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The Need for Safety Guarantees AngryResidents, Abrupt Stops: Waymo Vehicles Are Still
Causing Problems in Arizona

RAY STERN | MARCH 31, 2021 | 8:26AM

DeepMind's Losses and the Future of Artificial Intelligence

Alphabet’s DeepMind unit, conqueror of Go and other games, is losing lots of money. Continued deficits could imperil investments in Al.

AARIAN MARSHALL BUSINESS 12.87.20828 @4:B6 PM

Uber Gives Up on the Self-Driving Dream

The ride-hail giant invested more than $1 billion in autonomous vehicles. Now it’s selling the unit to Aurora, which makes self-driving tech.

CRUISE KNEW ITS SELF-DRIVING CARS
Tesla Recalls Nearly All Vehicles Due to HAD PROBLEMS RECOGNIZING CHILDREN
Autopilot Failures — AND KEPT THEM ON THE STREETS

According to internal materials reviewed by The Intercept, Cruise
cars were also in danger of driving into holes in the road.

Tesla disagrees with feds' analysis of glitches

BY LINA FISHER, 2:54PM, WED. DEC. 13, 2023

Self-driving Uber car that hit and killed
woman did not recognize that pedestrians

jaywalk

The automated car lacked "the capability to classify an object as a pedestrian unless that object

OpenAl disbands its robotics research team

was near a crosswalk,” an NTSB report said.
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Safety in Dynamical Systems

Consider the continuous-time dynamical system: x = f(x)

- ¢(t, xy): solution at time t starting from x,
- X,,: set of unsafe states

Goal: Find the safe set

¢(t, xO)

X,,: unsafe set
— (e.g., obstacles)

X
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Safety in Dynamical Systems via Invariant Sets

Consider the continuous-time dynamical system: x = f(x)

- ¢(t, xp): solution at time t starting from x,
- X,;: set of unsafe states

Goal: Find the safe set || R

General Approach: Use invariant sets!
AsetS € R%is invariant if and only if: x €S — ¢(t,x,) €S, Vt =0

System Limits Unsafe Regions
(e.g., speed) (e.g., obstacles)
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Certifying Safety using Barrier Functions

Theorem - Nagumo’s Barrier Functions [Nagumo ‘42] :

Let h: RY — R be differentiable, with 0 being a regular value.
Then h is a Nagumo’s Barrier Function (NBF) satisfying:

if and only if hyg :={x € ]Rd|h(x) > 0} is invariant.

¢ (x2,1)
h(?ﬁ)f
h_q ¢ (xq1,t) O X
h(x 2) (Unslgfe)
0 > Time

h. ¢ invariant

Then hs, is a safe set whenever hso N X, =@

M. Nag_umo, “Uber die lage der integralkurven gewdhnlicher differentialgleichungen,” Proceedings of the Physico-Mathematical Society of Japan 1942

Enrique Mallada (JHU) 7



Shaping Safe Behavior using Barrier Functions (BFs)

Barrier functions provide a flexible framework to shape the behavior of trajectories
Nagumo’s (NBF)

Exponential Barrier Functions (EBF)
th(.’b‘) 2 0, Vx € hzg

th(:E) > —(l’h(.ﬂ'}), Vx € hz—c
e Problem: Finding Barrier Functions is usually et
Xy, T . *
" a complex undertakmg

Y. 1) . g\ ‘ /

\ Key ChaIIenge The invariance condition on hs, couples the .
iz invariant geometry of f and the set h

Other: Zeroing BFs (ZBFs), Minimal BFs (MBFs), Control BFs (CBFs), High Order CBFs (HOCBFs),
S. Prajna, A. Jadbabaie. Safety Verification of Hybrid Systems Using Barrier Certificates. HSCC 2004
P. Wieland, F. Allgower. Constructive safety using control barrier functions. IFAC Proceedings Volumes 2007

A. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, P. Tabuada. Control barrier functions: Theory and applications. |EEE ECC 2019

R.Konda, A. Ames, S. Coogan. Characterizing safety: Minimal control barrier functions from scalar comparison systems. |EEE L-CSS 2020
W. Xiao, C. Belta. High-order control barrier functions. IEEE TAC 2021
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Outline

* Letting things go and come back: Recurrent sets

* Generalized barriers: Integral forms and recurrent relaxations

 Safety verification via Recurrent Barrier Functions
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Core challenge: Invariant safe sets are hard to find

Aset S © R? is positively invariant if and only if: xo €S = ¢(t,x,) €S, Vt =0
Any trajectory starting in the set remains in inside it for all times

Goal: Given an unknown safe set X, find an invariant set § such that § c X..

