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Reality Kicks In _ _ _
Angry Residents, Abrupt Stops: Waymo Vehicles Are Still

Causing Problems in Arizona
RAY STERN ' MARCH 31, 2021 @ 8:26AM

DeepMind's Losses and the Future of Artificial Intelligence

Alphabet’s DeepMind unit, conqueror of Go and other games, is losing lots of money. Continued deficits could imperil investments in Al.

Uber Gives Up on the Self-Driving Dream

The ride-hail giant invested more than $1 billion in autonomous vehicles. Now it’s selling the unit to Aurora, which makes self-driving tech.

OpenAl disbands its robotics research team

KyleWiggers  @Kyle_L Wiggers  July 16,2021 11:24 AM

Self-driving Uber car that hit and killed
woman did not recognize that pedestrians

jaywalk

The automated car lacked "the capability to classify an object as a pedestrian unless that object
was near a crosswalk," an NTSB report said.
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Core challenge: The curse of dimensionality

= Statistical: Sampling in d dimension with resolution € \
Sample complexity: |
|
|

O(e™9)

M@ M@...@ M e /

Fore=0.1and d = 100, we
0100

,
l
l
l
|

would need 1 points.
Atoms in the universe: 1078

= Computational: Verifying non-negativity of polynomials

Copositive matrices:

[xZ ... x3]A[x? ...xczi]T >0

Murty&Kadabi [1987]: Testing co-positivity is NP-Hard Motzkin [1967]:
p = x*y2 4 x2y4 +1—3x2y2

Sum of Squares (SoS): is nonnegative

z(x)TQz(x) =20, z(x) eR[x], xe R%E,Q =0
Artin [1927] (Hilbert’s 17t problem):

not a sum of squares,
but (x? + y?)?p is SoS

Non-negative polynomials are sum of square of rational functions
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Question: Are we asking too much?

* Analysis tools build on a strict and exhaustive notion of invariance
Q: Can we substitute invariance with less restrictive notions?

[arXiv 22] Shen, Bichuch, M - [CDC 23] Siegelmann, Shen, Paganini, M

* Certificates impose conditions on the entire duration of the trajectory

Q: Can we provide guarantees based on only localized trajectory information?
[arXiv 22] Shen, Bichuch, M - [CDC 23] Siegelmann, Shen, Paganini, M

* Control synthesis usually aims for the best (optimal) controller

Q: Is there any gain in focusing on weaker requirements from the get-go?
[HSCC 24] Sibai, M - - [CDC ’23] Siegelmann, Shen, Paganini, M

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.

[CDC 23] Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023
[HSCC 24] Sibai, M, Recurrence of nonlinear control systems: Entropy and bit rates, HSCC, 2024
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Outline

* Invariance: Merits and trade-offs
* Letting things go, and come back: Recurrent sets

* Analysis using recurrent sets

* Approximating regions of attractions
* Stability analysis via non-monotonic Lyapunov functions

e Recurrence in nonlinear control systems
* Entropy and bit rates of control recurrent sets
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢(t, xg).

I Q-Limit Set Q(f):
: r € Qf) <= Jxo,{tn}n>0, s.t. lim ¢, =00 and lim ¢(t,,z0) =2

n—oo n—oo

Types of Q-limit set

equilibrium limit cycle limit torus chaotic attractor
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢ (&, xp).

I Q-Limit Set Q(f):
: r € Qf) <= Jxo,{tn}n>0, s.t. lim ¢, =00 and lim ¢(t,,z0) =2

= n—oo n—oo I
4
lllustrative Example 21
Zbl . i)
To —x1 + 325 — 2 0 R

Q(f) = {(0,0), (=v3,0), (v/3,0)}  (equilibria) -2}
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))

* Initial condition xy = x(0), solution at time t: ¢ (&, xp).

