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Real ity Kicks In Angry Residents, Abrupt Stops: Waymo Vehicles Are Still

Causing Problems in Arizona
RAY STERN ' MARCH 31, 2021 @ 8:26AM

DeepMind's Losses and the Future of Artificial Intelligence

Alphabet’s DeepMind unit, conqueror of Go and other games, is losing lots of money. Continued deficits could imperil investments in Al.

AARIAN MARSHALL BUSINESS 12.87.2828 B84:86 PM

Can we adapt reinforcement learning algorithms to address

physical systems challenges?

N\ =2 woman did not recognize that pedestrians
= jaywalk

The automated car lacked "the capability to classify an object as a pedestrian unless that object

was near a crosswalk," an NTSB report said.
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Challenges of RL for Physical Systems

* Physical systems must meet multiple objectives
- Need to trade off between the different goals ..
« Constrained RL allows to explore the Pareto Front [1.2]

0
m;mx (1 — ) T, So~q |:Zt 0 ’y g—i—)1j|

st (1= ) Er,symg | X055 7 REL | > by Vi€ 0]

- Failures have a qualitatively different impact i R
« Expectation constraints cannot meet safety requirements
- Hard (almost sure) constraints can guarantee safety [34]

max Er So~q [Z 0 Rt—l—l}

st Prosomg [st & g} =1, Vt >0
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Outline

» Intro to Constrained RL
» Dissipative Saddle Flows for Bilinear Saddles

» Solving Constrained RL via D-SGDA



Constrained Reinforcement Learning

Goal: Given initial state S, ~ g, find policy n* € [l that solves:

max V. 9(r) st. VY(r)>h; Vien]

wellyg
here VO(m) = (1 - y)E ‘R, |-
where () = ( Y) T,S0~q YisoY t+1

General Approach: Lagrange relaxation

max min L(m, ) := Vq(o) (M) +> 0, Mi(vq(i) (m) — h;)

wellg >0

Non-convex yet has zero duality gap! [1],[2]

[1] S Paternain, L Chamon, M Calvo-Fullana, and A Ribeiro. Constrained reinforcement learning has zero duality gap. NeurlPS 2019
[2] E. Altman. Constrained Markov decision processes. Vol. 7. CRC press 1999
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Constrained Reinforcement Learning

Goal: Given initial state S, ~ g, find policy n* € [l that solves:

max V. 9(r) st. VY(r)>h; Vien]

wellyg
here VO(m) = (1 - y)E ‘R, |-
where () = ( Y) T,S0~q YisoY t+1

General Approach: Lagrange relaxation

rlflzigg%L(mu) = (1 —7)Enr,50~q [Zt 0 t-l—l]

Non-convex yet has zero duality gap! [1],[2] R ::RQ—I—Z?ﬂ m(Rf) _hz’)
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Prior Work: Algorithms for Constrained RL [1]-[8]

Use primal and/or dual methods of the form:

o )TET NV L(mk, 5 C) foyy = 3 HE T NV L7, 15 Cr)
o arg max, L(m, pg; Ck) arg ming,>o L(7g, 1; (k)

where L(m, u; () = L(m,u; {) + Q(m, u; {) is a reqularized Lagrangian

- Parametrization of Ily: Soft-max [1.4], occupancy measures [2:3], greedy.
- Horizon: Infinite y-discounting [1-4], finite H [>-7], or average 8]

* Regret: value constraint satisfaction

T—1 T—1
E|Y VO =vOm) | =0@2)  E|Y -V (m)| =0(TP), pel0,3/4)
k=0 k=1

 Policy: Iterates m, lack convergence guarantees: Instead #iy = Y-t aymy, — m* [23]

[1] D Ding, K Zhang, T Basar, and M Jovanovic. Natural policy gradient primal-dual method for constrained markov decision processes. NeurlPS 2020

