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A Dream World of Success Stories
2017 Google DeepMind’s DQN 2017 AlphaZero — Chess, Shogl Go 2019 AlphaStar — Starcraft Il
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v Grandmaster level in StarCraft Il using
s (ARl multi-agent reinforcementlearning

LETTER

Human-level control through deep reinforcement
learning

OpenAl — Rubik’s Cube
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Real ity Kic ks In Angry Residents, Abrupt Stops: Waymo Vehicles Are Still
Causing Problems in Arizona

RAY STERN | MARCH 31, 2021 | 8:26AM
BUSINESS ©8.14.2819 B3:88 AM

DeepMind's Losses and the Future of Artificial Intelligence

Alphabet’s DeepMind unit, conqueror of Go and other games, is losing lots of money. Continued deficits could imperil investments in Al.

BUSINESS 12.87.2828 B4:86 PM
Uber Gives Up on the Self-Driving Dream

The ride-hail giant invested more than $1 billion in autonomous vehicles. Now it’s selling the unit to Aurora, which makes self-driving tech.

CRUISE KNEW ITS SELF-DRIVING CARS
Tesla Recalls Nearly All Vehicles Due to HAD PROBLEMS RECOGNIZING CHILDREN
Autopilot Failures — AND KEPT THEM ON THE STREETS

According to internal materials reviewed by The Intercept, Cruise
cars were also in danger of driving into holes in the road.

Tesla disagrees with feds' analysis of glitches

BY LINA FISHER, 2:54PM, WED. DEC. 13, 2023

Self-driving Uber car that hit and killed
woman did not recognize that pedestrians

jaywalk

The automated car lacked "the capability to classify an object as a pedestrian unless that object

OpenAl disbands its robotics research team

Kyle Wiggers  @Kyle_L_Wiggers  July 16,2021 11:24 AM f ¥ in

was near a crosswalk,” an NTSB report said.
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Fundamental challenge: The curse of dimensionality

= Statistical: No clear inductive bias

Sampling in d dimension with resolution €:

e Ll oo L

= Computational: Verifying non-negativity of polynomials

Copositive matrices:

\
Sample complexity: |
I
|

O(e™9)

(
l
l
|

Fore=0.1andd = 100, we

would need 101°? points.
Atoms in the universe: 1078

[x2 ..x2)A[x2 ..x2] >0

Murty&Kadabi [1987]: Testing co-positivity is NP-Hard Motzkin [1967]:
p = xy2 4 x2y4 11— 3x2y2

is nonnegative,

Sum of Squares (SoS):
z(x)TQz(x) =0, z;(x) €R[x], x e R%,Q =0
Artin [1927] (Hilbert’s 17 problem):

not a sum of squares,
but (x? + y?)?p is SoS

Non-negative polynomials are sum of square of rational functions
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Methodological challenges

* Focused on a design-then-deploy philosophy

* Most methods have a strict separation between
control synthesis and deployment

 Synthesis usually aims for the best (optimal)
controller

* Lack of exploration of the benefits of designing
sub-optimal controllers

* Policy parameters can drastically affect the
system's behavior

* The params to behavior maps are highly sensitive
to perturbations

Enrique Mallada (JHU)
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A A

max J(m) = Ex {Zf’iﬂ ~tr(se, at)}

st. sey1~ P( | st,at), ae~m(-|st)

RL:

min J = J; L(a(t),(t),) dt + 2(x(T)

Optimal Control:
s.t. .’L‘(t) — f(l'(t),ﬂ(t), t), *T(U) = Lo

B: - X




Aspirational Goals

To design policies as nature does...

refining post deployment  self improving, with each trial discarding poor decisions reinforcing good ones

Enrique Mallada (JHU) 7



Research Goals

* To develop analysis and design methods that
trade off complexity and performance.

