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Safety in Dynamical Systems

Consider the continuous-time dynamical system:  ሶ𝑥 = 𝑓 𝑥
- 𝜙 𝑡, 𝑥0 : solution at time 𝑡 starting from 𝑥0

- 𝑋𝑢: set of unsafe states

Goal: Find the safe set
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𝑋𝑢: unsafe set
(e.g., obstacles)

𝑥0

𝜙(𝑡, 𝑥0)

𝑋𝑠 : 



Safety in Dynamical Systems via Invariant Sets

Consider the continuous-time dynamical system:  ሶ𝑥 = 𝑓 𝑥
- 𝜙 𝑡, 𝑥0 : solution at time 𝑡 starting from 𝑥0

- 𝑋𝑢: set of unsafe states

Goal: Find the safe set

General Approach: Use invariant sets!
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A set 𝒮 ⊆ ℝ𝑑  is invariant if and only if:  𝑥0 ∈ 𝒮 → 𝜙 𝑡, 𝑥0 ∈ 𝒮, ∀𝑡 ≥ 0   
System Limits
(e.g., speed)

Unsafe Regions
(e.g., obstacles)



Certifying Safety using Barrier Functions
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Mitio Nagumo

            _
M. Nagumo, “Über die lage der integralkurven gewöhnlicher differentialgleichungen,” Proceedings of the Physico-Mathematical Society of Japan 1942

Theorem - Nagumo’s Barrier Functions [Nagumo ‘42] :
Let ℎ: ℝd → ℝ be differentiable, with 0 being a regular value. 
Then ℎ is a Nagumo’s Barrier Function (NBF) satisfying:

if and only if ℎ≥0 ≔ 𝑥 ∈ ℝ𝑑 ℎ 𝑥 ≥ 0  is invariant.

𝒉≥𝟎 invariant

𝑿𝒖 
(Unsafe)

𝒉=𝟎

Time0
ℎ(𝑥2)

𝜙(𝑥2, 𝑡)

ℎ(𝑥1)

𝜙(𝑥1, 𝑡)

Then ℎ≥0 is a safe set whenever ℎ≥0 ∩ 𝑋𝑢 = ∅



Barrier functions provide a flexible framework to shape the behavior of trajectories

Nagumo’s (NBF) Exponential Barrier Functions (EBF)

Shaping Safe Behavior using Barrier Functions (BFs)
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Time

0

ℎ(𝑥1)

ℎ(𝑥2)

𝒉≥𝟎 invariant

𝒉=𝟎

𝜙(𝑥2, 𝑡)

𝜙(𝑥1, 𝑡)

𝜙(𝑥2, 𝑡)

𝒉≥𝟎 invariant

𝒉=𝟎

𝜙(𝑥1, 𝑡)

𝜙(𝑥3, 𝑡)

−𝑐

Time

0

ℎ(𝑥1)

ℎ(𝑥2)

Other: Zeroing BFs (ZBFs), Minimal BFs (MBFs), Control BFs (CBFs), High Order CBFs (HOCBFs), …
            _
S. Prajna, A. Jadbabaie. Safety Verification of Hybrid Systems Using Barrier Certificates. HSCC 2004
P. Wieland, F. Allgöwer. Constructive safety using control barrier functions. IFAC Proceedings Volumes 2007
A. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, P. Tabuada. Control barrier functions: Theory and applications. IEEE ECC 2019
R. Konda, A. Ames, S. Coogan. Characterizing safety: Minimal control barrier functions from scalar comparison systems. IEEE L-CSS 2020
W. Xiao, C. Belta. High-order control barrier functions. IEEE TAC 2021

𝑒−𝛼𝑡ℎ(𝑥1)

𝑒−𝛼𝑡ℎ(𝑥3)

𝑒−𝛼𝑡ℎ(𝑥4)

ℎ(𝑥3)

Problem: Finding Barrier Functions is usually 
a complex undertaking

Key Challenge: The invariance condition on ℎ≥0 couples the 
geometry of 𝑓 and the set ℎ≥0



•  Letting things go and come back: Recurrent sets 

•  Generalized barriers: Integral forms and recurrent relaxations

•  Safety verification via Recurrent Barrier Functions

Outline
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Core challenge: Invariant safe sets are hard to find
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A set 𝒮 ⊆ ℝ𝑑  is positively invariant if and only if:  𝑥0 ∈ 𝒮 → 𝜙 𝑡, 𝑥0 ∈ 𝒮, ∀𝑡 ≥ 0   
Any trajectory starting in the set remains in inside it for all times

Goal: Given an unknown safe set 𝑋𝑠, find an invariant set 𝒮 such that 𝒮 ⊂ 𝑋𝑠. 

