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A Dream World of Success Stories

2017 Google DeepMind’s DQN 2017 AlphaZero — Chess, Shogi, Go 2019 AlphaStar — Starcraft Il
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Human-level control through deep reinforcement
learning
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Real ity Kic ks In Angry Residents, Abrupt Stops: Waymo Vehicles Are Still
Causing Problems in Arizona

RAY STERN | MARCH 31, 2021 @ 8:26AM
BUSINESS ©8.14.2819 83:88 AM

DeepMind's Losses and the Future of Artificial Intelligence

Alphabet’s DeepMind unit, conqueror of Go and other games, is losing lots of money. Continued deficits could imperil investments in Al.

BUSINESS 12.87.2828 B4:86 PM

Uber Gives Up on the Self-Driving Dream

The ride-hail giant invested more than $1 billion in autonomous vehicles. Now it’s selling the unit to Aurora, which makes self-driving tech.

CRUISE KNEW ITS SELF-DRIVING CARS
Tesla Recalls Nearly All Vehicles Due to HAD PROBLEMS RECOGNIZING CHILDREN
Autopilot Failures — AND KEPT THEM ON THE STREETS

According to internal materials reviewed by The Intercept, Cruise

Tesla disagrees with feds analysis of glitches cars were also in danger of driving into holes in the road.

OpenAl disbands its robotics research team

Kyle Wiggers  @Kyle_L_Wiggers  July 16,2021 11:24 AM f ¥ in

Self-driving Uber car that hit and killed
woman did not recognize that pedestrians
jaywalk

The automated car lacked "the capability to classify an object as a pedestrian unless that object
was near a crosswalk," an NTSB report said.
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Fundamental challenge: The curse of dimensionality

= Statistical: No clear inductive bias

Sampling in d dimension with resolution €:

O(e™9)

M@ M@...@ M e /

Fore=0.1andd = 100, we
would need 101%0 points.
Atoms in the universe: 1078

————\

= Computational: Verifying non-negativity of polynomials

Copositive matrices:

[xZ ... x3]A[x? ...xczi]T >0

Murty&Kadabi [1987]: Testing co-positivity is NP-Hard Motzkin [1967]:
p = xty2 4 x2y4+1—3x2y2

Sum of Squares (SoS): is nonnegative

z(x)TQz(x) =20, z(x) eR[x], xe R%E,Q =0
Artin [1927] (Hilbert’s 17t problem):

not a sum of squares,
but (x? + y?)?p is SoS

Non-negative polynomials are sum of square of rational functions
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Methodological challenges

* Focused on a design-then-deploy philosophy

analysis

synthesis

\ 4
\ 4

and
verification

deployment

* Most methods have a strict separation between
control synthesis and deployment

A

T(w) = B | 2207 751, a0)

max
: . . RL: m
 Synthesis usually aims for the best (optimal) st see1 ~ P(- | s6,a5),  ag ~ (- | 50)
controller
e Lack of exploration of the benefits of designing
sub-optimal controllers Optimal Control:

* Policy parameters can drastically affect the
system's behavior

* The params to behavior maps are highly sensitive
to perturbations
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Research Goals

* To develop analysis and design methods that
trade off complexity and performance.

optimality gap

* To allow for continual improvement, without the
need for redesign, retune, or retrain

* To design control policies with controlled
sensitivity to parameter changes

Enrique Mallada (JHU)
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Outline

* Relaxing Invariance: Merits and trade offs
* Recurrent Sets: Letting thing go and come back

* Nonparametric Analysis via Recurrent Sets
e Stability analysis: Recurrent Lyapunov Functions (RLFs)
e Safety verification: Recurrent Barrier Functions (RBFs)

* Self-Improving via Nonparametric Control Policies
* Policy Improvement using Expert Demonstrations



Outline

* Relaxing Invariance: Merits and trade offs



Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution attime t: ¢(t, xg).

I Asymptotic behavior: Q-Limit Set Q(f)
: r € Qf) <= Jxo,{tn}n>0, s.t. lim ¢, = o0 and lim ¢(t,,z0) =2

n—oo n—oo
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢ (&, xp).

I Q-Limit Set Q(f): :
= Q(f) <= Jzo, {tn}n>0, s.t. lim ¢, =co and lim @(t,,x0) = |

I n—oo n—oo I

Types of Q-limit set

equilibrium limit cycle limit torus chaotic attractor

Remark: invariance is a shared property, thus a natural tool for analysis
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Invariant sets

Aset S € R is positively invariant if and only if: xg €S = ¢(t,xg) €S, Vt =0
Any trajectory starting in the set remains in inside it for all times

1\53\\0&&% il f//fé%
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RN

Source: K. Ghorbal, K. and A. Sogokon, Characterizing positively invariant sets: Inductive and topological methods. Journal of Symbolic Computation, 2022
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Invariant sets:

