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Reality Kicks In _ _ _
Angry Residents, Abrupt Stops: Waymo Vehicles Are Still

Causing Problems in Arizona
RAY STERN ' MARCH 31, 2021 @ 8:26AM

DeepMind's Losses and the Future of Artificial Intelligence

Alphabet’s DeepMind unit, conqueror of Go and other games, is losing lots of money. Continued deficits could imperil investments in Al.

Uber Gives Up on the Self-Driving Dream

The ride-hail giant invested more than $1 billion in autonomous vehicles. Now it’s selling the unit to Aurora, which makes self-driving tech.

OpenAl disbands its robotics research team

KyleWiggers  @Kyle_L Wiggers  July 16,2021 11:24 AM

Self-driving Uber car that hit and killed
woman did not recognize that pedestrians

jaywalk

The automated car lacked "the capability to classify an object as a pedestrian unless that object
was near a crosswalk," an NTSB report said.
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Core challenge: The curse of dimensionality

= Statistical: Sampling in d dimension with € accuracy \
Sample complexity: |
|
|

O(e™9)

M@ M@...@ M e /

Fore=0.1and d = 100, we
0100

,
l
l
l
|

would need 1 points.
Atoms in the universe: 1078

= Computational: Verifying non-negativity of polynomials

Copositive matrices:

[xZ ... x3]A[x? ...xczi]T >0

Murty&Kadabi [1987]: Testing co-positivity is NP-Hard Motzkin [1967]:
p = x*y2 4 x2y4 +1—3x2y2

Sum of Squares (SoS): is nonnegative

z(x)TQz(x) =20, z(x) eR[x], xe R%E,Q =0
Artin [1927] (Hilbert’s 17t problem):

not a sum of squares,
but (x? + y?)?p is SoS

Non-negative polynomials are sum of square of rational functions
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Question: Are we asking too much?

* Analysis tools build on a strict and exhaustive notion of invariance
Q: Can we substitute invariance with less restrictive notions?

[arXiv 22] Shen, Bichuch, M - [CDC 23] Siegelmann, Shen, Paganini, M

* Certificates impose conditions on the entire duration of the trajectory

Q: Can we provide guarantees based on only localized trajectory information?
[arXiv 22] Shen, Bichuch, M - [CDC 23] Siegelmann, Shen, Paganini, M

* Control synthesis usually aims for the best (optimal) controller

Q: Is there any gain in focusing on weaker requirements from the get-go?
[HSCC 24] Sibai, M - - [CDC ’23] Siegelmann, Shen, Paganini, M

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.

[CDC 23] Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023
[HSCC 24] Sibai, M, Recurrence of nonlinear control systems: Entropy and bit rates, HSCC, 2024
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Outline

e Invariance: Merits and trade-offs

* Letting things go, and come back: Recurrent sets

* Analysis using recurrent sets

e Approximating regions of attractions

 Stability analysis via non-monotonic Lyapunov functions
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢(t, xg).

I Q-Limit Set Q(f):
: r € Qf) <= Jxo,{tn}n>0, s.t. lim ¢, =00 and lim ¢(t,,z0) =2

n—oo n—oo

Types of Q-limit set

equilibrium limit cycle limit torus chaotic attractor
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢ (&, xp).

I Q-Limit Set Q(f):
: r € Qf) <= Jxo,{tn}n>0, s.t. lim ¢, =00 and lim ¢(t,,z0) =2

= n—oo n—oo I
4
lllustrative Example 21
Zbl . i)
To —x1 + 325 — 2 0 R

Q(f) = {(0,0), (=v3,0), (v/3,0)}  (equilibria) -2}
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))

* Initial condition xy = x(0), solution at time t: ¢ (&, xp).

* The w-limit set of the system: Q(f)

| A(S) {x e RY| lim inf d(6(t, z), S) = 0} ;
R S o k
lllustrative Example 2l
[x;] - [—xl + %Qx:i’ — xJ 0
Q(f) — {(070)7(_\/570)7(\/570)} —27
-4
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢(t, xg).
* The w-limit set of the system: Q(f)

| AS) = {:c e RY| lim inf d(6(t, =), S) :o}

t— 00

lllustrative Example

T1 T2
. : 1 3
o] a1+ ga) —

Q(f) — {(07 O)a (_\/57 0)7 (\/§7 O)}
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢ (&, xp).
* The w-limit set of the system: Q(f)

| A(S) {x e RY| lim inf d(¢(t, ), S) :0}
I t— 00

lllustrative Example

[i;] N [—azl +?x§> - xJ
Q(f) = {(0,0), (=v/3,0), (V3,0)}

Asymptotically stable equilibrium at x* = (0,0)
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢(t, xg).
* The w-limit set of the system: Q(f)

lllustrative Example

T1 T2
. : 1 3
o] a1+ ga) —

Q(f) — {(07 O)a (_\/57 0)7 (\/§7 O)}
Unstable equilibria {(+/3,0), (—V3, 0)}
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Invariant sets

Aset S € R is positively invariant if and only if: xg €S = ¢(t,xg) €S, Vt =0
Any trajectory starting in the set remains in inside it for all times

N
N =
SN AN
E:E:\\;i\\“ \ \\\Qi:\
— =30 o
NS
B0t .
B NS
RN
2GRN

Source: K. Ghorbal, K. and A. Sogokon, Characterizing positively invariant sets: Inductive and topological methods. Journal of Symbolic Computation, 2022
Enrique Mallada (JHU)



Invariant sets: Merits

Aset S € R is positively invariant if and only if: xg €S = ¢(t,xg) €S, Vt =0

Invariant Set

Any trajectory starting in the set remains in inside it for all times

* Invariant sets approximate regions of attraction
Compact invariant set § containing only {x*} = Q(f) N § in the
interior must be in the region of attraction A (x™)

Enrique Mallada (JHU)



Invariant sets: Merits

Aset S € R is positively invariant if and only if: xg €S = ¢(t,xg) €S, Vt =0
Any trajectory starting in the set remains in inside it for all times Invariant Set

* Invariant sets approximate regions of attraction
Compact invariant set § containing only {x*} = Q(f) N § in the
interior must be in the region of attraction A (x™)

* Invariant sets guarantee stability
Lyapunov stability: solutions starting "close enough" to the
equilibrium (within a distance §) remain "close enough" forever
(within a distance &)

Lyapunov Functions

V(x)
* Invariant sets further certify asymptotic stability via me—a.
Lyapunov’s direct method : g
Asymptotic stability: solutions that start close enough, remain close > : ,"' [24]
enough, and eventually converge to equilibrium. i |

Enrique Mallada (JHU) 8



Invariant sets: Challenges

Aset S € R is positively invariant if and only if: xg €S = ¢(t,xg) €S, Vt =0
Any trajectory starting in the set remains in inside it for all tin‘?es

S is topologically constrained
« IfS NQ(f) = {x*}, then § is connected

-4 -2 0 2 4
A not invariant trajectory: e_ ,

Basin of A(Q(f))

 §is geometrically constrained
* f should not point outwards for x € d$

e § geometry can be wild
 AQ(f)) is not necessarily analytic!

