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A Dream World of Success Stories
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2017 AlphaZero – Chess, Shogi, Go 2019 AlphaStar – Starcraft II2017 Google DeepMind’s DQN

OpenAI – Rubik’s Cube

Boston Dynamics

Waymo



Reality Kicks In 
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Fundamental challenge: The curse of dimensionality

▪ Statistical: No clear inductive bias

▪ Computational: Verifying non-negativity of polynomials

Sample complexity:

For 𝝐 = 𝟎. 𝟏 and 𝒅 = 𝟏𝟎𝟎, we 

would need 𝟏𝟎𝟏𝟎𝟎 points.
Atoms in the universe: 1078
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Copositive matrices: 

𝑥1
2 … 𝑥𝑑

2 𝐴 𝑥1
2 … 𝑥𝑑

2 T
≥ 0

Murty&Kadabi [1987]: Testing co-positivity is NP-Hard

Sum of Squares (SoS): 

 𝑧 𝑥 𝑇𝑄𝑧(𝑥) ≥ 0,    𝑧𝑖 𝑥 ∈ ℝ 𝑥 , 𝑥 ∈ ℝ𝑑 , 𝑄 ≽ 0

Artin [1927] (Hilbert’s 17th problem):

Non-negative polynomials are sum of square of rational functions

Sampling in 𝒅 dimension with resolution 𝝐:



Methodological challenges

• Focused on a design-then-deploy philosophy
• Most methods have a strict separation between 

control synthesis and deployment

• Synthesis usually aims for the best (optimal) 
controller 
•  Lack of exploration of the benefits of designing 

sub-optimal controllers

 

• Policy parameters can drastically affect the 
system's behavior
• The params to behavior maps are highly sensitive 

to perturbations
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RL:

Optimal Control:

analysis
synthesis

and
verification

deployment

𝑥1
′ (𝑡)

𝑥3
′ (𝑡)

𝑥2
′ (𝑡)

θ θ′ 𝑥2(𝑡)

𝑥3(𝑡)

𝑥1(𝑡)
Θ 𝒳ℬ:  Θ → 𝒳



Aspirational Goals

To design policies as nature does…

self improving, with each trialrefining post deployment discarding poor decisions reinforcing good ones
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Research Goals

• To develop analysis and design methods that 
trade off complexity and performance.

• To allow for continual improvement, without the 
need for redesign, retune, or retrain

• To design control policies with controlled 
sensitivity to parameter changes
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𝑥2
′ (𝑡)

Θ

θ θ′ 𝑥2(𝑡)

𝑥3(𝑡)

𝑥1(𝑡)
𝒳ℬ:  Θ → 𝒳 𝑥1

′ (𝑡)

𝑥3
′ (𝑡)



•  Nonparametric Analysis of Dynamical Systems
• Stability: Recurrent Lyapunov Functions
• Safety: Recurrent Barrier Functions

•  Nonparametric Control Policies
•Making Decisions Directly form Data
•A Policy Improvement Theorem 
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Problem setup
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Continuous time dynamical system:  ሶ𝑥 𝑡 = 𝑓(𝑥(𝑡)) 
• Initial condition 𝑥0 = 𝑥(0), solution at time 𝑡: 𝜙(𝑡, 𝑥0).

Asymptotic behavior: 𝛀-Limit Set Ω 𝑓
  



Problem setup
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Continuous time dynamical system:  ሶ𝑥 𝑡 = 𝑓(𝑥(𝑡)) 
• Initial condition 𝑥0 = 𝑥(0), solution at time 𝑡: 𝜙(𝑡, 𝑥0).