* The w-limit set of the system: Q(f)

| A(S) {x e RY| lim inf d(6(t, z), S) = 0} ;
R S o k
lllustrative Example 2l
[x;] - [—xl + %Qx:i’ — xJ 0
Q(f) — {(070)7(_\/570)7(\/570)} —27
-4

Enrique Mallada (JHU)




Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢(t, xg).
* The w-limit set of the system: Q(f)

| AS) = {:c e RY| lim inf d(6(t, =), S) :o}

t— 00

lllustrative Example

T1 T2
. : 1 3
o] a1+ ga) —

Q(f) — {(07 O)a (_\/57 0)7 (\/§7 O)}
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢ (&, xp).
* The w-limit set of the system: Q(f)

| A(S) {x e RY| lim inf d(¢(t, ), S) :0}
I t— 00

lllustrative Example

[i;] N [—azl +?x§> - xJ
Q(f) = {(0,0), (=v/3,0), (V3,0)}

Asymptotically stable equilibrium at x* = (0,0)
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢(t, xg).
* The w-limit set of the system: Q(f)

lllustrative Example

T1 T2
. : 1 3
o] a1+ ga) —

Q(f) — {(07 O)a (_\/57 0)7 (\/§7 O)}
Unstable equilibria {(+/3,0), (—V3, 0)}
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Invariant sets

Aset S € R is positively invariant if and only if: xg €S = ¢(t,xg) €S, Vt =0
Any trajectory starting in the set remains in inside it for all times

N
N =
SN AN
E:E:\\;i\\“ \ \\\Qi:\
— =30 o
NS
B0t .
B NS
RN
2GRN

Source: K. Ghorbal, K. and A. Sogokon, Characterizing positively invariant sets: Inductive and topological methods. Journal of Symbolic Computation, 2022
Enrique Mallada (JHU)



Invariant sets: Merits

Aset S € R is positively invariant if and only if: xg €S = ¢(t,xg) €S, Vt =0

Invariant Set

Any trajectory starting in the set remains in inside it for all times

* Invariant sets approximate regions of attraction
Compact invariant set § containing only {x*} = Q(f) N § in the
interior must be in the region of attraction A (x™)

Enrique Mallada (JHU)



Invariant sets: Merits

Aset S € R is positively invariant if and only if: xg €S = ¢(t,xg) €S, Vt =0
Any trajectory starting in the set remains in inside it for all times Invariant Set

* Invariant sets approximate regions of attraction
Compact invariant set § containing only {x*} = Q(f) N § in the
interior must be in the region of attraction A (x™)

* Invariant sets guarantee stability
Lyapunov stability: solutions starting "close enough" to the
equilibrium (within a distance §) remain "close enough" forever
(within a distance &)

Lyapunov Functions

V(x)
* Invariant sets further certify asymptotic stability via me—a.
Lyapunov’s direct method : g
Asymptotic stability: solutions that start close enough, remain close > : ,"' [24]
enough, and eventually converge to equilibrium. i |

Enrique Mallada (JHU) 8



Invariant sets: Challenges

Aset S € R is positively invariant if and only if: xg €S = ¢(t,xg) €S, Vt =0
Any trajectory starting in the set remains in inside it for all tin‘?es

S is topologically constrained
« IfS NQ(f) = {x*}, then § is connected

-4 -2 0 2 4
A not invariant trajectory: e_ ,

Basin of A(Q(f))

 §is geometrically constrained
* f should not point outwards for x € d$

e § geometry can be wild
 AQ(f)) is not necessarily analytic!

Enrique Mallada (JHU) 9



Outline

* Invariance: Merits and trade-offs
 Letting things go, and come back: Recurrent sets

* Analysis using recurrent sets

e Approximating regions of attractions
 Stability analysis via non-monotonic Lyapunov functions

e Recurrence in nonlinear control systems
* Entropy and bit rates of control recurrent sets



Recurrent sets: Letting things go, and come back

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Property of Recurrent Sets
e R need not be connected

* R does not require f to point inwards on all R

' Recurrent sets, while not invariant,

|
|
: guarantee that solutions that start in this set, |
1 will come back infinitely often, forever! ;

Recurrent set R:

A recurrent trajectory: <

Enrique Mallada (JHU) 10



Recurrent sets: Letting things go, and come back

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Previous two good inner approximations of A(x") are recurrent sets

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.

