Grid Shaping Control for High-IBR Power Systems

Stability Analysis and Control Design

Enrique Mallada

RSRG Seminar, Caltech April 3, 2025

Acknowledgements

Students

Yan Jiang

Hancheng Min

Eliza Cohn

JOHNS HOPKINS
UNIVERSITY

Collaborators

Petr Vorobev

Richard Pates Fernando Paganini

Dominic Groß WISCONSIN UNIVERSITY OF WISCONSIN-MADISON

Bala K. Poolla

Yashen Lin

Andrey Bernstein

Decarbonization of electricity is key to mitigate climate change

California lifts renewable energy target to 73% by 2032

The California Public Utilities Commission raised renewable energy procurement targets, plans for a more aggressive decarbonization plan, and includes increased reliability provisions.

FEBRUARY 14, 2022 RYAN KENNEDY

New York mandates 70% renewable energy by 2030

By Kelsey Misbrener | October 15, 2020

Vermont House passes 75% by 2032 renewable energy mandate

Published March 11, 2015

ENVIRONMENT

Maryland bill mandating 50% renewable energy by 2030 to become law, but without Gov. Larry Hogan's signature

By Scott Dance
Baltimore Sun • May 22, 2019 at 6:40 pm

Oregon bill targets 100% clean power by 2040, with labor and environmental justice on board

After Democratic cap-and-trade bills faltered in the face of GOP revolts, an electricity-focused, consensus-driven bill gains ground in Oregon.

23 June 2021

Virginia becomes the first state in the South to target 100% clean power

The state's Democratic majority is doing what Democratic majorities do.

By David Roberts | @drvolts | Updated Apr 13, 2020, 2:56pm EDT

Decarbonization of electricity is key to mitigate climate change

California lifts renewable energy target

to 73% by 2032

The California Public Utilities Commiss targets, plans for a more aggressive de reliability provisions.

FEBRUARY 14, 2022 RYAN KENNEDY

Vermont H renewable

Published March 11, 2015

ENVIRONMENT

Maryland bill manda but without Gov. Lar

By Scott Dance Baltimore Sun • May 22, 2019 at 6:40 pm

vable energy

rgets 100% clean 10, with labor and al justice on board

trade bills faltered in the face of GOP ed, consensus-driven bill gains ground in

ite in the South to

The state's Democratic majority is doing what Democratic majorities do.

By David Roberts | @drvolts | Updated Apr 13, 2020, 2:56pm EDT

Decarbonization of electricity is key to mitigate climate change

The Future Grid

Present grid

- dispatchable generation
- high inertial response
- strong voltage support
- well known physics

Future

- variable and distributed generation
- limited inertia levels
- weak voltage support
- proprietary control laws (black box)

^[1] Lin et al. Research roadmap on grid-forming inverters. Technical report, National Renewable Energy Lab.(NREL), Golden CO, 2020

The Future Grid

Future

- variable and distributed generation
- limited inertia levels
- weak voltage support
- proprietary control laws (black box)

Selected challenges

- increased system uncertainty
- **sensitivity** to disturbances
- new forms of instabilities, induced by inverterbased resources
- need to compensate for reduced inertia grid strength

Research questions:

- How should we control a grid with limited inertial/voltage support?
- Should we try to mimic SGs response? Or find new and more efficient control paradigms, suitable for IBRs?

^[1] Lin et al. Research roadmap on grid-forming inverters. Technical report, National Renewable Energy Lab.(NREL), Golden CO, 2020

Inverter-based Control

Current approach: Use inverter-based control to **mimic generators response**

Virtual Synchronous Generator

Telecom Analogy

Inverter-based Control

Current approach: Use inverter-based control to mimic generators response

Virtual Synchronous Generator

Telecom Analogy

It works, but perhaps there is something better...

Outline

- Merits and trade-offs of low inertia
 - Control Perspective: Lighter systems are easier to control!
- Scale-free Stability Analysis of Grids
 - Generalizes passivity notions using network information
- Analysis of Weakly-Connected Coherent Networks
 - Generalized Center of Inertia captures IBR dynamics
 - Identification of coherent modes via spectral clustering
- Grid Shaping Control
 - Grid-following/forming control framework for controlling future girds

Outline

- Merits and trade-offs of low inertia
 - Control Perspective: Lighter systems are easier to control!
- Scale-free Stability Analysis of Grids
 - Generalizes passivity notions using network information
- Analysis of Weakly-Connected Coherent Networks
 - Generalized Center of Inertia captures IBR dynamics
 - Identification of coherent modes via spectral clustering
- Grid Shaping Control
 - Grid-following/forming control framework for controlling future girds