𝛀-Limit Set Ω 𝑓 :
  

equilibrium limit cycle limit torus chaotic  attractor

Types of 𝛀-limit set

Remark: invariance is a shared property, thus a natural tool for analysis



𝒮: 

Invariant Set

Invariant sets:
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A set 𝒮 ⊆ ℝ𝑑  is positively invariant if and only if:  𝑥0 ∈ 𝒮 → 𝜙 𝑡, 𝑥0 ∈ 𝒮, ∀𝑡 ≥ 0   
Any trajectory starting in the set remains in inside it for all times

• Invariant sets approximate regions of attraction
Compact invariant set 𝒮, containing only 𝑥∗ = Ω 𝑓 ∩ 𝒮 must be 
in the region of attraction 𝒜(𝑥∗) (𝒮 ⊂ 𝒜(𝑥∗))

𝓐 𝒙∗  : 

Merits
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A set 𝒮 ⊆ ℝ𝑑  is positively invariant if and only if:  𝑥0 ∈ 𝒮 → 𝜙 𝑡, 𝑥0 ∈ 𝒮, ∀𝑡 ≥ 0   
Any trajectory starting in the set remains in inside it for all times

Asymptotic stability: solutions that start close enough, remain close 
enough, and eventually converge to equilibrium. 

• Invariant sets guarantee stability 
Lyapunov stability: solutions starting "close enough" to the 
equilibrium remain "close enough"

Lyapunov Functions

𝒮: 

𝓐 𝒙∗  : 

Invariant Set

ε

𝛿

• Invariant sets approximate regions of attraction
Compact invariant set 𝒮, containing only 𝑥∗ = Ω 𝑓 ∩ 𝒮 must be 
in the region of attraction 𝒜(𝑥∗) (𝒮 ⊂ 𝒜(𝑥∗))

Merits



Invariant sets: Challenges
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A set 𝒮 ⊆ ℝ𝑑  is positively invariant if and only if:  𝑥0 ∈ 𝒮 → 𝜙 𝑡, 𝑥0 ∈ 𝒮, ∀𝑡 ≥ 0   
Any trajectory starting in the set remains in inside it for all times

•  𝓢 is topologically constrained
• If 𝒮 ∩ Ω 𝑓 = {𝑥∗}, then 𝒮 is connected

Basin of Ω(𝑓)

•  𝓢 geometry can be wild
• 𝒜(Ω(𝑓)) can be fractal

•  𝓢 is geometrically constrained
• 𝑓 should not point outwards for 𝑥 ∈ 𝜕𝒮

A not invariant trajectory:

𝒮 :

𝓐 𝒙∗  : 



Recurrent sets: Letting things go, and come back
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Property of Recurrent Sets

• ℛ need not be connected

• ℛ does not require 𝑓 to point inwards on all 𝜕ℛ

 

Recurrent sets, while not invariant, 
guarantee that solutions that start in this set, 
will come back infinitely often, forever!   Recurrent set ℛ: 

A recurrent trajectory:

A set ℛ ⊆ ℝ𝑑  is recurrent if for any 𝑥0 ∈ ℛ and 𝑡 ≥ 0, ∃𝑡′ ≥ 𝑡 s.t. 𝜙 𝑡′, 𝑥0 ∈ ℛ. 

Question: Can we use recurrent sets as functional substitutes of invariant sets?
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Nonparametric Stability Analysis
R. Siegelmann, Y. Shen, F. Paganini, and E. Mallada, “A recurrence-based direct method for stability analysis and 
GPU-based verification of non-monotonic Lyapunov functions”, CDC 2023

R. Siegelmann, Y. Shen, F. Paganini, and E. Mallada, “Recurrent Lyapunov Functions”, TAC 2025, submitted

Roy Siegelmann Yue Shen Fernando Paganini



Lyapunov’s Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

Challenge: Couples shape of 𝑉 and vector field 𝑓
• Towards decoupling the 𝑉 − 𝑓 geometry

• Controlling regions where ሶ𝑉 ≥ 0 [Karafyllis ‘09, Liu et al ‘20] 
• Higher order conditions: 𝑔(𝑉 𝑞 , … , ሶ𝑉, 𝑉) ≤ 0 [Butz ‘69, Gunderson ’71, Ahmadi ’06, Meigoli ‘12]
• Discretization approach: 𝑉 𝑥 𝑇 ≤ 𝑉(𝑥(0)) [Coron et al ‘94, Aeyels et. al ‘98, Karafyllis ‘12]
• Multiple Lyapunov Functions: {𝑉𝑗: 𝑗 ∈ 𝑘 } [Ahmadi et al ‘14]
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Theorem [Lyapunov ‘1892]. Given 𝑉: ℝ𝑑 →

