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The Need for Safety Guarantees Angry Residents, Abrupt Stops: Waymo Vehicles Are Still
Causing Problems in Arizona

RAY STERN | MARCH 31, 2021 @ 8:26AM
BUSINESS ©8.14.2819 83:88 AM

DeepMind's Losses and the Future of Artificial Intelligence

Alphabet’s DeepMind unit, conqueror of Go and other games, is losing lots of money. Continued deficits could imperil investments in Al.

BUSINESS 12.87.2828 B4:86 PM

Uber Gives Up on the Self-Driving Dream

The ride-hail giant invested more than $1 billion in autonomous vehicles. Now it’s selling the unit to Aurora, which makes self-driving tech.

CRUISE KNEW ITS SELF-DRIVING CARS
Tesla Recalls Nearly All Vehicles Due to HAD PROBLEMS RECOGNIZING CHILDREN
Autopilot Failures — AND KEPT THEM ON THE STREETS

According to internal materials reviewed by The Intercept, Cruise

Tesla disagrees with feds analysis of glitches cars were also in danger of driving into holes in the road.

OpenAl disbands its robotics research team

Kyle Wiggers  @Kyle_L_Wiggers  July 16,2021 11:24 AM f ¥ in

Self-driving Uber car that hit and killed
woman did not recognize that pedestrians
jaywalk

The automated car lacked "the capability to classify an object as a pedestrian unless that object

was near a crosswalk," an NTSB report said.




Core challenge: The curse of dimensionality

= Statistical: Sampling in d dimension with resolution € \
Sample complexity: |
|
|

O(e™9)
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would need 1 points.
Atoms in the universe: 1078

= Computational: Verifying non-negativity of polynomials

Copositive matrices:

[xZ ... x3]A[x? ...xczi]T >0

Murty&Kadabi [1987]: Testing co-positivity is NP-Hard Motzkin [1967]:
p = xty2 4 x2y4+1—3x2y2

Sum of Squares (SoS): is nonnegative

z(x)TQz(x) =20, z(x) eR[x], xe R%E,Q =0
Artin [1927] (Hilbert’s 17t problem):

not a sum of squares,
but (x? + y?)?p is SoS

Non-negative polynomials are sum of square of rational functions



Question: Are we asking too much?

 Analysis tools build on a strict and exhaustive notion of invariance
Q: Can we substitute invariance with less restrictive notions?

[arXiv 22] Shen, Bichuch, M - [CDC 23] Siegelmann, Shen, Paganini, M — [Allerton ‘24] Shen, Sibai, M

* Certificates impose conditions on the entire duration of the trajectory
Q: Can we provide guarantees using time-localized trajectory information?
[arXiv 22] Shen, Bichuch, M - [CDC 23] Siegelmann, Shen, Paganini, M — [Allerton ‘24] Shen, Sibai, M
* Analysis/synthesis usually aims for the best (optimal) certificate/controller

Q: Is there any gain in focusing on weaker requirements from the get-go?
[HSCC 24] Sibai, M - [CDC’23] Siegelmann, Shen, Paganini, M

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.

[CDC 23] Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023
[HSCC 24] Sibai, M, Recurrence of nonlinear control systems: Entropy and bit rates, HSCC, 2024

[Allerton 24] Shen, Sibai, M, Generalized Barrier Functions: Integral Conditions & Recurrent Relaxations, Allerton 2024



Outline

e Invariance: Merits and trade-offs

* Letting things go and come back: Recurrent sets
* Approximating regions of attractions via recurrent sets

* Non-parametric analysis of dynamical systems

* Stability analysis via non-monotonic Lyapunov conditions
 Safety verification via generalized Barrier functions
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢(t, xg).

I Q-Limit Set Q(f):
: r € Qf) <= Jxo,{tn}n>0, s.t. lim ¢, =00 and lim ¢(t,,z0) =2

n—oo n—oo

Types of Q-limit set

equilibrium limit cycle limit torus chaotic attractor



Problem setup

Continuous time dynamical system: x(t) = f(x(t))

* Initial condition xy = x(0), solution at time t: ¢ (&, xp).

* The w-limit set of the system: Q(f)

| A(S) = {x e RY| lim inf d(6(t, =), S) :0}

I t— 00 4
lllustrative Example 21
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Q(f) — {(070)7(_\/570)7(\/570)} -2

-4




Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢ (&, xp).
* The w-limit set of the system: Q(f)

| A(S) = {x e RY| lim inf d(6(t, =), S) :0}

t— 00

lllustrative Example

[i;] N [—azl +?x§> - xJ
Q(f) = {(0,0), (=v/3,0), (V3,0)}

Asymptotically stable equilibrium at x* = (0,0)




Analysis of Dynamical Systems via Invariant sets

Aset S € R is positively invariant if and only if: xg €S = ¢(t,xg) €S, Vt =0
Any trajectory starting in the set remains in inside it for all times
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Source: K. Ghorbal, K. and A. Sogokon, Characterizing positively invariant sets: Inductive and topological methods. Journal of Symbolic Computation, 2022




Invariant sets:

Aset S € R is positively invariant if and only if: xg €S = ¢(t,xg) €S, Vt =0

Invariant Set

Any trajectory starting in the set remains in inside it for all times

Invariant sets approximate regions of attraction
Compact invariant set §, containing only {x*} = Q(f) N § must be
in the region of attraction A(x™) (5 € A(x™))

A(xY) :