Aset S € R is positively invariant if and only if: xg €S = ¢(t,xg) €S, Vt =0

Invariant Set

Any trajectory starting in the set remains in inside it for all times

4
* Invariant sets approximate regions of attraction s:
Compact invariant set §, containing only {x*} = Q(f) N § must be 2
in the region of attraction A(x™) (5 € A(x™)) A(X") :
_2.
-4
~4
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Invariant sets:

Aset S € R is positively invariant if and only if: xg €S = ¢(t,xg) €S, Vt =0

Any trajectory starting in the set remains in inside it for all times Invariant Set
* Invariant sets approximate regions of attraction s:
Compact invariant set §, containing only {x*} = Q(f) N § must be

in the region of attraction A(x™) (5 € A(x™)) A(X") :

* Invariant sets guarantee stability
Lyapunov stability: solutions starting "close enough" to the
equilibrium (within a distance §) remain "close enough" forever
(within a distance &)

V(x)
* Invariant sets further certify asymptotic stability via I,
Lyapunov’s direct method : ’
Asymptotic stability: solutions that start close enough, remain close < : "" [2¢]
enough, and eventually converge to equilibrium. o '

Enrique Mallada (JHU) 10



Invariant sets: Challenges

Aset S € R is positively invariant if and only if: xg €S = ¢(t,xg) €S, Vt =0

Any trajectory starting in the set remains in inside it for all tirges

S is topologically constrained

S is geometrically constrained

S geometry can be wild

If S N Q(f) = {x*}, then S is connected

f should not point outwards for x € 9§

A(Q(f)) can be fractal

Enrique Mallada (JHU)

-4 -2 0 2 4
A not invariant trajectory: e_ ,

Basin of Q(f




Outline

* Relaxing Invariance: Merits and trade offs



Outline

* Relaxing Invariance: Merits and trade offs
* Recurrent Sets: Letting thing go and come back



Recurrent sets: Letting things go, and come back

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Property of Recurrent Sets
e R need not be connected

* R does not require f to point inwards on all R

' Recurrent sets, while not invariant,

|
|
: guarantee that solutions that start in this set, |
1 will come back infinitely often, forever! ;

Recurrent set R:

A recurrent trajectory: <

Enrique Mallada (JHU) 12



Recurrent sets: Letting things go, and come back

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Previous two good inner approximations of A(x") are recurrent sets

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.

Enrique Mallada (JHU)
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Recurrent sets: Letting things go, and come back

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Property of Recurrent Sets
e R need not be connected

* R does not require f to point inwards on all R

' Recurrent sets, while not invariant, :
: guarantee that solutions that start in this set, :
|
|

1 will come back infinitely often, forever!

Recurrent set R:

A recurrent trajectory: <

Question: Can we use recurrent sets as functional substitutes of invariant sets?

Enrique Mallada (JHU) 12



Outline

* Relaxing Invariance: Merits and trade offs
* Recurrent Sets: Letting thing go and come back

* Nonparametric Analysis via Recurrent Sets
e Stability analysis: Recurrent Lyapunov Functions (RLFs)



Roy Siegelmann Yue Shen Fernando Paganini

@ JOHNS HOPKINS @3;,5. JOHNS HOPKINS

UNIVERSITY UNIVERSITY

Nonparametric Stability Analysis

R. Siegelmann, Y. Shen, F. Paganini, and E. Mallada, “A recurrence-based direct method for stability analysis and
GPU-based verification of non-monotonic Lyapunov functions”, CDC 2023

R. Siegelmann, Y. Shen, F. Paganini, and E. Mallada, “Recurrent Lyapunov Functions”, TAC 2025, submitted
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Lyapunov’s Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

Rsq, with V(x) > 0,Vx € R\{x*}, then:
e V <0 - x*stable
e V <0 - x*as. stable

Theorem [Lyapunov ‘1892]. Given V: R* — -

Challenge: Couples shape of I/ and vector field f

» Towards decoupling the V — f geometry
« Controlling regions where V > 0 [Karafyllis ‘09, Liu et al ‘20]
* Higher order conditions: g(V(q), .V, V) < 0 [Butz ‘69, Gunderson 71, Ahmadi 06, Meigoli ‘12]
* Discretization approach: V(x(T)) < V(x(0)) [Coron et al ‘94, Aeyels et. al ‘98, Karafyllis ‘12]
* Multiple Lyapunov Functions: {V;: j € [k]} [Ahmadi et al ‘14]