Enrique Mallada (JHU)
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Recurrent sets: Letting things go, and come back

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Property of Recurrent Sets
e R need not be connected

* R does not require f to point inwards on all R

' Recurrent sets, while not invariant, :
: guarantee that solutions that start in this set, :
|
|

1 will come back infinitely often, forever!

Recurrent set R:

A recurrent trajectory: <

Question: Can we use recurrent sets as a substitute to invariant sets?

Enrique Mallada (JHU) 10
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Recurrent sets are subsets of the region of attraction

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Theorem. Let R c R? be a compact set satisfying 0R N Q(f) = .

Then: [~~~ ~"~"~""~"TT"--STo-mmommmmm—

T RNA(f) # @
R is invariant =y R c AR N Q)

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.

Enrique Mallada (JHU)

11



Recurrent sets are subsets of the region of attraction

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Theorem. Let R c R? be a compact set satisfying 0R N Q(f) = .

Then: [~~~ ~"~"~""~"TT"--STo-mmommmmm—
RNQ(f) 0

R c AR NQ(f))

not recurrent

x5

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.
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Learning Regions of Attractions via Recurrent Sets

Algorithm: Given h, k, and € > 0:
* Build approximation using unions of balls centered at x, ..., x4, with x; = x”

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.

Enrique Mallada (JHU)
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Learning Regions of Attractions via Recurrent Sets

Algorithm: Given h, k, and € > 0:
* Build approximation using unions of balls centered at x4, ..., X4, with x; = x™

* Initial approximation: 8, =UZ=1 Sy, where S = {xi ||x - xq|| = bé’}

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.
Enrique Mallada (JHU)
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Learning Regions of Attractions via Recurrent Sets

Algorithm: Given h, k, and € > 0:
* Build approximation using unions of balls centered at x4, ..., X4, with x; = x™

* Initial approximation: Sy =U}_, S/, where S; = {x: ||x — xq|| < bg}

At each iteration [
e Sample trajectories of duration T from §; until

recurrence is violated (counter-example)

N 2

P3: counter example

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.
Enrique Mallada (JHU) 12



Learning Regions of Attractions via Recurrent Sets

Algorithm: Given h, k, and € > 0:
* Build approximation using unions of balls centered at x4, ..., X4, with x; = x™

<)

* Initial approximation: Sy =U}_, S/, where S; = {x: ||x — xg

At each iteration [
e Sample trajectories of duration T from §; until

recurrence is violated (counter-example)
* Update approximation ;1 to exclude
counter-example neighborhood: p; + B,

e . V(S1+Be) l
Sample complexity: m > V(B log(6)

P3: counter example

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.
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Example: Progressively Expanding the RoA Approximation

* At Each Episode:
* Sample 50 center points (uniformly)
e Stopping criteria: § = 107°

gpisode = 1

4
T=.3
2 J

g

o~ O | O 5 80%
X 2

‘.,'. g .

© 60%
. ()]
s

-2 'S 40%

3 @
., (o)}
— Strict reccurent area g

ROA approximation ™ o 20%

........ True ROA . o —— ROA aprroximation volume
-4 T . . : 0% —— Strict recurrent area volume
-4 —2 0 2 4 : ; : : : : : : .
0 25 50 75 100 125 150 175 200
X1 episode index
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Lyapunov’s Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

Rsq, with V(x) > 0,Vx € R\{x*}, then:
e V <0 - x*stable
e V <0 - x*as. stable

Theorem [Lyapunov ‘1892]. Given V: R* — -

Challenge: Couples shape of I/ and vector field f

» Towards decoupling the V — f geometry
« Controlling regions where V > 0 [Karafyllis ‘09, Liu et al ‘20]
* Higher order conditions: g(V(q), .V, V) < 0 [Butz ‘69, Gunderson 71, Ahmadi 06, Meigoli ‘12]
* Discretization approach: V(x(T)) < V(x(0)) [Coron et al ‘94, Aeyels et. al ‘98, Karafyllis ‘12]
* Multiple Lyapunov Functions: {V;: j € [k]} [Ahmadi et al ‘14]