Merits and Trade-offs of Inertia

Merits and Trade-offs of Inertia

$$\ddot{\theta} = -\frac{d}{m}\dot{\theta} - g\sin\theta + \frac{f}{m}$$

Pros: Provides natural disturbance rejection

Cons: Hard to regain steady-state

Merits and Trade-offs of Low Inertia

$$\ddot{\theta} = -\frac{d}{m}\dot{\theta} - g\sin\theta + \frac{f}{m}$$

Cons: Susceptible to disturbances

Pros: Regains steady-sate faster

Virtual Mass Control: $m\ddot{\theta}=-d\dot{\theta}-mg\sin{\theta}+f-\nu\ddot{\theta}$

Pros:

Provides disturbance rejection

Cons:

Hard to regain steady-state + excessive control effort

Yan Jiang

Richard Pates

Yan Jiang

Richard Pates

Power Network Model

Laplacian Matrix

$$L_{ij} = \begin{cases} -B_{ij} & \text{if } ij \in E \\ \sum_{k} B_{ik} & \text{if } i = j \\ 0 & \text{o.w.} \end{cases}$$

Linearized Power Flows

$$B_{ij} = v_i v_j b_{ij} \cos(\theta_i^* - \theta_j^*)$$

[Bergen Hill '81]

[[]TAC 20] Paganini, M, Global analysis of synchronization performance for power systems: Bridging the theory-practice gap, IEEE Transactions on Automatic Control, 2020

Bus Dynamics

Generator:
$$g_i: (\Delta P_i - p_{e,i} + x_i) \mapsto \omega_i$$

Model: Swing Equations + Turbine

$$g_i: \begin{cases} \dot{\theta}_i = \omega_i \\ M_i \dot{\omega}_i = -D_i \omega_i + q_i + (\Delta P_i - p_{e,i} + x_i) \\ \tau_i \dot{q}_i = -R_{g,i}^{-1} \omega_i - q_i \end{cases}$$

[TAC 20] Paganini, M, Global analysis of synchronization performance for power systems: Bridging the theory-practice gap, IEEE Transactions on Automatic Control, 2020

Bus Dynamics

Generator:
$$g_i: (\Delta P_i - p_{e,i} + x_i) \mapsto \omega_i$$

Model: Swing Equations + Turbine

$$g_{i}: \begin{cases} \dot{\theta}_{i} = \omega_{i} \\ M_{i}\dot{\omega}_{i} = -D_{i}\omega_{i} + q_{i} + (\Delta P_{i} - p_{e,i} + x_{i}) \\ \tau_{i}\dot{q}_{i} = -R_{g,i}^{-1}\omega_{i} - q_{i} \end{cases}$$
$$g_{i}(s) = \frac{1}{M_{i}s + D_{i} + \frac{R_{g,i}^{-1}}{\tau_{i}s + 1}}$$

[TAC 20] Paganini, M, Global analysis of synchronization performance for power systems: Bridging the theory-practice gap, IEEE Transactions on Automatic Control, 2020

Bus Dynamics

Grid Following Inverter: $c_i:\omega_i\mapsto x_i$

Droop Control and Virtual Inertia:

$$c_i: \left\{ x_i = -\left(\frac{\mathbf{v_i}\dot{\omega}_i}{\mathbf{v_i}} + R_{r,i}^{-1}\omega_i\right), \qquad c_i(s) = -\left(\frac{\mathbf{v_i}s}{\mathbf{v_i}} + R_{r,i}^{-1}\omega_i\right) \right\}$$

Closed-loop Bus Dynamics:

$$p_i: \begin{cases} \dot{\theta}_i = \omega_i \\ (M_i + \frac{\nu_i}{\nu_i})\dot{\omega}_i = -(D_i + \frac{R_{r,i}^{-1}}{\nu_i})\omega_i + q_i + (\Delta P_i - p_{e,i}) \\ \tau_i \dot{q}_i = -q_i - R_{g,i}^{-1}\omega_i \end{cases}$$

Modal Decomposition for Multi-Rated Machines

Assumption: Let f_i be the machine relative inertia ($f_i = \frac{M_i}{\max_j M_j}$), and

 $g_i(s) = \frac{1}{f_i}g_0(s)$

 $c_i(s) = f_i c_0(s)$

Change of Vars.

$$F = \operatorname{diag}(f_i)$$

Change of Vars.