A Butz. Higher order derivatives of Lyapunov functions. IEEE Transactions on automatic control, 1969
Gunderson. A comparison lemma for higher order trajectory derivatives. Proceedings of the American Mathematical Society, 1971
Coron, Lionel Rosier. A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Syst., Estimation, Control, 1994
Aeyels, Peuteman. A new asymptotic stability criterion for nonlinear time-variant differential equations. IEEE Transactions on automatic control, 1998
Ahmadi. Non-monotonic Lyapunov functions for stability of nonlinear and switched systems: theory and computation, 2008
Karafyllis, Kravaris, Kalogerakis. Relaxed Lyapunov criteria for robust global stabilisation of non-linear systems. International Journal of Control, 2009
Meigoli, Nikravesh. Stability analysis of nonlinear systems using higher order derivatives of Lyapunov function candidates. Systems & Control Letters, 2012
Karafyllis. Can we prove stability by using a positive definite function with non sign-definite derivative? IMA Journal of Mathematical Control and Information, 2012
Ahmadi, Jungers, Parrilo, Roozbehani. Joint spectral radius and path-complete graph Lyapunov functions. SIAM Journal on Control and Optimization, 2014
Liu, Liberzon, Zharnitsky. Almost Lyapunov functions for nonlinear systems. Automatica, 2020

Enrique Mallada (JHU)
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Lyapunov’s Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

Theorem [Lyapunov ‘1892]. Given V: R* — -
Rsq, with V(x) > 0,Vx € R\{x*}, then:
e V<0 - x*stable < = :." 5]
e V <0 - x*as. stable ' %

Challenge: Couples shape of I/ and vector field f

» Towards decoupling the V — f geometry
« Controlling regions where V > 0 [Karafyllis ‘09, Liu et al ‘20]
* Higher order conditions: g(V(Q), .V, V) < 0 [Butz ‘69, Gunderson 71, Ahmadi 06, Meigoli ‘12]
* Discretization approach: V(x(T)) < V(x(0)) [Coron et al ‘94, Aeyels et. al ‘98, Karafyllis ‘12]
* Multiple Lyapunov Functions: {V;: j € [k]} [Ahmadi et al ‘14]

Question: Can we provide stability conditions based on recurrence?

Enrique Mallada (JHU) 14



Recurrent Lyapunov Functions

A continuous function IV: R¢ — R, is a Recurrent Lyapunov Function if

LYV (@) = min V(6(t,2)) = V(2) <0 Vo e R
te (0,7

Preliminaries:
* Sub-level sets {V(x) < c} are T-recurrent sets.

—~—
m

Definition: A set R € R? is T-recurrent if forany x, € Rand t > 0, 3t’ € (¢,t + 7] s.t. p(t', x,) € R.

Enrique Mallada (JHU) 14
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Recurrent Lyapunov Functions

A continuous function IV: R¢ — R, is a Recurrent Lyapunov Function if

E;O’T]V(:B) = min V(é(t,z)) —V(z)<0 V& e R

te(0,7]

Preliminaries:
* Sub-level sets {V(x) < c} are T-recurrent sets.
* When f is L-Lipschitz, one can trap trajectories.

F.te'

F, =ggillf(x)ll

Enrique Mallada (JHU) 14



Recurrent Lyapunov Functions

A continuous function IV: R¢ — R, is a Recurrent Lyapunov Function if

E&O’T]V(x) = min V(é(t,z)) —V(z)<0 V& e R

te(0,7]

Theorem [CDC 23]: Let V: R¢— R be a
Recurrent Lyapunov Function and let f be L-
Lipschitz

* Then, the equilibrium x” is stable.

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023
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Recurrent Lyapunov Functions

A continuous function IV: R¢ — R, is a Recurrent Lyapunov Function if

LYV (2) = min V((t,x)) —V(z)<0 VaeR

te(0,7]

Theorem [CDC 23]: Let V: R¢— R be a

Recurrent Lyapunov Function and let f be L-

Lipschitz

* Then, the equilibrium x” is stable.

* Further, if the inequality is strict, then x™ is
asymptotically stable!

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023

Enrique Mallada (JHU) 14



Exponential Stability Analysis

The function V: R — R, is a-Exponential Recurrent Lyapunov Function if

L(?g]v(x) ‘= min eatV(¢(t7aj)) — V(CB) <0 Vzxe ]Rd

te(0,7]

Theorem [CDC 23]: Let V: R? - Ry, satisfy min
<V(x) < a2||x — x*]

a1||x—x*|

Then, if V is a-Exponential Recurrent SRS | Ll IV (9(t,22))
Lyapunov Function, x” is a-exponentially N E ................................
stable. | — P
' >
T N t

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023

Enrique Mallada (JHU) 15



Norm-based Converse Theorem

Theorem: Assume x™ is A-exponentially stable: 3 K, A > 0 such that:
1p(t, x) — x*|| < Ke™||x —x*||, vxe€RZ
Then, V (x) = ||x — x*

min_ e%||od(t,x) — x*
U ||<I5( ) |

is a-Exponential Recurrent Lyapunov Function, i.e.,

<0, Vx € R4,

— ||x—x*|

whenever a <A and T = )L_Laln K.

Remarks:
* The rate & must be strictly smaller than the rate of convergence A (trading off optimality).

* Any norm is a Lyapunov function!

Question: Is the struggle for its search over?