𝑿𝒔 : 

Example:



Core challenge: Invariant safe sets are hard to find
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A set 𝒮 ⊆ ℝ𝑑  is positively invariant if and only if:  𝑥0 ∈ 𝒮 → 𝜙 𝑡, 𝑥0 ∈ 𝒮, ∀𝑡 ≥ 0   
Any trajectory starting in the set remains in inside it for all times

Goal: Given an unknown safe set 𝑋𝑠, find an invariant set 𝒮 such that 𝒮 ⊂ 𝑋𝑠. 

𝑿𝒔 : 𝒮: 

A not invariant trajectory:

Example:
𝓢 ⊆ 𝑿𝒔 is not invariant! 
 

Challenges:

• 𝒮 is topologically constrained
• Trajectory cannot cross disconnected parts of 𝒮
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A set 𝒮 ⊆ ℝ𝑑  is positively invariant if and only if:  𝑥0 ∈ 𝒮 → 𝜙 𝑡, 𝑥0 ∈ 𝒮, ∀𝑡 ≥ 0   
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𝑿𝒔 : 𝒮: 

A not invariant trajectory:
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Challenges:
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• Trajectory cannot cross disconnected parts of 𝒮

• 𝒮 is geometrically constrained
• 𝑓 should point inwards for 𝑥 ∈ 𝜕𝒮



Core challenge: Invariant safe sets are hard to find
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A set 𝒮 ⊆ ℝ𝑑  is positively invariant if and only if:  𝑥0 ∈ 𝒮 → 𝜙 𝑡, 𝑥0 ∈ 𝒮, ∀𝑡 ≥ 0   
Any trajectory starting in the set remains in inside it for all times

Goal: Given an unknown safe set 𝑋𝑠, find an invariant set 𝒮 such that 𝒮 ⊂ 𝑋𝑠. 

Challenges:

• 𝒮 is topologically constrained
• Trajectory cannot cross disconnected parts of 𝒮

• 𝒮 is geometrically constrained
• 𝑓 should point inwards for 𝑥 ∈ 𝜕𝒮

• 𝒮 is hard to grow
• 𝒮 should adapt to new trajectories

𝑿𝒔 : 𝒮: 

A not invariant trajectory:

Example:
𝓢 ⊆ 𝑿𝒔 is not invariant! 
 

Invariance introduces strict constraints on the shape, 
topology, and the future extension of the set 𝒮 !



Recurrent sets: Letting things go, and come back
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Property of Recurrent Sets

• ℛ need not be connected

• ℛ does not require 𝑓 to point inwards on all 𝜕ℛ

 

Recurrent sets, while not invariant, guarantee that solutions that start in this 
set, will come back infinitely often, forever!   

Recurrent set ℛ: 

A recurrent trajectory:

A set ℛ ⊆ ℝ𝑑  is recurrent if for any 𝑥0 ∈ ℛ and 𝑡 ≥ 0, ∃𝑡′ ≥ 𝑡 s.t. 𝜙 𝑡′, 𝑥0 ∈ ℛ. 

Previous good inner approximations of 𝐗𝒔 are recurrent sets

𝑿𝒔 : 

𝒮: 



•  Letting things go and come back: Recurrent sets 

•  Generalized barriers: Integral forms and recurrent relaxations

•  Safety verification via Recurrent Barrier Functions
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Integral Nagumo’s Barrier Function (INBF)

Nagumo’s Barrier Functions [Nagumo ‘42]:
Let ℎ be differentiable, regular at zero, and

*
requires more 
conditions on  ℎ

The super-level set ℎ≥0 is invariant.