[Paganini M '17, Guo Low 18']

[[]TAC 20] Paganini, M, Global analysis of synchronization performance for power systems: Bridging the theory-practice gap, IEEE Transactions on Automatic Control, 2020

Modal Decomposition for Multi-Rated Machines

Assumption: Let f_i be the machine relative inertia ($f_i = \frac{M_i}{\max_j M_j}$), and

 $g_i(s) = \frac{1}{f_i}g_0(s)$

$$c_i(s) = f_i c_0(s)$$

Change of Vars.

$$F = \operatorname{diag}(f_i)$$

Eigenvalues of:
$$L_F = F^{-\frac{1}{2}} L F^{-\frac{1}{2}}$$
 $0 = \lambda_0 < \lambda_1 < \dots < \lambda_{n-1}$

Center of Inertia

$$\omega_{\text{CoI}}(t) = \frac{\sum_{i=1}^{n} M_i \omega_i(t)}{\sum_{i=1}^{n} M_i}$$

Change of Vars.

Sync Error

$$\tilde{\omega}_i(t) = \omega_i(t) - \omega_{\text{CoI}}(t)$$

[Paganini M '17, Guo Low 18']

11

[TAC 20] Paganini, M, Global analysis of synchronization performance for power systems: Bridging the theory-practice gap, IEEE Transactions on Automatic Control, 2020

Yan Jiang

Richard Pates

Dynamic Droop: $m\ddot{\theta} = -d\dot{\theta} - mg\sin\theta + f + x$

[TAC 21] Jiang, Pates, M, Dynamic droop control in low inertia power systems, IEEE Transactions on Automatic Control, 2021

Outline

- Merits and trade-offs of low inertia
 - Control Perspective: Lighter systems are easier to control!
- Scale-free Stability Analysis of Grids
 - Generalizes passivity notions using network information
- Analysis of Weakly-Connected Coherent Networks
 - Generalized Center of Inertia captures IBR dynamics
 - Identification of coherent modes via spectral clustering
- Grid Shaping Control
 - Grid-following/forming control framework for controlling future girds

Outline

- Merits and trade-offs of low inertia
 - Control Perspective: Lighter systems are easier to control!
- Scale-free Stability Analysis of Grids
 - Generalizes passivity notions using network information
- Analysis of Weakly-Connected Coherent Networks
 - Generalized Center of Inertia captures IBR dynamics
 - Identification of coherent modes via spectral clustering
- Grid Shaping Control
 - Grid-following/forming control framework for controlling future girds

Decentralized Stability Analysis in Power Grids [TCNS 19]

1. When does this interconnection is stable?

2. Can we analysis and control design based on **local rules**?

Linearized power flows, lossless

$$L_{ij} = -b_{ij}v_iv_j\cos(\theta_i^* - \theta_i^*)$$

Bus i: arbitrary siso transfer function:

$$\omega_i = p_i(s) \Delta P_i$$
 (SGs or GFM-IBRs)

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019

Decentralized Stability Analysis in Power Grids [TCNS 19]

Can we use network information to relax passivity conditions?

Standard Approach: Passivity

• If $p_i(s)$ is strictly positive real (SPR), then the interconnection is stable for **all networks** L!

Converse: for unknown network (L), passivity is also necessary. [TCNS 19]

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019

Classical Result: Absolute Stability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Frequency Domain Stability Criteria—Part I

R. W. BROCKETT, MEMBER, IEEE AND J. L. WILLEMS

Abstract-The objective of this paper is to illustrate the limita-

II. THE GENERALIZED POPOV THEOREM

Stable for $0 \le K \le k^*$?

Assume: G(s) is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s)(1 + k^*G(s)) \in SPR$ (strictly)

then, yes!

Classical Result: Absolute Stability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Frequency Domain Stability Criteria—Part I

R. W. BROCKETT, MEMBER, IEEE AND J. L. WILLEMS

Abstract-The objective of this paper is to illustrate the limita-

II. THE GENERALIZED POPOV THEOREM

Stable for $0 \le K \le k^*$?

Assume: G(s) is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s)(1 + k^*G(s)) \in SPR$ (strictly)

then, yes!

Classical Result: Absolute Stability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Frequency Domain Stability Criteria—Part I

R. W. BROCKETT, MEMBER, IEEE AND J. L. WILLEMS

Abstract-The objective of this paper is to illustrate the limita-

II. THE GENERALIZED POPOV THEOREM

Stable for $0 \le K \le k^*$?

