}_{\theta} J(\theta)$



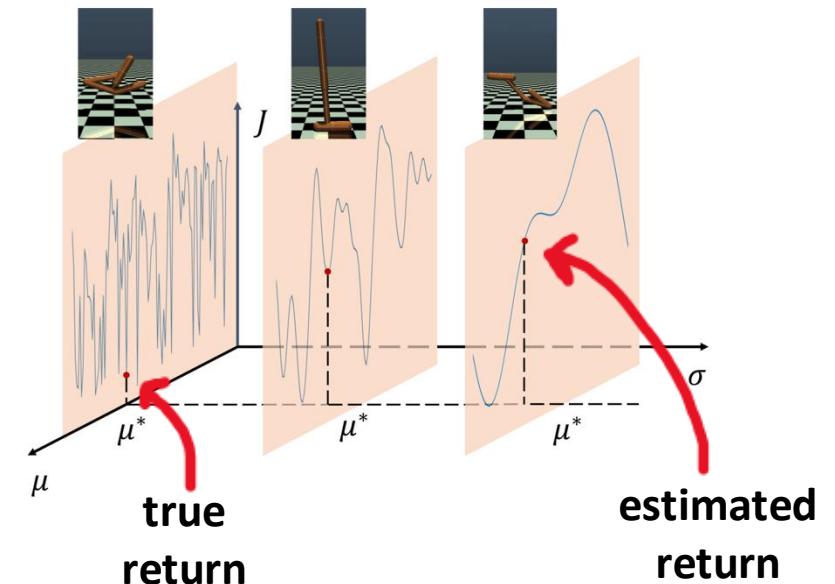
Challenge: Mollification of Policy Gradient

- **Goal:** $\max_{\theta} J(\theta) := E_{s_0 \sim \rho, a_0 \sim \pi_{\theta}(s_0)} [Q^{\pi_{\theta}}(s_0, a_0)]$

- **Policy:**



Tao Wang, Sylvia Hebert, Sicun Gao, Fractal landscapes in policy optimization, NeurIPS 23
Tao Wang, Sylvia Hebert, Sicun Gao, Mollification effects of policy gradient, ICML 24



Agustin Castellano

Sohrab Rezaei

Jared Markowitz

Enrique Mallada

Nonparametric policy improvement in continuous action spaces

A. Castellano, S. Rezaei, J. Markowitz, and E. Mallada, Nonparametric Policy Improvement for Continuous Action Spaces via Expert Demonstrations, 2025, submitted to Reinforcement Learning Conference.

Problem Setup

Goal: find optimal policy

$$\max_{\theta} J(\theta) := E_{s_0 \sim \rho, a_0 \sim \pi_{\theta}(s_0)} \left[Q^{\pi_{\theta}}(s_0, a_0) \right]$$

Problem Setup

Goal: find optimal **nonparametric** policy

$$\max_{\mathcal{D}} J(\pi_{\mathcal{D}}) := E_{s_0 \sim \rho, a_0 \sim \pi_{\mathcal{D}}(s_0)} \left[Q^{\pi_{\mathcal{D}}}(s_0, a_0) \right]$$

Data set: $\mathcal{D} = \{(s_i, a_i, Q_i)\}_{i=1}^{|\mathcal{D}|}$ $Q_i := \sum_t \gamma^t r(s_t, a_t)$

Assumptions:

Optimal Q^* is smooth: $|Q^*(s, a) - Q^*(s', a')| \leq L(d_{\mathcal{S}}(s, s') + d_{\mathcal{A}}(a, a'))$