ℝ≥0 , with 𝑉 𝑥 > 0, ∀𝑥 ∈ ℝ𝑑\ 𝑥∗ , then:

• ሶ𝑉 ≤ 0 → 𝑥∗ stable

• ሶ𝑉 < 0 → 𝑥∗ as. stable

14

            _
A Butz. Higher order derivatives of Lyapunov functions. IEEE Transactions on automatic control, 1969
Gunderson. A comparison lemma for higher order trajectory derivatives. Proceedings of the American Mathematical Society,  1971
Coron, Lionel Rosier. A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Syst., Estimation, Control, 1994
Aeyels, Peuteman. A new asymptotic stability criterion for nonlinear time-variant differential equations. IEEE Transactions on automatic control, 1998
Ahmadi. Non-monotonic Lyapunov functions for stability of nonlinear and switched systems: theory and computation, 2008
Karafyllis, Kravaris, Kalogerakis. Relaxed Lyapunov criteria for robust global stabilisation of non-linear systems. International Journal of Control, 2009
Meigoli, Nikravesh. Stability analysis of nonlinear systems using higher order derivatives of Lyapunov function candidates. Systems & Control Letters, 2012 
Karafyllis. Can we prove stability by using a positive definite function with non sign-definite derivative? IMA Journal of Mathematical Control and Information, 2012
Ahmadi, Jungers, Parrilo, Roozbehani. Joint spectral radius and path-complete graph Lyapunov functions. SIAM Journal on Control and Optimization, 2014
Liu, Liberzon, Zharnitsky. Almost Lyapunov functions for nonlinear systems. Automatica, 2020



Lyapunov’s Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

Challenge: Couples shape of 𝑉 and vector field 𝑓
• Towards decoupling the 𝑉 − 𝑓 geometry

• Controlling regions where ሶ𝑉 ≥ 0 [Karafyllis ‘09, Liu et al ‘20] 
• Higher order conditions: 𝑔(𝑉 𝑞 , … , ሶ𝑉, 𝑉) ≤ 0 [Butz ‘69, Gunderson ’71, Ahmadi ’06, Meigoli ‘12]
• Discretization approach: 𝑉 𝑥 𝑇 ≤ 𝑉(𝑥(0)) [Coron et al ‘94, Aeyels et. al ‘98, Karafyllis ‘12]
• Multiple Lyapunov Functions: {𝑉𝑗: 𝑗 ∈ 𝑘 } [Ahmadi et al ‘14]

Question: Can we provide stability conditions based on recurrence? 
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Theorem [Lyapunov ‘1892]. Given 𝑉: ℝ𝑑 →

ℝ≥0 , with 𝑉 𝑥 > 0, ∀𝑥 ∈ ℝ𝑑\ 𝑥∗ , then:

• ሶ𝑉 ≤ 0 → 𝑥∗ stable

• ሶ𝑉 < 0 → 𝑥∗ as. stable
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Recurrent Lyapunov Functions 

A continuous function 𝑉: ℝ𝑑 → ℝ+ is a Recurrent Lyapunov Function if

t

Preliminaries:

•  Sub-level sets {𝑉(𝑥) ≤ 𝑐} are 𝝉-recurrent sets.

𝑉≤𝑐

𝜏𝜏

Definition: A set ℛ ⊆ ℝ𝑑  is 𝝉-recurrent if for any 𝑥0 ∈ ℛ and 𝑡 ≥ 0, ∃𝑡′ ∈ (𝑡, 𝑡 + 𝜏] s.t. 𝜙 𝑡′, 𝑥0 ∈ ℛ. 