[2] Y Chen, J Dong, Z Wang, A Primal-Dual Approach to Constrained Markov Decision Processes, arXiv:2101.10895, 2021

[3] Q Bai, A S Bedi, M Agarwal, A Koppel, V Aggarwal. Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Primal-Dual Approach, AAAI 2022
[4] T Xu, Y Liang, and G Lan. CRPO: A new approach for safe reinforcement learning with convergence guarantee. ICML 2021

[5] D Ding, X Wei, Z Yang, Z Wang, and M Jovanovic. Provably efficient safe exploration via primal-dual policy optimization. AISTATS 2021

[6] H Wei, X Liu, and L Ying. A provably-efficient model-free algorithm for constrained markov decision processes. arXiv:2106.01577 2021.

[7] T Liu, R Zhou, D Kalathil, P Kumar, and C Tian. "Learning policies with zero or bounded constraint violation for constrained MDPs." NeurlPS 2021

[8] M Calvo-Fullana, S Paternain, L Chamon, and A Ribeiro. State augmented C-RL: Overcoming the limitations of learning with rewards. arXiv:2102.11941 2021 8



Prior Work: Algorithms for Constrained RL [1]-[8]

Use primal and/or dual methods of the form:

_ {Wk + 0V o L(7k, 115 Cr) B {Mk — 0V W L(T, i C)
Tk+1 = ~ HE+1 =

arg max, L(m, p; (k) arg min,>o E(T‘_kmu;Ck)

where L(m, u; () = L(m,u; () + Q(m, u; {) is a regularized Lagrangian

- Parametrization of Ily: Soft-max [1.4], occupancy measures [2:3], greedy.
- Horizon: Infinite y-discounting [1-4], finite H [>-7], or average 8]

* Regret: value constraint satisfaction
T-1 T-1 .

> Vi) = Vi () > ci— Vi (mo)
k=0 k=1

* Policy: Iterates m;, lack convergence guarantees: Instead fi; = YX!-¢ aymy — n* [23]

E = O(T?) E = O(TP), p € [0,3/4)

Question: Can we achieve convergence of the policy iterates
m, = m° a.s., or is learning from rewards a fundamental limitation?

8



Towards convergent r, iterates — Good news

Good news: Non-convexity of L(m,u) is not so bad...
* There exists a convex parametrization Il that makes it convex-concave

0
max (1 —7)Ex, 55~q [Zt 0 v 1<&+)1}

st (1= 7)Er,symg |05 VR, | > iy Wi € 0]

L

« LP Formulation:[1]
max . Alrg ()

A>0 As.a

st. 3. AP > by, Vi€ [n] (11:) rlals) = D

> =P =(1=7)g (v)
* where A, = (1 —y) X0V Prs,~q(Se = s, A = a) is the occupancy measure

[1] E. Altman. Constrained Markov decision processes. Vol. 7. CRC press 1999




Towards convergent n, iterates — Bad news

Bad news: Non-stricness of L(4, u,v)
 LP Formulation:

* Outline T (0)
W 2atare

st. S ATr > hy, Vi€ [n] (ki)
>l =P Aa=1—=7)q (v)

* where A, = (1 —y) X0V Prs,~q(Se = s, Ar = a) is the occupancy measure

— dual vars

- Bilinear Lagrangian:
« Lacks strict convexity/concavity necessary for convergence of primal-dual algorithms

min max L(\, p,v) = A' M [,u]
w=>0,v A>0 (V)

10



Outline

 Intro to Constrained RL

» Dissipative GDA Flows for Convex-concave L

» Solving Constrained RL via D-SGDA



Warm-up: Scalar Case

» We start by looking at a Naive GDA Flow on a scalar bilinear

Lagrangian
« Min-max Problem:

minmax L(z,y) :=xy =,y € R
Ty
« Saddle-point at (x*,y*) = (0,0)