Deterministic dynamics: $s_{t+1} = f(s_t, a_t)$

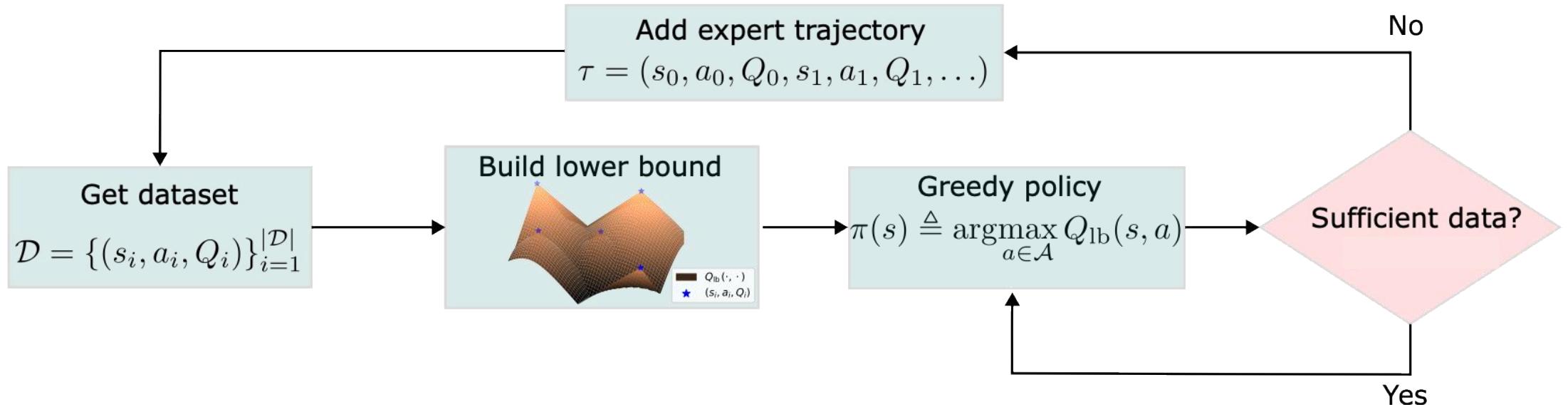
distance

Expert data: we have $\mathcal{D} = \{(s_i, a_i, Q_i)\}_{i=1}^{|\mathcal{D}|}$, where $a_i = \pi^*(s_i); Q_i = Q^*(s_i, a_i)$

Expert data: we have $\mathcal{D} = \{(s_i, a_i, Q_i)\}_{i=1}^{|\mathcal{D}|}$, where $a_i = \pi^\star(s_i); Q_i = Q^\star(s_i, a_i)$

- 1. How** can we use these transitions to learn a nonparametric policy?
- 2. What** guarantees can we get when we add more transitions?
- 3. Where** should we add transitions to improve performance?

Overview of our method



1. How can we use these transitions
to learn a nonparametric policy?

Building bounds & Nonparametric Policy

Expert data: we have $\mathcal{D} = \{(s_i, a_i, Q_i)\}_{i=1}^{|\mathcal{D}|}$, where $a_i = \pi^\star(s_i); Q_i = Q^\star(s_i, a_i)$

- Use the data to define **lower** bounds on optimal values:

$$V_{\text{lb}}(s) \triangleq \max_{1 \leq i \leq |\mathcal{D}|} \{Q_i - L \cdot d_{\mathcal{S}}(s, s_i)\} \quad Q_{\text{lb}}(s, a) \triangleq \max_{1 \leq i \leq |\mathcal{D}|} \{Q_i - L \cdot (d_{\mathcal{S}}(s, s_i) + d_{\mathcal{A}}(a, a_i))\}$$

$$V_{\text{ub}}(s) \triangleq \min_{1 \leq i \leq |\mathcal{D}|} \{Q_i + L \cdot d_{\mathcal{S}}(s, s_i)\}$$

- **Nonparametric Policy:**

$$\pi(s) \triangleq \operatorname{argmax}_{a \in \mathcal{A}} Q_{\text{lb}}(s, a) = a_{i'}$$

- **Remark:** Note argmax always gives actions in dataset $(s_{i'}, a_{i'}, Q_{i'})$

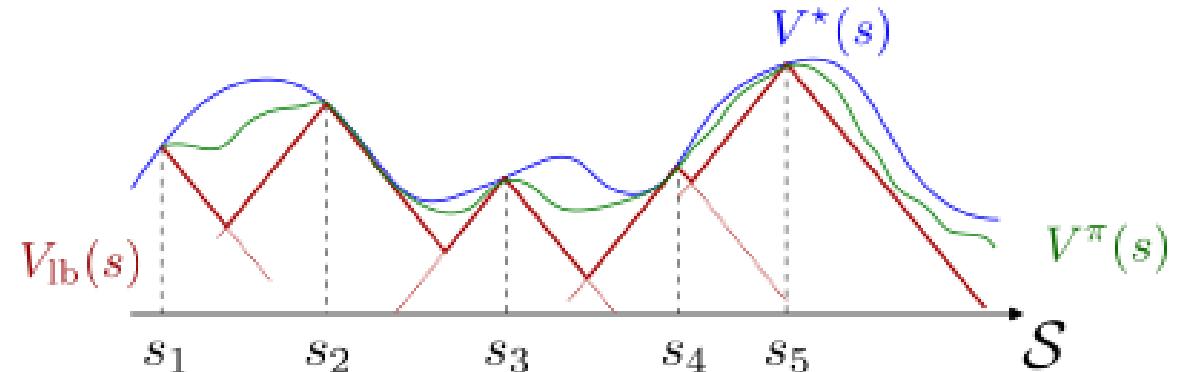
- **Question:** What can we say about $V^\pi(s)$?