Assume: G(s) is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s)(1 + k^*G(s)) \in SPR$ (strictly)

then, yes!

Key Idea: Exploit limited network information to relax passivity condition

• Let γ_i be a local connectivity bound: $\sum_{j \in N_i} L_{ij} \leq \frac{\gamma_i}{2}$

 $L_{ij} = -b_{ij}v_iv_j\cos(\theta_i^* - \theta_j^*)$

Brockett & Willems '65

Assume: G(s) is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s)(1 + k^*G(s)) \in SPR$ (strictly)

then system is stable for all $0 \le K \le k^*$

Pates & M 2019

Assume: $p_i(s)$ is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s) \left(1 + \gamma_i \frac{1}{s} p_i(s)\right) \in SPR$, $\forall i$, then system stable for networks $\sum_{j \in N_i} L_{ij} \leq \frac{\gamma_i}{2}$, $\forall i$

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019

Key Idea: Exploit limited network information to relax passivity condition

• Let γ_i be a local connectivity bound: $\sum_{j \in N_i} L_{ij} \leq \frac{\gamma_i}{2}$

 $L_{ij} = -b_{ij}v_iv_j\cos(\theta_i^* - \theta_j^*)$

Brockett & Willems '65

Assume: G(s) is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s)(1 + k^*G(s)) \in SPR$ (strictly)

then system is stable for all $0 \le K \le k^*$

Pates & M 2019

Assume: $p_i(s)$ is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s) \left(1 + \gamma_i \frac{1}{s} p_i(s)\right) \in SPR$, $\forall i$, then system stable for networks $\sum_{j \in N_i} L_{ij} \leq \frac{\gamma_i}{2}$, $\forall i$

Key Idea: Exploit limited network information to relax passivity condition

• Let γ_i be a local connectivity bound: $\sum_{j \in N_i} L_{ij} \leq \frac{\gamma_i}{2}$

 $L_{ij} = -b_{ij}v_iv_j\cos(\theta_i^* - \theta_j^*)$

Brockett & Willems '65

Assume: G(s) is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s)(1 + k^*G(s)) \in SPR$ (strictly)

then system is stable for all $0 \le K \le k^*$

$r \longrightarrow K \longrightarrow G(s)$

Pates & M 2019

Assume: $p_i(s)$ is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s)\left(1+\gamma_i\frac{1}{s}p_i(s)\right)\in SPR$, $\forall i$, then system stable for networks $\sum_{j\in N_i}L_{ij}\leq \frac{\gamma_i}{2}$, $\forall i$

Key Idea: Exploit limited network information to relax passivity condition

• Let γ_i be a local connectivity bound: $\sum_{j \in N_i} L_{ij} \leq \frac{\gamma_i}{2}$

 $L_{ij} = -b_{ij}v_iv_j\cos(\theta_i^* - \theta_j^*)$

Brockett & Willems '65

Assume: G(s) is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s)(1 + k^*G(s)) \in SPR$ (strictly)

then system is stable for all $0 \le K \le k^*$

$r \longrightarrow K \longrightarrow G(s)$

Pates & M 2019

Assume: $p_i(s)$ is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s)\left(1+\gamma_i\frac{1}{s}p_i(s)\right)\in SPR$, $\forall i$, then system stable for networks $\sum_{j\in N_i}L_{ij}\leq \frac{\gamma_i}{2}$, $\forall i$

Key Idea: Exploit limited network information to relax passivity condition

• Let γ_i be a local connectivity bound: $\sum_{j \in N_i} L_{ij} \leq \frac{\gamma_i}{2}$

 $L_{ij} = -b_{ij}v_iv_j\cos(\theta_i^* - \theta_j^*)$

Brockett & Willems '65

Assume: G(s) is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s)(1 + k^*G(s)) \in SPR$ (strictly)

then system is stable for all $0 \le K \le k^*$

$r \longrightarrow K \longrightarrow G(s)$

Pates & M 2019

Assume: $p_i(s)$ is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s)\left(1+\gamma_i\frac{1}{s}p_i(s)\right)\in SPR$, $\forall i$, then system stable for networks $\sum_{j\in N_i}L_{ij}\leq \frac{\gamma_i}{2}$, $\forall i$

$$P = \operatorname{diag}(p_i)$$

$$\Gamma^{\frac{1}{2}} \longrightarrow \Gamma^{\frac{1}{2}}$$

$$\Gamma^{-\frac{1}{2}} \longrightarrow L$$

$$\Gamma^{-\frac{1}{2}} \longrightarrow L$$

Scale-free Stability Analysis

Key Idea: Exploit limited network information to relax passivity condition

• Let γ_i be a local connectivity bound: $\sum_{j \in N_i} L_{ij} \leq \frac{\gamma_i}{2}$