* To allow for continual improvement, without the
need for redesign, retune, or retrain

* To design control policies with controlled

sensitivity to parameter changes o

Enrique Mallada (JHU)
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Outline

* Nonparametric Analysis of Dynamical Systems
e Stability: Recurrent Lyapunov Functions
* Safety: Recurrent Barrier Functions

* Nonparametric Control Policies
* Making Decisions Directly form Data
* A Policy Improvement Theorem



Outline

* Nonparametric Analysis of Dynamical Systems



Problem setup

Continuous time dynamical system: x(t) = f(x(t))
. Initial condition xy = x(0), solution at time t: ¢ (t, xy).

lAsymptotlc behavior: Q-Limit Set Q(f)
: r € Qf) <= xg,{th}n>0, s.t. lim t, =00 and lim ¢(t,,x9) = x
_ n—oo

n—oo
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
. Initial condition xg = x(0), solution at time t: ¢ (t, xy).

| Q-Limit Set Qf): l
: r e Qf) < Fxg,{tn}n>0, s.t. lim t, =00 and lim ¢(t,,x9) = |
- n—00 I

n—oo

Types of Q-limit set

equilibrium limit cycle limit torus chaotic attractor

Remark: invariance is a shared property, thus a natural tool for analysis

Enrique Mallada (JHU) 9



Invariant sets:

Aset S € R? is positively invariant if and only if: xo € S = ¢(t,x,) €S, Vt =0

Invariant Set

Any trajectory starting in the set remains in inside it for all times

* Invariant sets approximate regions of attraction
Compact invariant set §, containing only {x*} = Q(f) N § must be
in the region of attraction A(x™) (5 € A(x"))

Enrique Mallada (JHU)
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Invariant sets:

Aset S € R? is positively invariant if and only if: xo € S = ¢(t,x,) €S, Vt =0

Any trajectory starting in the set remains in inside it for all times

* Invariant sets approximate regions of attraction
Compact invariant set §, containing only {x*} = Q(f) N § must be
in the region of attraction A(x™) (5 € A(x"))

* Invariant sets guarantee stability
Lyapunov stability: solutions starting "close enough" to the
equilibrium remain "close enough”

Asymptotic stability: solutions that start close enough, remain close
enough, and eventually converge to equilibrium.

Enrique Mallada (JHU)
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Invariant sets: Challenges

Aset S € R? is positively invariant if and only if: xo € S = ¢(t,x,) €S, Vt =0
Any trajectory starting in the set remains in inside it for all tin‘?es

 Sistopologically constrained ' )
« IfSNQ(f) ={x*}, then S is connected

/. . |
S is geometrically constrained 4 -2 0 2 4 -4 2 0 2 4

* f should not point outwards for x € 3§

e § geometry can be wild
 A(f)) can be fractal

Enrique Mallada (JHU)



Recurrent sets: Letting things go, and come back

A set R € R% is recurrent if forany x, € Rand t > 0, 3t’ > ts.t. p(t’, x,) € R.

Property of Recurrent Sets
* R need not be connected

* R does not require f to point inwards on all R

| Recurrent sets, while not invariant,

|
|
| guarantee that solutions that start in this set, :
: will come back infinitely often, forever! :

Recurrent set R:

A recurrent trajectory: <

Question: Can we use recurrent sets as functional substitutes of invariant sets?

Enrique Mallada (JHU) 13
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* Nonparametric Analysis of Dynamical Systems
e Stability: Recurrent Lyapunov Functions
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Lyapunov’s Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

L V(%)

Theorem [Lyapunov ‘1892]. Given V: R% —
Rso, with V(x) > 0,Vx € R¥\{x*}, then:
« V<0 - x*stable ],
« V <0 - x*as. stable "'

Tt
I
]
!

Challenge: Couples shape of IV and vector field f

* Towards decoupling the IV — f geometry
« Controlling regions where V > 0 [Karafyllis ‘09, Liu et al ‘20]
* Higher order conditions: g(V(Q), .V, ) < 0 [Butz ‘69, Gunderson 71, Ahmadi '06, Meigoli ‘12]
* Discretization approach: V(x(T)) < V(x(0)) [Coron et al ‘94, Aeyels et. al ‘98, Karafyllis ‘12]
* Multiple Lyapunov Functions: {V;: j € [k]} [Ahmadi et al ‘14]

A Butz. Higher order derivatives of Lyapunov functions. IEEE Transactions on automatic control, 1969

Gunderson. A comparison lemma for higher order trajectory derivatives. Proceedings of the American Mathematical Society, 1971

Coron, Lionel Rosier. A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Syst., Estimation, Control, 1994

Aeyels, Peuteman. A new asymptotic stability criterion for nonlinear time-variant differential equations. IEEE Transactions on automatic control, 1998