Nonparametric policy *improves* over lower bound

Policy Evaluation:

- Nonparametric π satisfies $\forall s \in \mathcal{S}$:

$$V_{lb}(s) \leq V^\pi(s) \leq V^*(s)$$



Policy Improvement:

- Given data sets $\mathcal{D}, \mathcal{D}'$ with $\mathcal{D} \subset \mathcal{D}'$

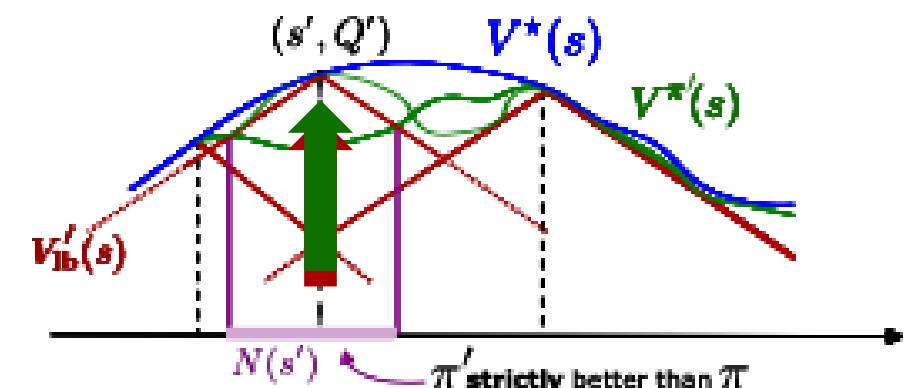
$$V_{lb}(s) \leq V'_{lb}(s) \quad \forall s \in \mathcal{S}$$

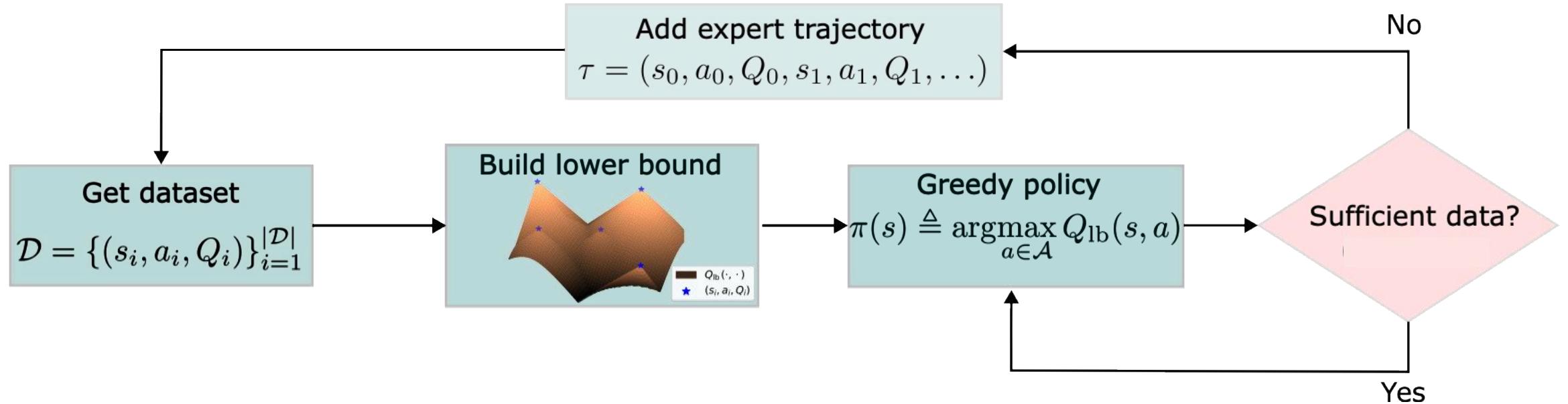
More data = better lower bounds

$$V^\pi(s') \leq V^{\pi'}(s') \quad \forall s' \in \mathcal{D}' \setminus \mathcal{D}$$