A Butz. Higher order derivatives of Lyapunov functions. IEEE Transactions on automatic control, 1969
Gunderson. A comparison lemma for higher order trajectory derivatives. Proceedings of the American Mathematical Society, 1971
Coron, Lionel Rosier. A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Syst., Estimation, Control, 1994
Aeyels, Peuteman. A new asymptotic stability criterion for nonlinear time-variant differential equations. IEEE Transactions on automatic control, 1998
Ahmadi. Non-monotonic Lyapunov functions for stability of nonlinear and switched systems: theory and computation, 2008
Karafyllis, Kravaris, Kalogerakis. Relaxed Lyapunov criteria for robust global stabilisation of non-linear systems. International Journal of Control, 2009
Meigoli, Nikravesh. Stability analysis of nonlinear systems using higher order derivatives of Lyapunov function candidates. Systems & Control Letters, 2012
Karafyllis. Can we prove stability by using a positive definite function with non sign-definite derivative? IMA Journal of Mathematical Control and Information, 2012
Ahmadi, Jungers, Parrilo, Roozbehani. Joint spectral radius and path-complete graph Lyapunov functions. SIAM Journal on Control and Optimization, 2014
Liu, Liberzon, Zharnitsky. Almost Lyapunov functions for nonlinear systems. Automatica, 2020

Enrique Mallada (JHU)
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Lyapunov’s Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

Theorem [Lyapunov ‘1892]. Given V: R* — -
Rsq, with V(x) > 0,Vx € R\{x*}, then:
e V<0 - x*stable < = :." 5]
e V <0 - x*as. stable ' %

Challenge: Couples shape of I/ and vector field f

» Towards decoupling the V — f geometry
« Controlling regions where V > 0 [Karafyllis ‘09, Liu et al ‘20]
* Higher order conditions: g(V(Q), .V, V) < 0 [Butz ‘69, Gunderson 71, Ahmadi 06, Meigoli ‘12]
* Discretization approach: V(x(T)) < V(x(0)) [Coron et al ‘94, Aeyels et. al ‘98, Karafyllis ‘12]
* Multiple Lyapunov Functions: {V;: j € [k]} [Ahmadi et al ‘14]

Question: Can we provide stability conditions based on recurrence?

Enrique Mallada (JHU) 14



Recurrently Decreasing Lyapunov Functions

A continuous function IV: R¢ — R, is a recurrently non-increasing Lyapunov
function over intervals of length T if

LYV (2) = min V(6(t,z) = V(2) <0 Ve R¢
te (0,7
Preliminaries:
* Sub-level sets {V(x) < c} are T-recurrent sets.

* When f is L-Lipschitz, one can trap trajectories.

Fre™

F=r;ggg<llf(x)ll

Enrique Mallada (JHU) 15



Recurrently Non-Increasing Lyapunov Functions

A continuous function IV: R¢ — R, is a recurrently non-increasing Lyapunov
function over intervals of length T if

LYV (z) == min V(g(t,2)) ~V(z) <0 VYzeR? ®
te(0,7]
Theorem [CDC 23*]: Let V: R? — R-o be a
recurrently non-increasing Lyapunov function
over intervals of length t. Let f be L-Lipschitz
* Then the equilibrium x™ is stable.
* Further, if the inequality is strict, then x™ is
asymptotically stable!

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions,
submitted CDC 2023

Enrique Mallada (JHU) 16



Exponential Stability Analysis

The function V: R% - R, is a-exponentially recurrently T-decreasing Lyapunov
function over intervals of length T if

LYV (2) = min eV (p(t,z)) — Vi(z) <0 Vo e R
’ te (0,7

Theorem [CDC 23*]: Let V: R? — R, satisfy min

ai|lx — x*|| S V(x) < ayllx — x|
Then, if V is a-exponentially recurrently - A z Doy €V (00 22))
decreasing Lyapunov function, then x"is "\
exponentially stable with ratea. | — P
L >
— — t

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions,

*submitted CDC 2023
Enrique Mallada (JHU) 17



All norms are Lyapunov functions!