 $L_{ij} = -b_{ij}v_iv_j\cos(\theta_i^* - \theta_j^*)$

15

Brockett & Willems '65

Assume: G(s) is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s)(1 + k^*G(s)) \in SPR$ (strictly)

then system is stable for all $0 \le K \le k^*$

Pates & M 2019

Assume: $p_i(s)$ is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s) \left(1 + \gamma_i \frac{1}{s} p_i(s)\right) \in SPR$, $\forall i$, then system stable for networks $\sum_{j \in N_i} L_{ij} \leq \frac{\gamma_i}{2}$, $\forall i$

Examples

Delay Robustness of Swing Equations

Let
$$p_i(s) = \frac{1}{M_i s + D_i e^{-\dot{\tau}_i s}}$$

Given $au^* < rac{\pi}{2}$, then, for any network such that $2\sum_{j\in N_i}^n L_{ij} < \gamma^*$ with $\gamma^* pprox rac{\pi M_i(rac{\pi}{2} - au^*)}{2\left(rac{M_i au^*}{D_i}
ight)^2}$

the delayed swing equations are stable for whenever $\tau_i \leq au^* rac{M_i}{D_i}$

Automatic Generation Control

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019

Outline

- Merits and trade-offs of low inertia
 - Control Perspective: Lighter systems are easier to control!
- Scale-free Stability Analysis of Grids
 - Generalizes passivity notions using network information
- Analysis of Weakly-Connected Coherent Networks
 - Generalized Center of Inertia captures IBR dynamics
 - Identification of coherent modes via spectral clustering
- Grid Shaping Control
 - Grid-following/forming control framework for controlling future girds

Outline

- Merits and trade-offs of low inertia
 - Control Perspective: Lighter systems are easier to control!
- Scale-free Stability Analysis of Grids
 - Generalizes passivity notions using network information
- Analysis of Weakly-Connected Coherent Networks
 - Generalized Center of Inertia captures IBR dynamics
 - Identification of coherent modes via spectral clustering
- Grid Shaping Control
 - Grid-following/forming control framework for controlling future girds

Coherence in Power Networks

- Studied since the 70s
 - Podmore, Price, Chow, Kokotovic, Verghese, Pai, Schweppe,...
- Enables aggregation/model reduction
 - Speed up transient stability analysis
- Many important questions
 - How to identify coherent modes?
 - How to accurately reduce them?
 - What is the cause?
- Many approaches
 - Timescale separations (Chow, Kokotovic,)
 - Krylov subspaces (Chaniotis, Pai '01)
 - Balanced truncation (Liu et al '09)
 - Selective Modal Analysis (Perez-Arriaga, Verghese, Schweppe '82)

Goal: Understand how IBR presence affect classical coherence studies

Case Study 1: Network Coherence

Key Questions:

- How does coherence emerge, and what does it depend on?
- How to characterize the coherent response in the presence of IBRs?

Case Study 2: Coherent Inter-area Modes

Key Questions:

- How to identify coherent areas?
- Can we model the inter-area oscillations?

Analysis of Coherent Dynamics [CDC 19, Auto 25]

20

Hancheng Min Richard Pates

- Problem Setup:
- Linearized power flows L_{ij}
- Bus *i*: arbitrary siso tf: $\omega_i = g_i(s) \Delta P_i$ (SGs or IBRs)

Example I: SG + Turbine

$$g_i(s) = \frac{1}{m_i s + d_i + \frac{R_i^{-1}}{\tau s + 1}}$$

Example II: IBRs

$$g_i(s) = \frac{1}{\nu_i s + R_i^{-1}}$$

Analysis of Coherent Dynamics [CDC 19, Auto 25]

20

Hancheng Min Richard Pates

- Coherence can be understood as a low rank property the closed-loop transfer matrix
- 2. It emerges as the **effective algebraic connectivity** $\left|\frac{1}{s_0}\lambda_2(L)\right|$ increases $\hat{g}(s) = \left(\sum_{i=1}^n g_i^{-1}(s)\right)^{\frac{1}{s_0}}$
- 3. The coherent dynamics is given by the **harmonic sum** of bus dynamics