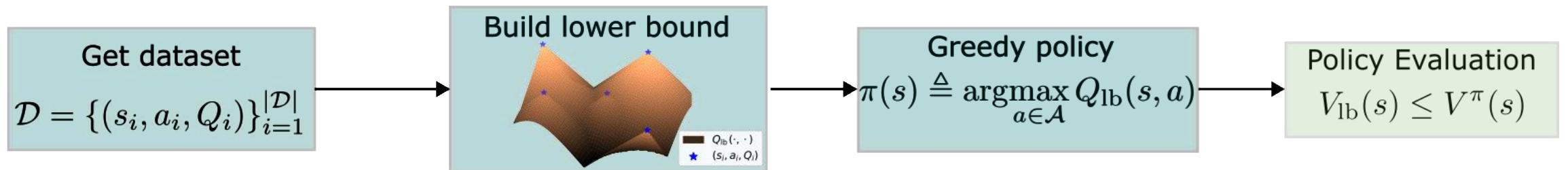
Improvement on added points

- Strict** on neighbors of new data: $\forall s \in N(s')$





1. How to learn a policy?



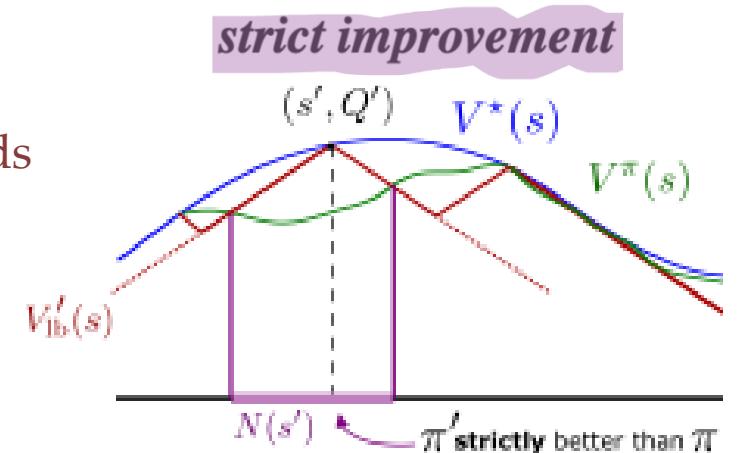
2. What guarantees with more transitions?

$$V_{\text{lb}}(s) \leq V'_{\text{lb}}(s) \quad \forall s \in \mathcal{S}$$

More data = better lower bounds

$$V^\pi(s') \leq V^{\pi'}(s') \quad \forall s' \in \mathcal{D}' \setminus \mathcal{D}$$

Improvement on added points



3. Where to add transitions?

- Only **where sufficient improvement** is guaranteed: $\Delta(s) := V_{\text{ub}}(s) - V_{\text{lb}}(s) > \varepsilon$

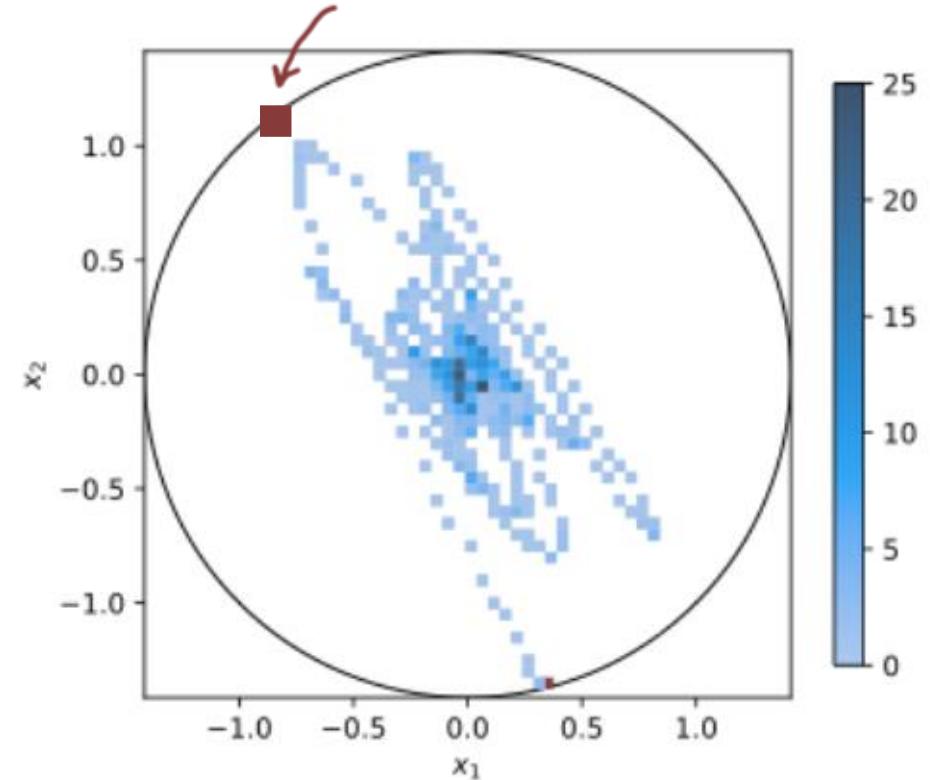
$$V_{\text{lb}}(s) \leq V^\pi(s) \leq V^*(s) \leq V_{\text{ub}}(s)$$

Algorithm

Input: Lipschitz constant L

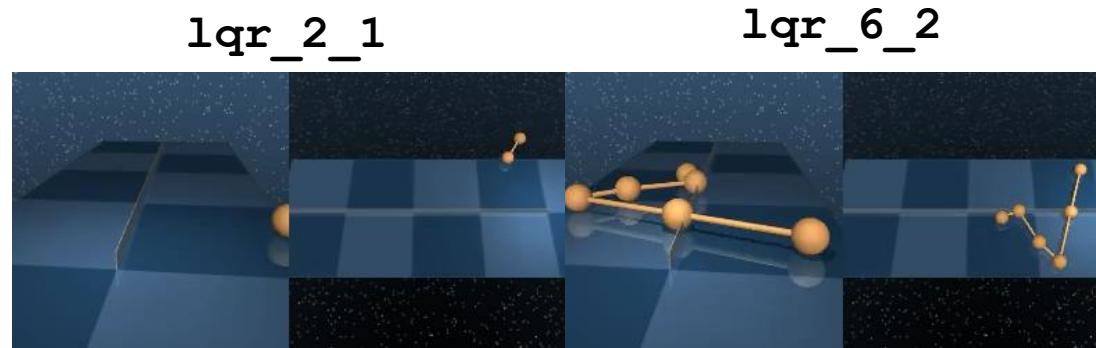
For each episode **do**:

1. Sample $s \sim \rho$
2. If $\Delta(s) > \varepsilon$:
 - Run optimal trajectory with π^*
 $\tau = (s_0, a_0, Q_0, s_1, a_1, Q_1, \dots)$
 - **Repeat:** add tuples to dataset (from $i = 0$)
 $\mathcal{D} \leftarrow \mathcal{D} \cup \{(s_i, a_i, Q_i)\}$
3. Until: $\Delta(s_i) \ll \varepsilon$.
3. Else:
 - **Continue**

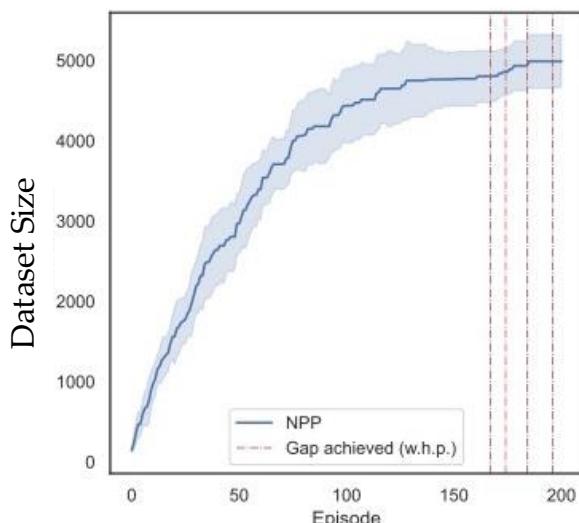
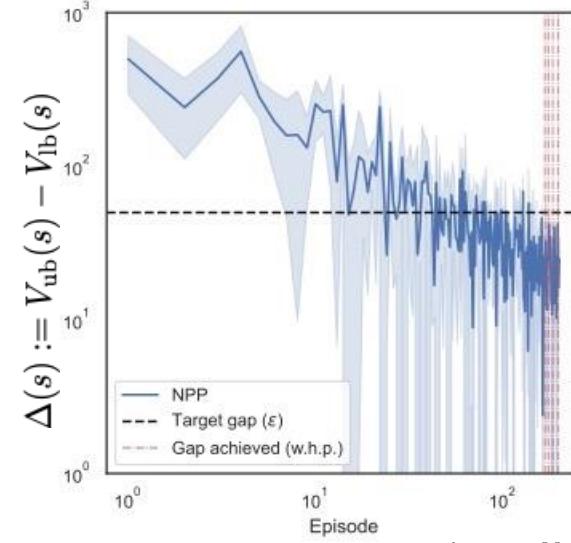
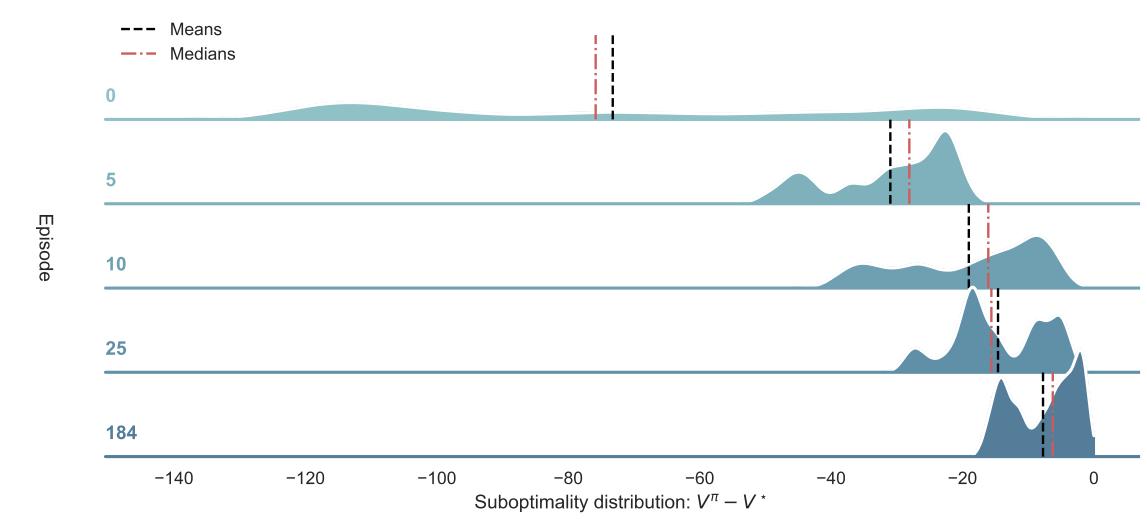


