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Decarbonization of electricity is key to mitigate climate change

California lifts renewable energy target

to 73% by 2032

o
The California Public Utilities Commission raised renewable energy procurement New York mandates 70 A’ renewable energy
targets, plans for a more aggressive decarbonization plan, and includes increased by 2030

reliability provisions.

FEBRUARY 14, 2022 RYAN KENNEDY
By Kelsey Misbrener | October 15, 2020

Oregon bill targets 100% clean
power by 2040, with labor and
environmental justice on board

After Democratic cap-and-trade bills faltered in the face of GOP
revolts, an electricity-focused, consensus-driven bill gains ground in
Oregon.

Vermont House passes 75% by 2032
renewable energy mandate

Published March 11, 2015

23 June 2021

Maryland bill mandating 50% renewable energy by 2030 to become law,
but without Gov. Larry Hogan's signature

By Scott Dance
Baltimore Sun + May 22, 2019 at 6:40 pm

Virginia becomes the first state in the South to
target 100% clean power

The state’s Democratic majority is doing what Democratic majorities do.
By David Roberts | @drvolts | Updated Apr 13, 2020, 2:56pm EDT
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Decarbonization of electricity is key to mitigate climate change

California lifts renewable energy target
. =3 M -
to/78% iy 2032 l Renewable & Clean Energy Standards Irable energy

The California Public Utilities Commis www.dsireusa.org / September 2020
targets, plans for a more aggressive de
reliability provisions.
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Published March 11, 2015 A o015 SC: 29, 2021 ed, consensus-driven bill gains ground in
30 States + DC have a
ENVIRONMENT S Renewable Portfolio
. R Standard, 5 states have a
P J
Maryland bill manda . ’ U.S. Territories Clean Energy Standard
. :100% x 2045 e
but Wlthout GOV. Lar Guam:25%x 2035 7 (8 state.s have renewable
_ _ portfolio goals, 5 states have
By Scott Dance clean energy goals)
Baltimore Sun * May 22, 2019 at 6:40 pm -
. Renewable portfolio standard . Clean energy standard * Extra credit for solar or customer-sited renewables te in the south tO
. Renewable portfolio goal |:| Clean energy goal 1 Includes non-renewable alternative resources

The state’s Democratic majority is doing what Democratic majorities do.
By David Roberts | @drvolts | Updated Apr 13, 2020, 2:56pm EDT
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Decarbonization of electricity is key to mitigate climate change

U.S. electricity generation from selected fuels
AEO2022 Reference case
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The Future Grid

*[1]
‘ Present Future
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@ =inverter — @ =inverter ' '
Present grid Future

e dispatchable generation
* highinertial response

e strong voltage support
 well known physics

variable and distributed generation
limited inertia levels

weak voltage support
proprietary control laws (black box)

[1] Lin et al. Research roadmap on grid-forming inverters. Technical report, National Renewable Energy Lab.(NREL), Golden CO, 2020
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The Future Grid

Future "l Selected challenges
A a , :
i ry * increased system uncertainty
gg K - I_LL . sensi]:civity tc;distun;)blances uced b
ol d 9 R & & * new forms of instabilities, induced by inverter-
S P \ﬁ,ﬁﬁfﬁ - based resources
o * need to compensate for reduced inertia

cagl
By
¥
\ | ¥

1 ol —

=gencrator  @Rn @En @ | SSROWNR Research questions:

@ I s ‘I .
?; 7 ﬂ &y i 1 i grld strength
* . | [ = -
@

‘ =inverter
* How should we control a grid with limited
Future inertial/voltage support?

* variable and distributed generation . :

e limited inertia levels & * Should we try to mimic SGs response? Or find new
* weak voltage support and more efficient control paradigms, suitable for
 proprietary control laws (black box) IBRs?

[1] Lin et al. Research roadmap on grid-forming inverters. Technical report, National Renewable Energy Lab.(NREL), Golden CO, 2020
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Inverter-based Control

Current approach: Use inverter-based control to mimic generators response

Virtual Synchronous Generator Telecom Analogy
Vi, +} *J} L i, i, L PCC ______
N b P ?
49y e
3xcf
[ == A
Controller Vabm

Controller
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Inverter-based Control

Current approach: Use inverter-based control to mimic generators response

Virtual Synchronous Generator Telecom Analogy
Ve ‘T + *J} T PCC "

M b v, —rrrr. ©
o g ——H——
o+ 4 i | It works, but perhaps
T8 B i .
Controller VabechC\ there IS

something better...

2

Controller

Enrique Mallada (JHU) 5



Outline

 Merits and trade-offs of low inertia
 Control Perspective: Lighter systems are easier to control!