Nonparametric Verification of Exponential Stability

Proposition [CDC 23]: Let ||-|| be any norm and x* = 0. Then, whenever
. at Lt
, t < —
trerg(l)g]e (||qb(x )|| + re ) ||x|| r

for all y with ||y—x|| <r

trer%(i)g]e“tﬂd)(y, Ol < [Iyl]

Remarks:

* Only requires a trajectory of length t

* Trades off between radius r and verified performance a
* Amenable for parallel computations using GPUs

Enrique Mallada (JHU)
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Nonparametric Stability Verification via GPUs

* Basic Algorithm:
 Consider V(x) = ||x — x™||w
* Build a grid of hypercubes surrounding x*

* Test grid center points:

* Simulate trajectories of length T
* Find a s.t. the verified radiusisr = £/2

« Hypercube not verified, split in 3¢ parts
* Repeat testing of new points

B split g {
. ‘
_ . IR7E

Enrique Mallada (JHU)
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Nonparametric Stability Verification via GPUs

* Basic Algorithm: . X
 Consider V(x) = ||x — x™||w

* Build a grid of hypercubes surrounding x*

* Test grid center points:

* Simulate trajectories of length T
* Find a s.t. the verified radiusisr = £/2

« Hypercube not verified, split in 3¢ parts y ¢
* Repeat testing of new points
* Exponentially expand to outer layer

* Repeat testing in new layer ’ ’

Enrique Mallada (JHU)
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Nonparametric Stability Verification via GPUs A

* Basic Algorithm:
e Consider V(x) = ||x — x*||

* Build a grid of hypercubes surrounding x*

* Test grid center points:
* Simulate trajectories of length T

* Find a s.t. the verified radiusisr = £/2

L o Ld
— e e e e o e e e e e e e e e f—
°

« Hypercube not verified, split in 3¢ parts

* Repeat testing of new points

* Exponentially expand to outer layer

* Repeat testing in new layer

Q: How many samples are needed?
If x* is A-exp. stable

o (5

1-Ke(@-A7

<1

with g = Trodrar

Enrique Mallada (JHU)



Nonparametric Stability Verification via GPUs

* Basic Algorithm: : : x

 Consider V(x) = ||x — x™||w . /_\

* Build a grid of hypercubes surrounding x*
» Test grid center points: : Xa : .

* Simulate trajectories of length T

* Find a s.t. the verified radius is r > /2 11|
« Hypercube not verified, split in 3¢ parts . . 3N IR P I I I \

* Repeat testing of new points B -y - \
 Exponentially expand to outer layer \ B o oo c
* Repeat testing in new layer ' \\

* Two Alg. Variations: : : \

* Alg. 1: Find largest a4 for region X AN

* Alg. 2: Find region X', for given \ /

Enrique Mallada (JHU) 18



Numerical lllustration — Find Best a .

Consider the 2-d non-linear system: X = [ 0 _21] x + B |[X1X5
with Bl] ~ N(O,O’Z) L X2

o =03 Aoy = 0.470

Phase Portrait

_,__--—-—‘—l - ‘
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Enrique Mallada (JHU) 19



Numerical lllustration — Find region X,

Consider the system of n Kuramoto oscillators

n=3and a=1

Parameters

N M < N O Il
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* Recurrent Sets: Letting thing go and come back

* Nonparametric Analysis via Recurrent Sets
e Stability analysis: Recurrent Lyapunov Functions (RLFs)



Outline

* Relaxing Invariance: Merits and trade offs
* Recurrent Sets: Letting thing go and come back

* Nonparametric Analysis via Recurrent Sets
e Stability analysis: Recurrent Lyapunov Functions (RLFs)
e Safety verification: Recurrent Barrier Functions (RBFs)
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Nonparametric Safety Verification using Recurrence

Y. Shen, H. Sibai, E. Mallada, “Generalized Barrier Functions: Integral Conditions and Recurrent Relaxations”, in
60t Allerton Conference on Communication, Control, and Computing 2024
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Safety in Dynamical Systems

Consider the continuous-time dynamical system: x = f(x)
- ¢ (t, xp): solution at time t starting from x
- X,,: set of unsafe states

Goal: Find the safe set X, := {zg € RY|&(t, x0) & X, Vt > 0}

d)(t' xO)

Xy,: unsafe set
— (e.g., obstacles)

Xt

Enrique Mallada (JHU)
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Safety in Dynamical Systems via Invariant Sets

Consider the continuous-time dynamical system: x = f(x)
- ¢ (t, xg): solution at time t starting from x,
- X,,: set of unsafe states

Goal: Find the safe set X, := {xg € RY|¢p(t, z0) & X, Vt > 0}

General Approach: Use invariant sets!
AsetS € R%isinvariantif and only if: xo €S = ¢(t,xg) €S, Vt =0

System Limits Unsafe Regions
(e.g., speed) (e.g., obstacles)