Integral Nagumo’s Barrier Function:
Let ℎ be continuous, and

Time0

ℎ(𝑥)

ℎ(𝑥1)

ℎ(𝑥2)

𝒉≥𝟎 invariant

Enrique Mallada (JHU) 11

𝒉=𝟎

𝜙(𝑥2, 𝑡)

𝜙(𝑥1, 𝑡)

𝒉>𝟎



Recurrent Nagumo’s Barrier Function (RNBF)

Thm: Integral Nagumo’s Barrier Function:
Let ℎ be continuous. Then:

if and only if ℎ≥0 is invariant

Time0

ℎ(𝑥)

ℎ(𝑥1)

ℎ(𝑥2)

𝒉≥𝟎 invariant
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Definition: A set ℛ ⊆ ℝ𝑑 is 𝝉-recurrent if for any 𝑥0 ∈ ℛ and 𝑡 ≥ 0, ∃𝑡′ ∈ (𝑡, 𝑡 + 𝜏] s.t. 𝜙 𝑡′, 𝑥0 ∈ ℛ. 

Thm: Recurrent Nagumo’s Barrier Function:
Let ℎ be continuous. Then:

if and only if ℎ≥0 is 𝝉-recurrent

𝒉=𝟎

𝜙(𝑥2, 𝑡)

𝜙(𝑥1, 𝑡)

𝒉>𝟎



Recurrent Nagumo’s Barrier Function (RNBF)

Thm: Integral Nagumo’s Barrier Function:
Let ℎ be continuous. Then:

if and only if ℎ≥0 is invariant

𝒉≥𝟎 𝜏-recurrent

Enrique Mallada (JHU) 12

Definition: A set ℛ ⊆ ℝ𝑑 is 𝝉-recurrent if for any 𝑥0 ∈ ℛ and 𝑡 ≥ 0, ∃𝑡′ ∈ (𝑡, 𝑡 + 𝜏] s.t. 𝜙 𝑡′, 𝑥0 ∈ ℛ. 

Thm: Recurrent Nagumo’s Barrier Function:
Let ℎ be continuous. Then:

if and only if ℎ≥0 is 𝝉-recurrent

𝒉=𝟎

Time0

𝜙(𝑥2, 𝑡)

𝜙(𝑥1, 𝑡)

ℎ(𝑥)

𝒉>𝟎

Time elapsed ≤ 𝝉

Time elapsed ≤ 𝝉

Time elapsed ≤ 𝝉

ℎ(𝑥1)

ℎ(𝑥2)

As 𝜏 → 0

By definition



Integral Exponential Barrier Function (IEBF)

Exponential Barrier Functions:
Let ℎ be differentiable, and

*
requires more 
conditions on  ℎ

The super-level set ℎ≥0 is invariant.

Integral Exponential Barrier Function:
Let ℎ be continuous, and

for all  𝑡 ≥ 0

ℎ(𝑥)

𝒉≥𝟎 invariant
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Time0

𝑒−𝛼𝑡ℎ(𝑥3)
ℎ(𝑥3)

ℎ(𝑥1)

ℎ(𝑥2)

ℎ(𝑥4)

𝑒−𝛼𝑡ℎ(𝑥1)
𝑒−𝛼𝑡ℎ(𝑥4)

−𝑐

𝒉=𝟎

𝜙(𝑥2, 𝑡)

𝜙(𝑥1, 𝑡)

𝜙(𝑥3, 𝑡)

𝒉>𝟎



Recurrent Exponential Barrier Function (REBF)

Thm: Integral Exponential Barrier Function:
Let ℎ be continuous. If:

for all 𝒕 ≥ 𝟎, then, ℎ≥0 is invariant

Enrique Mallada (JHU) 14

Thm: Recurrent Exponential Barrier Function:
Let ℎ be continuous. If:

then, ℎ≥0 is 𝝉-recurrent

ℎ(𝑥)

𝒉≥𝟎 invariant

Time0

𝑒−𝛼𝑡ℎ(𝑥3)
ℎ(𝑥3)

ℎ(𝑥1)

ℎ(𝑥2)

ℎ(𝑥4)

𝑒−𝛼𝑡ℎ(𝑥1)
𝑒−𝛼𝑡ℎ(𝑥4)

−𝑐

𝒉=𝟎

𝜙(𝑥2, 𝑡)

𝜙(𝑥1, 𝑡)

𝜙(𝑥3, 𝑡)

𝒉>𝟎



Recurrent Exponential Barrier Function (RNBF)

𝒉≥𝟎 𝜏-recurrent
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𝒉=𝟎

𝒉>𝟎

Time elapsed ≤ 𝝉

Time elapsed ≤ 𝝉

As 𝜏 → 0

By definition

Thm: Integral Exponential Barrier Function:
Let ℎ be continuous. If:

for all 𝒕 ≥ 𝟎, then, ℎ≥0 is invariant

Thm: Recurrent Exponential Barrier Function:
Let ℎ be continuous. If:

then, ℎ≥0 is 𝝉-recurrent

𝜙(𝑥1, 𝑡)

𝜙(𝑥3, 𝑡)

Time0

𝑒−𝛼𝑡ℎ(𝑥3)

𝑒−𝛼𝑡ℎ(𝑥1)
𝑒−𝛼𝑡ℎ(𝑥4)

ℎ(𝑥3)

ℎ(𝑥1)

Time elapsed ≤ 𝝉

Question: Do we gain anything from relaxing 
the invariance condition in BFs?