* Scale-free Stability Analysis of Grids
* Generalizes passivity notions using network information

* Analysis of Weakly-Connected Coherent Networks

* Generalized Center of Inertia captures IBR dynamics
* |dentification of coherent modes via spectral clustering

* Grid Shaping Control

* Grid-following/forming control framework for controlling future girds



Outline

* Merits and trade-offs of low inertia
 Control Perspective: Lighter systems are easier to control!

e Scale-free Stability Analysis of Grids
* Generalizes passivity notions using network information

e Analysis of Weakly-Connected Coherent Networks
 Generalized Center of Inertia captures IBR dynamics
* |dentification of coherent modes via spectral clustering

* Grid Shaping Control

* Grid-following/forming control framework for controlling future girds



Merits and Trade-offs of Inertia

Enrique Mallada (JHU)
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Merits and Trade-offs of Inertia

0 = —ié’—gsiné’—ki

m m
: 1.0 2
time = 0.0s
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’ " g
© 00 ¢o 2
g 45
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20 A — disturbance
—— friction
10 A
9
-20
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Pros: Provides natural disturbance rejection Cons: Hard to regain steady-state
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Merits and Trade-offs of Low Inertia

) d . . f
0 =——0—gsinf 4+ =
m m
: 1.0 2
time = 0.0s
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® - -10 -
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Cons: Susceptible to disturbances Pros: Regains steady-sate faster
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Control of Low Inertia Pendulum

Virtual Mass Control: mf = —df — mgsinf + f — 16

We can do better...

Pros: Cons:
Provides disturbance rejection Hard to regain steady-state + excessive control effort

Enrique Mallada (JHU) 8



Control of Low Inertia Pendulum

Yan Jiang Richard Pates

Dynamic Droop: mf = —df — mgsinf + f + x
—x — (r 10+ 7'1'6)

/ -
T X

1.0 2

time = 0.0s
0.5 - L,

0.0 1 ¢0

angle
ang. velocity

—0.5 1 F =1

time (s)

20 - —— disturbance
—— friction
10 4 — control

forces

time (s)

[TAC 21] Jiang, Pates, M, Dynamic droop control in low inertia power systems, |IEEE Transactions on Automatic Control, 2021
Enrique Mallada (JHU) 8



Control of Low Inertia Pendulum

Dynamic Droop: mf = —df — mgsinf + f + x

Yan Jiang Richard Pates

3518

¢ IEEE
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 8, AUGUST 2021\ CSS

Dynamic Droop Control in Low-Inertia
Power Systems

Yan Jiang *“, Richard Pates *“, and Enrique Mallada “”, Senior Member, IEEE

—-1.0 + T T T T + =2

0 5 10 15 20 25
time (s)
20 - —— disturbance
—— friction
10 1 control
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o 0 q
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_10 .
-20
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time (s)

[TAC 21] Jiang, Pates, M, Dynamic droop control in low inertia power systems, |IEEE Transactions on Automatic Control, 2021
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Power Network Model

Bus Dynamics

P = dlag (pz)

P1
(1) frequency
_ ) Pn
Laplacian Matrix
_Bij if 1] € B
Lij=<{ >, By ifi=j
0 0.W.
pe electric power 1 L
Linearized Power Flows S
Bz'j = V;V; bz‘j COS(Q;|< — (9;) Network Dynamics

[Bergen Hill ‘81]

[TAC 20] Paganini, M, Global analysis of synchronization performance for power systems: Bridging the theory-practice gap, |IEEE Transactions on Automatic Control, 2020

Enrique Mallada (JHU) 9



Bus Dynamics

+
AP~ De,i»O—>
power
imbalance

Zj
inverter
power injection

Bus Dynamics P;

generator
frequency
Ws
gi
+
C; |«<—O
inverter

Generator: §; : (APz' — Pe,i T iUz) = Wj

Model: Swing Equations + Turbine

..
97; — W;
i+ § Miw; = —Djw; + qi + (AP; — pe i + x;)
iy = I, e — g

[TAC 20] Paganini, M, Global analysis of synchronization performance for power systems: Bridging the theory-practice gap, |IEEE Transactions on Automatic Control, 2020
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Bus Dynamics

_|_
AP~ De,i»O—>
power
imbalance

L
inverter
power injection

Bus Dynamics P;

generator
frequency
Wi
gi
+
C; |«—O
inverter

Generator: §; : (APz' — Pe,i T iUz) = Wj

Model: Swing Equations + Turbine

..
97; — W;
i+ § Miw; = —Djw; + qi + (AP; — pe i + x;)
iy = I, e — g

1
M;s + D; +

gi(s) = R

TzS—I—].

[TAC 20] Paganini, M, Global analysis of synchronization performance for power systems: Bridging the theory-practice gap, |IEEE Transactions on Automatic Control, 2020
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Bus Dynamics
Grid Following Inverter: ¢; : W; — I;

Bus Dynamics P; i i
generator Droop Control and Virtual Inertia:
n frequency 1
o Wi - — =1 .. . — (), =L
AP Do O g Ci - {mz = —(viw; + R, ;w;), ci(s) = —(vis + R, jwi)
imbalance
+
= C; |[«—O
invertzer
power injection  inverter

Closed-loop Bus Dynamics:
éi W
pi 0 § (M + v)w; = —(Ds + R, Jws + ¢ + (AP, — pe.i)

- 1
TiG; = —¢i — R, ;w;

ci(iw)|aB

R, ! N\

R} v log w

[
»

[TAC 20] Paganini, M, Global analysis of synchronization performance for power systems: Bridging the theory-practice gap, |IEEE Transactions on Automatic Control, 2020
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Modal Decomposition for Multi-Rated Machines - .