Invariant sets:

Aset S € R is positively invariant if and only if: xg €S = ¢(t,xg) €S, Vt =0

Any trajectory starting in the set remains in inside it for all times Invariant Set
* Invariant sets approximate regions of attraction s:
Compact invariant set §, containing only {x*} = Q(f) N § must be

in the region of attraction A(x™) (5 € A(x™)) A(X") :

* Invariant sets guarantee stability
Lyapunov stability: solutions starting "close enough" to the
equilibrium (within a distance §) remain "close enough" forever
(within a distance &)

V(x)
* Invariant sets further certify asymptotic stability via I,
Lyapunov’s direct method : ’
Asymptotic stability: solutions that start close enough, remain close < : "" [2¢]
enough, and eventually converge to equilibrium. o '




Invariant sets: Challenges

Aset S € R is positively invariant if and only if: xg €S = ¢(t,xg) €S, Vt =0
Any trajectory starting in the set remains in inside it for all tirges

S is topologically constrained
« IfS NQ(f) = {x*}, then § is connected

. M
* S is geometrically constrained % 2 0 2 4 4 2 0 2 4

* f should not point outwards for x € d$

e § geometry can be wild
 AQ(f)) is not necessarily analytic!
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Recurrent sets: Letting things go, and come back

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Property of Recurrent Sets
e R need not be connected

* R does not require f to point inwards on all R

' Recurrent sets, while not invariant,

|
|
: guarantee that solutions that start in this set, |
1 will come back infinitely often, forever! ;

Recurrent set R:

A recurrent trajectory: <



Recurrent sets: Letting things go, and come back

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Previous two good inner approximations of A(x") are recurrent sets

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.
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Recurrent sets: Letting things go, and come back

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Property of Recurrent Sets
e R need not be connected

* R does not require f to point inwards on all R

' Recurrent sets, while not invariant, :
: guarantee that solutions that start in this set, :
|
|

1 will come back infinitely often, forever!

Recurrent set R:

A recurrent trajectory: <

Question: Can we use recurrent sets as functional substitutes of invariant sets?
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Yue Shen Maxim Bichuch
@ JOHNS HOPKINS University
Y © UNIVERSITY at Buffalo

Model-free Learning of Regions of
Attractions via Recurrent Sets

Y Shen, M. Bichuch, and E Mallada, “Model-free Learning of regions of attraction via recurrent sets.” CDC 2022.
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Recurrent sets are subsets of the region of attraction

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Theorem. Let R c R? be a compact set satisfying 0R N Q(f) = .

Then: [~~~ ~"~"~""~"TT"--STo-mmommmmm—

T RNA(f) # @
R is invariant =y R c AR N Q)

[CDC 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal version submitted.
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Recurrent sets are subsets of the region of attraction

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Theorem. Let R c R? be a compact set satisfying 0R N Q(f) = .

Then: [~~~ ~"~"~""~"TT"--STo-mmommmmm—
RNQ(f) 0

R c AR NQ(f))

not recurrent

x5

[CDC 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal version submitted.

12



Learning Regions of Attractions via Recurrent Sets

Algorithm: Given h centers, param. T, and € > 0:
* Build approximation using unions of balls centered at x4, ..., xp, With x; = x™

[CDC 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal version submitted.

A
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Learning Regions of Attractions via Recurrent Sets

Algorithm: Given h centers, param. T, and € > 0:
* Build approximation using unions of balls centered at x4, ..., X, with x; = x*

<5

* Initial approximation: S, =U}_, S/, where S = {x: ||x — X

[CDC 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal version submitted.
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Learning Regions of Attractions via Recurrent Sets

Algorithm: Given h centers, param. T, and € > 0:
* Build approximation using unions of balls centered at x4, ..., X, with x; = x*

<5

* Initial approximation: S, =U}_, S/, where S = {x: ||x — X

At each iteration [
* Sample trajectories of duration T from §; until

recurrence is violated (counter-example)

P3: counter example

[CDC 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal version submitted.
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Learning Regions of Attractions via Recurrent Sets

Algorithm: Given h centers, param. T, and € > 0:
* Build approximation using unions of balls centered at x4, ..., X, with x; = x*

<5

* Initial approximation: S, =U}_, S/, where S = {x: ||x — X

At each iteration [
* Sample trajectories of duration T from §; until

recurrence is violated (counter-example)
* Update approximation ;1 to exclude
counter-example neighborhood: p; + B,

L V(SitBe) ) (1)

Sample complexity: m > V(B 5

P3: counter example

[CDC 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal version submitted.
13



Example: Using 50 Center Points

50 sphere approximation

14



Example: Changing trajectory duration t

* Run: 200 center points sampled (uniformly)
* Stopping criteria: § = 107>

5 57.7 72.0%
2 55.8 51.2%
.6 47.1 31.2%
3 28.7 3.24%

e Strict reccurent area
ROA approximation
........... True ROA

15



Example: Episodic Expansions of Approximation

* At Each Episode:

* Sample 50 new center points (uniformly)

e Stopping criteria: § = 107°

gpisode = 1

4
T=.3
2
~
< 0 . O
_2 1 :
—— Strict reccurent area
ROA approximation ™
........ True ROA 3
-4 -2 0 2
X1

4

Percentage of the ROA volume

—— ROA aprroximation volume
—— Strict recurrent area volume

0 25 50 75 100
episode index

[CDC 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal version submitted.
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Transient Stability Analysis