Time elapsed ≤ 𝝉



Recurrent Lyapunov Functions 

A continuous function 𝑉: ℝ𝑑 → ℝ+ is a Recurrent Lyapunov Function if

t

Preliminaries:

•  Sub-level sets {𝑉(𝑥) ≤ 𝑐} are 𝝉-recurrent sets.

•  When 𝑓 is 𝐿-Lipschitz, one can trap trajectories.

𝑉≤𝑐

𝜏𝜏

𝐹𝑐𝜏𝑒𝜏𝐿

𝐹𝑐 = max
𝑥∈𝑉≤𝑐

 | 𝑓 𝑥 |



Recurrent Lyapunov Functions 

A continuous function 𝑉: ℝ𝑑 → ℝ+ is a Recurrent Lyapunov Function if
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t𝜏𝜏

            _
Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023

Theorem [CDC 23]: Let 𝑉: ℝ𝑑 → ℝ≥0 be a 

Recurrent Lyapunov Function and let 𝑓 be L-

Lipschitz

• Then, the equilibrium 𝑥∗ is stable.

 



Recurrent Lyapunov Functions 

A continuous function 𝑉: ℝ𝑑 → ℝ+ is a Recurrent Lyapunov Function if

Enrique Mallada (JHU) 15

t𝜏𝜏

            _
Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023

Theorem [CDC 23]: Let 𝑉: ℝ𝑑 → ℝ≥0 be a 

Recurrent Lyapunov Function and let 𝑓 be L-

Lipschitz

• Then, the equilibrium 𝑥∗ is stable.

• Further, if the inequality is strict, then 𝑥∗ is 

asymptotically stable! 



Exponential Stability Analysis

The function 𝑉: ℝ𝑑 → ℝ+ is 𝜶-Exponential Recurrent Lyapunov Function if
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t𝜏

            _
Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023

𝜏

Theorem [CDC 23]: Let 𝑉: ℝ𝑑 → ℝ≥0 satisfy 

𝛼1 𝑥 − 𝑥∗ ≤ 𝑉 𝑥 ≤ 𝛼2 𝑥 − 𝑥∗ .

Then, if  𝑉 is 𝛼-Exponential Recurrent 

Lyapunov Function, 𝑥∗ is 𝛼-exponentially 

stable.



Norm-based Converse Theorem
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Theorem: Assume 𝑥∗ is 𝜆-exponentially stable:  ∃ 𝐾, 𝜆 > 0 such that:

𝜙 𝑡, 𝑥 − 𝑥∗ ≤ 𝐾𝑒−𝜆𝑡 𝑥 − 𝑥∗ , ∀𝑥 ∈ ℝ𝑑 .

Then, 𝑉 𝑥 = 𝑥 − 𝑥∗  is 𝛼-Exponential Recurrent Lyapunov Function , i.e.,

min
𝑡∈ 0,𝜏

 𝑒𝛼𝑡 𝜙 𝑡, 𝑥 − 𝑥∗ − 𝑥 − 𝑥∗ ≤ 0, ∀𝑥 ∈ ℝ𝑑 ,

whenever     𝛼 < 𝜆     and    𝜏 ≥
1

𝜆−𝛼
ln 𝐾.

Remarks:

• The rate 𝛼 must be strictly smaller than the rate of convergence 𝜆 (trading off optimality).

• Any norm is a Lyapunov function! 

Question: Is the struggle for its search over?