. : . : L M
Assumption: Let fi be the machine relative inertia (fZ ~ max,
Bus Dynamics
P = diag(p;)
P1
Change of Vars. AP—o— . D; QW reaveney >
_f

F = dlag ( fz) De sectric power

A

1L

Network Dynamics

gi\S$) = - go(s
| (5) = 90(5)
M; ), and
ci(s) = fico(s)
Change of Vars.
W 1| w

— V —>F'§‘—>

[Paganini M ‘17, Guo Low 18]

[TAC 20] Paganini, M, Global analysis of synchronization performance for power systems: Bridging the theory-practice gap, |IEEE Transactions on Automatic Control, 2020
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Modal Decomposition for Multi-Rated Machines .

Assumption: Let Ji be the machine relative inertia (fi = max, 17 ), and

Change of Vars.

AP

—»F'%—»VT >

F = diag(f;)

Eigenvalues of: LF — F‘%LF‘%
O=X <A << A

APl——:O->0—>

90

w1

APy

W,

=

—Q

e
o
o
x

Wn,

AP, %T
l i)l‘.ll

o gi(s) = ﬁgO(S)

ci(s) = fico(s)

Center of Inertia -

we I(t) — Z?:1 lel(t)
° Z?:l M;

Change of Vars.

— V —>F'§‘—>

Sync Error
@i (1) = w; (t) — weoor ()

[Paganini M ‘17, Guo Low 18]

[TAC 20] Paganini, M, Global analysis of synchronization performance for power systems: Bridging the theory-practice gap, |IEEE Transactions on Automatic Control, 2020
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Control of Low Inertia Pendulum

Dynamic Droop: mf = —df — mgsinf + f + x

Yan Jiang Richard Pates

3518

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 8, AUGUST 2021

Dynamic Droop Control in Low-Inertia
Power Systems

Yan Jiang *“, Richard Pates ““, and Enrique Mallada “, Senior Member, IEEE

/_ IEEE
= CSS

_1.0 } T T T T
0 5 10 15 20

25

Dynamic Droop Benefits
* Overshoot Elimination in Nadir* Disturbance Rejection

* Noise Attenuation  Reduce Inter-area Oscillations
- ! —101
Caveat

e Control design limited to co-located resources (SGs and GFL-IBRs)
 Restrictive assumptions: Proportional dynamics (p;(s) = f;po(s))

25

[TAC 21] Jiang, Pates, M, Dynamic droop control in low inertia power systems, IEEE Transactions on Automatic Control, 2021

Enrique Mallada (JHU)
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Outline

* Merits and trade-offs of low inertia
 Control Perspective: Lighter systems are easier to control!

e Scale-free Stability Analysis of Grids
* Generalizes passivity notions using network information

e Analysis of Weakly-Connected Coherent Networks
 Generalized Center of Inertia captures IBR dynamics
* |dentification of coherent modes via spectral clustering

* Grid Shaping Control

* Grid-following/forming control framework for controlling future girds
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 Merits and trade-offs of low inertia
 Control Perspective: Lighter systems are easier to control!

* Scale-free Stability Analysis of Grids
* Generalizes passivity notions using network information



Decentralized Stability Analysis in Power Grids [TCNS 19]

AP = w1 - Richard Pates
; O ' i | 1.When does this
) y ) interconnection is stable? 1. L
AP, _# . Wn ST
Pn
@
@
(]
1
s,L
) A.Pn —to—» pn > wn

2. Can we analysis and control design
based on local rules?

Problem Setup:
* Linearized power flows, lossless
Lij = —b;jvivjcos(0; — 6;)

 Busi: arbitrary siso transfer function:
w; = p;(s) AP; (SGs or GFM-IBRs)

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019
Enrique Mallada (JHU) 13



Decentralized Stability Analysis in Power Grids [TCNS 19]

p AP —>0—» > ’
AP i = w1 1= - w1 Richard Pates
: . _ 1.When does this
: b B interconnection is stable? 1
AP,| Wn ' s L[
. >
@
I ] :
Can we use network information to relax
passivity conditions?
Standard Approach: Passivity .
« If p;(s) is strictly positive real (SPR), then the ‘Pos't'V;Z‘[ea!((:)R])lFO
interconnection is stable for all networks L! Pis = - et
for unknown network (L), passivity is Stricﬂy Positive Rea';g
also necessary.[TCNS 1] elpils &)l = |

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019
Enrique Mallada (JHU) 13



Classical Result: Absolute Stability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Frequency Domain Stability Criteria—Part I

R. W. BROCKETT, MEMBER, IEEE AND J. L. WILLEMS

Abstract—The objective of this paper is to illustrate the limita- II. Tueg GENERALIZED Porov THEOREM

Nyquist Diagram

gain plant 15
VRIS <~ EaE WA G(jw)
n
PR
Stable for 0 < K < k*?
2 0
Assume: G (s) is stable =
-0.5
Define: h(s) € PR (passive) 1
Test: |If h(s)(l + k*G(s)) € SPR (strictly) » | ‘ | |
then, yes! e - 0 e 1 e

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019
Enrique Mallada (JHU) 14



Classical Result: Absolute Stability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Frequency Domain Stability Criteria—Part I