Ahmadi. Non-monotonic Lyapunov functions for stability of nonlinear and switched systems: theory and computation, 2008

Karafyllis, Kravaris, Kalogerakis. Relaxed Lyapunov criteria for robust global stabilisation of non-linear systems. International Journal of Control, 2009

Meigoli, Nikravesh. Stability analysis of nonlinear systems using higher order derivatives of Lyapunov function candidates. Systems & Control Letters, 2012
Karafyllis. Can we prove stability by using a positive definite function with non sign-definite derivative? IMA Journal of Mathematical Control and Information, 2012
Ahmadi, Jungers, Parrilo, Roozbehani. Joint spectral radius and path-complete graph Lyapunov functions. SIAM Journal on Control and Optimization, 2014

Liu, Liberzon, Zharnitsky. AlImost Lyapunov functions for nonlinear systems. Automatica, 2020
Enrique Mallada (JHU)
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Lyapunov’s Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

Theorem [Lyapunov ‘1892]. Given V: R% — -
Rso, with V(x) > 0,Vx € R¥\{x*}, then: | }
e V<0 - x*stable N = ; 5]
« V <0 - x*as. stable "' »

Challenge: Couples shape of IV and vector field f

* Towards decoupling the IV — f geometry

Controlling regions where V > 0 [Karafyllis ‘09, Liu et al 20]

Higher order conditions: g(V(q), .V, V) < 0 [Butz ‘69, Gunderson '71, Ahmadi ‘06, Meigoli ‘12]
Discretization approach: V(x(T)) < V(x(0)) [Coron et al ‘94, Aeyels et. al ‘98, Karafyllis ‘12]
Multiple Lyapunov Functions: {V;: j € [k]} [Ahmadi et al ‘14]

Question: Can we provide stability conditions based on recurrence?

Enrique Mallada (JHU) 14



Recurrent Lyapunov Functions

A continuous function V: R% — R, is a Recurrent Lyapunov Function if

ﬁ}O’T]V(:E) .= min V(¢(t,z)) — V(z) <0 Vz € R?

te(0,7]

Preliminaries: 4

* Sub-level sets {V(x) < c} are T-recurrent sets.

Time elapsed < T

V<C

—~—
M

Definition: A set R € R is T-recurrent if for any x, € Rand t > 0, 3t’ € (t,t + 1] s.t. p(t', x,) € R.




Recurrent Lyapunov Functions

A continuous function V: R% — R, is a Recurrent Lyapunov Function if

EEP’T]V(:C) .= min V(¢(t,z)) — V(z) <0 Vz € R?

te(0,7]

Preliminaries: 4
* Sub-level sets {V(x) < c} are T-recurrent sets.
* When f is L-Lipschitz, one can trap trajectories.

TL
E.te

F, =ggillf(x)ll



Recurrent Lyapunov Functions

A continuous function V: R% — R, is a Recurrent Lyapunov Function if

E}O’T]V(m) .= min V(¢(t,z)) — V(z) <0 Vz € R?
te(0,7]

Theorem [CDC 23]: Let V: R — R, be a

Recurrent Lyapunov Function and let f be L-
Lipschitz

* Then, the equilibrium x™ is stable.

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023

Enrique Mallada (JHU)
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Recurrent Lyapunov Functions

A continuous function V: R% — R, is a Recurrent Lyapunov Function if

EEP’T]V(:E) .= min V(¢(t,z)) — V(z) <0 Vz € R?
te(0,7]

Theorem [CDC 23]: Let V: R — R, be a

Recurrent Lyapunov Function and let f be L-

Lipschitz

* Then, the equilibrium x™ is stable.

* Further, if the inequality is strict, then x™ is
asymptotically stable!

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023

Enrique Mallada (JHU) 15



Exponential Stability Analysis

The function V: R% — R, is a-Exponential Recurrent Lyapunov Function if

LV (x) = t 2rr(1(|)nE]79*’t V(e(t,x)) - V(x) <0 8x 2 RY

Theorem [CDC 23]: Let V:R% - R, satisfy

Then, if V is a-Exponential Recurrent
Lyapunov Function, x* is a-exponentially
stable.