Enrique Mallada (JHU)
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Certifying Safety using Barrier Functions

wphed by K5

(Fhotegn

Theorem - Nagumo’s Barrier Functions [Nagumo ‘42] : 9
Let h: RY - R be differentiable, with 0 being a regular value. %
Then h is a Nagumo’s Barrier Function (NBF) satisfying: K
. h(g(t,z)) — h(z)
Lyh(z) := %1_{% ; >0, Va & hoo, Mitio Nagumo

if and only if hsg = {x € Rd|h(x) > 0} is invariant.
¢ (x2,1)

h(x1)T

u

A(x) °
0 / > Time (Unsafe)

h., invariant

Then hs is a safe set whenever hog N X, = 0

M. Nagumo, “Uber die lage der integralkurven gewéhnlicher differentialgleichungen,” Proceedings of the Physico-Mathematical Society of Japan 1942
Enrique Mallada (JHU) 24



Shaping Behavior using Barrier Functions (BFs)

Barrier functions provide a flexible framework to shape the behavior of trajectories
Zeroing Barrier Function Extended Class X:

Lih(z) > — (h(z)), Vo€ hs_.

ey €KX, iff y'(s) = 0andy(0) =0

A

* Example: ’Ya(S) — Qs Y

CDV

h. invariant

Other: Exponential BFs (EBFs), Minimal BFs (MBFs), Control BFs (CBFs), High Order CBFs (HOCBFs), ...

S. Prajna, A. Jadbabaie. Safety Verification of Hybrid Systems Using Barrier Certificates. HSCC 2004

P. Wieland, F. Allgéwer. Constructive safety using control barrier functions. IFAC Proceedings Volumes 2007

A. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, P. Tabuada. Control barrier functions: Theory and applications. IEEE ECC 2019
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Shaping Behavior using Barrier Functions (BFs)

Barrier functions provide a flexible framework to shape the behavior of trajectories

Zeroing Barrier Function Extended Class K,:
Lih(z) > —y (h(z)), Voehs_, Y EXeiMyi(s)=0andy(0)=0
Dot Problem: Finding Barrier Functions is K
b (xzt usually difficult a

CDV

—
\ \
\ \
\ \
\ \\~
h_q

| Key Challenge: The invariance condition on h, couples the

o inval geometry of f and the set h5
!LI ____________________________________________________________

Other: Exponential BFs (ZBFs), Minimal BFs (MBFs), Control BFs (CBFs), High Order CBFs (HOCBFs), ...

S. Prajna, A. Jadbabaie. Safety Verification of Hybrid Systems Using Barrier Certificates. HSCC 2004

P. Wieland, F. Allgéwer. Constructive safety using control barrier functions. IFAC Proceedings Volumes 2007

A. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, P. Tabuada. Control barrier functions: Theory and applications. IEEE ECC 2019
R. Konda, A. Ames, S. Coogan. Characterizing safety: Minimal control barrier functions from scalar comparison systems. IEEE L-CSS 2020
W. Xiao, C. Belta. High-order control barrier functions. IEEE TAC 2021
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Recurrent Barrier Functions

Barrier Function:
Let h be differentiable, y € KX,, and

Lyh(z) > —v (h(z))

then, hs is invariant

¢)(X2, t)

h.( invariant

Enrique Mallada (JHU)
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Recurrent Barrier Functions

Barrier Function:
Let h be differentiable, y € K,, and

Lih(@) +7 (h(z)) > 0

then, h is invariant

Recurrent Barrier Function:

Ast— 0 Let h be continuous, y € K,, and
. m— t
By definition rr%ax] h(p(x, t))—l—/fy(h(gb(x, s))ds > h(x)
te (0,7 0

then, h. is T-recurrent

Question: Do we gain anything from relaxing
the invariance condition in BFs?

d)(er t)

h.( invariant

]_ Time elapsed < T

A h., T-recurrent
Time elapsed < T
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Assessing Safety via Recurrent BFs oA
Claim 1: Signed norms are Recurrent BFs! BF:
Let h be a Zeroing BF, with )_/%a € K, given by th(a:) n ’yg,@(h(x)) >0 s
_|as, s=0 a
Yaa (s) = {gs, s<0
Then, for any set S with h.y € & € h.__, the function: A t A
. RBF: max h 1 —I—/ah ,8))ds > h(x
A0 = —sd(e.5) e 19w 1)+ | 7a((8(,5))ds > hia)

is a Recurrent BF withy, = as,witha<a <«

Claim 2: Safety verification with RBFs

If h = —sd(x, S) is an RBF, then the set S is a safe set
whenever:

SN R[—T,O] (Xu) =0

Known Unsafe
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Basic Algorithm

* Given unsafe region X, precision Tyin
* Build initial grid of hypercubes § = {Bi: = By, (xi)}

» Stage 1: T —Backward reachability
* Find S, =VU; B; such that: R[_, 1(X3,) € S,

e Stage 2: Check RBF on h(x) = —sd(x, (5,,)¢)