Enrique Mallada (JHU) 9
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Recurrent sets: Letting things go, and come back

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Property of Recurrent Sets
e R need not be connected

* R does not require f to point inwards on all R

' Recurrent sets, while not invariant,

|
|
: guarantee that solutions that start in this set, |
1 will come back infinitely often, forever! ;

Recurrent set R:

A recurrent trajectory: <

Enrique Mallada (JHU) 10



Recurrent sets: Letting things go, and come back

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Previous two good inner approximations of A(x") are recurrent sets

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.
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Recurrent sets: Letting things go, and come back

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Property of Recurrent Sets
e R need not be connected

* R does not require f to point inwards on all R

' Recurrent sets, while not invariant, :
: guarantee that solutions that start in this set, :
|
|

1 will come back infinitely often, forever!

Recurrent set R:

A recurrent trajectory: <

Question: Can we use recurrent sets as a substitute to invariant sets?

Enrique Mallada (JHU) 10



Outline
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* Letting things go, and come back: Recurrent sets
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Recurrent sets are subsets of the region of attraction

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Theorem. Let R c R? be a compact set satisfying 0R N Q(f) = .

Then: [~~~ ~"~"~""~"TT"--STo-mmommmmm—

T RNA(f) # @
R is invariant =y R c AR N Q)

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.
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Recurrent sets are subsets of the region of attraction

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Theorem. Let R c R? be a compact set satisfying 0R N Q(f) = .

Then: [~~~ ~"~"~""~"TT"--STo-mmommmmm—
RNQ(f) 0

R c AR NQ(f))

not recurrent

x5

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.
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Learning Regions of Attractions via Recurrent Sets

Algorithm: Given h, k, and € > 0:
* Build approximation using unions of balls centered at x, ..., x4, with x; = x”

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.

Enrique Mallada (JHU)
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Learning Regions of Attractions via Recurrent Sets

Algorithm: Given h, k, and € > 0:
* Build approximation using unions of balls centered at x4, ..., X4, with x; = x™

* Initial approximation: 8, =UZ=1 Sy, where S = {xi ||x - xq|| = bé’}

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.
Enrique Mallada (JHU)

12



Learning Regions of Attractions via Recurrent Sets

Algorithm: Given h, k, and € > 0:
* Build approximation using unions of balls centered at x4, ..., X4, with x; = x™

* Initial approximation: Sy =U}_, S/, where S; = {x: ||x — xq|| < bg}

At each iteration [
* Sample trajectories of duration T from §; until

recurrence is violated (counter-example)

N 2

P3: counter example

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.
Enrique Mallada (JHU) 12



Learning Regions of Attractions via Recurrent Sets

Algorithm: Given h, k, and € > 0:
* Build approximation using unions of balls centered at x4, ..., X4, with x; = x™

<)

* Initial approximation: Sy =U}_, S/, where S; = {x: ||x — xg

At each iteration [
e Sample trajectories of duration T from §; until

recurrence is violated (counter-example)
* Update approximation ;1 to exclude
counter-example neighborhood: p; + B,

e . V(S1+Be) l
Sample complexity: m > V(B log(6)

P3: counter example

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.
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Example: Progressively Expanding the RoA Approximation

* At Each Episode:
* Sample 50 center points (uniformly)
e Stopping criteria: § = 107°

gpisode = 1

4
T=.3
2 J

g

o~ O | O 5 80%
X 2

‘.,'. g .

© 60%
. ()]
s

-2 'S 40%

3 @
., (o)}
— Strict reccurent area g

ROA approximation ™ o 20%

........ True ROA . o —— ROA aprroximation volume
-4 T . . : 0% —— Strict recurrent area volume
-4 —2 0 2 4 : ; : : : : : : .
0 25 50 75 100 125 150 175 200
X1 episode index
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* Letting things go, and come back: Recurrent sets

e Analysis using recurrent sets
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Lyapunov’s Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

Rsq, with V(x) > 0,Vx € R\{x*}, then:
e V <0 - x*stable
e V <0 - x*as. stable

Theorem [Lyapunov ‘1892]. Given V: R* — -

Challenge: Couples shape of I/ and vector field f

» Towards decoupling the V — f geometry
« Controlling regions where V > 0 [Karafyllis ‘09, Liu et al ‘20]
* Higher order conditions: g(V(q), .V, V) < 0 [Butz ‘69, Gunderson 71, Ahmadi 06, Meigoli ‘12]
* Discretization approach: V(x(T)) < V(x(0)) [Coron et al ‘94, Aeyels et. al ‘98, Karafyllis ‘12]
* Multiple Lyapunov Functions: {V;: j € [k]} [Ahmadi et al ‘14]

A Butz. Higher order derivatives of Lyapunov functions. IEEE Transactions on automatic control, 1969
Gunderson. A comparison lemma for higher order trajectory derivatives. Proceedings of the American Mathematical Society, 1971
Coron, Lionel Rosier. A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Syst., Estimation, Control, 1994
Aeyels, Peuteman. A new asymptotic stability criterion for nonlinear time-variant differential equations. IEEE Transactions on automatic control, 1998
Ahmadi. Non-monotonic Lyapunov functions for stability of nonlinear and switched systems: theory and computation, 2008
Karafyllis, Kravaris, Kalogerakis. Relaxed Lyapunov criteria for robust global stabilisation of non-linear systems. International Journal of Control, 2009
Meigoli, Nikravesh. Stability analysis of nonlinear systems using higher order derivatives of Lyapunov function candidates. Systems & Control Letters, 2012
Karafyllis. Can we prove stability by using a positive definite function with non sign-definite derivative? IMA Journal of Mathematical Control and Information, 2012
Ahmadi, Jungers, Parrilo, Roozbehani. Joint spectral radius and path-complete graph Lyapunov functions. SIAM Journal on Control and Optimization, 2014
Liu, Liberzon, Zharnitsky. Almost Lyapunov functions for nonlinear systems. Automatica, 2020

