

Options for Mitigation Measures

Avenues for new research

Enrique Mallada Associate Professor, ECE

ESIG/G-PST Special Topic Workshop March 28, 2024

Grid Team at ROSEI

Benjamin Hobbs Theodore M. and Kay W. Schad Professor JHU-EHE, ROSEI

Dennice Gayme Associate Professor JHU-ME, ROSEI

Enrique Mallada Associate Professor JHU-ECE, ROSEI

Yury Dvorkin Associate Professor JHU-ECE/CSE, ROSEI

Sijia Geng Assistant professor JHU-ECE, ROSEI

NSF Global Center: EPICS Electric Power Innovation for a Carbon-free Society

Outline

- A Word of Caution: GFM IBRs Complex Dynamics
 - Faster controls can speed up the transition to chaos
- Decentralized Stability Analysis in Power Grids
 - Generalizing control tools for network systems
- Avenues for Future Research
 - Early detection via critical slow-down
 - Novel IBR control designs: Trading Freq. vs Volt. Support
 - The role of operations in SSO prevention

Nonlinear Phenomena in IBR-rich Grids

Sustained oscillatory behavior is intrinsically **nonlinear phenomena** induced by **bifurcations** which often can leads to **chaos**

Prior art (1989^[1] – 2004^[2]) focus on nonlinear phenomena induced by synchronous machines.

Three well-known routes to chaos^[3]:

- Period-doubling route: doubling of subsequent periodicities.
- Ruelle-Takens-Newhouse quasi-periodicity route: quasi-periodic torus attractors.
- Maneville-Pomeau intermittency route: sudden bursts to chaos.

[1] I Dobson, H.-D. Chiang, Towards a theory of voltage collapse in electric power systems. Systems & Control Letters 1989
 [2] J. Hongjie et al, Three routes to chaos in power systems. Canadian Conference on Electrical and Computer Engineering 2004
 [3] Abraham, Arimondo, and Boyd, Instabilities, dynamics and chaos in monitorial systems.

Nonlinear Phenomena in IBR-rich Grids

Q1: Can IBR-rich power grids induce chaotic behavior? Q2: Is there a fundamental difference between GFL and GFL Inverters?

VS

Problem Setup:

- IBR connected to infinite bus
- Use current controller gain K_p as bifurcation parameter

Case 1: Normal Operation $(K_p = 1.5) \Rightarrow$ Fixed Point

Case 2: $(K_p = 3.0) \Rightarrow$ Period-1 Orbit (T=0.115s)

Case 3: $(K_p = 5) \Rightarrow$ Period-2 Orbit (T=0.215s)

Case 4: $(K_p = 5.5) \Rightarrow$ Period-4 Orbit (T=0.425s)

Case 5: $(K_p = 5.7) \Rightarrow$ Chaos

Nonlinear Phenomena in IBR-rich Grids

- 1. Can IBR-rich power grids induce chaotic behavior?
- 2. Is there a fundamental difference between GFL and GFL Inverters?

Observations:

> Grid-following (GFL) inverter \Rightarrow Period-doubling route

Case 1: Normal Operation $(K_p = 2.5) \Rightarrow$ Fixed Point

Case 2: $(K_p = 0.636998540037319) \Rightarrow$ Period-1 Orbit

Case 3: $(K_p = 0.636998540037318) \Rightarrow$ Chaos

Nonlinear Phenomena in IBR-rich Grids

- 1. Can IBR-rich power grids induce chaotic behavior?
- 2. Is there a fundamental difference between GFL and GFL Inverters?

Observations:

- > Grid-following (GFL) inverter \Rightarrow Period-doubling route
- > Grid-forming (GFM) inverter \Rightarrow Intermittency route

Observations: GFM inverters can produce even more complex behavior

Outline

- A Word of Caution: GFM IBRs Complex Dynamics
 - Faster controls can speed up the transition to chaos
- Decentralized Stability Analysis in Power Grids
 - Generalizing control tools for network systems
- Avenues for Future Research
 - Early detection via critical slow-down
 - Novel IBR control designs: Trading Freq. vs Volt. Support
 - The role of operations in SSO prevention

Problem Setup:

- Linearized power flows, lossless $L_{ij} = b_{ij}v_iv_j\cos(\theta_i^* - \theta_j^*)$
- Bus *i*: arbitrary *siso* transfer function: $\omega_i = p_i(s) \Delta P_i$ (SGs or IBRs)

[[]TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019

Standard Approach: Passivity

• If $p_i(s)$ is strictly positive real (SPR), then the interconnection is stable for **all networks** *L*!