Trajectory-based Verification
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Proposition [CDC 23]: Let ⋅  be any norm and 𝑥∗ = 0. Then, whenever

for all 𝑦 with 𝑦 − 𝑥 ≤ 𝑟

min
𝑡∈ 0,𝜏

𝑒𝛼𝑡 𝜙 𝑥, 𝑡 + 𝑟𝑒𝐿𝑡 ≤ 𝑥 − 𝑟

min
𝑡∈ 0,𝜏

𝑒𝛼𝑡 𝜙 𝑦, 𝑡 ≤ 𝑦

Remarks:

• Only requires a trajectory of length 𝜏

• Trades off between radius 𝒓 and verified 
performance 𝜶

• Amenable for parallel computations using 
GPUs

𝑟

𝑟𝑒𝐿𝜏

𝑥

𝜙(𝜏, 𝑥)

𝑦

𝜙(𝑦, 𝜏)



• Basic Algorithm: 
• Consider 𝑉 𝑥 = | 𝑥 − 𝑥∗ |∞

• Build a grid of hypercubes surrounding 𝑥∗

• Test grid center points:
• Simulate trajectories of length 𝜏

• Find 𝛼 s.t. the verified radius is 𝑟 ≥ ℓ/2

• Hypercube not verified, split in 𝟑𝒅 parts

• Repeat testing of new points

Nonparametric Stability Verification via GPUs
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ℓ
ℓ

ℓ/3

split



• Basic Algorithm: 
• Consider 𝑉 𝑥 = | 𝑥 − 𝑥∗ |∞
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• Exponentially expand to outer layer
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• Basic Algorithm: 
• Consider 𝑉 𝑥 = | 𝑥 − 𝑥∗ |∞

• Build a grid of hypercubes surrounding 𝑥∗

• Test grid center points:
• Simulate trajectories of length 𝜏

• Find 𝛼 s.t. the verified radius is 𝑟 ≥ ℓ/2

• Hypercube not verified, split in 𝟑𝒅 parts

• Repeat testing of new points
• Exponentially expand to outer layer

• Repeat testing in new layer

Nonparametric Stability Verification via GPUs
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Q: How many samples are needed?
If 𝑥∗ is 𝜆-exp. stable

𝒪 𝑞−𝑑  log
𝑅

𝜀

with 𝑞 =
1−𝐾e 𝛼−𝜆 𝜏

1+e 𝐿+𝛼 𝜏 < 1.

𝑅ε



• Basic Algorithm: 
• Consider 𝑉 𝑥 = | 𝑥 − 𝑥∗ |∞

• Build a grid of hypercubes surrounding 𝑥∗

• Test grid center points:
• Simulate trajectories of length 𝜏

• Find 𝛼 s.t. the verified radius is 𝑟 ≥ ℓ/2

• Hypercube not verified, split in 𝟑𝒅 parts

• Repeat testing of new points
• Exponentially expand to outer layer

• Repeat testing in new layer

• Two Alg. Variations:
• Alg. 1: Find largest 𝛼max for region 𝒳

• Alg. 2: Find region 𝒳𝛼  for given 𝛼

Nonparametric Stability Verification via GPUs
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𝒳

𝒳𝛼



Numerical Illustration – Find Best 𝜶

Consider the 2-d non-linear system:

with 𝐵𝑖𝑗 ∼ 𝒩(0, 𝜎2)
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ሶ𝑥 =
0 2

−1 −1
𝑥 + 𝐵

𝑥1
2

𝑥1𝑥2

𝑥2
2

𝜎 = 0.3 𝛼max = 0.470



Numerical Illustration – Find region 𝒳𝜶

Consider the system of n Kuramoto oscillators: 
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Parameters: 𝑛 = 3 and  𝛼 = 1

System dimension: 𝑑 = 𝑛 − 1
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Nonparametric Safety Verification using Recurrence
Y. Shen, H. Sibai, E. Mallada, “Generalized Barrier Functions: Integral Conditions and Recurrent Relaxations”, in 
60th Allerton Conference on Communication, Control, and Computing 2024

Hussein SibaiYue Shen



Safety in Dynamical Systems

Consider the continuous-time dynamical system:  ሶ𝑥 = 𝑓 𝑥
- 𝜙 𝑡, 𝑥0 : solution at time 𝑡 starting from 𝑥0

- 𝑋𝑢: set of unsafe states

Goal: Find the safe set
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𝒳𝑢: unsafe set
(e.g., obstacles)

𝑥0

𝜙(𝑡, 𝑥0)

𝑋𝑠 : 