Theorem: Assume x™ is globally exponentially stable: 3 K, ¢ > 0 such that:
|l (8, x) — x*|| < Ke™¢||xo — x*|
Then, V (x) = ||x — x*

min_ e%||od(t,x) — x*
U ||<I5( ) |

is a-exponentially recurrently T-decreasing, i.e.,

<0, Vx € R4,

— ||x—x*|

1
whenever a <c¢ and 1= C_—aln K.

Remarks:
* The rate & must be strictly smaller than the rate of convergence c (giving up optimality).

* Any norm is a Lyapunov function!

Question: Is the struggle for its search over?

Enrique Mallada (JHU) 18



Outline

* Invariance: Merits and trade-offs
* Letting things go, and come back: Recurrent sets

* Analysis using recurrent sets

* Approximating regions of attractions
* Stability analysis via non-monotonic Lyapunov functions

* Recurrence in nonlinear control systems
e Entropy and bit rates of control recurrent sets



Various notions of entropy in the literature

Mainly bounding the bit rates needed to perform various estimation and control
tasks over limited-bandwidth channels.

Examples:

* Topological entropy [Adler 1965, Bowen 1971, Savkin 2006]

* Estimation entropy [Liberzon and Mitra 2016, 2018, Sibai and Mitra 2017, 2018, 2023]
* Stabilization entropy [Colonius 2012, Nair et al. 2004]

* Invariance entropy [Colonius and Kawan 2009, 2011, Rungger and Zamani 2017, Tomar et al. 2021,
2022]



Controlled recurrent sets: Letting things go, and come back

Problem Setup:
* Continuous time controlled dynamical system: x(t) = f(x(t),u(t))
* Initial condition x5 = x(0), solution at time t: ¢@(t, xq, u).

A set R € R? is controlled t-recurrent, for some 7 > 0, if for any xo € R, Ju € U,
3t € (0, 7] s.t. p(t, xg, u) € R.

Recurrent set R:

A recurrent trajectory: "

Enrique Mallada (JHU) 20



Recurrent trajectories: they go, and come back(ish)

Similarly to other entropy notions, we require a relaxed notion of recurrence...

Definition: (T, &, T, R)-recurrence

Fixany1 =0, =>0,T = 1,x5 € R,and u € U. The trajectory

¢is (T, &, T, R)-recurrent, if vt € [0,T — 7], 3t € [t,t + 7] such that
E(t',x,u) € B:(R).

Controlled Recurrent set R:

A recurrent trajectory: e

Enrique Mallada (JHU) 21



Spanning sets

We define open-loop control signals sufficient for (almost) recurrence

Definition: (T, g, T, R)-spanning Set
A set S € U is called a recurrence (T, &, T, R)-spanning set if

for any x5 € R, there exists a u € S such that ¢ is (T, g, T, R)-recurrent.

/‘ S S v Controlled Recurrent set R:
= 1U,U>, ..., U )
\ \ { 1" 20t n} A recurrent trajectory:
e
\ T N L Rl Mapping states to control
A _-7 signals:

Set of states mapped to the
same control signal:

Enrique Mallada (JHU)
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Recurrence entropy

Definition: Recurrence entropy

1
hiec(T,R) == lim limsup = log 170 (T, &, T, R),

eNO0 T — oo
where 1...(T, €, T, R) is the minimal cardinality of a spanning set.

Remark: Measures the exponential rate at which the number of (open-loop)
control signals needed to achieve recurrence increases as time horizon T and
recurrence strictness €1 increase.



Relation to Invariance Entropy

Existing notion of invariance entropy, i.e., hipy(Xo, R), where Xy, € R, is a special
case of recurrence entropy

Proposition:

1
hiny(Xo, R): = hpec(0,R) = lim limsup = log 1...(T, &, 0, R),
eN0 T—oo T
where 1...(T, €, 0, R) is the minimal cardinality of a spanning set that keeps

B.(R) invariant, i.e., recurrent with 7 = 0.

Questions:
* How different are hi,,(R) and hpo(7,R)?

* How does hpc(T,R) change as T increases?

[1] Colonius, Kawan. Invariance entropy for control systems. SIAM Journal on Control and Optimization, 2009

Enrique Mallada (JHU)
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Relation between Invariance and Recurrence

Theorem: Assume R is controlled invariant, then:

hinv(er BST (R)) = hrec (T; R) < hinv(:R: R)

where §, = tel*"F; is a constant dependent on , f, and
R and L; is a locally Lipschitz constant of the vector field f.