Enrique Mallada (JHU)
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Lyapunov’s Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

Theorem [Lyapunov ‘1892]. Given V: R* — -
Rsq, with V(x) > 0,Vx € R\{x*}, then:
e V<0 - x*stable < = :." 5]
e V <0 - x*as. stable ' %

Challenge: Couples shape of I/ and vector field f

» Towards decoupling the V — f geometry
« Controlling regions where V > 0 [Karafyllis ‘09, Liu et al ‘20]
* Higher order conditions: g(V(Q), .V, V) < 0 [Butz ‘69, Gunderson 71, Ahmadi 06, Meigoli ‘12]
* Discretization approach: V(x(T)) < V(x(0)) [Coron et al ‘94, Aeyels et. al ‘98, Karafyllis ‘12]
* Multiple Lyapunov Functions: {V;: j € [k]} [Ahmadi et al ‘14]

Question: Can we provide stability conditions based on recurrence?

Enrique Mallada (JHU) 14



Recurrently Decreasing Lyapunov Functions

A continuous function IV: R¢ — R, is a recurrently non-increasing Lyapunov
function over intervals of length T if

LYV (2) = min V(6(t,z) = V(2) <0 Ve R¢
te (0,7
Preliminaries:
* Sub-level sets {V(x) < c} are T-recurrent sets.

* When f is L-Lipschitz, one can trap trajectories.

F.te'

F, =ggsxcllf(x)ll

Enrique Mallada (JHU) 15



Recurrently Non-Increasing Lyapunov Functions

A continuous function IV: R¢ — R, is a recurrently non-increasing Lyapunov
function over intervals of length T if

LYV (z) == min V(g(t,2)) ~V(z) <0 VYzeR? ®
te(0,7]
Theorem [CDC 23*]: Let V: R? — R-o be a
recurrently non-increasing Lyapunov function
over intervals of length t. Let f be L-Lipschitz
* Then the equilibrium x™ is stable.
* Further, if the inequality is strict, then x™ is
asymptotically stable!

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions,
submitted CDC 2023

Enrique Mallada (JHU) 16



Exponential Stability Analysis

The function V: R% - R, is a-exponentially recurrently T-decreasing Lyapunov
function over intervals of length T if

LYV (2) = min eV (p(t,z)) — Vi(z) <0 Vo e R
’ te (0,7

Theorem [CDC 23*]: Let V: R? — R, satisfy min

ai|lx — x*|| S V(x) < ayllx — x|
Then, if V is a-exponentially recurrently - A z Doy €V (00 22))
decreasing Lyapunov function, then x"is "\
exponentially stable with ratea. | — P
L >
— — t

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions,

*submitted CDC 2023
Enrique Mallada (JHU) 17



All norms are Lyapunov functions!

Theorem: Assume x™ is globally exponentially stable: 3 K, ¢ > 0 such that:
|l (8, x) — x*|| < Ke™¢||xo — x*|
Then, V (x) = ||x — x*

min_ e%||od(t,x) — x*
U ||<I5( ) |

is a-exponentially recurrently T-decreasing, i.e.,

<0, Vx € R4,

— ||x—x*|

1
whenever a <c¢ and 1= C_—aln K.

Remarks:
* The rate & must be strictly smaller than the rate of convergence c (giving up optimality).

* Any norm is a Lyapunov function!

Question: Is the struggle for its search over?

Enrique Mallada (JHU) 18



Verification of Exponential Stability

Proposition [CDC 23*]: Let V: R? — R, satisfy a1||
and 0 < u < 1. Then, whenever

trer%(l)n eV (p(x, 1)) < ,u(

forally with ||y — x|| < r = (x)g( )

te(0,7]

<V(x) < a2||

1) V(x)

mlzn e“tV(CP(y; t)) < V()

— -
- ~~

- -
_ -

__________
—————
-

~
~ -
~—ao -

-~ -

~

Enrique Mallada (JHU)

~ -
~ -
~~— -

19



GPU-based Algorithm

* Basic Algorithm:

 Consider V(x) = ||x — x™||w
* Build a grid of hypercubes surrounding x

 Test the center point and find « s.t. the
verified radiusisr > £ /2

« Hypercube not verified, split in 3¢ parts
* Repeat testing of new points

B split
. = .}m

*

Enrique Mallada (JHU)
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GPU-based Algorithm

* Basic Algorithm: .

e Consider V(x) = ||x — x*||

* Build a grid of hypercubes surrounding x*

 Test the center point and find « s.t. the
verified radiusisr = £/2

« Hypercube not verified, split in 3¢ parts
* Repeat testing of new points

* Exponentially expand to outer layer
* Repeat testing in new layer

Enrique Mallada (JHU)
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GPU-based Algorithm

* Basic Algorithm:
e Consider V(x) = ||x — x*||

* Build a grid of hypercubes surrounding x*

 Test the center point and find « s.t. the
verified radiusisr = £/2

« Hypercube not verified, split in 3¢ parts
* Repeat testing of new points
* Exponentially expand to outer layer

L o Ld
— e e e e o e e e e e e e e e f—
°

* Repeat testing in new layer

Q: How many samples are needed?
If x™ is A-exp. stable

o(reua )

1-Kele-7

with ¢ = —— o

Enrique Mallada (JHU)
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Numerical lllustration o y S
Consider the 2-d non-linear system: X = [ 1 1] X + B |x1x; b 18
- o 2 T 15

with B;; ~ N(0,02) L X2 y 0.01

o=0.2

Phase Portrait

e N RN R AR R e e R
0.75 Pt = - SN 07541 ® 0.03 ' N\
P S Sy ~ 0.01 A
0.50 ;//;—N.‘\\“F~§\ ?\\E\\\\\ 0.50 4 ’ x : N\
. ——‘—’_\N ~ * \
v — b S N \\ /7
WINPT =10 V&
> 0.00 T 11‘/ l((\/\\/ \\\u,})¥, l\)‘ >\\, 0.00 - : : v
b vy
S——— Y X
-0.25 \ \.\\ \\\\\E\“ ~T— 4/’_4‘4} | -0.25 - Q \ b i
\.\ oy I [ 1" o \ &2
—0.50 \\k\\\ \ \ \ \\t‘:-. — - 1% s ] \ \ B
' \ *® o T e T > — 0.50 \ 5
—0.75 1 l\ N \‘ \\' L ——— < _075_\\ -—
| NI . 7 RN N e -
-1.00 \ \ \\\\ \\E\\\Q‘E ~-1.00 -\\\\\\\\\\\\\\\\\&““
m N I '
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
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Comparison with SoS S