Example:

e R
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Core challenge: Invariant safe sets are hard to find

Aset S © R? is positively invariant if and only if: xo €S = ¢(t,x,) €S, Vt =0
Any trajectory starting in the set remains in inside it for all times

Goal: Given an unknown safe set X, find an invariant set § such that § c X..

Challenges:
. _ _ Example:
* S is topologically constrained S C X, is not invariant!

e Trajectory cannot cross disconnected parts of §

Xs:p 1 S: 1

A not invariant trajectory: «_ ,
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Core challenge: Invariant safe sets are hard to find

Aset S © R? is positively invariant if and only if: xo €S = ¢(t,x,) €S, Vt =0
Any trajectory starting in the set remains in inside it for all times

Goal: Given an unknown safe set X, find an invariant set § such that § c X..

Challenges:
. . _ Example:
* S is topologically constrained S C X, is not invariant!

e Trajectory cannot cross disconnected parts of §

— S
” ‘\

S is geometrically constrained
* f should point inwards for x € a8

 Sishardtogrow
* S should adapt to new trajectories

| . . . . —
 Invariance introduces strict constraints on the shape, | X;: R -

I
' tgp_ol_ogy,_a_ng t_hf f_uEu:e_ei(t_erlSI_OE Sf_tlle_sst_é‘ _' L A not invariant trajectory: e,
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Recurrent sets: Letting things go, and come back

A set R € R% is recurrent if forany x, € Rand t = 0, 3t’ > ts.t. ¢p(t’, x,) € R.

Property of Recurrent Sets
* R need not be connected

* R does not require f to point inwards on all dR Recurrent set R:
A recurrent trajectory: e«

‘-—_’
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Outline

* Letting things go and come back: Recurrent sets

* Generalized barriers: Integral forms and recurrent relaxations
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Integral Nagumo’s Barrier Function (INBF)

Nagumo’s Barrier Functions [Nagumo ‘42]: Integral Nagumo’s Barrier Function:
Let h be differentiable, reqular at zero, and Let h be continuous, and
<=
L¢h(x) >0, Vo € h—g h(¢(t,z)) >0,V € h_g,t >0

;V The super-level set h is invariant. 4—| ¥ ¢ = =

requires more
conditionson h

h(x)

h(xl)T\
0 \— —— > Time

h.( invariant

Enriqgue Mallada (JHU) 11



Recurrent Nagumo’s Barrier Function (RNBF)

Thm: Integral Nagumo’s Barrier Function:

Thm: Recurrent Nagumo’s Barrier Function
Let h be continuous. Then:

Let h be continuous. Then:

h(¢(t,z)) >0, Ve € h—¢,t >0 H%g\,x]h(gb(t, z)) >0, Vx € h—g
te(0,7

if and only if h. is invariant if and only if i is T-recurrent

Definition: A set R € R? is 7-recurrent if forany x, € Rand t > 0, 3t’ € (¢, t + 1] s.t. p(t', xo) € R.

h(x)

h(x1)1\
0 \_ —

» Time

h.( invariant
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Recurrent Nagumo’s Barrier Function (RNBF)

Thm: Integral Nagumo’s Barrier Function: Thm: Recurrent Nagumo’s Barrier Function

Let h be continuous. Then: AsT — 0 Let h be continuous. Then:
—
ﬁ
h(¢(t,x)) >0, Ve € h—g,t >0 By definition tg%%i]h(é(t, z)) >0, Vx € h—g

if and only if h. is invariant if and only if i is T-recurrent

Definition: A set R € R? is 7-recurrent if forany x, € Rand t > 0, 3t’ € (¢, t + 1] s.t. p(t', xo) € R.