2R+ jX)

* Synchronous machine connected to infinite bus VWV

o

|7
®

R+jX R+jX

Va ~ (vd,vq) %% Voo ~ (Vs,ws)

I\H
I\H
I

17



Transient Stability Analysis

2(R+jX)

2

* Synchronous machine connected to infinite bus

o

* t1 lower line is short-circuited

»
G
(®)

R+jX R+jX

Vo~ @av)|  —NW——MW—" |V~ (Vi)

I\H
MH
I

17



Transient Stability Analysis

* Synchronous machine connected to infinite bus

2R+ jX)

] Q

* t1 lower line is short-circuited .
* t, faultis cleared Ve ~ (va, )

R+jX

R+jX

a6
®

Voo i (V81ws)

17



Transient Stability Analysis

2(R+jX)
* Synchronous machine connected to infinite bus VWV
- @
. . T . . . o
t1 lower line is short-circuited i ResX | ReiX i
* t, faultis cleared Vo~ (avg) | —NW——ANW— [V ~ (Vi,w)
d_(S . S— —i
dt °
d X — 1
2Hd—L: = P, — (vaiq + vgiq + eif + 7“2'62]) g = 7 +Zl;q g — T TVS sin(6)
de’ e
do o = € — (Ta — zy)ia + Efa T b T
dEdt vy = Rig + Xig + Vs cos(d)
fd _ _ _ (2 o
Ta dt = Efd+Ka(Vref ‘/t) ‘/; — ,UCQi_i_,Ug
P,
ng— = =P+ Prey + Kg(wrey —w)
dt o / 1L =067 wa=238 u,=0338 z, =1.21
. X wg)Vesin(9) — (B 4 1) (Vs cos(0) — ) H—3 r=0002 ws=uw;=1 R=0.01
1 (R+7)2 4+ (X +2) (X + x,) Xe=1.085 V=1 T, = Ki—70
Viep=1 T,=04 K,=05 Pres =0.7

17



Transient Stability Analysis

2(R+ jX)
* Synchronous machine connected to infinite bus VWV
3 ()
. T 5, ) ; i
* t1 lower line is short-circuited i ResX | ReiX i
* t, fault is cleared Vo~ @av)|  — NN VWWN—" |V~ Viw)

SoS approx. in red (2d-sections) = =

M. Tacchi et al “Power system transient stability analysis using SoS programming” Power System Computation Conference (PSCC) 2018

17



Transient Stability Analysis

2(R+ jX)

 Algorithm parameters: VWV
* Centers: 1000 per episode @ {
e Failure prob.: § = 10™°
* Time constant: 7 = 100 s

>0
=
8

()
R+ jX ¢ R+iX

Ve ~ (va,v,) —NW—— " VW— |V~ (Vi)

SoS in blue: [Tacchi 18] vol = 0.05%, run time “they are huge” _ 1

Multi-center in . 1 episode, run time 3 min Percent vol. gain:M — 360%
SoS
1.0 1.0
—— SOS method results
1007 ROA approximation
0.5; 0.51
50
Ko
S 3 0.0 3 0.0
0 C
—0.5; -0.5
=501
-2 0 > M550 5 6 5 10 10T 0 i 2

el Pm o}

q
M. Tacchi et al Power system transient stability analysis using SoS programming, Power System Computation Conference (PSCC) 2018
Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, Control and Decision Conference (CDC) 2022

17



Transient Stability Analysis

2(R + jX)
 Algorithm parameters: VWV
* Centers: 1000 per episode @
* Failure prob.: p = 107° AL G

. Va ~ (vg4,v,) %+W Vosoo (Voan)
 Time constant: 7 = 100 s R S w

SoS in blue: [Tacchi 18] vol = 0.05%, run time “they are huge”

g >
ah
®

Multi-center in green: vol = 0.45%, 3 episodes, run time 10 min Percent vol. gain: —VM'C/‘VSOS
SoS

1.0

1.0;

0.5{ ° 0.5

3 0.0 3 0.0

-0.5 —0.51
—— SOS method results
. / - ROA approximation o
=D 0 5 - 75 g =5 © 5 10 0 2
eé, Pm

M. Tacchi et al Power system transient stability analysis using SoS programming, Power System Computation Conference (PSCC) 2018
Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, Control and Decision Conference (CDC) 2022

17



Transient Stability Analysis

2(R + jX)

 Algorithm parameters: VWV
* Centers: 1000 per episode @
* Failure prob.: p = 107°
* Time constant: 7 = 100 s

g >
ah
®

R+jX g R+iX

Vo~ i) VNN VWN— Voo~ (Vew)

SoS in blue: [Tacchi 18] vol = 0.05%, run time “they are huge”

Multi-center in green: vol = 0.74%, 5 episode, run time 17.5 mln: Percent vol. gain: —VM'C/‘V
SoS

1380%

1.0

1.0;

100

0.5 % 0.5

50

Etq

-0.5 -0.5
—— SO0S method results '
_50] ) ) " ROA approximation ®
. : -1.0 - - - —  =1.0
-2 0 2 =15 -10 -5 0 5 10 2

e, P
q

M. Tacchi et al Power system transient stability analysis using SoS programming, Power System Computation Conference (PSCC) 2018

Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, Control and Decision Conference (CDC) 2022

17



Transient Stability Analysis

2(R + jX)

 Algorithm parameters: VWV
* Centers: 1000 per episode @
* Failure prob.: p = 107°
* Time constant: 7 = 100 s

g >
ah
®

R+jX g R+iX

Vo~ i) VNN VWN— Voo~ (Vew)

SoS in blue: [Tacchi 18] vol = 0.05%, run time “they are huge” _|_ .