Enrique Mallada (JHU)
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Basic Algorithm

* Given unsafe region X, precision Tyin
* Build initial grid of hypercubes § = {Bi: = By, (xi)}

» Stage 1: T —Backward reachability
* Find S, =VU; B; such that: R[_, 1(X3,) € S,

e Stage 2: Check RBF on h(x) = —sd(x, (5,,)¢)
* For B; € G, while G not empty:
* If: B; satisfies RBF condition, continue
* Else if: B; can never satisfy RBF condition, add B; to S,
* Else: refine grid

Enrique Mallada (JHU)
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Basic Algorithm

* Given unsafe region X, precision Tyin
* Build initial grid of hypercubes G = {Bi: = By, (xl-)}

» Stage 1: T —Backward reachability
* Find S;, =U; B; such that: R[_; q)(X},) € S,

e Stage 2: Check RBF on h(x) = —sd(x, (5,)¢)
* For B; € G, while G not empty:
* If: B; satisfies RBF condition, continue

* Else if: B; can never satisfy RBF condition, add B; to S,
* Else: refine grid

* Finish when:
* all points satisfy RBF condition, or precision 1y, is reached
Claim:
* ThesetS = (5,)° satisfies: S N Rj_; 01(X)
* The function h(x) = —sd(x, S) is an RBF
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Nonparametric Safety Verification — Stage 1

Stage 1: T —Backward reachability
* Find S, with Rj_; /(X)) € Sy,

Stage 2: RBF condition
* Check h(x) = —sd(x,S) is RBF
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Nonparametric Safety Verification — Stage 1

Stage 1: T —Backward reachability
* Find S, with Rj_; /(X)) € Sy,

Stage 2: RBF condition
* Check h(x) = —sd(x,S) is RBF
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Numerical Validation: Reachability vs Recurrence

Reachability Nagumo’s RBF

—2 0 2 —2 0 2
running time: 354.12s running time: 20.68s ~17x faster
97.4% safe set covered 99.6% safe set covered +2.2% more area
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Numerical Validation: Reachability vs Recurrence

o =0.0271

Reachability

—2 0
running time: 23.15s
92.2% safe set covered

2

Enrique Mallada (JHU)

Nagumo’s RBF

—2 0
running time: 3.81s
98.6% safe set covered

~bXx faster
+6.4% more area
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Numerical Validation: Reachability vs Recurrence

roi =0.0737

Reachability

-2 0
running time: 3.01s
83.3% safe set covered

Enrique Mallada (JHU)

Nagumo’s RBF

—2 0

running time: 1.56s
94.6% safe set covered

~2x faster
+11.2% more area
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Numerical Validation: Reachability vs Recurrence

Reachability Nagumo’s RBF

-2 0 2 -2 0) 2
running time: 1.86s running time: 0.31s 6x faster
9.3% safe set covered 71.2% safe set covered +61.9% more area
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Outline

* Relaxing Invariance: Merits and trade offs
* Recurrent Sets: Letting thing go and come back

* Nonparametric Analysis via Recurrent Sets
e Stability analysis: Recurrent Lyapunov Functions (RLFs)
e Safety verification: Recurrent Barrier functions (RBFs)



Outline

* Relaxing Invariance: Merits and trade offs
* Recurrent Sets: Letting thing go and come back

* Nonparametric Analysis via Recurrent Sets
e Stability analysis: Recurrent Lyapunov Functions (RLFs)
e Safety verification: Recurrent Barrier functions (RBFs)

* Self-Improving via Nonparametric Control Policies
* Policy Improvement using Expert Demonstrations



Reinforcement Learning

* Agent: attime t
* Receives state s; and reward 1}
* Performs action a;

* Environment:
* Receives action a;
* Provides state s;,, and reward 7, ;

* Goal: Find a policy Ty that maximizes

max J(0) :=

* RL Language:

Agent: g (a|s)

Environment

EWG,SONP [Zfio fytr(stv at)}

* Value function: V7™ (s) := Fp, {Z;O:t Nt (s, at,)}

Enrique Mallada (JHU)
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Reinforcement Learning

St
- - LAgent. mo(als)

* Agent: attime t

* Receives state s; and reward 7; action

* Performs action a;

Q

 Environment:  Sya1 (

* Receives action a, \- P Environment

* Provides state s;,, and reward 7, ; Tt+1 L

* Goal: Find a policy Ty that maximizes

max J(0) := Egy~p {Vﬂe (30)}

* RL Language:

* Value function: Ve (8t> = ET(‘Q Z;O:t ’Vt/_tr(stfy at’)

* Action value function: Q" (St, at) = B, Zf,ozt ’yt/_t’r(st/, a,t/)
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Reinforcement Learning

St
- - LAgent. mo(als)

* Agent: attime t

* Receives state s; and reward 7; action

* Performs action a;