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023

Enrique Mallada (JHU) 16



Norm-based Converse Theorem

Theorem: Assume x™ is A-exponentially stable: 3 K, 4 > 0 such that:
||¢(t,X)—x*| SKe"“Hx—x*I , Vx € R4,
Then, V(x) = ||x — x|

is a-Exponential Recurrent Lyapunov Function, i.e.,

min e“t|l¢(t, x) — x*| <0, Vx € R9,

te(0,7]

— |lx — x*|

whenever a <A and T = ﬁln K.

Remarks:
* The rate @ must be strictly smaller than the rate of convergence A (trading off optimality).

* Any norm is a Lyapunov function!

Question: Is the struggle for its search over?



Trajectory-based Verification

Proposition [CDC 23]: Let ||-|| be any norm and x* = 0. Then, whenever

min e“t(||gl)(x, t)|| + re”) < ||x|| —r

te(0,7]

forally with ||y — x|| <

min e ||p(y, D] < |y

te(o,t]

Remarks:
* Only requires a trajectory of length

* Trades off between radius r and verified
performance

 Amenable for parallel computations using
GPUs

Enrique Mallada (JHU)
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Nonparametric Stability Verification via GPUs

* Basic Algorithm:
* Consider V(x) = ||x — x*||w
* Build a grid of hypercubes surrounding x*

* Test grid center points:
* Simulate trajectories of length
* Find a s.t. the verified radius isr = £/2

* Hypercube not verified, splitin 3¢ parts
* Repeat testing of new points

B split g {
P - ‘
i . }4/3

Enrique Mallada (JHU)
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Nonparametric Stability Verification via GPUs

* Basic Algorithm: . .
 Consider V(x) = ||x — x™||

* Build a grid of hypercubes surrounding x*

* Test grid center points:
* Simulate trajectories of length
* Find a s.t. the verified radiusisr = £/2

* Hypercube not verified, splitin 3¢ parts g g
* Repeat testing of new points
* Exponentially expand to outer layer

* Repeat testing in new layer ’ ’
[} [}

Enrique Mallada (JHU)

19




€

Nonparametric Stability Verification via GPUs

* Basic Algorithm:
 Consider V(x) = ||x — x*|| »

* Build a grid of hypercubes surrounding x*

* Test grid center points:
* Simulate trajectories of length

* Find a s.t. the verified radiusisr = £/2

I I
L]

* Hypercube not verified, split in 3¢ parts

* Repeat testing of new points

* Exponentially expand to outer layer

* Repeat testing in new layer

Q: How many samples are needed?
If x* is A-exp. stable

o 2)

1—kela-Dr

<1

Wlth q — 1+e(L+a)r

Enrique Mallada (JHU)



Nonparametric Stability Verification via GPUs

* Basic Algorithm: : . X

 Consider V(x) = ||x — x*|| » . /_\

* Build a grid of hypercubes surrounding x*
* Test grid center points: : Xa . c

* Simulate trajectories of length

* Find a s.t. the verified radiusisr = £/2 el
* Hypercube not verified, splitin 34 parts . - 11 -1- \

* Repeat testing of new points

* Exponentially expand to outer layer \ B I G o o \

* Repeat testing in new layer \\
T~
* Two Alg. Variations: : : \ : : )
* Alg. 1: Find largest a4 for region X AN
* Alg. 2: Find region X, for given a \ /

Enrique Mallada (JHU) 19



Numerical lllustration — Find Best

Consider the 2-d non-linear system:

j~N(O,O'2)

og=0.3

0

i=|_,

2
_1]X+B X1X9

Amax = 0.470

Phase Portrait
1.00 {— 1001 @ 027 ==~~~ NN\
o @ 00F| === SSmSNaSaN NN\ \\Q\\«}«
0.75 1= 0751 @ 0.03 N X
e ® o001 NN
0.50 f 0.50 - ;‘ : :: :
0.25 1 0251 ;| _—
’ * 1 Al
> 0.00 0.004 } 4 !
: \ 5
~0.25 1\ ~0.25 - Q Q i
\) \ X f
-0.50 . _0_50 - - -
% ey, QD Sl
-0.75 DA ~0.75 1 N N = o P
<1.00 d—v—= N __1.00_\\\\\\\\\\\\\\\\\“‘-—h
-1.00 -0.75 -0.50 -0.2! -1.00 -0.75 —0.50 —0.25 000 025 050 075 1.00