Multi-center in green: vol = 1.56%, 10 episodes, run time 39.5 min Percent vol. gain: % f 3020%
SoS

1.0

1.0;

100

0.5p8 0.5

508

Etq

-0.5 - -0.5
—— SOS method results
_50 . ~ ROA approximation : 4 W
-2 0 2 =15 -10 -5 0 5 10 -1 0 1 2

e, Pm 0

q
M. Tacchi et al Power system transient stability analysis using SoS programming, Power System Computation Conference (PSCC) 2018
Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, Control and Decision Conference (CDC) 2022
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* Letting things go and come back: Recurrent sets
* Approximating regions of attractions via recurrent sets

* Non-parametric analysis of dynamical systems
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e Safety verification via generalized Barrier functions



Nonparametric Stability Analysis

R. Siegelmann, Y. Shen, F. Paganini, and E. Mallada, “A recurrence-based direct method for stability analysis and
GPU-based verification of non-monotonic Lyapunov functions”, CDC 2023

18



Lyapunov’s Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

Rsq, with V(x) > 0,Vx € R\{x*}, then:
e V <0 - x*stable
e V <0 - x*as. stable

Theorem [Lyapunov ‘1892]. Given V: R* — -

Challenge: Couples shape of I/ and vector field f

» Towards decoupling the V — f geometry
« Controlling regions where V > 0 [Karafyllis ‘09, Liu et al ‘20]
* Higher order conditions: g(V(q), .V, V) < 0 [Butz ‘69, Gunderson 71, Ahmadi 06, Meigoli ‘12]
* Discretization approach: V(x(T)) < V(x(0)) [Coron et al ‘94, Aeyels et. al ‘98, Karafyllis ‘12]
* Multiple Lyapunov Functions: {V;: j € [k]} [Ahmadi et al ‘14]

A Butz. Higher order derivatives of Lyapunov functions. IEEE Transactions on automatic control, 1969

Gunderson. A comparison lemma for higher order trajectory derivatives. Proceedings of the American Mathematical Society, 1971

Coron, Lionel Rosier. A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Syst., Estimation, Control, 1994

Aeyels, Peuteman. A new asymptotic stability criterion for nonlinear time-variant differential equations. IEEE Transactions on automatic control, 1998

Ahmadi. Non-monotonic Lyapunov functions for stability of nonlinear and switched systems: theory and computation, 2008

Karafyllis, Kravaris, Kalogerakis. Relaxed Lyapunov criteria for robust global stabilisation of non-linear systems. International Journal of Control, 2009

Meigoli, Nikravesh. Stability analysis of nonlinear systems using higher order derivatives of Lyapunov function candidates. Systems & Control Letters, 2012
Karafyllis. Can we prove stability by using a positive definite function with non sign-definite derivative? IMA Journal of Mathematical Control and Information, 2012
Ahmadi, Jungers, Parrilo, Roozbehani. Joint spectral radius and path-complete graph Lyapunov functions. SIAM Journal on Control and Optimization, 2014

Liu, Liberzon, Zharnitsky. Almost Lyapunov functions for nonlinear systems. Automatica, 2020

19



Lyapunov’s Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

Rsq, with V(x) > 0,Vx € R\{x*}, then:
e V <0 - x*stable < % :. 24
e V <0 - x*as. stable ' )

Theorem [Lyapunov ‘1892]. Given V: R* — -

Challenge: Couples shape of I/ and vector field f

» Towards decoupling the V — f geometry

Controlling regions where V > 0 [Karafyllis ‘09, Liu et al 20]

Higher order conditions: g(V(Q), .V, V) < 0 [Butz ‘69, Gunderson 71, Ahmadi 06, Meigoli ‘12]
Discretization approach: V(x(T)) < V(x(0)) [Coron et al ‘94, Aeyels et. al ‘98, Karafyllis ‘12]
Multiple Lyapunov Functions: {V;: j € [k]} [Ahmadi et al ‘14]

Question: Can we provide stability conditions based on recurrence?

19



Recurrent Lyapunov Functions

A continuous function IV: R¢ — R, is a recurrent Lyapunov function if

OV (2) = min V(6(t,2) = V(2) 0 Ve R
te (0,7

Preliminaries:
* Sub-level sets {V(x) < c} are T-recurrent sets.

—~—
m

Definition: A set R € R? is T-recurrent if forany x, € Rand t > 0, 3t’ € (¢,t + 7] s.t. p(t', x,) € R.

Time elapsed < T

Vee

20



Recurrent Lyapunov Functions

A continuous function IV: R¢ — R, is a recurrent Lyapunov function if

OV (2) == min V(g(t,x)) — V(z) <0 VzeR?

te(0,7]

Preliminaries:
* Sub-level sets {V(x) < c} are T-recurrent sets.
* When f is L-Lipschitz, one can trap trajectories.

F.te'

F, =ggillf(x)ll

20



Recurrent Lyapunov Functions

A continuous function IV: R¢ — R, is a recurrent Lyapunov function if

OV (2) == min V(g(t,x)) — V(z) <0 VzeR?

te(0,7] (*)

Theorem [CDC 23]: Let V: R¢— R be a

recurrent Lyapunov function and let f be L-

Lipschitz

* Then, the equilibrium x” is stable.

