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Recap: Sub Synchronous Oscillations

* When do SSOs occur?
* Series-compensated corridors (SSCI)
* Weak grids (low SCR, high impedance)
* Clusters of IBRs in remote areas
* After contingencies/topology changes (radialization)
* During commissioning or controller retuning

* What do SSOs depend on?

* Network state: impedance, SCR, topology, compensation level
* Control configuration: PLIL dynamics, outer/plant controllers, GFL vs GFM
* Operating point: power flow direction, voltage setpoints, dispatch




Compliance Challenges in Preventing SSOs

* Proprietary vendor models: limited transparency in control details
* What level of model detail should be mandatory for interconnection studies?
* Canwe certify “black-box” models without exposing sensitive IP?

Model fidelity: dynamic scans sensitive to injection size, operating point, and sequence type
* Should scans be standardized (e.g., fixed injection magnitudes, sequences)?
* How do we account for nonlinearities and operating-point dependence in compliance tests?

Heterogeneity: ecach IBR model/implementation behaves differently

* Need for compliance requirements that’s technology-agnostic.
* Should there be a universal format for reporting impedance/admittance?

Limited standardization: SCR screening common, but no universal SSO margin tests
* Should interconnection rules require explicit SSO stability margins (like they do for SCR)? How to define SSO stability margin?!
* How do we define “pass/fail” for impedance-based stability checks?

Trade-off: conservative criteria risk blocking projects; permissive criteria risk instability
* Should compliance include operational flexibility (adaptive tuning) rather than fixed thresholds only?
* How do we set stability margins without making interconnection ovetrly restrictive?
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Understanding SSOs: What we know

* Hopf bifurcation as the onset mechanism Hopf bifurcation
* SSOs emerge through Hopf bifurcations. y
* This means linearized small-signal models f/
are sufficient to capture the transition to fa -
instability. -
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Understanding SSOs: What we know and can do

* Hopf bifurcation as the onset mechanism iena(s) poc
grid
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Understanding SSOs: What we know and can do [ JTH

* Hopf bifurcation as the onset mechanism

* SSOs emerge through Hopf bifurcations. tgrid () PCC
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* This means linearized small-signal models I i Zgrid(s)
are sufficient to capture the transition to I
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* Impedance models can capture SSOs Nyquist Plot

* At the Point of Interconnection, stability can
be analyzed by comparing inverter and grid
impedances.
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explains why weak grids (high Zg.;4) are more
prone to instability.

* Nyquist loop-gain criterion L(s) =
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Challenges of Impedance Stability Analysis

« Ztor depends on:

* Vendor Technology
* Setpoints (P;, Q;)

Z érid depends on:

e [.ocation where it is measured

* Network Topology
* Power Flows (Ppet) Qnet)
* Other connected devices L a(s) # Zgﬂd(s)




Robust, Decentralized Small-Signal Analysis

* Goal: Develop small-signal stability analysis methods that account for
IBR’s impedance variations & network operating conditions.

* Key properties: Zipr(8) 1 Zgria(s)
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* Characterizes valid grid operating
conditions (Ppe¢, Onet)

* Trade-off conservativeness
between operating conditions and
IBR dynamic constraints

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE TCNS 2019
PESGM 24] Siahaan, M, Geng, Decentralized Stability Criteria for Grid-Forming Control in Inverter-Based Power Systems PES-GM
2024




Robust, Decentralized Small-Signal Analysis | J 4 [

* Goal: Develop small-signal stability analysis methods that account for
IBR’s impedance variations & network operating conditions.
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Robust, Decentralized Small-Signal Analysis ﬂm

* Goal: Develop small-signal stability analysis methods that account for
IBR’s impedance variations & network operating conditions.
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Trade-off: Robustness vs Efficiency ﬂ]m

* Analysis unveils a fundamental trade-off: expanding the dispatch
region demands stricter limits on inverter frequency-domain behavior.
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What We Know — and What’s Still Open

What’s Known

* Linear small-signal models are sufficient
* SSOs emerge via Hopf bifurcations — linearized models around operating points capture instability onset.

* Accuracy over dynamic frequencies is sufficient
* Models only need to capture inverter behavior around sub-synchronous frequency ranges of interest.

* Impedance-based margins are valid and certifiable
* TFrequency-domain criteria define meaningful stability margins and can be applied using black-box models, preserving vendor IP.

? Many Questions Remain Open

* Generalizing analysis for more realistic models
* Current analysis introduces simplifying assumptions that need to be removed.

* How should dynamic testing be standardized?
* What scan conditions (frequency range, injection size, operating points) should be required?

* How do we account for dispatch and operating point variability?
* Do we need impedance envelopes? Adaptive margins? Parametric certificates?

* Should compliance be static or operationally adaptive?
* Should dispatch constraints or tuning flexibility be part of certification?

* How do we balance robustness and flexibility?
* Whatis the minimal stability margin that still allows meaningful operational freedom?

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE TCNS 2019
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