Barrier Functions

Enrique Mallada (JHU) 23

𝒉≥𝟎 invariant

𝒉=𝟎

𝜙(𝑥1, 𝑡)

𝜙(𝑥2, 𝑡)

𝒉>𝟎

Barrier Function:
Let ℎ be differentiable, 𝛾 ∈ 𝒦𝑒, and

then, ℎ≥0 is invariant

Extended Class 𝒦𝒆: 

• 𝛾 ∈ 𝒦𝑒 iff  𝛾′ 𝑠 ≥ 0 and 𝛾 0 = 0

• Example:

𝒳𝑢



Recurrent Barrier Functions
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Recurrent Barrier Function:
Let ℎ be continuous, 𝛾 ∈ 𝒦𝑒, and 

then, ℎ≥0 is 𝝉-recurrent

𝒉≥𝟎 invariant

𝒉=𝟎

𝜙(𝑥1, 𝑡)

𝜙(𝑥2, 𝑡)

𝒉>𝟎

Barrier Function:
Let ℎ be differentiable, 𝛾 ∈ 𝒦𝑒, and

then, ℎ≥0 is invariant

𝒉≥𝟎 𝜏-recurrent

𝒉=𝟎

𝒉>𝟎

Time elapsed ≤ 𝝉

Time elapsed ≤ 𝝉

𝜙(𝑥1, 𝑡)

𝜙(𝑥2, 𝑡)

As 𝜏 → 0

By definition

𝒳𝑢 𝒳𝑢



Recurrent Barrier Functions
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𝒉≥𝟎 𝜏-recurrent

𝒉=𝟎

𝒉>𝟎

Time elapsed ≤ 𝝉

Time elapsed ≤ 𝝉

𝜙(𝑥1, 𝑡)

𝜙(𝑥2, 𝑡)

Recurrent Barrier Function:
Let ℎ be continuous, 𝛾 ∈ 𝒦𝑒, and 

then, ℎ≥0 is 𝝉-recurrent

𝒳𝑢



Recurrent Barrier Functions
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𝒉≥𝟎 𝜏-recurrent

Recurrent Barrier Function:
Let ℎ be continuous, 𝛾 ∈ 𝒦𝑒, and 

then, ℎ≥0 is 𝝉-recurrent

Question: Do we gain anything from relaxing the invariance condition in BFs?

𝒉=𝟎

𝒉>𝟎

Time elapsed ≤ 𝝉

Time elapsed ≤ 𝝉

𝜙(𝑥1, 𝑡)

𝜙(𝑥2, 𝑡)

𝒳𝑢

Claim: Given a set 𝑆𝑢 containing the unsafe region 𝒳𝑢



Recurrent Barrier Functions
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Recurrent Barrier Function:
Let ℎ be continuous, 𝛾 ∈ 𝒦𝑒, and 

then, ℎ≥0 is 𝝉-recurrent

Question: Do we gain anything from relaxing the invariance condition in BFs?

Claim: Given a set 𝑆𝑢 containing the unsafe region 𝒳𝑢

• Signed norm of 𝑆𝑢 is a good RBF Candidate: ℎ 𝑥 = sd(𝑆𝑢, 𝑥) 

• Safety is guaranteed whenever 𝜏-backward reachable set: ℛ −𝜏,0 𝒳𝑢 ⊂ 𝑆𝑢 

𝒳𝑢

𝑆𝑢

ℎ 𝑥 = sd(𝑆𝑢, 𝑥) 

ℎ<0

ℎ≥0

ℛ −𝜏,0 (𝑋𝑢)



𝑆𝑢 : 

Stage 1: 𝜏 −Backward reachability 
• Find 𝑆𝑢 with ℛ −𝜏,0 𝒳𝑢 ⊂ 𝑆𝑢 

Stage 2: RBF condition
• Check ℎ(𝑥) = sd(𝑥, 𝑆𝑢) is RBF

𝑋𝑢 : 