* Further, if the inequality is strict, then x™ is
asymptotically stable!

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023

20



Exponential Stability Analysis

The function V: R — R, is a-exponential recurrent Lyapunov function if

L(?g]v(x) ‘= min eatV(¢(t7aj)) — V(CB) <0 Vzxe ]Rd

te(0,7]

Theorem [CDC 23]: Let V: R? - Ry, satisfy min

ai|lx — x*|| S V(x) < ayllx — x|
. . c V ........... 1 OétV t,
Then, if V is a-exponential recurrent Lyapunov (1) | e (¢(t, z2))
function, x* is a-exponentially stable. |77 oo
A C7y] T— RS R v
I |
............. I.l
' >
T T t

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023
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A (Sub-optimal) Converse Theorem

Theorem: Assume x™ is A-exponentially stable: 3 K, A > 0 such that:
lp(t,x) — x*|| < Ke™||xg — x*||,  vx € R%
Then, V (x) = ||x — x*

min_ e%||od(t,x) — x*
,in, ||<I5( ) |

is a-exponential recurrent Lyapunov function, i.e.,

<0, Vx € R4,

— ||x—x*|

whenever a <A and T = )L_Laln K.

Remarks:
* The rate & must be strictly smaller than the rate of convergence A (giving up optimality).

* Any norm is a Lyapunov function!

Question: Is the struggle for its search over?



Nonparametric Verification of Exponential Stability

Proposition [CDC 23*]: Let ||-|| be any norm and x* = 0. Then, whenever
. at Lt
, t < —
trerg(l)g]e (||qb(x )|| + re ) ||x|| r

for all y with ||y—x|| <r

trer%(i),r%]e“t|l¢(y, Ol < [Iyl]

Remarks:

* Only requires a trajectory of length t

* Trades off between radius r and verified performance a
* Amenable for parallel computations using GPUs

23



Nonparametric Stability Verification via GPUs

* Basic Algorithm:

 Consider V(x) = ||x — x™||w
* Build a grid of hypercubes surrounding x*

* Test grid center points:

* Simulate trajectories of length T
* Find a s.t. the verified radiusisr = £/2

« Hypercube not verified, split in 3¢ parts
* Repeat testing of new points

B split
. = .}m
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Nonparametric Stability Verification via GPUs

* Basic Algorithm: . X
 Consider V(x) = ||x — x™||w

* Build a grid of hypercubes surrounding x*

* Test grid center points:

* Simulate trajectories of length T
* Find a s.t. the verified radiusisr = £/2

« Hypercube not verified, split in 3¢ parts y ¢
* Repeat testing of new points

* Exponentially expand to outer layer
* Repeat testing in new layer

24




Nonparametric Stability Verification via GPUs A

* Basic Algorithm:
e Consider V(x) = ||x — x*||

* Build a grid of hypercubes surrounding x*

* Test grid center points:
* Simulate trajectories of length T

* Find a s.t. the verified radiusisr = £/2

« Hypercube not verified, split in 3¢ parts

L o Ld
— e e e e o e e e e e e e e e f—
°

* Repeat testing of new points

* Exponentially expand to outer layer

* Repeat testing in new layer

Q: How many samples are needed?
If x* is A-exp. stable

o (5

1-Ke(@-A7

<1

with g = Trodrar



Numerical lllustration X2

Consider the 2-d non-linear system: X = [ 01 21] x + B |x1x; L 8
S 2 T 15

with B;; ~ N(0,02) L X2 y 0.01

o=0.2

Phase Portrait

_,__--—-—‘—l - ‘
100 {——— — T aTaT el E: S : S S s 1001 @ 027 =~~~ ~SONONON NN N
S = e S P N NN B @ 009 ===~~~ NN\\\ O
0.75 |t —— > : 0754 ® 0.03 X :
F “~ 0.01 N
0.50 ;//-;/"“_"\.\\:ti\ ?\\\E\\\\\ 0.50 1 e QN
) — - N : N\
v -———ﬁ-\ﬁ‘\\ \ \\ /7 % A&
0.25 /‘/( 7/ P = \‘§ ‘\\-\*\\x N 0.25 A : : v
1 Al
v oood I (LUC ool 11 o
TR NS o b
~0.25 LA\ A\ o 0254 N\ i i
\\ \\\\\\ . 801 \ L & 2
S0 \ \\\\\'\ Y 1\\\ -0.50 - Q Q -
MRS ¢ NS - -
=075 - ‘\\\\\ > —o.75-,§§\ ' o 1 N
\\\\\\\\\Nsﬂ-w—«—
—-1.00 \ \ \ M : _100-\\\\\\\\\\\\\\\\““““
. l \ \\\ . . T T T T
-1.00 -0.75 -0.50 —0.2' -1.00 -0.75 -0.50 —-0.25 0.00 025 050 075 100

0_
150 175 2.00 225 250 275 300 325 350
Time per Iteration

25



Numerical lllustration X2

Consider the 2-d non-linear system: X = [ 0 21] x + B |x1x; L 8
N 2 T 15

with B;; ~ N(0,02) L X2 y 0.01

o=0.5

Phase Portrait
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Comparison with SoS S

X1
Consider the 2-d non-linear system: X = [ 01 21] x + B |x1x; L =
o o T 1.5
with B;j ~ N'(0,02) X% | {) =