R. W. BROCKETT, MEMBER, IEEE AND J. L. WILLEMS

Abstract—The objective of this paper is to illustrate the limita- II. Tueg GENERALIZED Porov THEOREM

gain plant Nyquist Diagram

T e u ) " | |
——O——{ K —f Gls) (& + G(jw))
|
o 0.5
Stablefor0 < K < k*? <
£ 0 i
Assume: G (s) is stable = o
Define: h(s) € PR (passive) B
Test: If h(s)(l + k*G(s)) € SPR (strictly) p | | ‘ | |
5 -1 -0.5 0 0.5 1 1.5
then, yes! Real Axis

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019
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Classical Result: Absolute Stability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Frequency Domain Stability Criteria—Part I
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Enrique Mallada (JHU) 14



Scale-free Stability Analysis

Key Idea: Exploit limited network information to relax passivity condition

* Let y; be a local connectivity bound: Z]-ENi Lij <

Brockett & Willems ‘65

Assume: G (s) is stable

Define:

h(s) € PR (passive)

Test: If h(s)(1+k*G(s)) € SPR (strictly)
then system is stable forall0 < K < k*

r

\ 4

G(s)

AP

AP,

EmE

A 4

P1 -
o w1
: Pi :
_ W,

Yi
2

Pates & M 2019

Assume: p;(s) is stable

Define: h(s) € PR (passive)

Test: If h(s) <1 + y; %pi (S)Q € SPR, Vi, then
system stable for networks 2, ey, Lij < %,Vi

- *
Lij = —b;jv;vjcos(6; —

Y’ - I

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019

Enrique Mallada (JHU)
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Scale-free Stability Analysis

Key Idea: Exploit limited network information to relax passivity condition

* Let y; be a local connectivity bound: Z]-ENi Lij < % Li; = —b;jv;vjcos(8; —
Brockett & Willems ‘65 Pates & M 2019

Assume: G (s) is stable Assume: p;(s) is stable

Define: h(s) € PR (passive) Define: h(s) € PR (passive)

Test: If h(s)(l + k*G(s)) € SPR (strictly) Test: If h(s) gl + Vi%Pi(S)Q € SPR, Vi, then

then system is stable forall 0 < K < k* system stable for networks 2, ey, Lij < %,Vi

AP,

= w1

pi {]

—0O— K G(s) Al — B -
- 3L

\ 4
A 4

0;

)



Scale-free Stability Analysis

Key Idea: Exploit limited network information to relax passivity condition

* Let y; be a local connectivity bound: Z]-ENi Lij < % Li; = —b;jv;vjcos(8; —
Brockett & Willems ‘65 Pates & M 2019

Assume: G (s) is stable Assume: p;(s) is stable

Define: h(s) € PR (passive) Define: h(s) € PR (passive)

Test: If h(s)(l + k*G(s)) € SPR (strictly) Test: If h(s) gl + Vi%Pi(S)Q € SPR, Vi, then

then system is stable forall 0 < K < k* system stable for networks 2, ey, Lij < %,Vi

P = diag(p:)
r y o————»| P
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A 4
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EmE

0;

)



Scale-free Stability Analysis

Key Idea: Exploit limited network information to relax passivity condition

* Let y; be a local connectivity bound: Z]-ENi Lij < % Li; = —b;jv;vjcos(8; —
Brockett & Willems ‘65 Pates & M 2019
Assume: G (s) is stable Assume: p;(s) is stable
Define: h(s) € PR (passive) Define: h(s) € PR (passive)
Test: If h(s)(1+ k*G(s)) € SPR (strictly) Test: If h(s) gl + Vi%l?i(S)Q € SPR, Vi, then
then system is stable forall 0 < K < k* system stable for networks 2, ey, Lij < %,Vi
P =diag(p;)
1 1
r o ’ o=z P 12

EmE
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Scale-free Stability Analysis

Key Idea: Exploit limited network information to relax passivity condition

* Let y; be a local connectivity bound: Z]-ENi Lij < % Li; = —b;jv;vjcos(8; —
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Scale-free Stability Analysis

Key Idea: Exploit limited network information to relax passivity condition

* Let y; be a local connectivity bound: Z]-ENi Lij < % Li; = —b;jv;vjcos(8; —
Brockett & Willems ‘65 Pates & M 2019

Assume: G (s) is stable Assume: p;(s) is stable

Define: h(s) € PR (passive) Define: h(s) € PR (passive)

Test: If h(s)(l + k*G(s)) € SPR (strictly) Test: If h(s) gl + Vi%Pi(S)Q € SPR, Vi, then

then system is stable forall 0 < K < k* system stable for networks 2, ey, Lij < %,Vi

P=diag(p;)
r e - o— [ — %P

EmE
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Examples

Delay Robustness of Swing Equations

1

Let pi(S) - M:s + D.e—Tis

WMi(%—T*)

2

GivenT™ < 7, then, for any network such that 2 Z?eNi Lij <~* with 7" = 2(M_T* )2
D’L

: : M;
the delayed swing equations are stable for whenever 7 < 7° D,

Automatic Generation Control

l I
! I
' 1 AGC|
I T 0.4
! m r | dp

I
! s [T 1+ 8T, 1+ sT; ! ¥ ms+d ~

B

I -
L_—_______Govermor Turbine } Generator 02

m d Ty Tt r B k 0
0.16 0.02 0.08 0.40 3.00 0.33 0.30

0 0.2 04 0.6 0.8 1
B

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019
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Outline

 Merits and trade-offs of low inertia
 Control Perspective: Lighter systems are easier to control!