[CDC 19] Min, M. Dynamics concentration of large-scale tightly-connected networks. **Conference on Decision and Control 2019** [Automatica 25] Min, Pates, M. A frequency domain analysis of slow coherency in networked systems. **Automatica 2025**

Generalized Center of Inertia [CDC 19, Auto 25]

21

Hancheng Min Richard Pates

$$\hat{g}(s) = \left(\sum_{i=1}^{n} g_i^{-1}(s)\right)^{-1}$$

- ullet Coherent Dynamics: $\widehat{g}(s)$
- Representation of aggregate response
- Accuracy of approximation:
 - is frequency dependent
 - increases with network connectivity
- Provides excellent template for reduced order models (via balance-truncations)
- More details [LCSS 20]

[CDC 19] Min, M. Dynamics concentration of large-scale tightly-connected networks. **Conference on Decision and Control 2019** [LCSS 20] Min, Paganini, M. Accurate reduced-order models for heterogeneous coherent generators. **IEEE LCSS 2020** [Auto 25] Min, Pates, M. A frequency domain analysis of slow coherency in networked systems. **Automatica 2025**

Weakly-Connected Coherent Networks

Hancheng Min

22

- Aggregate each coherent area
- Inter-area oscillation can be modeled as the interaction among aggregate nodes

Mallada (JHU)

Structure-preserving Network Reduction

Step 1: **Identifying** coherent areas

Hancheng Min

Tightly-connected
Networks are coherent

1

Use spectral clustering algorithm to find tightly-connected subnetworks/areas

Structure-preserving Network Reduction

Step 2: **Aggregate** coherent areas

Hancheng Min

Aggregate each identified coherent area into its corresponding coherent dynamics $\hat{g}(s)$

[L4DC 23] Min, M. Learning coherent clusters in weakly-connected network systems. Leaning for Dynamics and Control 2023

 $\{\mathcal{I}_i\}_{i=1}^k$

Spectral

Clustering

Structure-preserving Network Reduction

Step 3: Model the **interaction** among aggregate nodes

Hancheng Min

Construct the reduced network L_k by solving an optimization problem (it has closed-form solution)

[L4DC 23] Min, M. Learning coherent clusters in weakly-connected network systems. Leaning for Dynamics and Control 2023

Approximation Errors

Hancheng Min

$$\|T(s_0) - \hat{T}_k(s_0)\|_2 = \mathcal{O}\left(\frac{1}{\lambda_{k+1}(L)}\right) + \mathcal{O}\left(\|V_k(L) - P_{\{I_i\}_{i=1}^k}S\|_2\right)$$

Approximation error depends on:

- Whether the network has a multi-cluster structure
- Whether the SC algorithm finds the right clusters
- How well one model the interaction

[L4DC 23] Min, M. Learning coherent clusters in weakly-connected network systems. Leaning for Dynamics and Control 2023

Enrique Mallada (JHU) 24

 $L_k = (S^{-1})^T \Lambda_k S^{-1}$

Numerical validation – RTS 96 test case

Hancheng Min

Time (s)

Time (s)

- The IEEE reliability test system: 1996
- 3 areas, 33 generators in total
- Different rotor angles across each area at initialization
- <u>Solid lines</u>: actual frequency response
 <u>Dashed lines</u>: reduced model

[L4DC 23] Min, M. Learning coherent clusters in weakly-connected network systems. Leaning for Dynamics and Control 2023

Outline

- Merits and trade-offs of low inertia
 - Control Perspective: Lighter systems are easier to control!
- Scale-free Stability Analysis of Grids
 - Generalizes passivity notions using network information
- Analysis of Weakly-Connected Coherent Networks
 - Generalized Center of Inertia captures IBR dynamics
 - Identification of coherent modes via spectral clustering
- Grid Shaping Control
 - Grid-following/forming control framework for controlling future girds

Outline

- Merits and trade-offs of low inertia
 - Control Perspective: Lighter systems are easier to control!
- Scale-free Stability Analysis of Grids
 - Generalizes passivity notions using network information
- Analysis of Weakly-Connected Coherent Networks
 - Generalized Center of Inertia captures IBR dynamics
 - Identification of coherent modes via spectral clustering
- Grid Shaping Control
 - Grid-following/forming control framework for controlling future girds

Grid Shaping Control

Use model matching control to shape system response

Grid-following IBRs

Grid-forming IBRs

Grid-shaping with GFL IBRs [TPS 21]