Time per Iteration

1.50 1.75 2.00 2.25 2.50 275 3.00 3.25 3.50

Enrique Mallada (JHU)
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Consider the system of n Kuramoto oscillators

/”{-‘A. .QQ\‘&.."”’;"-‘A.. v
///llf’-t; - - st‘&ﬁ."”/’ b a e . @
bl e T PPN ...::"’J/l/lt‘os:. )
/////f’-l‘;.. LedaERs ”’,’,"‘l.il\t
’///IIIOtlsss.. ..-..oou””’/l‘!lb§‘~..
’Illtlltlbv\vv-‘ ..vb.' "”’lll&\\\\v-.
T TIT ..oooooo;:it:s»vyss-<
SAAXEEEAN ....w““"".u-...‘...’.
-44..00.4.....l-s.sn-.‘.noo.oo
SILIIIEEAN. ALY
.~\\1vr'.rt"erooc ...sssQ\Q‘vrrt’rr'
ST A9%0eai i)
SN e T DTN
.]///”'...“‘-...".}////
T T
o =

1.0 15 2.0 2.5 3.0
Log of Time (s)
21

0.5

0.0

Enrique Mallada (JHU)




Outline

* Nonparametric Analysis of Dynamical Systems
e Stability: Recurrent Lyapunov Functions



Outline

* Nonparametric Analysis of Dynamical Systems
e Stability: Recurrent Lyapunov Functions
* Safety: Recurrent Barrier Functions
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Nonparametric Safety Verification using Recurrence

Y. Shen, H. Sibai, E. Mallada, “Generalized Barrier Functions: Integral Conditions and Recurrent Relaxations”, in
60t Allerton Conference on Communication, Control, and Computing 2024



Safety in Dynamical Systems

Consider the continuous-time dynamical system: x = f(x)
- ¢(t, xp): solution at time t starting from x
- X,,: set of unsafe states

Goal: Find the safe set

¢(tr xO)

X, : unsafe set
— (e.g., obstacles)

Xt

Enrique Mallada (JHU)
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Barrier Functions

Barrier Function:
Let h be differentiable, y € KX,, and

h(z) = —v (h(z))

then, hs, is invariant

¢ (x2,1)

h., invariant

Extended Class K,:

ey €K, iff y'(s) =0andy(0) =0

* Example:

Enrique Mallada (JHU)
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Recurrent Barrier Functions

Barrier Function: Recurrent Barrier Function:
Let h be differentiable, y € KX,, and AsT— 0 Let h be continuous, y € K,, and
‘ - — t
h(z) + v (h(z)) > 0 By definition - IEEREE h(¢(z,t))+ / Y(h(¢(z,s))ds > h(z)
: T ]
then, h. is invariant then, h. is T-recurrent
¢ (xz2, 1) ¢ (x2,t)

]_ Time elapsed < T

h., invariant 2 h., t-recurrent

Time elapsed < T

Enriqgue Mallada (JHU) 24



Recurrent Barrier Functions
P (x3, t)

Recurrent Barrier Function:
Let h be continuous, y € K,, and

max (6@, )+ [ 1(h((z,9)ds > hiz)

te(0,7]

]_ Time elapsed < T

then, h. is T-recurrent

2 h., T-recurrent

Time elapsed < T

Enriqgue Mallada (JHU) 24



Recurrent Barrier Functions
P (x3, t)

Recurrent Barrier Function:
Let h be continuous, y € K,, and

T /ﬂ (h($(z,5))ds > h(z) h,

te(0,7]

]_ Time elapsed < T

then, hs is T-recurrent

5 h., T-recurrent

Time elapsed < T

Question: Do we gain anything from relaxing the invariance condition in BFs?

Claim: Given a set §,, containing the unsafe region X,

Enrique Mallada (JHU) 24



Recurrent Barrier Functions

Recurrent Barrier Function: L
Let h be continuous, y € K., and 20

s I / Y(h($(z, 5))ds > h(z)

te(0,7]

then, hs is T-recurrent
h(x) = sd(S,, x)

Question: Do we gain anything from relaxing the invariance condition in BFs?