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019

Enrique Mallada (JHU)

Classical Result: Absolute Stability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Frequency Domain Stability Criteria-Part I

R. W. BROCKETT, MEMBER, IEEE AND J. L. WILLEMS

Abstract-The objective of this paper is to illustrate the limita-

II. THE GENERALIZED POPOV THEOREM

Nyquist Diagram

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019

Enrique Mallada (JHU)

Classical Result: Absolute Stability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Frequency Domain Stability Criteria-Part I

R. W. BROCKETT, MEMBER, IEEE AND J. L. WILLEMS

Abstract-The objective of this paper is to illustrate the limita-

II. THE GENERALIZED POPOV THEOREM

Nyquist Diagram

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019

Enrique Mallada (JHU)

1.5

Classical Result: Absolute Stability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Frequency Domain Stability Criteria-Part I

R. W. BROCKETT, MEMBER, IEEE AND J. L. WILLEMS

Abstract-The objective of this paper is to illustrate the limita-

II. THE GENERALIZED POPOV THEOREM

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019

Enrique Mallada (JHU)

5

Scale-free Stability Analysis

Key Idea: Exploit limited network information to relax passivity condition

• Let γ_i be a local connectivity bound: $[L]_{ii} = \sum_{j \in N_i} b_{ij} v_i v_j \cos(\theta_i^* - \theta_j^*) \le \frac{\gamma_i}{2}$

Brockett & Willems '65

Assume: G(s) is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s)(1 + k^*G(s)) \in SPR$ (strictly) then system is stable for all $0 \le K \le k^*$

Pates & Mallada 2019

Assume: $p_i(s)$ is stable Define: $h(s) \in PR$ (passive) Test: If $h(s) \left(1 + \gamma_i \frac{1}{s} p_i(s)\right) \in SPR, \forall i$, then system stable for networks $[L']_{ii} \leq \frac{\gamma_i}{2}, \forall i$

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019

Enrique Mallada (JHU)

Decentralized Stability Analysis for IBR Power Systems

Theorem:

If for all
$$i \in \mathcal{V}_{inv}$$
 the loop gain m_i^q satisfy
 $0 \leq m_i^q \leq \frac{1}{2(V_{\max,j} - V_{\min,i})|b_{ii}|}$
for all $j \in \mathcal{N}_i$, then the system is stable

Bus dynamics: Droop-based grid-forming IBR (MIMO)

$$\begin{cases} \dot{\theta}_{i} &= \omega_{i} \\ \omega_{i} &= \omega_{i}^{0} + m_{i}^{p} f_{i}^{p}(s) (P_{i}^{0} - P_{i}), \quad \forall i \in \mathcal{V}_{inv}. \\ v_{i} &= V_{i}^{0} + m_{i}^{q} f_{i}^{q}(s) (Q_{i}^{0} - Q_{i}). \end{cases}$$

 $\begin{array}{l} \underline{\text{Bus dynamics: Synchronous machine (SISO)}}\\ \dot{\theta_i} = \frac{1}{M_i s + D_i} P_i, \quad \forall i \in \mathcal{V}_{sm}. \end{array}$

Remarks:

- Fully decentralized (plug-and-play)
- Robust to network operating points
- Based on input-output models
- Several assumptions...

Enrique Mallada (JHU)

[[]PESGM 24] Siahaan, M, Geng, Decentralized Stability Criteria for Grid-Forming Control in Inverter-Based Power Systems. PES General Meeting 2024

Outline

- A Word of Caution: GFM IBRs Complex Dynamics
 - Faster controls can speed up the transition to chaos
- Scale-free Small-signal Stability Analysis
 - Generalizing control tools for network systems
- Avenues for Future Research
 - Early detection via critical slow-down
 - Novel IBR control designs: Trading Freq. vs Volt. Support
 - The role of operations in SSO prevention

Early Detection via Critical Slowdown

Transition to instability via bifurcations has the specific signature of *critical slowing down*

NONLINEAR With Applications to Physics, DYNAMICS Biology, Chemistry, and Engineering AND CHAOS

CONTRACTOR CONTRACTOR

Research Questions:

- Is critical slow-down a measurable feature in SSO transition to instability?
- Can we use critical slow down signatures to develop early alarm notifications?
 - What is the role of ML/AI in identifying these signatures?

[1] L. Chen et al. Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers, Scientific reports 2012
 [2] M. Scheffer et al. Anticipating critical transitions, Science 2012

Novel control designs for exploring trade-offs

Challenge:

SSO limits inverter ability to shape frequency response

Research Questions:

- Can we design controllers that trade-off between stability and performance?
- Can we dynamically tune controllers based on grid conditions?

[LCSS 20] Jiang, Bernstein, Vorobev, M. Grid-forming frequency shaping control for low-inertia power systems IEEE Control Systems Letters 2020 [LCSS 23] Poolla, Lin, Bernstein, M, Groß. Frequency shaping control for weakly-coupled grid-forming IBRs IEEE Control Systems Letters 2023

Enrique Mallada (JHU)

The role of Operations in SSO prevention

Emergence of oscillations depends on grid conditions and control tunning

Research Questions:

- Can we design dispatch mechanisms that can prevent SSO?
- Can dispatch mechanisms also inform about control tuning?
- How should we implement such mechanisms with inaccurate models?

Summary

- A Word of Caution: GFM IBRs Complex Dynamics
 - Faster controls can speed up the transition to chaos
- Scale-free Small-signal Stability Analysis
 - Generalizing control tools for network systems
- Avenues for Future Research
 - Early detection via critical slow-down
 - Novel IBR control designs: Trading Freq. vs Volt. Support
 - The role of operations in SSO prevention

Thanks!

<u>mallada@jhu.edu</u> • Enrique Mallada • <u>http://mallada.ece.jhu.edu</u>