Experiments

- We use the lqr_n_m environments from DeepMind's Control Suite

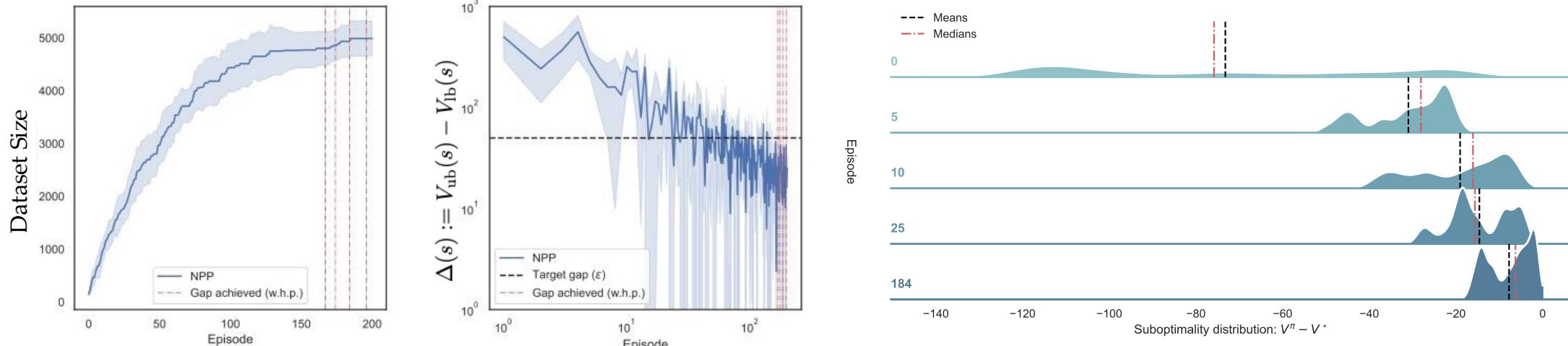


- Results on lqr_2_1:



Experiments

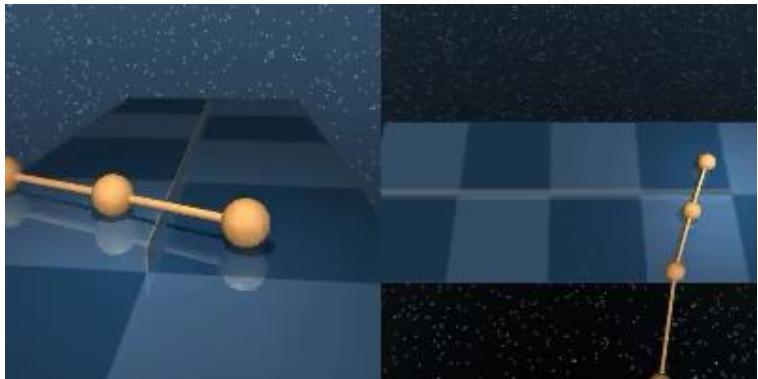
- We use the `lqr_n_m` environments from DeepMind's Control Suite
- Results on `lqr_2_1`:



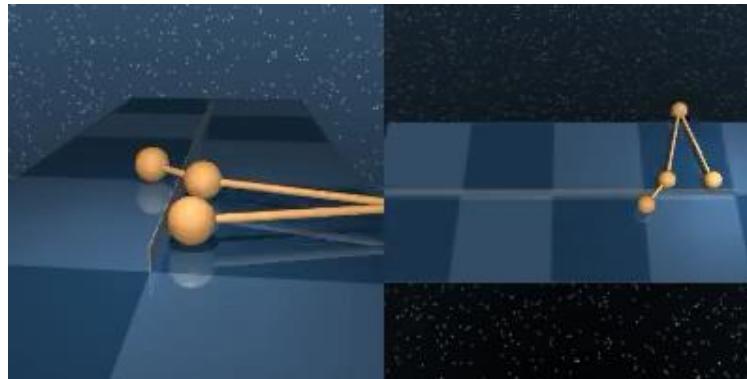
- **Remarks:**
 - **Incremental learning:** No catastrophic forgetting, or oscillations
 - Improvement across the entire state space (not in expectation)
 - Only valuable data is added (harder to find at times passes)

Incremental Learning

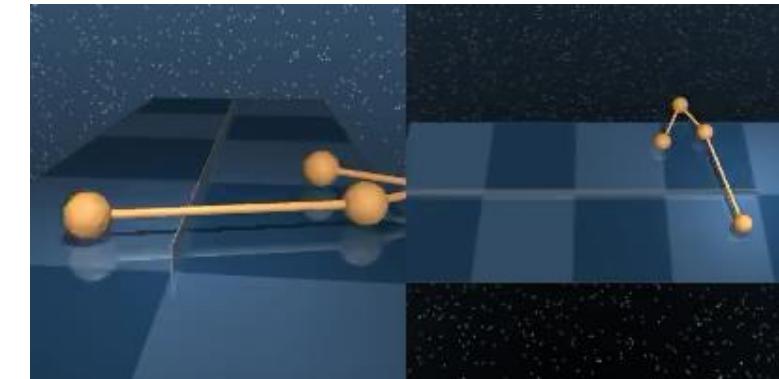
after 10 episode...