Time elapsed < T

h(x)

h(xq1)

» Time

h. T-recurrent

Time elapsed < T Time elapsed < T

Enrique Mallada (JHU)
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Integral Exponential Barrier Function (IEBF)

Exponential Barrier Functions: Integral Exponential Barrier Function:
Let h be differentiable, and Let h be continuous, and
L¢h > h h —ocd
th(@) > —ah(z), Ve €hs—e  ® = =  h(g(t,a)) = e h(z), Vo € hs_.
forall t =0
;V The super-level set h is invariant. 4—| ¥ ¢ = =
requires more
h(x) conditionson h
h(xs) . ¢ (x3, 1)
e h(x,)

h(xa) I\

» Time

—
-
-

h.( invariant
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Recurrent Exponential Barrier Function (REBF)

Thm: Integral Exponential Barrier Function: Thm: Recurrent Exponential Barrier Function:
Let h be continuous. If: Let h be continuous. If:
h(p(t,x)) > e *h(x), Vx € h>_, n%ax]eath(gb(t,a:)) > h(z), Yz € h>_,
- te(0,7 -
forall t > 0, then, h is invariant then, h.¢ is T-recurrent
h(x)

¢(X3, t)

» Time

h., invariant
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Recurrent Exponential Barrier Function (RNBF)

Thm: Integral Exponential Barrier Function: Thm: Recurrent Exponential Barrier Function:
Let h be continuous. If: AsT = 0 Let h be continuous. If:
—
>_ —at ot
h(o(t,x)) > e “h(x), Vr € h>_, B_’y oo trex%gﬁ}e h(¢(t,x)) > h(z), Vo € h>_,
forall t > 0, then, h is invariant then, h.¢ is T-recurrent

Question: Do we gain anything from relaxing

the invariance condition in BFs?
e TTh(x,)

¢(X3, t)

h(x) N N } Time elapsed < T
0 > - - » Time h—g
g B
/\/ e~ h(ux3)
h(x3) h. T-recurrent
— \ . J | D
Time elapsed < T Time elapsed < ©

Enriqgue Mallada (JHU) 15



Signed Norms are Recurrent Barrier Functions!

We first generalize REBF using different exponential rates a, f > O:

max e (h(6(t, )] + S [h(6(52)]- 2 h(@), Vo € >

e~ h(x) ¢(x3,t)

e “h(x,)

h(x) N \ " ]. Time elapsed < T
0 —— > Time h_o
g S
1/\/ e Pth(xs)
h(xs) . [
Time elapsed < T Time elapsed < T
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Signed Norms are Recurrent Barrier Functions!

We first generalize REBF using different exponential rates a, f > O:

max e [h(@(t, 2))]4 + e [h(@(t,2))]_ > h(z), ¥z € hs_.

te(0,7]

Theorem: Assume there exists an Integral Exponential BF (IEBF), h,
defined over Dy := h.__. for some ¢ > 0. Then 3 a > 0 such that:
et h(gb(t, x)) > h(x), Vx € hs_,
forall t = 0.
Then for any set S with h.g € § € h.__, the function
h(x) = —sd(x,S)

is a Recurrent Exponential Barrier Function (REBF):

max et |h(¢p(t, x))]+ +ePt[n(p(t, )] = h(x), Vx€hs_,

te(o,7]

h<o

with any parameters f < o < @ whenevert > T(&@ — a, f — a)

Enrique Mallada (JHU)
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* Letting things go and come back: Recurrent sets

* Generalized barriers: Integral forms and recurrent relaxations
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Safety Verification via Recurrent Sets

Theorem - Consider a closed set S that is T-recurrent.
Then its T-reachable set:

is invariant.

Moreover, S is safe whenever:
1. R[O,T] (S) N Xu — @,
2. SN R[—T,O] (Xu) =0

(Known Unsafe)



A GPU based algorithm

4
A set S is safe whenever: \\ \§ ® ’/
2 N \\\A
Reachability Condition .\\ \.\\ \/ N
* RpogS)NnX, =0 0 =\
4 AN
Recurrent Condition //{Q \‘\ N ¥
e h(x) == —sd(x,S)isaRecurrent ~2 \\ N
Exponential Barrier Function ° ° &
_4 '
-4 =2 0 2 4
* Cover the region with a grid G X.: IR

* Foreach point g € G, S, represents its cell
* Webuild § =Ug,eqs Sy, with G° representing safe points
* |nitialize G° « G

* Check both conditions using only one trajectory for each cell!