Consider the 2-d non-linear system: X = [_01 _21] x + B [x1X; g 18

with Bl] ~ N(0,0’z) ; ' -

4 0.01

Exponential Stability Parameters vs. Time: o = 0.1

oc=0.1 —

= Qur Algorithm
——S0S - Degree 2
SOS - Degree 4
——S0S - Degree 6
~—S0S - Degree 8

o
@

o
»

Exponential Stability Parameter a

14

20 40 60 80 100

Time (s)
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Comparison with SoS S

X1
: : . . [0 2 L 1.8
Consider the 2-d non-linear system: X = 1 1 x + B |[X1X5
i T _ 2 T 1.5
with B;; ~ N (0, o X
Y (0,5%) -T2 ¢ 0.01
. Exponential Stability Parameters vs. Time: o = 0.3
o=20.3 mlk
o = QOur Algorithm

~—S80S - Degree 2

SOS - Degree 4
035 ——8SO0S - Degree 6
——80S - Degree 8

Exponential Stability Parameter «

| 6\0 |
Time (s)
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Comparison with SoS S

X1
Consider the 2-d non-linear system: X = [_01 _21] x + B [x1X; g 18
with B;j ~ N'(0,02) EZR ; 01;)51

Exponential Stability Parameters vs. Time: o = 0.5

og=0.5 —

) u’\’_l — Our Algorithm

~——S0S - Degree 2
SOS - Degree 4

——80S - Degree 6
~—S0S - Degree 8

Exponential Stability Parameter «
—

"
Time (s)
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Comparison with SoS S

Consider the 2-d non-linear system: X = [_01 _21] x + B [x1X; g 18

with Bl] ~ N(0,0’z) 2 ' -

4 0.01

Exponential Stability Parameters vs. Time: o = 0.6

o=0.6 [ =

~

= Qur Algorithm
~—S0S - Degree 2
SOS - Degree 4
——S0S - Degree 6
——80S - Degree 8

o
»

o
w
&

lity Parameter «

e

o
&R
I I
N

Exponential Stab

| Glo |
Time (s)
Enrique Mallada (JHU) 22




Conclusions and Future work

 Takeaways
* Proposed a relaxed notion of invariance known as recurrence.
* Provide necessary and sufficient conditions for a recurrent set to be an inner
approximation of the RoA.
* Generalized Lyapunov Theory for recurrently decreasing functions using recurrent sets
* From an information theoretical standpoint, making as set recurrent can be easier than

invariant.

* Ongoing work
* Recurrent Sets: Smart choice of multi-points, control recurrent sets, GPU implementation
* Lyapunov Functions: Generalize other Lyapunov notions, Control Lyapunov Functions,
Barrier Functions, Control Barrier Functions, Contraction, etc.
* Entropy: Understanding the memory complexity of making a set recurrent and

generalizations to other tasks



Thanks!

Related Publications:
[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint

arXiv:2204.10372.
[CDC 23] Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification

of non-monotonic Lyapunov functions, CDC 2023
[HSCC 24] Sibai, M, Recurrence of nonlinear control systems: Entropy and bit rates, HSCC, 2024

Enrique Mallada

mallada@jhu.edu
http://mallada.ece.jhu.edu



Model-Free Analysis of Dynamical Systems using Recurrent Sets

* Uses of invariant sets in control theory
* Inner-approximation of regions of attractions

 Stability analysis using non-monotonic Lyapunov functions
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Yue Shen Maxim Bichuch
@ JOHNS HOPKINS University
Y © UNIVERSITY at Buffalo

Model-free Learning of Regions of
Attractions via Recurrent Sets

Y Shen, M. Bichuch, and E Mallada, “Model-free Learning of regions of attraction via recurrent sets.” CDC 2022.
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Motivation: Estimation of regions of attraction
Having an approximation of the region of attraction allows us to

* Test the limits of controller designs
especially for those based on (possibly linear) approximations of nonlinear systems

S ..

quadcopter robot arm

* Verify safety of certain operating condition

HVAC system power grids

Enrique Mallada (JHU)
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Recall: Problem setup

Continuous time dynamical system: x(t) = f(x(t))

* Initial condition xy = x(0), solution at time t: ¢ (&, xp).

* The w-limit set of the system: Q(f)

l
1 A(S) = {a: e RY liminf d(¢(t, x), S) = O}

t—0o0

lllustrative Example

[i;] N [—azl +?x§> - xJ
Q(f) = {(0,0), (=v/3,0), (V3,0)}

Asymptotically stable equilibrium at x* = (0,0)

Enrique Mallada (JHU)
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Recall: Problem setup
Example Ill: Limit set Q(f)

Continuous time dynamical system: x(t) = f(x(t)) et phags ‘ uxphage
* Initial condition xy = x(0), solution at time t: ¢(t, xg).
* The w-limit set of the system: Q(f)

O N A o a4 N W

. |
1 A(S) = {CIZ c R*|liminf d(¢(t, x),S) = 0} :

t— 00

Example Il:  Limit set Q(f) Basin of A(Q)
-100 § 11
O T =01,01,2)
(-0.1, 0.1, -14)| .
20 (0.1, -0.1, -14) \\ ]
- ; } |
p @ /
204 4
(a)
5 0 5 e hbe
X a0 X 10

Enrique Mallada (JHU) 27



Region of attraction of stable equilibria

| A(S) = {xo e RY| lim o(t, z0) € S} 4
_>
2 i
Assumption 1. The system x(t) = f(x(t)) has an
asymptotically stable equilibrium at x™. .
_2 i
Remark. It follows from Assumption 1 that the positively
invariant ROA A(x™) is an open contractible set —ff4

[Sontag, 2013], i.e., the identity map of A(x™) to itself is
null-homotopic [Munkres, 2000].