Yan Jiang

Eliza Cohn

Petr Vorobev

Tunable Performance:

$$RoCoF = \frac{1}{a}\Delta P$$
, $\Delta \omega = \frac{1}{b}\Delta P$

Grid-shaping with GFL IBRs [TPS 21]

Yan Jiang

Eliza Cohn

Petr Vorobev

Example: Efficient Elimination of Nadir

Tunable Performance:

RoCoF =
$$\frac{1}{a}\Delta P$$
, $\Delta \omega = \frac{1}{b}\Delta P$

Grid-shaping with GFL IBRs [TPS 21]

Yan Jiang

Eliza Cohn

Petr Vorobev

Tunable Performance:

$$RoCoF = \frac{1}{a}\Delta P, \ \Delta \omega = \frac{1}{b}\Delta P$$

Example II: Tuning RoCoF

[TPS 21] Jiang, Cohn, Vorobev, M. Storage-based frequency shaping control **Transactions on Power Systems 2021**

Grid Shaping Control

Use model matching control to shape system response

Grid-following IBRs

Tunable Performance:

RoCoF =
$$\frac{1}{a}\Delta P$$
, $\Delta \omega = \frac{1}{b}\Delta P$

Grid-forming IBRs

GFM Grid-shaping Through Lines [LCSS 23]

B. K. Poolla

Y. Lin

A. Bernstein

D. Groß

Tunable Performance:

E.g.: Turbine Time Constant = τ'

Frequency response for a 1 p.u. load step

IBR power injection for a 1 p.u. load step

[LCSS 23] Poolla, Lin, Bernstein, M, Groß. Frequency shaping control for weakly-coupled grid-forming IBRs IEEE Control Systems Letters 2023

GFM System-wide Grid-shaping [LCSS 20]

30

Tunable Performance: RoCoF = $\frac{1}{a}\Delta P$, $\Delta \omega = \frac{1}{b}\Delta P$

[LCSS 20] Jiang, Bernstein, Vorobev, M. Grid-forming frequency shaping control for low-inertia power systems IEEE Control Systems Letters 2020

Enrique Mallada (JHU)

GFM System-wide Grid-shaping [LCSS 20]

30

[LCSS 20] Jiang, Bernstein, Vorobev, M. Grid-forming frequency shaping control for low-inertia power systems **IEEE Control Systems Letters 2020**Enrique Mallada (JHU)

Grid Shaping Control

Use model matching control to shape system response

Grid-following IBRs

Grid-forming IBRs

Tunable Performance: RoCoF =
$$\frac{1}{a}\Delta P$$
, $\Delta \omega = \frac{1}{b}\Delta P$, τ' , ...

Summary

Merits and trade-offs of low inertia

- Control Perspective: Lighter systems are easier to control!
- Smarter controller can provide multiple benefits in Nadir, RoCoF, inter-area oscillations, and disturbance rejection, with less effort

Scale-free Stability Analysis of Grids

- Generalizes passivity notions using network information
- Decentralized test based on local models
- Compatible with H_{∞} -synthesis methods

Analysis of Weakly-Connected Coherent Networks

- Generalized Center of Inertia captures IBR dynamics
- Provide a new tunable target to meet system specs
- Coherent modes identified via spectral clustering

Grid Shaping Control

- Grid-following/forming control framework for future girds
- Leverages IBRs to shape the coherent response

Thanks!

Yan Jiang

Hancheng Min

Eliza Cohn

Petr Vorobev

Richard Pates Fernando Paganini

Dominic Groß

Bala K. Poolla

Yashen Lin

Andrey Bernstein

Merits and trade-offs of low inertia

[TAC 21] Jiang, Pates, M, Dynamic droop control in low inertia power systems. Transactions on Automatic Control, 2021

Analysis of Weakly-Connected Coherent Networks

[CDC 19] Min, M. Dynamics concentration of large-scale tightly-connected networks. Conference on Decision and Control 2019

[LCSS 20] Min, Paganini, M. Accurate reduced-order models for heterogeneous coherent generators. IEEE Control Systems Letters 2020

[L4DC 23] Min, M. Learning coherent clusters in weakly-connected network systems. Leaning for Dynamics and Control 2023

[Auto 25] Min, Pates, M. A frequency domain analysis of slow coherency in networked systems. Automatica 2025

Scale-free Stability Analysis

[TCNS 19] Pates, M, Robust scale-free synthesis for frequency control in power systems. **Transactions on Control of Network Systems, 2019** [GM 24] Siahaan, M, Geng. Decentralized Stability Criteria for Grid-Forming Control in Inverter-Based Power Systems. **IEEE PES GM 2024**