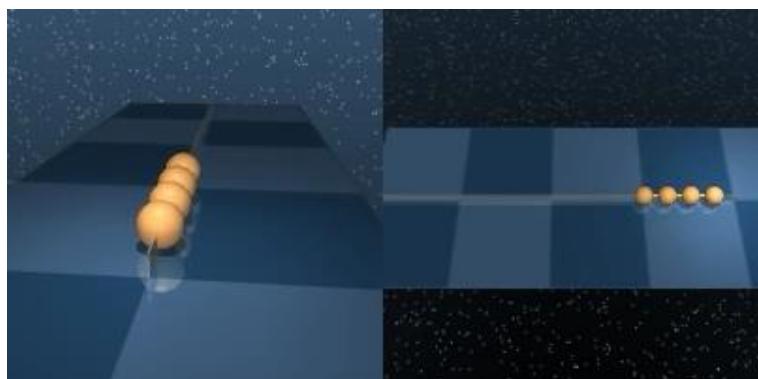
after 100 episode...



after 1000 episodes...



after 30K+

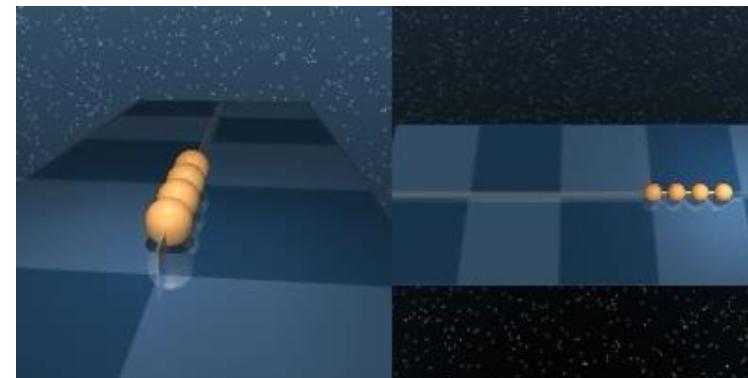
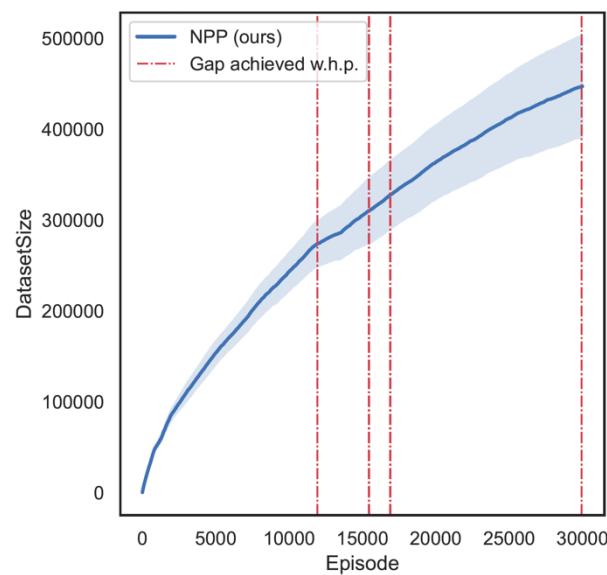
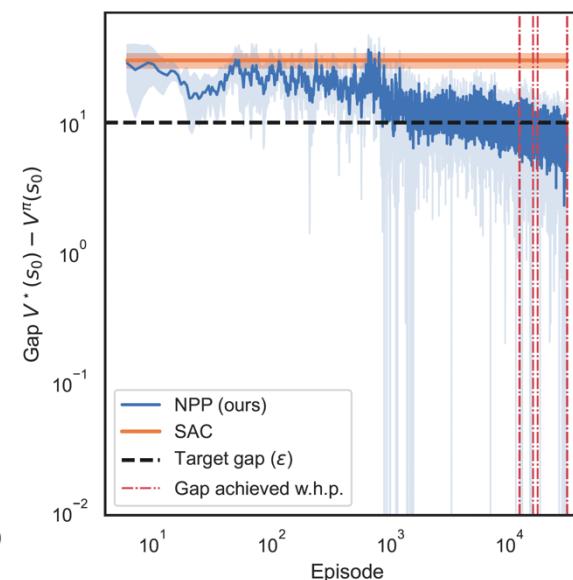