E. Sontag. “Mathematical Control Theory: Deterministic Finite Dimensional Systems.” Springer 2013
J. R. Munkres. “Topology.” Prentice Hall 2000

Enrique Mallada (JHU) 28



Challenges of working with invariant set

Approximating ROA A(x™) by finding an invariant set § € A(x")

 §istopologically constrained

If S N Q(f) = {x*}, then S is connected

Enrique Mallada (JHU)

Example 1: § € A(x") is not
connected, not invariant!

a2 0 2
A(x*) : s:

A not invariant trajectory: e __,

29



Challenges of working with invariant set

Approximating ROA A(x™) by finding an invariant set § € A(x")

 §istopologically constrained

If S N Q(f) = {x*}, then S is connected

 §isgeometrically constrained

f should not point outwards for x € 08

Enrique Mallada (JHU)

Example 2: § € A(x™), f points
outward on 48§, not invariant

-4 —é 0 2
A(x*) : s:

A not invariant trajectory: e __,

29



Challenges of working with invariant set

Approximating ROA A(x™) by finding an invariant set § € A(x")

4

 §istopologically constrained
 IfSNQ(f) = {x*}, then § is connected

 §isgeometrically constrained
* f should not point outwards for x € d$§ -2

| A subset or a superset of an |
| invariant set is not necessarily | A(x) :
I

A not invariant trajectory: «_ ,

Enrique Mallada (JHU) 29



Recurrent sets: Letting things go, and come back

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Property of Recurrent Sets
e R need not be connected

* R does not require f to point inwards on all R

' Recurrent sets, while not invariant,

|
|
: guarantee that solutions that start in this set, :
|
|

. [ [ ° I
 Will come back infinitely often, forever! __ . Recurrent set X:

A recurrent trajectory: <

Enrique Mallada (JHU) 30



Recurrent sets: Letting things go, and come back

A set R € R%is recurrent if forany xo € Rand t > 0, 3t' > ts.t. p(t', x,) € R.

Previous two good inner approximations of A(x") are recurrent sets

Enrique Mallada (JHU)
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Recurrent sets are subsets of the region of attraction

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Theorem. Let R c R? be a compact set satisfying 0R N Q(f) = .

Then: [ T TTTTTET s s T T e e T K
| Ris recurrent =
|

RNQ(f)=0
RcARNQS)) !

not recurrent

Enrique Mallada (JHU)



Recurrent sets are subsets of the region of attraction

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Theorem. Let R c R? be a compact set satisfying 0R N Q(f) = .

Then: [~~~ ~~"~"~"~""~"--------------—- F

: . RNQf) =0 :
: R is recurrent <=y R c AR N Qf)) !

Proof: [Sketch]

(=) If xog € R, the solution ¢ (t, xy) visits R infinitely often, forever.
* We can build a sequence {x(t,;) }n=o € R with lil_ll_l t, =+
Nn—>+00
* Bolzano-Weierstrass = convergent subsequence x(t,,) > X € Q(f) NR # @

« IRNQ(f) =0 + Rrecurrent = ¢(t,xy) leaves R finitely many times

e R iseventually invariant

(=) e Trivial

Enrique Mallada (JHU) 31



Recurrent sets are subsets of the region of attraction

S ?
Aset R € R%is recurrent if forany x, € Rand t > 0:3t’i> t s.t. p(t', x,) € R.
4 ------- I-'
Corollary. Let Assumption 1 hold, and let \
R c R% be a compact set satisfying: 2}
ORNQ(f) =0and RN Q(f) = {x*} ) ~
Then: \
r—-——=-=-"=-="="="="="="="="="="="="="="=== 1 —2t
' Risrecurrent = R c A(x*) |
e e e e e e e e e e e e e e e e e e | | -
il4 -2 0 2 4

Idea: Use recurrence as a mechanism for finding inner approximations of A (x™)

Potential Issues:
 We do not know how long it takes to come back!
* We need to adapt results to trajectory samples

Enrique Mallada (JHU) 31



T-recurrent sets Time elapsed < T

A set R is T-recurrent if forany x, € Randt > 0,3 t'€ [t,t + 1] such
that p(t', xy) ER

Theorem. Under Assumption 1, any compact set R satisfying:

x*+Bs € R € Ax*)\{0A(x") +int Bs}

c — c(6)—c(6 - .
is z-recurrent for T > £(8) = £2=¢©) T-recurrent set %

a(®) trajectory: < "

Level sets c/l(x*)

—

7’

R:
trajectory: ®....»

Enrique Mallada (JHU) 32



Recurrent sets are subsets of the region of attraction

Corollary. Let Assumption 1 hold, and let ) \
R c R% be a compact set satisfying: 2}
ORNQ(f) =0and RN Q(f) = {x*} ) |
Then: N
F-— "~~~ =~~~ " —"—---—-——-—--- 1 —ol
: R is recurrent = R cC A(x™) i
________________ 7R 0o 2 4

Idea: Use recurrence as a mechanism for finding inner approximations of A (x™)

Potential Issues:
* We do not know how long it takes to come back! V
* We need to adapt results to trajectory samples

Enrique Mallada (JHU) 33



Learning recurrent sets from k-length trajectory samples
steps elapsed < k
* Consider finite length trajectories: (time e{gl?ied < kty)

Xy, = p(ntg, xp), xo € R4 n €N,
where 7, > 0 is the sampling period.

« AsetR € R%is k-recurrent if whenever x, € R,
thenan e {l, .., k}st.x, ER

k-recurrent set R:

Sufficiency:

R is compact trajectory: & 4"

R is k-recurrent |==p R is T-recurrent = RNQ) ={x*} |=| RcAK

with T = kT, X* € int R

Necessity:

Theorem 3. Under Assumption 1, any compact set R satisfying:
Bs+x* SRS AMN")\{0A(x™) +int Bs}
is k-recurrent for any k > k := 7(8) /.