* Scale-free Stability Analysis of Grids
* Generalizes passivity notions using network information



Outline

 Merits and trade-offs of low inertia
 Control Perspective: Lighter systems are easier to control!

* Scale-free Stability Analysis of Grids
* Generalizes passivity notions using network information

* Analysis of Weakly-Connected Coherent Networks
* Generalized Center of Inertia captures IBR dynamics
* |dentification of coherent modes via spectral clustering



Coherence in Power Networks

* St u d |e d S | nce t h e 705 Power Electronics and Power Systems

* Podmore, Price, Chow, Kokotovic, Verghese,
Pai, Schweppe,...

* Enables aggregation/model reduction ToaHrwEE T
* Speed up transient stability analysis
T | Power System
* Many important questions
* How to identify coherent modes? COherenCy and

* How to accurately reduce them? MOdEl REdUCtion

* What is the cause?

 Many approaches
* Timescale separations (Chow, Kokotovic,)
* Krylov subspaces (Chaniotis, Pai ‘01)
* Balanced truncation (Liu et al ‘09)

 Selective Modal Analysis (Perez-Arriaga,
Verghese, Schweppe ‘82)

Goal: Understand how IBR presence affect classical coherence studies

Enrique Mallada (JHU) 17



Case Study 1: Network Coherence

FNET Data Display [9/8/201 1 Southwest Blackout]
Time: 22:37:54.0 UTC 60.0125 Hz

- SR ey
(2011-09-08'22:38:19 UTC)
y D

60.16 | 60.18
60.14
60.12
60.1 L 160.12 w;\ / > W Fner
N
T 60.08 L 160.1
S
2 .
S 60.06 0. - 160.08
T
o
i §0.04

60.02}
60
59.98 | @ Q 60
120 W 105 W
59.96 W ; ] 59.98
22:37:54 22:38:08 22:38:23 22:38:38 U UNIVERSITY of OAK
Time, UTC TENNESSEEW! “RIDGE @CUREN iy

Key Questions:
* How does coherence emerge, and what does it depend on?

 How to characterize the coherent response in the presence of IBRs?

Enrique Mallada (JHU) 18



Case Study 2: Coherent Inter-area Modes

Florida Event Replay with FNET Data [2/26/2008]
Time: 18:09:4.9 UTC 60.0004 Hz

Key Questions:

Frequency, Hz
3

1
BO6 |-

02}

598f-

MC

.i..,.,......,,, 'i‘”"“““"-

18:09.04 18:09:08 18:09:12 18:09:17 18:09:21 18:09:25

How to identify coherent areas?

Time, UTC

© 2010 University of Tennessee

105 W 90' W

e UNIVERSITY of
TENNESSEEr"

Can we model the inter-area oscillations?

Enrique Mallada (JHU)
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Analysis of Coherent Dynamics [¢PC 13, Auto 25]

Hancheng Min Richard Pates

g1
AP - . J
‘ ?

1 - gn . Z’L APZ wCOI
> g(S) >

2.What is the exact coherent
response of this network?

1.When does this network
exhibit coherence?

* Problem Setup: Example I: SG + Turbine Example II: IBRs

* Linearized power flows L;; 1 1

e Busi: arbitrary siso tf: 9i(s) = P gi(s) = —
w; = gi(s) AP; (SGs or IBRs) m;s +d; + g

[CDC 19] Min, M. Dynamics concentration of large-scale tightly-connected networks. Conference on Decision and Control 2019

[Automatica 25] Min, Pates, M. A frequency domain analysis of slow coherency in networked systems. Automatica 2025
Enrique Mallada (JHU) 20



AP

—>O—> .'gi.

Analysis of Coherent Dynamics [€PC 19, Auto 25]

g1

Hancheng Min Richard Pates
w

9n

o=
h

> i AP _ Weor
> g(S) >

1.When does this network

exhibit coherence? 2.What is the exact coherent

response of this network?

Coherence can be understood as a low rank property the closed-loop

transfer matrix

—1

mn
It emerges as the effective algebraic connectivity |Sl Ay (L)| increases §(S) = E gz-_1 (S)
0
1=1

The coherent dynamics is given by the harmonic sum of bus

dynamics

[CDC 19] Min, M. Dynamics concentration of large-scale tightly-connected networks. Conference on Decision and Control 2019
[Automatica 25] Min, Pates, M. A frequency domain analysis of slow coherency in networked systems. Automatica 2025

Enrique Mallada (JHU) 20



Generalized Center of Inertia [€PC 19, Auto 25]

Hancheng Min Richard Pates

Zf; AP; Weor n -
1 9(s) > g(s) = D _gi ' (s)
i—1

200

— — Coherent Dynamics

 Coherent Dynamics: g(s)
* Representation of aggregate response

e Accuracy of approximation:
* is frequency dependent
* increases with network connectivity

* Provides excellent template for reduced
order models (via balance-truncations)