Enrique Mallada (JHU)
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A GPU based algorithm

7

3

Checking Reachability Condition

Starting from centers of grid cell g, simulate the <«
trajectories for T-seconds in parallel using a GPU

If ¢(t,x) & Xy, Vx € Sy,t € [0, 7]

“« ; — KeepginG®
fR[O,'c] (Sg) NX, =0

If 3t € [O, T] s.t. ¢(t, X) (S Xu, Vx € Sg N Remove g from G°
“R¢(S,) € X, forsome t € [0,7] ” Add g to GY

Else

> Split
Undetermined Pty

*Stop splitting g and mark it as o m |
unsafe wheneyver.gis,too small ol I S




A GPU based algorithm

Aset S =Ugeqs Sy is safe whenever:

Reachability Condition
° R[O,‘L’] S)nXx,=0

Recurrent Condition
* h(x) = —sd(x,S)isaRecurrent
exponential barrier function

o
E

Enriqgue Mallada (JHU) 18



A GPU based algorithm

-

Gu

GS

Check the Recurrent condition

et S =Ugeo S,

———
 Starting from centers of grid cell g € G?, simulate

the trajectories for T-seconds in parallel using a GPU
If max e h(o(t,x)) = h(x),Vx €S

te(0,7] (('b( )) 2 7 - Keep g in G°

“REBF condition is satisfied within g”

If max e® h(p(t,x)) < h(x),Vx € Sg

te(0.7] , Remove g from G S

u
“REBF condition is NOT satisfied within Sg” Add g to G
Else :
: —> Split
Undetermined Pitg
. °
*Stop splitting g and mark it as - .

unsafe whenever, g is too small

A




A GPU based algorithm

Aset S =Ugeqs Sy is safe whenever:

Reachability Condition
° R[O,T] S)nXx,=0

Recurrent Condition
* h(x):=—sd(x,S)isaRecurrent
exponential barrier function

Enriqgue Mallada (JHU) 18



A GPU based algorithm
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Conclusions and Future work

 Takeaways
* Proposed a relaxed notion of invariance known as recurrence
* Introduced Recurrent Barrier Functions using recurrence ideas
* Signed norms on many sets are RBFs!
* Develop parallelizable algorithms using GPUs

* Ongoing work
* Recurrent Sets: Smart choice of multi-points, control recurrent sets, GPU implementation
* Function Certificates: Generalize other Lyapunov notions, Control Lyapunov Functions,
Control Barrier Functions, Contraction, etc.
* Recurrence Entropy: Understanding the complexity of making a set recurrent when
compared with invariance



Thanks!

Related Publications:

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint
arXiv:2204.10372.

[CDC 23] Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification
of non-monotonic Lyapunov functions, CDC 2023

[HSCC 24] Sibai, M, Recurrence of nonlinear control systems: Entropy and bit rates, HSCC, 2024

[Allerton 24] Shen, Sibai, M, Generalized Barrier Functions: Integral conditions and recurrent relaxations, Allerton 2024

Enrigue Mallada
mallada@jhu.edu
http://mallada.ece.jhu.edu



	Slide 1: Generalized Barrier Functions: Integral Conditions & Recurrent Relaxations
	Slide 2: Acknowledgements
	Slide 3: A World of Success Stories
	Slide 4: The Need for Safety Guarantees
	Slide 5: Safety in Dynamical Systems
	Slide 6: Safety in Dynamical Systems via Invariant Sets
	Slide 7: Certifying Safety using Barrier Functions
	Slide 8: Shaping Safe Behavior using Barrier Functions (BFs)
	Slide 9: Outline
	Slide 10: Outline
	Slide 11: Core challenge: Invariant safe sets are hard to find
	Slide 12: Core challenge: Invariant safe sets are hard to find
	Slide 13: Core challenge: Invariant safe sets are hard to find
	Slide 14: Core challenge: Invariant safe sets are hard to find
	Slide 15: Recurrent sets: Letting things go, and come back
	Slide 16: Outline
	Slide 17: Integral Nagumo’s Barrier Function (INBF)
	Slide 18: Recurrent Nagumo’s Barrier Function (RNBF)
	Slide 19: Recurrent Nagumo’s Barrier Function (RNBF)
	Slide 20: Integral Exponential Barrier Function (IEBF)
	Slide 21: Recurrent Exponential Barrier Function (REBF)
	Slide 22: Recurrent Exponential Barrier Function (RNBF)
	Slide 23: Signed Norms are Recurrent Barrier Functions!
	Slide 24: Signed Norms are Recurrent Barrier Functions!
	Slide 25: Outline
	Slide 26: Safety Verification via Recurrent Sets
	Slide 27: A GPU based algorithm
	Slide 28: A GPU based algorithm
	Slide 29: A GPU based algorithm
	Slide 30: A GPU based algorithm
	Slide 31: A GPU based algorithm
	Slide 32
	Slide 33: Conclusions and Future work
	Slide 34