Claim: Given a set S, containing the unsafe region X,
* Signed norm of S, is a good RBF Candidate: h(x) = sd(S,, x)
* Safety is guaranteed whenever t-backward reachable set: R;_, o1(X},) € S,

Enrique Mallada (JHU) 24



Data-Driven Safety Verification

Stage 1: 7 —Backward reachability
* Find S, with Rj_; q1(X,) € S,

Stage 2: RBF condition
* Check h(x) = sd(x,S,) is RBF

Tmin: Precision parameter

Enrique Mallada (JHU) 25



Data-Driven Safety Verification

Stage 1: 7 —Backward reachability
* Find S, with Rj_; q1(X,) € S,

Stage 2: RBF condition
* Check h(x) = sd(x,S,,) is RBF

Tmin: Precision parameter

Enrique Mallada (JHU) 25



Numerical Validation: Reachability vs Recurrence

Reachability Nagumo’s RBF

—2 0 2 —2 0 2
running time: 354.12s running time: 20.68s ~17x faster
97.4% safe set covered 99.6% safe set covered +2.2% more area

Enrique Mallada (JHU) 26



Numerical Validation: Reachability vs Recurrence

ro =0.0271

Reachability

—2 0
running time: 23.15s
92.2% safe set covered

2

Enrique Mallada (JHU)

Nagumo’s RBF

—2 0
running time: 3.81s
98.6% safe set covered

~6x faster
+6.4% more area

26




Numerical Validation: Reachability vs Recurrence

r. =0.0737

Reachability

—2 0
running time: 3.01s
83.3% safe set covered

Enrique Mallada (JHU)

Nagumo’s RBF

—2 0]
running time: 1.56s
94.6% safe set covered

~2X faster
+11.2% more area

26




Numerical Validation: Reachability vs Recurrence

Reachability Nagumo’s RBF

Table 1: Comparison of Reachability and Recurrent BF Methods

. Running Safe Set
"min Method Time (s) | Covered (%) Speedup

Reachability 354.12 97.4
0.01 Recurrent BF 20.68 99.6 ~17x
0.0271 Reachability 23.15 92.3
' Recurrent BF 3.81 98.6

Reachability 3.01 83.3
0.0737 Recurrent BF 1.56 94.6

0.2 Reachability 1.86 9.3
) Recurrent BF 71.2

—2 0 2 —2 0 2

running time: 1.86s
9.3% safe set covered

running time: 0.31s 6x faster
71.2% safe set covered

+61.9% more area
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Outline

* Nonparametric Analysis of Dynamical Systems
e Stability: Recurrent Lyapunov Functions
* Safety: Recurrent Barrier Functions



Outline

* Nonparametric Analysis of Dynamical Systems
e Stability: Recurrent Lyapunov Functions
* Safety: Recurrent Barrier Functions

Nonparametric Control Policies
* Making Decisions Directly form Data
* A Policy Improvement Theorem



Classical policy improvement works in discrete spaces

“Policy improvement” is a fundamental building block of classical RL

Policy iteration = Policy evaluation + Policy improvement

Policy evaluation

/- » Can evaluate “separately” for each (s,a)
* Given Tr, evaluate it to find Q" (-, ")

* Can store Q in a table

Policy improvement
« Given Q@"(:,"), define: m:8 = A: 7'(s) € argmax Q" (s, a) ‘\

acA
*Then: |
VT(s)>V7T(s) VseS&

 Given s, maximize an array of size |A|

Rinse and repeatuntil V™ =V"™ — r=7'=1*

Enriqgue Mallada (JHU) 27



Policy Optimization in Continuous Action Spaces méax J(6)

Based on Policy Gradient:
* Use experience to approximate VjyJ(0) = g

. N T i i)\ B
g = % 2 i1 21— Vo log’frg(ag ) | Sg ))Rg )

update: 0.1 =0 +ng g Rf) _ Zfzt ,},k—t?ﬁf)

e cumulative return

¥
St
4 T *LAEEHE ’J’T&("lt‘f)]ﬁ Many Challenges:
* Estimation variance
action e Non-smoothness
(14 o

Fractal landscape

N St41 [ . Mollification
:, | — Environment
amsssesesasasasansasass - e L ° ..
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Fundamental challenges of Policy Optimization

Challenge: Fractal Optimization Landscapes
e Goal: maxg J(0) := Er, somp [Doren Y Tt(St,at)]

* Approach: 0,1 =6, +nVeJ(0)