Signed Norms are Recurrent Barrier Functions!

We first generalize REBF using different exponential rates 𝛼, 𝛽 > 0: 
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Time0

𝑒−𝛽𝑡ℎ(𝑥3)

𝑒−𝛼𝑡ℎ(𝑥1)
𝑒−𝛼𝑡ℎ(𝑥4)

ℎ(𝑥3)

ℎ(𝑥1)

Time elapsed ≤ 𝝉

𝒉=𝟎

𝒉>𝟎

Time elapsed ≤ 𝝉

Time elapsed ≤ 𝝉

𝜙(𝑥1, 𝑡)

𝜙(𝑥3, 𝑡)



𝐷0 ≔ ℎ≥−𝑐

Signed Norms are Recurrent Barrier Functions!

We first generalize REBF using different exponential rates 𝛼, 𝛽 > 0: 
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Theorem: Assume there exists an Integral Exponential BF (IEBF), ℎ ,

defined over 𝐷0 ≔ ℎ≥−𝑐 for some 𝑐 > 0. Then ∃ 𝛼 > 0 such that:

𝑒𝛼𝑡 ℎ 𝜙 𝑡, 𝑥 ≥ ℎ 𝑥 , ∀𝑥 ∈ ℎ≥−𝑐

for all  𝑡 ≥ 0.

Then for any set 𝒮 with ℎ≥0 ⊆ 𝒮 ⊆ ℎ≤−𝑐, the function

ℎ 𝑥 ≔ −sd(𝑥, 𝒮)

is a Recurrent Exponential Barrier Function (REBF):

max
𝑡∈ 0,𝜏

𝑒ෝ𝛼𝑡 ℎ 𝜙 𝑡, 𝑥
+

+ 𝑒
𝛽𝑡 ℎ 𝜙 𝑡, 𝑥

−`
≥ ℎ 𝑥 , ∀𝑥 ∈ ℎ≥−𝑐

with any parameters መ𝛽 < 𝛼 < ො𝛼 whenever 𝜏 ≥ ҧ𝜏( ො𝛼 − 𝛼, መ𝛽 − 𝛼)

𝜙(𝑥2, 𝑡)

𝒉=𝟎 𝜙(𝑥1, 𝑡)

𝜙(𝑥3, 𝑡)

𝒮
ℎ≥0

ℎ<0

𝒉=𝟎



•  Letting things go and come back: Recurrent sets 

•  Generalized barriers: Integral forms and recurrent relaxations

•  Safety verification via Recurrent Barrier Functions
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Safety Verification via Recurrent Sets

Theorem - Consider a closed set 𝑆 that is 𝝉-recurrent. 
Then its 𝜏-reachable set:

is invariant.  

Moreover, 𝑆 is safe whenever:
1.  ℛ[0,𝜏](𝑆) ∩ 𝑋𝑢 = ∅, 

2.  𝑆 ∩ ℛ −𝜏,0 𝑋𝑢 = ∅

𝑺

𝑿𝒖
(Known Unsafe)

ℛ[0,𝜏](𝑆)

ℛ −𝜏,0 (𝑋𝑢)

Enrique Mallada (JHU) 17



𝑋𝑢 : 

A set 𝑆 is safe whenever:

Reachability Condition
• ℛ[0,𝜏](𝑆) ∩ 𝑋𝑢 = ∅ 

Recurrent Condition

• ℎ 𝑥 ≔ − sd ( 𝑥 , 𝑆 ) is a Recurrent 
Exponential Barrier Function

• Cover the region with a grid 𝐺
• For each point 𝑔 ∈ 𝐺, 𝑆𝑔 represents its cell

• We build 𝑆 =∪𝑔∈𝐺𝑠 𝑆𝑔, with 𝐺𝑠 representing safe points
• Initialize 𝐺𝑠 ← 𝐺

• Check both conditions using only one trajectory for each cell!