0 10 20 30 40 o ilc [LCSS 20
Time (s) More details | ]

o

Frequency (mH2z)
R
o
o

|
N
o
o

-600

[CDC 19] Min, M. Dynamics concentration of large-scale tightly-connected networks. Conference on Decision and Control 2019
[LCSS 20] Min, Paganini, M. Accurate reduced-order models for heterogeneous coherent generators. IEEE LCSS 2020

[Auto 25] Min, Pates, M. A frequency domain analysis of slow coherency in networked systems. Automatica 2025
Enrique Mallada (JHU) 21



Weakly-Connected Coherent Networks

g1 U1 —@1
U ' Y U2 _ Y2
)( ) — gz 'Il3 gl — _@3
A g2 el
- = 277 A 5
o ) o

* Aggregate each coherent area

* Inter-area oscillation can be
modeled as the interaction
among aggregate nodes

[LADC 23] Min, M. Learning coherent clusters in weakly-connected network systems. Leaning for Dynamics and Control 2023
Enrique Mallada (JHU)
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Structure-preserving Network Reduction
2

Hancheng Min

Step 1: Identifying coherent areas

—()r— 9:] i3 g1l yi Tightly-connected
1 - - 72 % Networks are coherent
_ f() Lk U
— - Use spectral clustering

algorithm to find
tightly-connected
: k subnetworks/areas

1 Iz 1=
L. _)[ Spectral } _{_ _}_ _1_ .
g

Clusterin

[LADC 23] Min, M. Learning coherent clusters in weakly-connected network systems. Leaning for Dynamics and Control 2023
Enrique Mallada (JHU) 23



Structure-preserving Network Reduction

P

Hancheng Min

Step 2: Aggregate coherent areas

g1 R —?31
U AN Yo
—>Q—> 9i = s, Coherent dynamics are
A AN .
- Tn N Aggregation given by )
-~ A~ _ -1 -
-1, gi:(z §) =197 )
i=1,- 1
Aggregate each
identified coherent area
: AL into its corresponding
L | Spectral S . A
>[ Clustering} > coherent dynamics j(s)

[LADC 23] Min, M. Learning coherent clusters in weakly-connected network systems. Leaning for Dynamics and Control 2023
Enrique Mallada (JHU) 23



Structure-preserving Network Reduction

P

Hancheng Min

Step 3: Model the interaction among aggregate nodes

Construct the reduced
network L; by solving
an optimization problem
(it has closed-form

solution)
: T} _
L' _,| Spectral _{_ _}_Z__l_:_) st.  Ser =1
! Clustering STdiag{|Z;|}F_,S = I
e e e e e e e - - - > L. = (S~ 1H)TA.S1
- k= (57) A Y,

[LADC 23] Min, M. Learning coherent clusters in weakly-connected network systems. Leaning for Dynamics and Control 2023
Enrique Mallada (JHU) 23



Approximation Errors

I7Cs0) = Tic Gso)l,

g1

. oY
gi 1
gn Y.
FOL] > giZ(Z
i=1.-
\_

D
Hancheng Min
[ 1 .
Uo ApprOleatlon error
KE; depends on:
—>>

L\ ___| Spectral _{_ _}___1_ .
: Clustering

min
S

Vi, = Pizpe_ S|I%

s.t. Sep =1

STdiag{|I,-|}leS = Ik .

~

Ly = (S_l)TAkS_l

-

)

e Whether the network
has a multi-cluster
structure

* Whether the SC
algorithm finds the
right clusters

[LADC 23] Min, M. Learning coherent clusters in weakly-connected network systems. Leaning for Dynamics and Control 2023

Enrique Mallada (JHU)
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Numerical validation — RTS 96 test case

Frequency (Hz)

(41
©
4]

61

60.5

D
o

59 |

61
= 60.5 |
/
I\ i
=
T
L 6o} I P St
...... > i X
=4 |
5
3 U |
...... 8 595 H [
™ v
59
58-5 L L Il L
0 0.5 1 1.5 2 2.5
Time (s)
61 61
60.5 60.5
s I s
N :'E“ \ E /\'\
I\ N > \ =
SN ———————1 % 60 7Ny —————— — 1 2 e N\ mee———
N 8 \ 2
2 7 g
Nl g g
Vo w w
-(I 1 59.5 595
59 59
0.5 1 15 2 2.5 0 0.5 1 15 2 2.5 0 05 1 1.5 2 25
Time (s) Time (s) Time (s)

Hancheng Min

The IEEE reliability test system: 1996
3 areas, 33 generators in total

Different rotor angles across each area
at initialization

Solid lines: actual frequency response
Dashed lines: reduced model

[L4DC 23] Min, M. Learning coherent clusters in weakly-connected network systems. Leaning for Dynamics and Control 2023
Enrique Mallada (JHU)
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Outline

 Merits and trade-offs of low inertia
 Control Perspective: Lighter systems are easier to control!

* Scale-free Stability Analysis of Grids
* Generalizes passivity notions using network information

* Analysis of Weakly-Connected Coherent Networks
* Generalized Center of Inertia captures IBR dynamics
* |dentification of coherent modes via spectral clustering



Outline

 Merits and trade-offs of low inertia
 Control Perspective: Lighter systems are easier to control!