Q

 Environment:  Sya1 (

* Receives action a, \- P Environment

* Provides state s;,, and reward 7, ; Tt+1 L

* Goal: Find a policy Ty that maximizes

m@ax J(H) c— ESQNIO,G,ONWQ(SO) |:Q7T9 (807 a’o)i|

* RL Language:

* Value function: V™ (51) := By | Soo, v ~tr(spr, apr)

* Action value function: Q™ (st,at) == Er, |> o, At (spr, ag)
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Classical policy improvement works in discrete spaces

“Policy improvement” is a fundamental building block of classical RL

Policy iteration = Policy evaluation + Policy improvement

Policy evaluation

/ « Can evaluate “separately” for each (s,a)
* Given 7T, evaluate it to find Q7 (-, )

* Can store Q in a table

Policy improvement
e Given Q" (-, ) define: @ :S8—A: 7'(s) € argmax Q" (s,a) T\

*Then: -
VT (s)>V™(s) VseS§

* Given s, maximize an array of size |A|
Rinse and repeatuntil V™ =V"™ — g=1q'=7*
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Policy Optimization in Continuous Action Spaces meaX J(Q)

Based on Policy Gradient:
* Use experience to approximate VyJ(0) =~ g

o 1NN T ORON -0
g =% Zi:l Zt:o Vg log W@(at ‘ St )Rt
update: Oy1 = O + 119 B R = Yo Aty

QT s | cumulative return

St
e - {Agent: We(a!S)I—\ Many Challenges:
 Estimation variance
action e Non-smoothness
A+ o

Fractal landscape
Mollification

| St+1 ( _
g < Environment
N e me—a———— Tt-l—l L * ..
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Fundamental challenges of Policy Optimization

o ] fractal!
Challenge: Fractal Optimization Landscapes /

t 2800
it b 2600
11, | T 2400

r 220055
2000 =
[ 1800

[ 1600

[ 1400

[ 1200

} 1000

* Goal: maxg J(0) := Eny somp Do Vire(se, at)] oS

I 985

[ 980

* Approach: 0,1 = 0, +1VyJ(0)

Challenge: Mollification of Policy Gradient

* Goal: mQaX J(@) = ESoNp,aoNﬂ'g(So) |:Q7T9 (807 ao)}

A

a~ N(po(s),051)

* Policy:
0'9(_3)>

>

1o (s) a
Tao Wang, Sylvia Hebert, Sicun Gao, Fractal landscapes in policy optimization, NeurlPS 23
Tao Wang, Sylvia Hebert, Sicun Gao, Mollification effects of policy gradient, ICML 24

Enrique Mallada (JHU) 34



Agustin Castellano Sohrab Rezaei Jared Markowitz Enrique Mallada
= =
T JOHNS HOPKINS T JOHNS HOPKINS w JOHNS HOPKINS g JOHNS HOPKINS

UNIVERSITY UNIVERSITY APPLIED PHYSICS LABORATORY UNIVERSITY

Nonparametric policy improvement in
continuous action spaces

A. Castellano, S. Rezaei, J. Markovitz, and E. Mallada, Nonparametric Policy Improvement for Continuous Action
Spaces via Expert Demonstrations, 2025, submitted to Reinforcement Learning Conference.
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Problem Setup

Goal: find optimal policy

max J(0) :

Esow,o,aowwe(s@) |:Q7T9 (807 azO)i|

Enrique Mallada (JHU)
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Problem Setup

Goal: find optimal nonparametric policy

mgx J(mp) = ESONP,aONWD(SO) [QWD (50, ao)}

D
Dataset: D = {(s;, a;, Q,,;)}Lzll Qi ==Y, Y'r(st, ar)
Assumptions:
Optimal Q* is smooth: |Q*(s,a) — Q*(s',a")| < L(ds(s,s") + da(a,a"))
Deterministic dynamics: s¢11 = f(S¢, a¢)

Expert data: we have D = {(s;,a;, Q:)}.2!, where @i = 7*(s:); Qi = Q*(s4, a;)



Expert data: we have D = {(s;,a:, Q:)}\2), where a; = 7%(s:); Qi = Q* (s, a;)

1. How can we use these transitions to learn a nonparametric policy?
2. What guarantees can we get when we add more transitions?

3. Where should we add transitions to improve performance?



Overview of our method

Add expert trajectory No

Get dataset
D = {(ss, a1, Qi) }\2!

<
T = (SOaa'OvQO;Slaa'lan? .. )

Build lower bound Greedy policy

—>7(s) A argmajc Qu (s, a)—> Sufficient data?
ac

T

Yés
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1. How can we use these transitions
to learn a nonparametric policy?