Enrique Mallada (JHU) 34



Recurrent sets are subsets of the region of attraction

Corollary. Let Assumption 1 hold, and let ) \
R c R% be a compact set satisfying: 2}
ORNQ(f) =0and RN Q(f) = {x*} ) |
Then: N
F-— "~~~ =~~~ " —"—---—-——-—--- 1 —ol
: R is recurrent = R cC A(x™) i
________________ 7R 0o 2 4

Idea: Use recurrence as a mechanism for finding inner approximations of A (x™)

Potential Issues:
* We do not know how long it takes to come back! V
* We need to adapt results to trajectory samples V

Enrique Mallada (JHU) 35



Sphere approximations of RoA

Algorithm: Given k and € > 0:

At each iteration [
« Sample trajectories of length k from the sphere S; until recurrence is violated (counter-example)

| A(x™):

So: [

Enrique Mallada (JHU) 36



Sphere approximations of RoA

Algorithm: Given k and € > 0:

At each iteration [
« Sample trajectories of length k from the sphere S, until recurrence is violated (counter-example)

[=0

| A(x™):
So: [

o(t,p): &

pP3: counter example

Enrique Mallada (JHU) 36



Sphere approximations of RoA

Algorithm: Given k and € > 0:
At each iteration [
« Sample trajectories of length k from the sphere S, until recurrence is violated (counter-example)

* Update sphere S 1+1 to exclude counter example point p j
[=0

pP3: counter example

-------------------------------------------------------

Enrique Mallada (JHU) 36



Sphere approximations of RoA

Algorithm: Given k and € > 0:
At each iteration [
« Sample trajectories of length k from the sphere S, until recurrence is violated (counter-example)

« Update sphere S 1+1 to exclude counter example point p;, and start again
=1

| A(x™):

Sy -

V(B,) 2 ps: counter example R

failure probability oL XX X N2 =00
* requires stricter notion of n-strict t-recurrence

Enrique Mallada (JHU) 36



Algorithm Result - Sphere Approximations

...............................................

“HE - Complement of ROA i
——ROA approximation |
*  Equilibrium "

.................
.........

...............
..............................................

Enrique Mallada (JHU)

37



Multi-center approximation

* Consider h € N™ center points x, indexed by q € {1, ..., h}.
* Let the first center pointx; = x* =0
* Additional center point x,, ..., x5 can be designed chosen uniformly.

Enrique Mallada (JHU)
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Multi-center approximation

e Consider h € N* center points X4 indexed by q € {1, ..., h}.
* Let the first center pointx; = x* =0
* Additional center point x,, ..., x5 can be designed chosen uniformly.

* Respectively define approximations centered at each x,,
. q._ _ l
S = {x]||x qulz < bg}

Enrique Mallada (JHU) 38



Multi-center approximation

e Consider h € N* center points X4 indexed by q € {1, ..., h}.

* Let the first center pointx; = x* =0
* Additional center point x,, ..., x5 can be designed chosen uniformly.

* Respectively define approximations centered at each x,,
. q._ _ l
S = {x]||x qulz < bg}

* Multi-center approximation given by Sl =UZ=1 Slq

Enrique Mallada (JHU) 38



Multi-center approximation

Consider h € N center points x, indexed by q € {1, ..., h}.

* Let the first center pointx; = x* =0
* Additional center point x,, ..., x5 can be designed chosen uniformly.

Respectively define approximations centered at each x,,
. q._ _ l
S = {x]||x qulz < bg}

) . . & _ . h q
Multi-center approximation given by  §; =U,_; S,

If p, is a counter-example w.r.t S
* We shrink every S‘}I satisfying p; € 5‘}1
*  For the rest approximations, we simply let $}*1 = §!

V($;+B
Sample complexity: m > (V(ITJrn)")log (%)

Enrique Mallada (JHU) 38



Numerical illustrations

* Run: 200 center points sampled (uniformly)
* Stopping criteria: p = 107>

5 57.7 72.0%
2 55.8 51.2%
.6 47.1 31.2%
3 28.7 3.24%

.
—— Strict reccurent area
ROA approximation
N NN N Y D Wy True ROA
-2
.,
T
-4 I
4 =4 : 2

Enrique Mallada (JHU) 39



Example: Progressively Expanding the RoA

* At Each Episode:

* Sample 50 center points (uniformly)
e Stopping criteria: § = 107° .

episode =1 |

T=.3

o]
3
>

5 ol 0

(]
£
=]
°
>
S 609
© 60%
()]
s
-2 'S 40%
3 @
., (o)}
— Strict reccurent area g
ROA approximation ™ o 20%
........ True ROA . o —— ROA aprroximation volume
-4 T . . : 0% —— Strict recurrent area volume
-4 —2 0 2 4 : ; : : : . : : .
0 25 50 75 100 125 150 175 200
X1 episode index

Enrique Mallada (JHU)



Transient Stability Analysis

2R+ jX)

* Synchronous machine connected to infinite bus VWV

o

>e ~

>
8

®

R+jX R+jX

Va ~ (vd,vq) %% Voo ~ (Vs,ws)

I\H
I\H
I
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Transient Stability Analysis

2(R+jX)

2

* Synchronous machine connected to infinite bus

o

* t1 lower line is short-circuited

»
G
(®)

R+jX R+jX

Vg ~ (’I?d,‘l’q) y\/\/\/—‘;—/\/\/\/i Voo Bt (Vsaws)

I\H
MH
I
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Transient Stability Analysis

* Synchronous machine connected to infinite bus

2R+ jX)

] Q

* t1 lower line is short-circuited .
* t, faultis cleared Ve ~ (va, )

Enrique Mallada (JHU)

R+jX

R+jX

a6
®

Voo i (V81ws)
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Transient Stability Analysis

* Synchronous machine connected to infinite bus

* t1 lower line is short-circuited
* t, faultis cleared

Va ~ (va,vg)

] Q

N,

2(R+jX)

R+jX

. X_xq. 1
1 = lg —

" R+r * R+vr
Vg = Tglqg — T — 1q

Vs sin(6)

vy = Rig + Xig + Vs cos(d)

Vt:\/v?vag

R+jX

— VW VW—" [V~ (Ve,w1)

a6
®

o _ W —w
dt y
d
2Hd—°: — P, — (vaia + vgiq + €i% + 7i2)
de’
‘/lod—tq = —e, — (va — xy)ia + Eyq
dE
La dgd = —Epa+ Ko(Vier — Vi)
dP,,
TQW = =Py + Prey + Kg(wrep —w)
(X =) Vssin(d) — (R + 1) (Vs cos(d) — ep)
v (R+7)2 + (X + a) (X + 24)

T) =9.67
=

A = 1185
V:r’ef =1

zq = 2.38
r = 0.002
V, =1
T, = 0.4

B ==0.836

W = Wrep =1
1, =

dvs =05

2y =121
R=0.01
K, =10
Pros =0.7

Enrique Mallada (JHU)
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Transient Stability Analysis