Proof: (sketch)

Bloated recurrent set Bs_(R):

e Left inequality: containment lemma (bounding distance

Controlled Recurrent set R:

from recurrent trajectories to R)

A recurrent trajectory: "

* Right inequality: any invariance causing control is also

recurrence enforcing.

Enrique Mallada (JHU) 25



Example of strict separation between h;,,(R,R) and h...(7,R)

Consider the system:

=16 ollal+[3]

whereu € U = [—1,1].

Now, consider the controlled recurrent set R = [—1,1]%.

=00, T< 2

Si, T=0
In 2

Theorem: h;,,(R,R) = oo and h,e.(7,R)

Enrique Mallada (JHU)
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Bound on Recurrence Entropy

Theorem: Bounds on h..(7,R)
Whenever R is a controlled t-recurrent set. Then for any 7’ > 7:

1 L] - ’ LTn
< < <
- [ (x,u)emB(gl:,l(R)xU div, f (x, u)]+ < hpec(T', R) € hpec(T,R) <

In 2

Remarks:

* When t = 7’ = 0, we recover the bounds on invariance entropy by
Colonius and Kawan 2012.

* If a set is controlled T-recurrent, making the set v’-recurrent is at most Bloated recurrent set Bs (R): ]
as hard as making it T-recurrent. e

Controlled Recurrent set R: |:|

A recurrent trajectory: "

* Moreover, as T — oo, the lower bound goes to zero, as expected.
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Bit rates needed to enforce recurrence

Initial state x R and dynamics f

l Same l

i Xo, U, iT. N bits ! Finite- . en LN bits
.Dynamlcs ¢ (xg s)’ Sensors . Finite-bandwidth | controller
x=f(x,u) channel
‘ input signal u: [0, T) - R™

Problem: Given € € R”Y, what is the minimum bit rate N /T needed for
E(xg,u, t) to be (g, T, R)-recurrent?

Theorem: For any € = 0, there exists no (&, T, R)-recurrence enforcing

algorithm with an average bit rate smaller than h ..(7, R).



Algorithm

Enforcing (asymptotic) T-recurrence over limited-bandwidth channels

Algorithm 1 Sensor algorithm for achieving recurrence

1 input: 0, ¢ € (0,6*], 7> 0,9 : Bs 4(Q) xR0 > U Si

2: S() «— Q —

3: ro <« €

4 Co « grid(So, roe~Lr*®)7) 4:%5(,\
5:1=0 % 1

6: while true do AN x; \‘\

7: xi < sense() N 1
8: qi < quantize(x;, C;) ‘\\\ \
9: send(encode(q;, C;)) AN \

10: i — g(qi, [0, 7)) \ N \
11: rig1 « rie” %° N 0.

12: Si+1 < By,,, (simulate(q;, u;, 7)) A e

13 Cip1 « grid(Sis1, risre~E+7) ;

14: ie—i+1 —(L+a)T

15: sleep(t) rie - v

Theorem: Algorithm 1 guarantees that starting from any state x, € R, the trajectory of the

system will converge to a (7, Q)-recurrent trajectory at an exponential rate of a. It requires
(L+a)

an average bit rate of an between the sensor and the actuator.
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Conclusions and Future work

 Takeaways
* Proposed a relaxed notion of invariance known as recurrence.
* Provide necessary and sufficient conditions for a recurrent set to be an inner
approximation of the RoA.
* Generalized Lyapunov Theory for recurrently decreasing functions using recurrent sets
* From an information theoretical standpoint, making as set recurrent can be easier than

invariant.

* Ongoing work
* Recurrent Sets: Smart choice of multi-points, control recurrent sets, GPU implementation
* Lyapunov Functions: Generalize other Lyapunov notions, Control Lyapunov Functions,
Barrier Functions, Control Barrier Functions, Contraction, etc.
* Entropy: Understanding the memory complexity of making a set recurrent and

generalizations to other tasks



Thanks!
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