Challenge: Mollification of Policy Gradient
* Goal: max J(0) == Es np a0~mo(so) [Q“f’ (so, ag)]
1&
* Policy:

pe(s) a
Tao Wang, Sylvia Hebert, Sicun Gao, Fractal landscapes in policy optimization, NeurlPS 23
Tao Wang, Sylvia Hebert, Sicun Gao, Mallification effects of policy gradient, ICML 24
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Problem Setup

Goal: find optimal policy

max J(0) .= E,

o~p,ao~Te(s0) [Qﬂ-g (SU: GU)]

Enrique Mallada (JHU)
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Problem Setup

Goal: find optimal nonparametric policy

IIIIE;LX J(WI?) ‘= ‘ESDNp:ﬂﬂN?TD(Sﬂ) [QWD (50: a’U)]

Data set: D = {(s;, ai, QE)}Ell Qi =Y, v'r(st,ar)

Assumptions:
Optimal Q* is smooth: |Q*(s,a) — Q*(s',a’)| < L(ds(s,s") + d.a(a,a’))
Deterministic dynamics: S;1 = f(Sh ﬂt) t distance )\

Expert data: we have D = {(si,ai, Q:)}.21 , where a; = 7*(s;); Qi = Q*(si, ;)

Enriqgue Mallada (JHU) 30



Expert data: we have D = {(si,ai, @:)}}2} , where a; = 7*(s;); Qi = Q*(s:, ;)

1. How can we use these transitions to learn a nonparametric policy?
2. What guarantees can we get when we add more transitions?

3. Where should we add transitions to improve performance?



Overview of our method

Add expert trajectory

T = (SOaa'OaQOaSl)a’lan) .. )

Build lower bound

Get dataset Greedy policy

D) = {(Si,ai,Qz‘)}ﬂ

- O, )
*

si, @i, Q) T

—>7(s) A argmajc Qu (s, a)—> Sufficient data?
ac

Enrique Mallada (JHU)



1. How can we use these transitions
to learn a nonparametric policy?



Building bounds & Nonparametric Policy

Expert data: we have D = {(s;, ai, Qi)}lﬂ ,where a; = 77(s;); Qi = Q™ (84, a;)

» Use the data to define lower bounds on optimal values:

Vib(s) & max {Q:— L -ds(s,s:)} Quw(s,a) = max {Q-g —L- (dS(S, si) + d,zl(ﬂ,ﬂi))}

1<i<|D)| 1<:i<|D|

Vub(s) = 1<I£1é]i1D|{Q1 + L - dS(S: Sz)}

* Nonparametric Policy: R
m(s) = argmax Qp(s,a) = a;
ac A

* Remark: Note argmax always gives actions in dataset (8iry@ir, Qir)

 Question: What can we say about V™ (s)?

Enrique Mallada (JHU) 34



Nonparametric policy improves over lower bound

Policy Evaluation:
* Nonparametric 7 satisfies Vs € §:

Vib(s) < V7(s) < V7(s)

Policy Improvement:
 Given data sets D, D' withD < D’

More data = better lower bounds

< : mprovement on
Vib(s) < Vip(s) Vse S 7 s

V() S VT (s) Vs €D\D

(#,

o

Q) V*(s)
SN

|
1
i
1
1
1
"4
i
1
1
i

* Strict on neighbors of new data: Vs € N(s')

T f
N(s') "‘H—_Tr:hizu-.rhemrtrm?r
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Add expert trajectory No

Get dataset
D
D = {(ss, ai, Qz’)}i=|1

<
T = (SOaa’()vQO?Sl)alan?' . )

Build lower bound -
. . Greedy policy

—>7(s) A argmeajc Qu (s, a)—> Sufficient data?
a

- O, )

* (s,a,0) T

Yes
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1. How to learn a policy?

Build lower bound Greedv pboli
. reedy policy Policy Evaluation

—>(s) = argmax Qu(s,6)—> 15 (5) < V7 (s)

Get dataset
D
D= {(3i7ai7 QZ)}!J,zll

strict improvement

2. What guarantees with more transitions?

More data = better lower bounds

Vib (3) < ‘/1{3(3) Vses /7 Improvement on i
Vr(s) <VT(s) Vs eD\D

- i 1 r
N{s') % ar'strictly better than TT

3. Where to add transitions?

*  Only where sufficient improvement is guaranteed: A(s) := Vip(s) — Vin(s) > ¢

Vib(s) < V7(s) < V*(s) < Vi (s)

Enrique Mallada (JHU) 37



Algorithm

Input: Lipschitz constant L

For each episode do:

1.
2.