optimal control

Incremental Learning

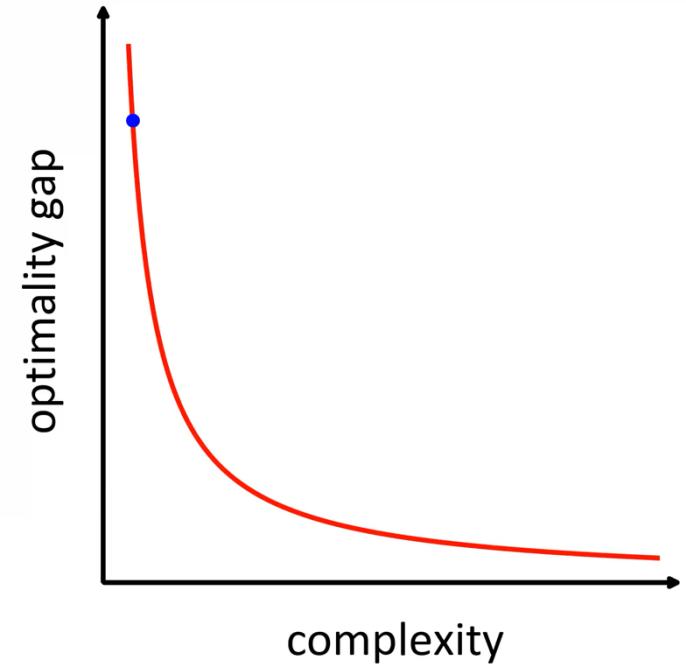
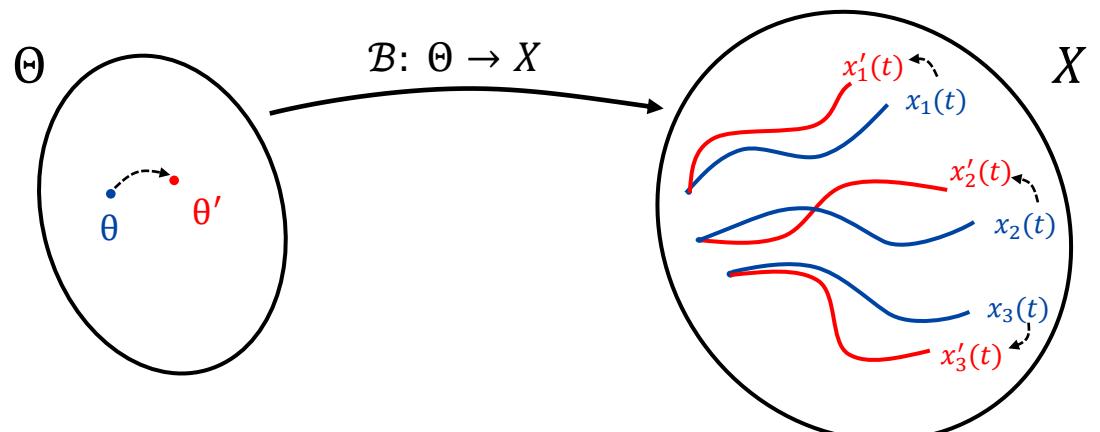
after 30K+

optimal control



Research Goals

- To develop analysis and design methods that *trade off complexity and performance*.
- To allow for *continual improvement*, without the need for redesign, retune, or retrain
- To design control policies with controlled sensitivity to parameter changes



Conclusions and Future work

- **Takeaways**
 - Proposed a **relaxed notion of invariance: recurrence**.
 - **Nonparametric theory for dynamical systems analysis** leading to:
 - General **Lyapunov** and **Barrier Function** conditions **satisfied by any norm!**
 - Algorithms that are **parallelizable and progressive/sequential**.
 - **Nonparametric policies**: Guaranteed improvement with each demonstration.
- **Ongoing work**
 - **Recurrence**: Information theoretical lower bounds of control recurrence sets
 - **Lyapunov/CBF Theory**: Generalize other Lyapunov notions, Control Lyapunov Functions, Control Barrier Functions, Contraction
 - **Nonparametric policies (NP)**: NP policy iteration, enforcing safety and stability using NP, exploring alternative inductive biases (beyond Lipschitz)

Thanks!

Related Publications:

- [CDC 23] Siegelmann, Shen, Paganini, M, *A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions*, **CDC 2023, TAC submitted**
- [HSCC 24] Sibai, M, *Recurrence of nonlinear control systems: Entropy and bit rates*, **HSCC, 2024, NAHS under review**
- [Allerton 24] Shen, Sibai, M, *Generalized Barrier Functions: Integral conditions and recurrent relaxations*, **Allerton 2024**
- [RLC 25] Castellano, Rezaei, Markovitz, and M, *Nonparametric Policy Improvement for Continuous Action Spaces via Expert Demonstrations*, **RLC 2025**

Enrique Mallada
mallada@jhu.edu
<http://mallada.ece.jhu.edu>