Exponential Stability Parameters vs. Time: 0 =0

o =0.0 T T

——Our Algorithm
——S8O0S - Degree 2
SOS - Degree 4
——S0S - Degree 6
——S8O0S - Degree 8

Exponential Stability Parameter o

Time (s)
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Comparison with SoS _

o .
. . . L 1.8
Consider the 2-d non-linear system: X = [ 1 1] x + B |x1x5
_ _ 1.5
i o~ 2 x2 T
with B;; ~ N'(0,0°) -2 y 0.01
B Exponential Stability Parameters vs. Time: o = 0.1
o=0.1 - | |
0.45 = Our Algorithm
——S0S - Degree 2
SOS - Degree 4
——S0S - Degree 6
~—S0S - Degree 8

0357

025+

Exponential Stability Parameter a

Time (s)
26



Comparison with SoS _

2
: : . . [0 2 L 1.8
Consider the 2-d non-linear system: X = 1 1 x + B |[X1X5
i T _ 2 T 1.5
with B;; ~ N (0, o2 X
i (0,07) S ¢ 0.01
B Exponential Stability Parameters vs. Time: o = 0.3
o=0.3 J
o = QOur Algorithm

~—S80S - Degree 2

SOS - Degree 4
035 ——8SO0S - Degree 6
——80S - Degree 8

Exponential Stability Parameter «
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Comparison with SoS _

" .
Consider the 2-d non-linear system: X = [ 1 1] X + B |x1x; b 18

o o T 1.5
with B;j ~ V'(0,0%) EZN ¢ 0.01

Exponential Stability Parameters vs. Time: o = 0.5

og=0.5 —

“ uql ~—Our Algorithm

~——S0S - Degree 2

SOS - Degree 4
——80S - Degree 6
~—S0S - Degree 8

Exponential Stability Parameter «
i

Time (s)
26



Comparison with SoS _

7
. . . ._ [0 2 L 1.8
Consider the 2-d non-linear system: X = 1 1 x + B |[X1X5
i T _ 2 T 1.5
with B;; ~ N (0, o X
i (0,07) S ¢ 0.01
) Exponential Stability Parameters vs. Time: o = 0.6
=Qur Algorithm
04 ~——80S - Degree 2
SOS - Degree 4
—S0S - Degree 6
——80S - Degree 8

o
w
&

lity Parameter «

e

o
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I I
N

Exponential Stab
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Outline

e Invariance: Merits and trade-offs

* Letting things go and come back: Recurrent sets
* Approximating regions of attractions via recurrent sets

* Non-parametric analysis of dynamical systems
 Stability analysis via non-monotonic Lyapunov conditions
e Safety verification via generalized Barrier functions



Outline

e Invariance: Merits and trade-offs

* Letting things go and come back: Recurrent sets
* Approximating regions of attractions via recurrent sets

* Non-parametric analysis of dynamical systems
* Stability analysis via non-monotonic Lyapunov conditions
 Safety verification via generalized Barrier functions



Nonparametric Safety Verification using Recurrence

Y. Shen, H. Sibai, E. Mallada, “Generalized Barrier Functions: Integral Conditions and Recurrent Relaxations”, in
60t Allerton Conference on Communication, Control, and Computing 2024
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Safety in Dynamical Systems

Consider the continuous-time dynamical system: x = f(x)
- ¢ (t, xp): solution at time t starting from x
- X,,: set of unsafe states

Goal: Find the safe set X, := {zg € RY|&(t, x0) & X, Vt > 0}

d)(t' xO)

Xy,: unsafe set
— (e.g., obstacles)

Xt

28



Safety in Dynamical Systems via Invariant Sets

Consider the continuous-time dynamical system: x = f(x)
- ¢ (t, xg): solution at time t starting from x,
- X,,: set of unsafe states

Goal: Find the safe set X := {z¢ € Rd\gb(t,xo) Z X,,Vt > 0}

General Approach: Use invariant sets!
AsetS € R%isinvariantif and only if: xo €S = ¢(t,xg) €S, Vt =0

System Limits Unsafe Regions
(e.g., speed) (e.g., obstacles)

g

!
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Certifying Safety using Barrier Functions

Theorem - Nagumo’s Barrier Functions [Nagumo ‘42] :

Let h: RY - R be differentiable, with 0 being a regular value.
Then h is a Nagumo’s Barrier Function (NBF) satisfying:

t—0 t

>0, Vxe h_,

if and only if hsg = {x € Rd|h(x) > 0} is invariant.

h(x1)T

h(x;)
20 / » Time

Then hs is a safe set whenever hog N X, = 0

wphed by K5

(Fhotegn

®
4
3
A
Mitio Nagumo
b (x2,t)
h_ Xq,t O
0 ¢ (x1,t) X,
(Unsafe)

h., invariant

M. Nagumo, “Uber die lage der integralkurven gewéhnlicher differentialgleichungen,” Proceedings of the Physico-Mathematical Society of Japan 1942
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Shaping Safe Behavior using Barrier Functions (BFs)

Barrier functions provide a flexible framework to shape the behavior of trajectories
Nagumo’s (NBF) Exponential Barrier Functions (EBF)
Lih(x) >0, Vzx & h_g Lih(x) > —ah(x), V€ hs_.
Problem: Finding Barrier Functions is usually
" a complex undertaking

h_, bt { Q\ ‘

\ Key Challenge: The invariance condition on h-, couples the Time
o invariant geometry of f and the set h,

¢ (x2,0)

Other: Zeroing BFs (ZBFs), Minimal BFs (MBFs), Control BFs (CBFs), High Order CBFs (HOCBFs), ...