Data-Driven Safety Verification
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𝑟min: precision parameter
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Stage 2: RBF condition
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𝑆𝑢 : 

𝑋𝑢 : 

𝑟min: precision parameter



𝑟 m
in

=
𝟎

.𝟎
𝟏

running time: 354.12s
97.4% safe set covered

running time: 20.68s
99.6% safe set covered

∼17x faster
+2.2% more area

Reachability Nagumo’s RBF

Numerical Validation: Reachability vs Recurrence
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𝑟 m
in

=
𝟎

.𝟎
𝟐

𝟕
𝟏

running time: 23.15s
92.2% safe set covered

running time: 3.81s
98.6% safe set covered

∼6x faster
+6.4% more area

Reachability 

Numerical Validation: Reachability vs Recurrence
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Nagumo’s RBF



𝑟 m
in

=
𝟎

.𝟎
𝟕

𝟑
𝟕

running time: 3.01s
83.3% safe set covered

running time: 1.56s
94.6% safe set covered

∼2x faster
+11.2% more area

Reachability 

Numerical Validation: Reachability vs Recurrence
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Nagumo’s RBF



𝑟 m
in

=
𝟎

.𝟐

running time: 1.86s
9.3% safe set covered

running time: 0.31s
71.2% safe set covered

6x faster
+61.9% more area

Reachability 

Numerical Validation: Reachability vs Recurrence
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Nagumo’s RBF



•  Nonparametric Analysis of Dynamical Systems
• Stability: Recurrent Lyapunov Functions
• Safety: Recurrent Barrier Functions

•  Nonparametric Control Policies
•Making Decisions Directly form Data
•A Policy Improvement Theorem 

Outline
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•  Nonparametric Control Policies
•Making Decisions Directly form Data
•A Policy Improvement Theorem 

Outline



Policy iteration = Policy evaluation + Policy improvement

Policy evaluation

• Given     , evaluate it to find 

Policy improvement

• Given              , define:
• Then:

Rinse and repeat until 

Classical policy improvement works in discrete spaces

“Policy improvement” is a fundamental building block of classical RL

• Can evaluate “separately” for each (s,a)

• Can store 𝒬 in a table

• Given s, maximize an array of size |𝒜| 

Enrique Mallada (JHU) 27



Policy Optimization in Continuous Action Spaces

Based on Policy Gradient:

• Use experience to approximate 

cumulative return

Many Challenges:
• Estimation variance
• Non-smoothness
• Fractal landscape
• Mollification
• …

Enrique Mallada (JHU) 28



Fundamental challenges of Policy Optimization

Challenge: Fractal Optimization Landscapes

• Goal:

• Approach:

Challenge: Mollification of Policy Gradient

• Goal:

• Policy:

Enrique Mallada (JHU) 29

.
Tao Wang, Sylvia Hebert, Sicun Gao, Fractal landscapes in policy optimization, NeurIPS 23
Tao Wang, Sylvia Hebert, Sicun Gao, Mollification effects of policy gradient, ICML 24

fractal!

estimated
return

true
return



Nonparametric policy improvement in 
continuous action spaces
A. Castellano, S. Rezaei, J. Markovitz, and E. Mallada, Nonparametric Policy Improvement for Continuous Action 
Spaces via Expert Demonstrations, 2025, submitted to Reinforcement Learning Conference.

Agustin Castellano Sohrab Rezaei Jared Markowitz Enrique Mallada



Problem Setup
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Goal: find optimal policy



Problem Setup
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Goal: find optimal nonparametric policy

Data set:

Assumptions:

Optimal         is smooth:

Expert data: we have                                        , where

Deterministic dynamics: distance



1. How can we use these transitions to learn a nonparametric policy?

2. What guarantees can we get when we add more transitions?

3. Where should we add transitions to improve performance?

Expert data: we have                                        , where

Enrique Mallada (JHU) 31



Overview of our method
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1. How can we use these transitions
to learn a nonparametric policy?