Sample s ~ p |

If A(s) > €:

* Run optimal trajectory with " 0.5
T = (SU?HD&QD:SI?QI?QIJ'“) S 0.0-

* Repeat: add tuples to dataset (fromz = ())
D{_I)U{(Si&ﬂiagi)} =

Until: A(s;) < €. ]
Else:

e Continue

Enrique Mallada (JHU)
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Dataset Size

5000

4000

3000

2000

1000

Experiments

—— NPP }
Gap achieved (w.h.p.) |
0 50 100 150
Episode

200

Number of balls

‘/‘/ 18t m actuated

* Weusethe Igr n m environments from DeepMind’s Control Suite

lgr 2 1

-==~ Targetgap (£)
Gap achieved {(w.h.p.)

10° 10' 10°
Episode

Enrique Mallada (JHU)

aposid3

lgr 6 2

=== Means

1
—-— Medians i :
|
I i
! |
! |
| .
1
1
1
10
25
184
-140 -120 -100 -80 -60 -40 -20
Suboptimality distribution: V™ —V *



Experiments

* Weusethe 1gr n m environments from DeepMind’s Control Suite

* Resultsonlqgr 2 1:

5000

4000

w
Q
Q
o

Dataset Size

1000

— NPP |
Gap achieved (w.h.p.) | !

Remarks:

| 1 b,
3 5o *
I " ‘
% = Targe!gép(s)‘v 184 )
* Incremental learning: No catastrophic forgetting, or oscillations
* Improvement across the entire state space (not in expectation)
e Only valuable data is added (harder to find at times passes)
Enrique Mallada (JHU) 39



Incremental Learning

after 10 episode... atter 100 episode... atter 1000 episodes...

atter 30K+ optimal control

Enrique Mallada (JHU) 40



Incremental Learning

after 30K+

500000

400000

300000

1ze

DatasetS

200000

100000

optimal control

= NPP (ours)
——- Gap achieved w.h.p.

-
[
i T i
I > i
| |
! - 10° i
! i) !
i . i
! I > pii i
I =3 I
| © i
i ° i
I 10 i
: —— NPP (ours) :
i — SAC i
: i == Target gap () i :
i i ——- Gap achieved w.h.p. i
i 1 i 107 [T
0 5000 10000 15000 20000 25000 30000 10' 102 103 10“

Episode Episode
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Research Goals

* To develop analysis and design methods that
trade off complexity and performance.

* To allow for continual improvement, without the
need for redesign, retune, or retrain

* To design control policies with controlled

sensitivity to parameter changes o

Enrique Mallada (JHU)

optimality gap

complexity
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Conclusions and Future work

* Takeaways
* Proposed a relaxed notion of invariance: recurrence.
* Nonparametric theory for dynamical systems analysis leading to:
* General Lyapunov and Barrier Function conditions satisfied by any norm!
* Algorithms that are parallelizable and progressive/sequential.

* Nonparametric policies: Guaranteed improvement with each demonstration.

* Ongoing work
* Recurrence: Information theoretical lower bounds of control recurrence sets
* Lyapunov/CBF Theory: Generalize other Lyapunov notions, Control Lyapunov Functions,
Control Barrier Functions, Contraction

* Nonparametric policies (NP): NP policy iteration, enforcing safety and stability using NP,
exploring alternative inductive biases (beyond Lipschitz)



Thanks!

Related Publications:

[CDC 23] Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification
of non-monotonic Lyapunov functions, CDC 2023, TAC submitted

[HSCC 24] Sibai, M, Recurrence of nonlinear control systems: Entropy and bit rates, HSCC, 2024, NAHS under review
[Allerton 24] Shen, Sibai, M, Generalized Barrier Functions: Integral conditions and recurrent relaxations, Allerton 2024
[RLC 25] Castellano, Rezaei, Markovitz, and M, Nonparametric Policy Improvement for Continuous Action Spaces via Expert
Demonstrations, RLC 2025
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