S. Prajna, A. Jadbabaie. Safety Verification of Hybrid Systems Using Barrier Certificates. HSCC 2004

P. Wieland, F. Allgéwer. Constructive safety using control barrier functions. IFAC Proceedings Volumes 2007

A. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, P. Tabuada. Control barrier functions: Theory and applications. IEEE ECC 2019
R. Konda, A. Ames, S. Coogan. Characterizing safety: Minimal control barrier functions from scalar comparison systems. IEEE L-CSS 2020
W. Xiao, C. Belta. High-order control barrier functions. IEEE TAC 2021
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Integral Nagumo’s Barrier Function (INBF)

Nagumo’s Barrier Functions [Nagumo ‘42]: Integral Nagumo’s Barrier Function:
Let h be differentiable, reqular at zero, and Let h be continuous, and
<= l
Lih(z) >0, Vo € h—g h(p(t,z)) >0, Vo € h—g,t >0

Lb The super-level set h. is invariant. 4—| ¥ ¢ = =

requires more
conditions on h

h(x)

h(x1) \

0 \_ i

» Time

h.( invariant
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Recurrent Nagumo’s Barrier Function (RNBF)

Thm: Integral Nagumo’s Barrier Function:

Thm: Recurrent Nagumo’s Barrier Function:
Let h be continuous. Then:

Let h be continuous. Then:

h(t,r)) >0, Vo € h—g,t >0 trr%gux]h(aﬁ(t,w)) >0, Yz € h=o
c(U, 7

if and only if i is invariant if and only if i is T-recurrent

Recall: A set R € R% is t-recurrent if for any x, € Rand t > 0,3t € (t,t + 1] s.t. (t’, xy) € R.

h(x)

h(x) f\
0 \ —

» Time

h.( invariant
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Recurrent Nagumo’s Barrier Function (RNBF)

Thm: Integral Nagumo’s Barrier Function:

Thm: Recurrent Nagumo’s Barrier Function:
Let h be continuous. Then:

Ast -0 Let h be continuous. Then:
_
—

if and only if i is invariant if and only if i is T-recurrent

Recall: Aset R € R% is t-recurrent if for any x, € Rand t > 0, 3t’ € (t,t + 7] s.t. p(t', xo) € R.
0

Time elapsed < T

» Time

h.o T-recurrent

Time elapsed < T Time elapsed < T
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Integral Exponential Barrier Function (IEBF)

Exponential Barrier Functions: Integral Exponential Barrier Function:
Let h be differentiable, and Let h be continuous, and
—at
Lih(z) > —ah(z), Vo € s  * ==  h(g(t,)) > eh(z), Vo € hs_,
forall t =0
Lb The super-level set h. is invariant. 4—| ¥ ¢ = =
h(x) requires more

conditions on h

. ¢(X3, t)
e %h(x,)

h(xqy) I

0 —— — > Time h-o

P
-

¢ (x1,t)

h.( invariant
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Recurrent Exponential Barrier Function (REBF)

Thm: Integral Exponential Barrier Function: Thm: Recurrent Exponential Barrier Function:
Let h be continuous. If: Let h be continuous. If:
h(o(t,x)) > e *h(z), Vo € h>_, rr%ax]eath(qﬁ(t,x)) > h(x), Vo € h>_,
o te (0,7 o
forall t > 0, then, hs is invariant then, h. is T-recurrent
h(x)

¢(X3, t)

» Time

h.( invariant
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Recurrent Exponential Barrier Function (REBF)

Thm: Integral Exponential Barrier Function: Thm: Recurrent Exponential Barrier Function:
Let h be continuous. If: AsT— 0 Let h be continuous. If:
_
h(o(t,x)) > e “h(x), Vo € h>_, B_’y P t]g%g’:i]e h(o(t,x)) > h(z), Vo € h>_,
forall t > 0, then, hs is invariant then, h. is T-recurrent

Question: Do we gain anything from relaxing

the invariance condition in BFs?
e "Th(x,)

¢(X3, t)

h(x1) N

({/ - > Time h-o
/7 _ -
/\ | e “h(xs)
h(xs) h.o T-recurrent
I_'_l

Time elapsed < T Time elapsed < T

} Time elapsed < T
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Bi-Exponential Recurrent Barrier Functions

We first generalize REBF using different exponential rates a, f > 0:

max e [A(@(t, 2))]+ + e [h(¢(t,2))]- > h(z), Vo € hs_.

te(0,7]

e'“th(x4) ¢)(X3,t)

—at
h(xl) \\\\ e h’(xl)

’ o
g
h(x3)
—

| |
Time elapsed < T Time elapsed < T

‘ ], Time elapsed < T

» Time h_,
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All Signed Norms are Recurrent Barrier Functions!

Theorem: Assume there exists an Integral Exponential BF (IEBF), h,
defined over Dy := h.__. for some ¢ > 0. Then 3 a > 0 such that:
e h(p(t,x)) = h(x), Vx € ho_,
forall t = 0.
Then for any set S with h,g € § € h._, the function
h(x) == —sd(x,S)

is @ Recurrent Exponential Barrier Function (REBF):

trer%gué]e‘_” |h(o(t, x))]+ + et [h(p(t,x))] . = h(x), Vx € ho_,

with any parameters « < o < @ whenevert > 7(a — a,a — )

Remarks:
* The rates @ < @ must be strictly smaller/bigger than « (giving up optimality).