Grid Shaping Control

[LCSS 20] Jiang, Bernstein, Vorobev, M. Grid-forming frequency shaping control for low-inertia power systems. Control Systems Letters 2020

[TPS 21] Jiang, Cohn, Vorobev, M. Storage-based frequency shaping control. **Transactions on Power Systems 2021**

[LCSS 23] Poolla, Lin, Bernstein, M, Groß. Frequency shaping control for weakly-coupled grid-forming IBRs. IEEE Control Systems Letters 2023

Backup Slides

Network Coherence: Heterogeneous Case

$$T(s) = \frac{1}{n}\bar{g}(s)\mathbb{1}\mathbb{1}^T + T(s) - \frac{1}{n}\bar{g}(s)\mathbb{1}\mathbb{1}^T$$

$$\bar{g}(s) = \left(\frac{1}{n} \sum_{i=1}^{n} g_i^{-1}(s)\right)^{-1}$$

The effect of non-coherent dynamics vanishes as:

• For almost any $s_0 \in \mathbb{C}$

$$\lim_{\lambda_2(L) \to +\infty} \left\| T(s_0) - \frac{1}{n} \bar{g}(s_0) \mathbb{1} \mathbb{1}^T \right\| = 0 \qquad \lim_{s \to s_0} \left\| T(s) - \frac{1}{n} \bar{g}(s) \mathbb{1} \mathbb{1}^T \right\| = 0$$

• For $s_0 \in \mathbb{C}$, a pole of f(s)

$$\lim_{s \to s_0} \left\| T(s) - \frac{1}{n} \overline{g}(s) \mathbb{1} \mathbb{1}^T \right\| = 0$$

- Excluding zeros: the limit holds at zero, but by different convergence result
- We can further prove uniform convergence over a compact subset of complex plane, if it doesn't contain any zero nor pole of $\bar{g}(s)$
- Extensions for random network ensembles, $g_i(s) = g(s, w_i)$ (w_i random), then $\bar{g}(s) = (E_w[g^{-1}(s, w)])^{-1}$
- Convergence of transfer matrix is **related to time-domain response** by Inverse Laplace Transform

Connection to Time Domain

If $\bar{g}(s)$ and T(s) stable $(||\bar{g}||_{\infty}, ||T||_{\infty} \leq \gamma)$, then there is $\bar{\lambda} = O(\gamma/\epsilon)$ such that:

• ε -approximation, for any network L, with $\lambda_2(L) \geq \overline{\lambda}$

$$\sup_{t>0} |y_i(t) - \bar{y}(t)| \le \varepsilon$$

 $\sup_{t>0}|y_i(t)-\bar{y}(t)|\leq \varepsilon$ where $\bar{y}(t)$ is the coherence dynamics response: $y(s)=\bar{g}(s)\frac{1}{n}\sum_{i=1}^n u_i(s)$

• element-wise coherence, for any pair of nodes i and j

$$\sup_{t>0} |y_i(t) - y_j(t)| \le 2\varepsilon$$

Example: Icelandic Power Grid

• Iceland power network: 189 buses, 35 generators, load 1.3GW (PSAT)

$$g_i(s) = \frac{1}{m_i s + d_i + \frac{r_i^{-1}}{\tau_i s + 1}}$$
$$f(s) = \frac{1}{s}$$

37

Example: Effect of Network Algebraic Connectivit $\chi_2(L)$ \(\Tau_2\)

Coherent dynamics acts as a more accurate version of the Center of Inertia (CoI)

Example: Sinusoidal Disturbances: $sin(\omega_d t)$

Frequency-dependent Coherence from Coupling Dynamics

- Frequency dependent coherence: A stable network responds coherently when subject to signal with its frequency component concentrated around pole of f(s)
- An Artificial Example:

 A stable heterogenous network with $f(s) = \frac{s}{s^2 + \omega_0^2} \text{ is "synchronized" by}$ external sinusoidal input $\sin \omega_0 t$ (Such coherence is robust to small changes in input frequency)

First order nodal dynamics $g_i(s) = \frac{1}{m_i s + d_i}$ 20 nodes with $m_i \sim Unif(1,5)$, $d_i \sim Unif(0.1,0.5)$ 12-regular graph with unit weights

Sin input to the first node(shown in blue) only and Enrique Mallada (JHU)