Enrique Mallada (JHU) 33



• Use the data to define lower bounds on optimal values:

• Nonparametric Policy:

• Remark: Note argmax always gives actions in dataset 

• Question: What can we say about              ?

Building bounds & Nonparametric Policy

Expert data: we have                                        , where

Enrique Mallada (JHU) 34



Nonparametric policy improves over lower bound

Enrique Mallada (JHU) 35

Policy Evaluation:
•  Nonparametric 𝜋 satisfies                :

Policy Improvement: 

• Given data sets 𝒟, 𝒟′ with 𝒟 ⊂ 𝒟′

• Strict on neighbors of new data:  ∀𝑠 ∈ 𝑁(𝑠′) 

More data = better lower bounds

Improvement on 
added points
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2. What guarantees with more transitions?

3. Where to add transitions?

• Only where sufficient improvement is guaranteed:

Enrique Mallada (JHU) 37

1. How to learn a policy?

More data = better lower bounds

Improvement on 
added points



Algorithm

Input: Lipschitz constant L

For each episode do:

1. Sample 

2. If                  :
• Run optimal trajectory with

• Repeat: add tuples to dataset (from            )

    Until:                      .

3. Else:
• Continue

Enrique Mallada (JHU) 38



• We use the lqr_n_m environments from DeepMind’s Control Suite

Experiments
1st m actuated

Number of balls

lqr_2_1 lqr_6_2 

• Results on lqr_2_1:

Enrique Mallada (JHU) 39
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• We use the lqr_n_m environments from DeepMind’s Control Suite

Experiments

• Results on lqr_2_1:

Enrique Mallada (JHU) 39

• Remarks:
• Incremental learning: No catastrophic forgetting, or oscillations
• Improvement across the entire state space (not in expectation)
• Only valuable data is added (harder to find at times passes)
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Incremental Learning

after 100 episode… after 1000 episodes…

Enrique Mallada (JHU) 40

optimal controlafter 30K+

after 10 episode…



Incremental Learning
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optimal controlafter 30K+



Research Goals

• To develop analysis and design methods that 
trade off complexity and performance.

• To allow for continual improvement, without the 
need for redesign, retune, or retrain

• To design control policies with controlled 
sensitivity to parameter changes

Enrique Mallada (JHU) 41

𝑥2
′ (𝑡)

Θ

θ θ′ 𝑥2(𝑡)

𝑥3(𝑡)

𝑥1(𝑡)
𝑋ℬ:  Θ → 𝑋 𝑥1

′ (𝑡)

𝑥3
′ (𝑡)



Conclusions

• Takeaways

• Proposed a relaxed notion of invariance: recurrence.

• Nonparametric theory for dynamical systems analysis leading to:

• General Lyapunov and Barrier Function conditions satisfied by any norm!

• Algorithms that are parallelizable and progressive/sequential.

• Nonparametric policies: Guaranteed improvement with each demonstration.

• Ongoing work 

• Recurrence: Information theoretical lower bounds of control recurrence sets

• Lyapunov/CBF Theory: Generalize other Lyapunov notions, Control Lyapunov Functions, 

Control Barrier Functions, Contraction

• Nonparametric policies (NP): NP policy iteration, enforcing safety and stability using NP, 

exploring alternative inductive biases (beyond Lipschitz)

Enrique Mallada (JHU) 42

and Future work



Thanks!
Related Publications:
[CDC 23] Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification 
of non-monotonic Lyapunov functions, CDC 2023, TAC submitted 
[HSCC 24]  Sibai, M, Recurrence of nonlinear control systems: Entropy and bit rates, HSCC, 2024, NAHS under review
[Allerton 24] Shen, Sibai, M, Generalized Barrier Functions: Integral conditions and recurrent relaxations, Allerton 2024
[RLC 25] Castellano, Rezaei, Markovitz, and M, Nonparametric Policy Improvement for Continuous Action Spaces via Expert 
Demonstrations, RLC 2025

Enrique Mallada
mallada@jhu.edu

http://mallada.ece.jhu.edu
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