* Any signed norm of most sets is a Recurrent Barrier function!

Question: How to use Recurrent Barriers for safety?

37



Certifying Safety using Recurrent Sets

Theorem - Consider a closed set S that is T-recurrent.
Then its T-reachable set:

R, (S5) :== U o(t, )

xeS
te[0,7]

Is invariant.

Moreover, S is safe whenever:
1. R[O,T] (S) n Xu — @;
2. SNR_;0] (X,) =0

(Known Unsafe)
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Nonparametric Safety Verification

A set S is safe whenever:

Reachability Condition
° :R[O,T] S)NX, =0

Recurrent Condition /%\

I -

\

A\R
L svZh

N, ©®

NAIZ4\
AN

h(x) == —sd (x,S) is RNBF or REBF —2 \ N \
—4 \
Cover the region with a grid ¢ -4 =2 0 2 4
* Foreach point g € G, S, represents its cell of radius r X.: 1N

We build § =Ugeqs Sy, with (:° representing safe grid points
* |nitialize G° « G (all grid points are initially safe)
Check both conditions using only one trajectory for each cell!
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Nonparametric Safety Verification: Reachability

-

3

Checking Reachability Condition

Starting from centers of grid cell g, simulate the <
trajectories for T-seconds in parallel using a GPU

If ¢(t,x) & X, Vx € Sy, t € [0, 7]

— KeepginG®
R[O,’L’] (Sg) NX,=0

If 3t € [0,7]s.t. p(t,x) € X, VX E S, . Remove g from G*
Rt(Sg) c X, forsomet € |0, ] Add g to G%

—

Else
>

—> li
Undetermined >plit g

*Stop splitting g and mark it as unsafe
whenever g is too small (r < 1yin) ° =
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Nonparametric Safety Verification

Aset S =Ugegs Sy is safe whenever:

Reachability Condition
* RpogS)nXy, =0

Recurrent Condition
 h(x):=—sd(x,S)isaRBFor REBF

41



G'S

Nonparametric Safety Verification: Recurrent Condition

Gu

>

ﬁ

Check the Recurrent condition
* LetS =Ugyegs Sy, h(z) := —sd(z, S)

——
 Starting from centers of grid cell g € G*, simulate

the trajectories for t-seconds in parallel using a GPU
If max e h(p(t,x)) = h(x),Vx €S

te(0,7] (('b( )) ) 7, Keep g in G*°

REBF condition is satisfied within g

If max e? fl(gb(t, x)) < h(x),vx € Sg _ Remove g from G°

te(0,7]
u
REBF condition is NOT satisfied within S, Add g to G
Else _
: > Split
Undetermined Pt g
* 1441 : [ ) » ° °
Stop splitting g and mark it as unsafe

whenever g is too small (r < 1yin)

42
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A GPU based algorithm

Aset S =Ugegs Sy is safe whenever:

Reachability Condition
* RpogS)nXy, =0

Recurrent Condition

* h(x):=—sd(x,S)isaREBFor RNBF & |

GS:

GY:

1

-1




Numerical Validation: Reachability vs Recurrence

Reachability Recurrent (RNBF)

—2 0 2 —2 0 2

running time: 354.12s running time: 20.68s ~17x faster
97.4% safe set covered 99.6% safe set covered +2.2% more area
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Numerical Validation: Reachability vs Recurrence

o =0.0271

Reachability

—2 0
running time: 23.15s
92.2% safe set covered

2

Recurrent (RNBF)

—2 0
running time: 3.81s
98.6% safe set covered

~bXx faster
+6.4% more area
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Numerical Validation: Reachability vs Recurrence

roi =0.0737

Reachability

-2 0
running time: 3.01s
83.3% safe set covered

Recurrent (RNBF)

—2 0

running time: 1.56s
94.6% safe set covered

~2x faster
+11.2% more area
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Numerical Validation: Reachability vs Recurrence

Reachability Recurrent (RNBF)

—2 0 2 —2 0 2

running time: 1.86s running time: 0.31s 6x faster
9.3% safe set covered 71.2% safe set covered +61.9% more area
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Numerical Validation: Recurrent Exponential Barrier Function

-2 0 2 -2 0 2 -2 0 2 -2 0
running time = 4.45s running time = 4.99s running time = 10.54s running time = 218s
98.3% Safe set covered 97.0% Safe set covered 93.6% Safe set covered 82.75% Safe set covered
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Conclusions and Future work

 Takeaways
* Proposed a relaxed notion of invariance: recurrence.

* Provide necessary and sufficient conditions for a recurrent set to be an inner approximation of
the ROA.

* Nonparametric theory for dynamical systems analysis:
* Leading to general Lyapunov and Barrier Function conditions satisfied by any norm!

e OQOur algorithms are parallelizable and progressive/sequential.

 Ongoing work
* Recurrent Sets: Smart choice of multi-points, control recurrent sets, GPU implementation

* Lyapunov and Barrier Functions: Generalize other Lyapunov notions, Control Lyapunov
Functions, Control Barrier Functions, Contraction, etc.

* Recurrence Entropy: Understanding the complexity of making a set recurrent compared to
invariance.



Thanks!
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