2(R+ jX)
* Synchronous machine connected to infinite bus VWV
3 ()
. T 5, ) ; i
* t1 lower line is short-circuited i ResX | ReiX i
* t, fault is cleared Vo~ @av)|  — NN VWWN—" |V~ Viw)

SoS approx. in red (2d-sections) = =

M. Tacchi et al “Power system transient stability analysis using SoS programming” Power System Computation Conference (PSCC) 2018

Enrique Mallada (JHU) 41



Transient Stability Analysis

2(R + jX)
 Algorithm parameters: VWV
* Centers: 1000 per episode @ {
* Failure prob.: p = 107°
* Time constant: 7 = 100 s

>0
=
8

()
R+ jX ¢ R+iX

Ve ~ (va,v,) —NW—— " VW— |V~ (Vi)

SoS in blue: [Tacchi 18] vol = 0.05%, run time “they are huge” _ 1

Multi-center in . 1 episode, run time 3 min Percent vol. gain:M — 360%
SoS
1.0 1.0
—— SOS method results
1007 ROA approximation
0.5; 0.51
50
Ko
S 3 0.0 3 0.0
0 C
—0.5; -0.5
=501
-2 0 > M550 5 6 5 10 10T 0 i 2

el Pm o}

q
M. Tacchi et al Power system transient stability analysis using SoS programming, Power System Computation Conference (PSCC) 2018
Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, Control and Decision Conference (CDC) 2022
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Transient Stability Analysis

2(R + jX)
 Algorithm parameters: VWV
* Centers: 1000 per episode @
* Failure prob.: p = 107° AL G

. Va ~ (vg4,v,) %+W Vosoo (Voan)
 Time constant: 7 = 100 s R S w

SoS in blue: [Tacchi 18] vol = 0.05%, run time “they are huge”

g >
ah
®

Multi-center in green: vol = 0.45%, 3 episodes, run time 10 min Percent vol. gain: —VM'C/‘VSOS
SoS

1.0

1.0;

0.5{ ° 0.5

3 0.0 3 0.0

-0.5 —0.51
—— SOS method results
. / - ROA approximation o
=D 0 5 - 75 g =5 © 5 10 0 2
eé, Pm

M. Tacchi et al Power system transient stability analysis using SoS programming, Power System Computation Conference (PSCC) 2018
Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, Control and Decision Conference (CDC) 2022

Enrique Mallada (JHU) 41



Transient Stability Analysis

2(R + jX)

 Algorithm parameters: VWV
* Centers: 1000 per episode @
* Failure prob.: p = 107°
* Time constant: 7 = 100 s

g >
ah
®

R+jX g R+iX

Vo~ i) VNN VWN— Voo~ (Vew)

SoS in blue: [Tacchi 18] vol = 0.05%, run time “they are huge”

Multi-center in green: vol = 0.74%, 5 episode, run time 17.5 mln: Percent vol. gain: —VM'C/‘V
SoS

1380%

1.0

1.0;

100

0.5 % 0.5

50

Etq

-0.5 -0.5
—— SO0S method results '
_50] ) ) " ROA approximation ®
. : -1.0 - - - —  =1.0
-2 0 2 =15 -10 -5 0 5 10 2

e, P
q

M. Tacchi et al Power system transient stability analysis using SoS programming, Power System Computation Conference (PSCC) 2018

Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, Control and Decision Conference (CDC) 2022
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Transient Stability Analysis

2(R + jX)

 Algorithm parameters: VWV
* Centers: 1000 per episode @
* Failure prob.: p = 107°
* Time constant: 7 = 100 s

g >
ah
®

R+jX g R+iX

Vo~ i) VNN VWN— Voo~ (Vew)

SoS in blue: [Tacchi 18] vol = 0.05%, run time “they are huge” _|_ .

Multi-center in green: vol = 1.56%, 10 episodes, run time 39.5 min Percent vol. gain: % f 3020%
SoS

1.0

1.0;

100

0.5p8 0.5

508

Etq

-0.5 - -0.5
—— SOS method results
_50 . ~ ROA approximation : 4 W
-2 0 2 =15 -10 -5 0 5 10 -1 0 1 2

e, Pm 0

q
M. Tacchi et al Power system transient stability analysis using SoS programming, Power System Computation Conference (PSCC) 2018
Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, Control and Decision Conference (CDC) 2022
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Model-Free Analysis of Dynamical Systems using Recurrent Sets

* Uses of invariant sets in control theory
* Inner-approximation of regions of attractions

 Stability analysis using non-monotonic Lyapunov functions



Roy Siegelmann Yue Shen Fernando Paganini
@ JOHNS HOPKINS @ JOHNS HOPKINS m

UNIVERSITY = UNIVER SITY

Uruguny

Recurrently Non-Increasing Lyapunov Functions

R. Siegelmann, Y. Shen, F. Paganini, and E. Mallada, “A recurrence-based direct method for stability analysis and
GPU-based verification of non-monotonic Lyapunov functions”, submitted CDC 2023
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Lyapunov’s Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

Rsq, with V(x) > 0,Vx € R\{x*}, then:
e V <0 - x*stable
e V <0 - x*as. stable

Theorem [Lyapunov ‘1892]. Given V: R* — -

Challenge: Couples shape of I/ and vector field f

» Towards decoupling the V — f geometry
« Controlling regions where V > 0 [Karafyllis ‘09, Liu et al ‘20]
* Higher order conditions: g(V(q), .V, V) < 0 [Butz ‘69, Gunderson 71, Ahmadi 06, Meigoli ‘12]
* Discretization approach: V(x(T)) < V(x(0)) [Coron et al ‘94, Aeyels et. al ‘98, Karafyllis ‘12]
* Multiple Lyapunov Functions: {V;: j € [k]} [Ahmadi et al ‘14]

A Butz. Higher order derivatives of Lyapunov functions. IEEE Transactions on automatic control, 1969
Gunderson. A comparison lemma for higher order trajectory derivatives. Proceedings of the American Mathematical Society, 1971
Coron, Lionel Rosier. A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Syst., Estimation, Control, 1994
Aeyels, Peuteman. A new asymptotic stability criterion for nonlinear time-variant differential equations. IEEE Transactions on automatic control, 1998
Ahmadi. Non-monotonic Lyapunov functions for stability of nonlinear and switched systems: theory and computation, 2008
Karafyllis, Kravaris, Kalogerakis. Relaxed Lyapunov criteria for robust global stabilisation of non-linear systems. International Journal of Control, 2009
Meigoli, Nikravesh. Stability analysis of nonlinear systems using higher order derivatives of Lyapunov function candidates. Systems & Control Letters, 2012
Karafyllis. Can we prove stability by using a positive definite function with non sign-definite derivative? IMA Journal of Mathematical Control and Information, 2012
Ahmadi, RM Jungers, PA Parrilo, M Roozbehani. Joint spectral radius and path-complete graph Lyapunov functions. SIAM Journal on Control and Optimization, 2014
Liu, Liberzon, Zharnitsky. Almost Lyapunov functions for nonlinear systems. Automatica, 2020
Enrique Mallada (JHU)
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Lyapunov’s Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