* Scale-free Stability Analysis of Grids
* Generalizes passivity notions using network information

* Analysis of Weakly-Connected Coherent Networks

* Generalized Center of Inertia captures IBR dynamics
* |dentification of coherent modes via spectral clustering

* Grid Shaping Control

* Grid-following/forming control framework for controlling future girds



Grid Shaping Control
Use model matching control to shape system response

Grid-following IBRs Grid-forming IBRs

Enrique Mallada (JHU)
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Grid-shaping with GFL IBRs [TPS21]

lw Aw
+ : A
_; a) g a)
Wref Turbine l+ :
Wyef " @
Pref |—V
P,
P, Pres
Pp
4 ™ Py lPL § b
+ 1 B ., ,'L i 1 w Prer, ¥ 1 w
P ——»O—» :\)—F > as+ b -
ref R TrS +1 + ¥ ms + d
P
B Grid Shaping
g w
Turbine bZSZ + bys + by , & ref

TTS + 1 -
| Tunable Performance:
{
" O— ROCOF = ~AP, Aw =~ AP

[TPS 21] Jiang, Cohn, Vorobev, M. Storage-based frequency shaping control Transactions on Power Systems 2021
Enrique Mallada (JHU) 27



Grid-shaping with GFL IBRs [TPS21]

A

w i
) :] |
Wyef " @
| P
Pref L

Yan Jiang Eliza Cohn Petr Vorobev

Tunable Performance:

1 w
as+ b

ROCOF = ~AP, Aw = ~ AP
a b

Grid Shaping

Example: Efficient Elimination of Nadir

A — Vi v = Upin

Wyef

iDroop: a = mH

mHz)

0 . .
= -100
S

Power Output from Storage

15 20

)
S
S

N
=
S

no storage

Vi V = Vpin

iDroop: a =m

Frequency Deviation
o~
S
S

o .

10
Time t (s)

— = Vi V= vy

15

iDroop: a =m

Power Output from Turbine

15 20

[TPS 21] Jiang, Cohn, Vorobev, M. Storage-based frequency shaping control Transactions on Power Systems 2021

Enrique Mallada (JHU) 27



Grid-shaping with GFL IBRs [TPS21]

A m Yan Jiang Eliza Cohn Petr Vorobev
w o)
5 P 4 )\
_ l+ l t Tunable Performance:
) P - 1 1 1
Wref @ 50— | =3 2 RoCoF = ~AP, Aw = —~AP
Pref Py Grid Shaping
. Wyef
Example Il: Tuning RoCoF
O T T -
N
s
E 100!t _

e ———

————r—
—

)
S
S

no storage

V1D My = My min

iDroop: a = m iy
fs: a = FyAP/0.2

10 15

N
S
S

Frequency Deviation f
»
S
S

o .

W

Time t (s)

[TPS 21] Jiang, Cohn, Vorobev, M. Storage-based frequency shaping control Transactions on Power Systems 2021
Enrique Mallada (JHU) 27



Grid Shaping Control
Use model matching control to shape system response

Grid-following IBRs Grid-forming IBRs

w w
By :] |
Wyref " @
| P
Pref L

Tunable Performance:
RoCoF = %AP, Aw = %AP

Enrique Mallada (JHU)



GFM Grid-shaping Through Lines [L¢55 23] @ i)

\ v
B. K. Poolla Y. Lin A. Bernstein D. GroR
A
w F
B —
ik T
P P
B Pref L
P, ( ~ 0 T T T
P - 1
ref 4+ w ~ —100 — 04 N
T'g >
ms+d+ P g
5‘ —200 = e (). 95
g I
Grid Shaping % — 0.0s 0.2} g? .
1 S 300 —0.75 ] o
Wyref H s ().38
f"\+ s (), 58
< s (). 35 0
~ - —400 |- \ \ \ ! i | | \ |
0 2 4 6 8 10 0 2 4 6 8 10
Tunable Performance: Time (5 Time (5
E.g.: Turbine Time Constant = 7’ Frequency response for a 1 p.u. load step IBR power injection for a 1 p.u. load step

[LCSS 23] Poolla, Lin, Bernstein, M, Grol3. Frequency shaping control for weakly-coupled grid-forming IBRs IEEE Control Systems Letters 2023
Enrique Mallada (JHU) 29



GFM System-wide Grid-shaping [L¢55 20l

AP

O

g1

gi

oy,

In

SGs
IBRs

Zi AP, -1 Wcor
> ( + ) >
e
Zi AP; 1 Weor
- as+ b —
Grid Shaping

Tunable Performance: RoCoF = %AP, Aw = %AP

[LCSS 20] Jiang, Bernstein, Vorobev, M. Grid-forming frequency shaping control for low-inertia power systems IEEE Control Systems Letters 2020

Enrique Mallada (JHU)
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GFM System-wide Grid-shaping [1¢55 20]

9
AP w % N
9i = Z’L AP'L -1 Wco1 Zz APZ 1 Weor
B . gn + — as+ b —
lL g Grid Shaping
: . ... ! 1 1
[] sGs = Tunable Performance: RoCoF = EAP’ Aw = EAP
[] 1BRs ‘
= 200 . ] . .
E no storage
~— gs
C |7 !—'LoadC e } @ ? 0 |
2 8 B
IBR2 ‘ IBR1 -9
= -200 _
2 | '
5_ _6 )
n Kl A 400 |-
Load A Load B >
= i
4 g _600 1 1 1
S 0 100 200 300
= Time t (s) |