Building bounds & Nonparametric Policy
Expert data: we have D = {(s;,a:, Q:)}.2! , where a; = 7%(5:); Qi = Q* (54, a;)

* Use the data to define lower bounds on optimal values:

Vib(s) 2 max {Q; — L-ds(s,s;)} Qun(s,a) £ max {Qi — L (dg(s, s;) + dal(a, ai))}

1<i<|D| 1<i<|D|

* Nonparametric Policy: R
m(s) = argmax Qp(s,a) = a;
acA

« Remark: Note argmax always gives actions in dataset (s;, @i/, Q;/)

* Question: What can we say about V7" (s)?
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Nonparametric policy improves over lower bound

Policy Evaluation:
* Nonparametric m satisfies Vs € S

Vin(s) < V7(s) < V7*(s)

Policy Improvement:

 Given data sets D, D' with D c D’
More data = better lower bounds ( s’, Q/)

< J mprovement on
Vin(s) < Vip(s) Vse€S 7 R pointts

V(s < V”,(s’) Vs' € D'\D

* Strict on neighbors of new data: Vs € N(s')

/ /
N(S ) k_ﬂ' strictly better than 7T

Enrique Mallada (JHU) 41



Add expert trajectory No

Get dataset
D
D = {(ss,a5,Q:) }'2h

<
T = (807a07Q0a817a17Q17 - - )

Build lower Pound Greedy policy

—r(s) & argmaj( Qu (s, a)—> Sufficient data?
a€

. Qp(, -)
*

si, ai, Qi) I

Yes

Enrique Mallada (JHU) 42



1. How to learn a policy?

Builcj lower bound

Get dataset Greedy policy

D = {(Si7 Ay, Q%)}Lzll

2 Policy Evaluation
T or(s) = arsmaxQn(s AT i (5) < V7(s)

. Qp(, +)
* (s, a,Q)

strict improvement

2. What guarantees with more transitions? o
S/, Ql V*(S>

More data = better lower bounds

.
.

Vib(S) < Vi{)(S) Vs e S /7 Improvement on i
VT(' (S/) < Vﬂ" (S/) \V/S/ c D/\D added p01nts Vlé(s)“ i

N(S/) ‘\_7T/strictly better than 7T
3. Where to add transitions?

*  Only where sufficient improvement is guaranteed: A(s) := Vip(s) — Vin(s) > €

Vin(s) < V7 (s) < V7(s) < Vap(s)
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Dataset Size

Experiments Number of balls

‘// 1%t m actuated

* Weusethe 1lgr n m environments from DeepMind’s Control Suite

lgr 2 1 lgr_6_2

* Resultsonlqr 2 1:

Mea ,
5000 —-= Medians | '
:
-
4000
3000 g
S
a 10
(0]
2000
o 25
1000 )
SN—
—— NPP 44 A < -=~ Targetgap (€) 184
" Gap achieved (w.h.p.) || | ! Gap achieved (w.h.p.)
1 1 1 Q
10 P . 2 -140 -120 -100 -80 -60
0 50 100 150 200 10 10 10° Suboptimality distribution: V™ — V/ *
Episode Episode
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Experiments

* Weusethe 1gr n m environments from DeepMind’s Control Suite

* Resultsonlqr 2 1:

10’

Mea "
5000 —-— Medians i :
I
~~ N
¥a) Lk
~— 1 I
4000 2 i
q) = 0° i !
§ | 1
. T
WD) 3000 —~ m ! |
[Va) T, 1
2 O : 3
N —g = 10
8 2000 S : .,
© I 10 I:
D 1A 25
—~ —
1000 w "
N— 1
—— NPP i G < 184
: Gap achieved (wh.p.) || | | Gap achieved (w.h.p.)
—— 10" 0 ‘ : -140 -120 -100 -80 -60 -40 -20 0
0 50 100 150 200 10 10 10° Suboptimality distribution: V™ -V *
Episode Episode

* Remarks:
* Incremental learning: No catastrophic forgetting, or oscillations
* Improvement across the entire state space (not in expectation)
* Only valuable data is added (harder to find at times passes)
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Incremental Learning

after 10 episode... atter 100 episode... atter 1000 episodes...

after 30K+ optimal control
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Incremental Learning

optimal control

after 30K+
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Research Goals

* To develop analysis and design methods that
trade off complexity and performance.

optimality gap

* To allow for continual improvement, without the
need for redesign, retune, or retrain

* To design control policies with controlled
sensitivity to parameter changes

Enrique Mallada (JHU)
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Conclusions and Future work

 Takeaways
* Proposed a relaxed notion of invariance: recurrence.
* Nonparametric theory for dynamical systems analysis leading to:
* General Lyapunov and Barrier Function conditions satisfied by any norm!
* Algorithms that are parallelizable and progressive/sequential.

* Nonparametric policies: Guaranteed improvement with each demonstration.

* Ongoing work
* Recurrence: Information theoretical lower bounds of control recurrence sets
* Lyapunov/CBF Theory: Generalize other Lyapunov notions, Control Lyapunov Functions,
Control Barrier Functions, Contraction

* Nonparametric policies (NP): NP policy iteration, enforcing safety and stability using NP,
exploring alternative inductive biases (beyond Lipschitz)



Thanks!
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