Theorem [Lyapunov ‘1892]. Given V: R* — ———
Rso, with V(x) > 0,Vx € R*\{x*}, then: : -
e V<0 - x*stable < = :." 5]
e V <0 - x*as. stable - )

Challenge: Couples shape of I/ and vector field f

* Towards decoupling the V' — f geometry
« Controlling regions where V > 0 [Karafyllis ‘09, Liu et al ‘20]
* Higher order conditions: g(V(q), .V, V) < 0 [Butz ‘69, Gunderson '71, Ahmadi ‘06, Meigoli ‘12]
* Discretization approach: V(x(T)) < V(x(0)) [Coron et al ‘94, Aeyels et. al ‘98, Karafyllis ‘12]

Question: Can we provide stability conditions based on recurrence?
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Recurrently Decreasing Lyapunov Functions

A continuous function IV: R¢ — R, is a recurrently non-increasing Lyapunov
function over intervals of length T if

LYV (2) = min V(6(t,z) = V(2) <0 Ve R¢
te (0,7
Preliminaries:
* Sub-level sets {V(x) < c} are T-recurrent sets.

* When f is L-Lipschitz, one can trap trajectories.

Fre™

F=r;ggg<llf(x)ll
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Recurrently Non-Increasing Lyapunov Functions

A continuous function IV: R¢ — R, is a recurrently non-increasing Lyapunov
function over intervals of length T if

LYV (z) == min V(g(t,2)) ~V(z) <0 VYzeR? ®
te(0,7]
Theorem [CDC 23*]: Let V: R? — R-o be a
recurrently non-increasing Lyapunov function
over intervals of length t. Let f be L-Lipschitz
* Then the equilibrium x™ is stable.
* Further, if the inequality is strict, then x™ is
asymptotically stable!

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions,
submitted CDC 2023
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Exponential Stability Analysis

The function V: R% — R, is a-exponentially recurrently non-increasing Lyapunov
function over intervals of length T if

LYV (2) = min eV (p(t,z)) — Vi(z) <0 Vo e R
’ te (0,7

Theorem [CDC 23*]: Let V: R? — R, satisfy min

ai|lx — x*|| S V(x) < ayllx — x|
Then, if V is a-exponentially recurrently - A z Doy €V (00 22))
decreasing Lyapunov function, then x"is "\
exponentially stable with ratea. | — P
L >
— — t

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions,

*submitted CDC 2023
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All norms are Lyapunov functions!

Theorem: Assume x™ is globally exponentially stable: 3 K, ¢ > 0 such that:
|l (8, x) — x*|| < Ke™¢||xo — x*|
Then, V (x) = ||x — x*

min_ e%||od(t,x) — x*
U ||<I5( ) |

is a-exponentially recurrently T-decreasing, i.e.,

<0, Vx € R4,

— ||x—x*|

1
whenever a <c¢ and 1= C_—aln K.

Remarks:
* The rate & must be strictly smaller than the rate of convergence c (giving up optimality).

* Any norm is a Lyapunov function!

Question: Is the struggle for its search over?
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Verification of Exponential Stability

Proposition [CDC 23*]: Let V: R? — R, satisfy a1||
and 0 < u < 1. Then, whenever

trer%(l)n eV (p(x, 1)) < ,u(

forally with ||y — x|| < r = (x)g( )

te(0,7]

<V(x) < a2||

1) V(x)

mlzn e“tV(CP(y; t)) < V()

— -
- ~~

- -
_ -

__________
—————
-

~
~ -
~—ao -

-~ -

~
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GPU-based Algorithm

* Basic Algorithm:
 Consider V(x) = ||x — x™||w
* Build a grid of hypercubes surrounding x

 Test the center point and find k s.t. the
verified radiusisr > £ /2

* If one hypercube is not verified, split in
34 parts

* Repeat testing of new points

B split
. ‘
_ . .} ¢/3

Enrique Mallada (JHU)
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GPU-based Algorithm

* Basic Algorithm: .

e Consider V(x) = ||x — x*||

* Build a grid of hypercubes surrounding x*

 Test the center point and find k s.t. the
verified radiusisr = £/2

* If one hypercube is not verified, split in

34 parts y

* Repeat testing of new points

* Exponentially expand to the following
layer
* Repeat testing in new layer
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GPU-based Algorithm

* Basic Algorithm:
e Consider V(x) = ||x — x*||

* Build a grid of hypercubes surrounding x*

 Test the center point and find k s.t. the
verified radiusisr = £/2

* If one hypercube is not verified, split in
34 parts

* Repeat testing of new points

* Exponentially expand to the following
layer
* Repeat testing in new layer
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Numerical lllustration X2

Consider the 2-d non-linear system: X = [ 01 21] x + B |x1x; L 8
S 2 T 15

with B;; ~ N(0,02) L X2 y 0.01

o=0.2

Phase Portrait
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Numerical lllustration X2

Consider the 2-d non-linear system: X = [ 0 21] x + B |x1x; L 8
N 2 T 15

with B;; ~ N(0,02) L X2 y 0.01

o=0.5
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Conclusions and Future work

 Takeaways
* Proposed a relaxed notion of invariance known as recurrence.
* Provide necessary and sufficient conditions for a recurrent set to be an inner
approximation of the ROA.
* Generalized Lyapunov Theory for recurrently decreasing functions using recurrent sets
* QOur algorithms are parallelizable via GPUs and progressive/sequential.

* Ongoing work
* Recurrent Sets: Smart choice of multi-points, control recurrent sets, GPU implementation
* Lyapunov Functions: Generalize other Lyapunov notions, Control Lyapunov Functions,
Barrier Functions, Control Barrier Functions, Contraction, etc.
* Recurrence Entropy: Understanding the complexity of making a set recurrent when

compared with invariance.



Thanks!
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