[LCSS 20] Jiang, Bernstein, Vorobev, M. Grid-forming frequency shaping control for low-inertia power systems IEEE Control Systems Letters 2020
Enrique Mallada (JHU) 30



Grid Shaping Control

Use model matching control to shape system response

Grid-following IBRs Grid-forming IBRs
) Ao . .

wr—‘éﬁ waéﬁf—w BNy Py

, ref Turb r\f\_y I I -

ref Pres _lPL Py

9
AP i w
Gi .
- .gn Zl AP; ‘[ 1 ] wC?I

— T . as +b g

(‘)ref o~ ) 'E.L Grid Shaping

Tunable Performance: RoCoF = iAP, Aw = %AP, 7', ...

Enrique Mallada (JHU)
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Summary

Merits and trade-offs of low inertia
. Control Perspective: Lighter systems are easier to control!

. Smarter controller can provide multiple benefits in Nadir, RoCoF, inter-area oscillations, and disturbance
rejection, with less effort

Scale-free Stability Analysis of Grids
. Generalizes passivity notions using network information
. Decentralized test based on local models
. Compatible with H_,-synthesis methods

Analysis of Weakly-Connected Coherent Networks
. Generalized Center of Inertia captures IBR dynamics
. Provide a new tunable target to meet system specs
. Coherent modes identified via spectral clustering

Grid Shaping Control
. Grid-following/forming control framework for future girds
. Leverages IBRs to shape the coherent response
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Network Coherence: Heterogeneous Case

Zgz

T(s) = —(s)127 4| T(s) — ~g(s)11"

The effect of non-coherent dynamics vanishes as:

* Foralmostany sy € C * For sp € C,apoleof f(s)
1 1
li T(so) — —g(so)117|| =0 lim ||T(s) — —g(s)117]| =
i 760) - 2g0) tim ||7(s) = Lge117] = 0

e Excluding zeros: the limit holds at zero, but by different convergence result

e We can further prove uniform convergence over a compact subset of complex plane, if it doesn’t contain any
zero nor pole of g(s)

e Extensions for random network ensembles, g;(s) := g(s,w;) (w; random), then g(s) = (E,,[ g (s, w)]D~?!

e Convergence of transfer matrix is related to time-domain response by Inverse Laplace Transform

35
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Connection to Time Domain

If g(s) and T(s) stable (| |g_||oo, ||T||Oo < y), then thereis A = 0(Y/¢) such that:

* g-approximation, for any network L, with A,(L) > 1

sup |yi (1) —y(t)| <e
£>0 |
where y(t) is the coherence dynamics response: y(s) = §(s)5 Z u; (S)

* element-wise coherence, for any pair of nodes i and j

sup [y () — y; ()] < 2¢
t>0

Enrique Mallada (JHU) 36



Icelandic Grid

Example: Icelandic Power Grid
* |celand power network: 189 buses, 35 generators, load 1.3GW (PSAT) i
ot
,., Ead
u . Y byt
—— O~ diag{g:(s)} >
N Step Disturbance
T 02
f(s)L |+ >l
2 |
S -0.2 1
> | e
gi(s) — 1 E\ -0.4 g .
mis +di 2 2 0.6
1 =
fls)= - o 0.8 1
5 0 50 100

Enrique Mallada (JHU)
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Example: Effect of Network Algebraic Connectivity, (L) 1

200 ; ; ; 200
— — Coherent Dynamics — — Coherent Dynamics

N0 0
E
)
= -200 1-200 ¢}
o
-
&
e -400 t 1-400 ¢t

-600 ' ' ' -600 ' ' '

0 10 .20 30 40 0 10 20 30 40
Time (s) Tims (s)

Coherent dynamics acts as a more accurate version of the Center of Inertia (Col)

Enrique Mallada (JHU) 38



Example: Sinusoidal Disturbances: sin(w t) wy T

300 ; ; ; 300
— — Coherent Dynamics — — Coherent Dynamics

—~ 200t 1 200}
N
L
é 100t 1 100t . . ;
c 0 0 |
% _
o-100¢} 1-100 \/\ | I
"= 200} 1-200 :

-300 ' ' ' -300 : : :

0 5 10 15 20 0 S . 10 15 20

Time (s) Time (s)
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Frequency-dependent Coherence from Coupling Dynamics

0.16

* Frequency dependent coherence: : ' L
014 f T |

A stable network responds coherently

012

when subject to signal with its o _\,

Node Outputs
o

-0.005

0.08 } |

frequency component concentrated

001 ||

0.06 1|

around pole of f(s)

210 215 220 225 230 235

0.04 R

Node Outputs

0.02 R4y

* An Artificial Example: LRSI
R

100 150 200 250 300

A stable heterogenous network with 002}
2

S -0.04
f(S) o s%+w§

is “synchronized” by 0 50
1
external sinusoidal input sin wgt

m;s+d;
20 nodes with m;~Unif (1,5),d;~Unif (0.1,0.5)
12-regular graph with unit weights

Sin input to the first node(shown in blue) only

Enrique Mallada (JHU)

First order nodal dynamics g;(s) =

(Such coherence is robust to small

changes in input frequency)