A GPU based algorithm

Enrique Mallada (JHU) 18



Checking Reachability Condition
Starting from centers of grid cell 𝑔, simulate the 
trajectories for 𝜏-seconds in parallel using a GPU

𝒳𝑢

If  𝜙 𝑡, 𝑥 ∉ 𝒳𝑢, ∀𝑥 ∈ 𝑆𝑔, 𝑡 ∈ [0, 𝜏]

 “ℛ 0,𝜏 (𝑆𝑔) ∩ 𝑋𝑢 = ∅”

If  ∃𝑡 ∈ 0, 𝜏  s.t. 𝜙 𝑡, 𝑥 ∈ 𝒳𝑢, ∀𝑥 ∈ 𝑆𝑔

 “ℛ𝑡 𝑆𝑔 ⊆ 𝑋𝑢 for some 𝑡 ∈ 0, 𝜏  ”

Keep 𝑔 in 𝐺𝑠

Else
Undetermined 

Split 𝑔

Remove 𝑔 from 𝐺𝑠 
Add 𝑔 to 𝐺𝑢

*Stop splitting g and mark it as 
unsafe whenever g is too small

𝑔

A GPU based algorithm

Enrique Mallada (JHU) 18



𝐺𝒔: 

𝐺𝒖: 

A set 𝑆 =∪𝑠∈𝐺𝑠 𝑆𝑔 is safe whenever:

Reachability Condition
• ℛ[0,𝜏](𝑆) ∩ 𝑋𝑢 = ∅ 

Recurrent Condition

• ℎ 𝑥 ≔ − sd ( 𝑥 , 𝑆 ) is a Recurrent 
exponential barrier function

𝑋𝑢 : 

A GPU based algorithm
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Check the Recurrent condition
• Let 𝑆 =∪𝑔∈𝐺𝑠 𝑆𝑔 ,

• Starting from centers of grid cell 𝑔 ∈ 𝐺𝑠, simulate 
the trajectories for 𝜏-seconds in parallel using a GPU

If  m𝑎𝑥
𝑡∈ 0,𝜏

 𝑒ෝ𝛼𝑡 ℎ 𝜙 𝑡, 𝑥 ≥ ℎ 𝑥 , ∀𝑥 ∈ 𝑆𝑔

 “REBF condition is satisfied within 𝑔”
Keep 𝑔 in 𝐺𝑠

Remove 𝑔 from 𝐺𝑠 
Add 𝑔 to 𝐺𝑢

Else
Undetermined 

Split 𝑔

If  m𝑎𝑥
𝑡∈ 0,𝜏

 𝑒ෝ𝛼𝑡 ℎ 𝜙 𝑡, 𝑥 < ℎ 𝑥 , ∀𝑥 ∈ 𝑆𝑔

 “REBF condition is NOT satisfied within 𝑆𝑔”𝐺𝑢

*Stop splitting g and mark it as 
unsafe whenever g is too small

𝐺𝑠

A GPU based algorithm
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𝐺𝒔: 

𝐺𝒖: 

A set 𝑆 =∪𝑠∈𝐺𝑠 𝑆𝑔 is safe whenever:

Reachability Condition
• ℛ[0,𝜏](𝑆) ∩ 𝑋𝑢 = ∅ 

Recurrent Condition

• ℎ 𝑥 ≔ − sd ( 𝑥 , 𝑆) is a Recurrent 
exponential barrier function

A GPU based algorithm
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A GPU based algorithm



Conclusions and Future work

• Takeaways

• Proposed a relaxed notion of invariance known as recurrence

• Introduced Recurrent Barrier Functions using recurrence ideas

• Signed norms on many sets are RBFs!

• Develop parallelizable algorithms using GPUs

• Ongoing work 
• Recurrent Sets: Smart choice of multi-points, control recurrent sets, GPU implementation

• Function Certificates: Generalize other Lyapunov notions, Control Lyapunov Functions, 

Control Barrier Functions, Contraction, etc. 

• Recurrence Entropy: Understanding the complexity of making a set recurrent when 

compared with invariance

Enrique Mallada (JHU) 19



Thanks!
Related Publications:
[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets,  CDC 2022, journal preprint 
arXiv:2204.10372.
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[Allerton 24] Shen, Sibai, M, Generalized Barrier Functions: Integral conditions and recurrent relaxations, Allerton 2024
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