* Nailve Gradient Descent-Ascent (GDA) Flow
| |—-ViL(z,y)| |0 -1} |z
gl |+VaLl(z,y)] |1 0|y
* Energy Dissipation: .
V(z,y) =32+ 39, V(z,y)=2(-y) +yz=0

Remark: Behavior generalizes for general non-strict
convex-concave Lagrangians [11-13]

[1] T Holding, and | Lestas. Stability and instability in saddle point dynamics—Part I." IEEE TAC 2020

[2] A Cherukuri, B Gharesifard, and J Cortes. Saddle-point dynamics: conditions for asymptotic stability of saddle points." SIAM JC&O 2017

Trajectory x(t),y(t)

[3] A Cherukuri, E Mallada, S Low, and J Cortés. The role of convexity in saddle-point dynamics: Lyapunov function and robustness." IEEE TAC 2017
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Naive GDA Flow Scalar Case

Lagrangian

Dynamics

Energy Function

Energy Dissipation

Asympt. Behavior

Naive GDA Flow

L(x,y) = xy

12



Dissipative GDA Flow Algorithm

« Given general convex-concave L(x,y), we consider

- A A P . P .

 Remarks:
« If (x*,v*) is a saddle point of L, then (x* x* y* v*) is a saddle point of L.
- [ is neither strictly convex, nor strictly concave (don’t worry)

- Dissipative GDA Flow:
» Just apply Naive GDA on L(x,%,vy,9)!

~V.L(z,y) — p(xr — ) y
T =—p(&— ) J

+VyL(z,y) — ply — 9)
—p(J — y)

T

13



Dissipative GDA Flow Algorithm

- Dissipative GDA Flow:
- Just apply Naive GDA on L(z,%,v,4) = L(z,y) + BHx A BHy —g|* !

& =—-VyL(z,y) — plx — ) y=+VyL(z,y) — p(y — 9)
i =—p(&— ) 7 =—p(H —y)
- Scalar case: . =,
- ~ ~ N N SRS :
L0, 2,y,9) = xy + - (x = 2)? + 2 (y — 9)? b
@] [-p p -1 0] []
T | = 0 0 x of
Y L0 —p p| |y 4
gl L0 0 p —p] |4
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Dissipative GDA Flow Scalar Case

Lagrangian

Dynamics

Energy Function

Energy Dissipation

Asympt. Behavior

Naive GDA Flow

L(x,y) = xy

=i

V(xy) = (% +y?)

V=0

V(t) =c

Dissipative GDA Flow

14



General Analysis of Dissipative GDA Flows

Theorem [You, M ACC 21]
Consider the minimax problem

' ax L
iy Loy

where L(x,y) is convex-concave, and the sets X and Y are convex polyhedral.
Then, for any initial feasible point (x,, Xy, vo, Vo) the Dissipative GDA Flow

=My, [-VeL(z,y) —plx — )] ¢=M0y, [+V,Liz,y) — ply — 9)]

i =—p(d —2) 7 =—p(§—y)
converges to some saddle point.

« Remarks:
« Convergence is guaranteed point-wise, to some saddle point

. .12 .12
« Proof uses LaSalle on the same dissipation property V < —p ||£|| —p ||y||
« For unconstrained bilinear problems convergence is exponential

[You, M ACC 21] P You, Pengcheng, and E Mallada. Saddle flow dynamics: Observable certificates and separable regularization, ACC 2021

15
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Dissipative GDA for Constrained MDPs

 LP Formulation of C-RL
max » A Ty.0)

A>0
T H
st AT > by Vi € ] S— Mrg%)nvr/l\l%cL()\ pv) =AM [v]
> oI =P )Aa = (1 =7)q

4

min max L(A, u,v) +
p>0,0,0,9 x>0, 3 (A 1:0) 2

'
-

(Il = A2 + llv = 811 = | = A=)

D-GDA Flow
0=, (I=7P) )\ —(1 v)q p(v—
i = HR+[M§ hi—> AL

A —HA[)\ i —(I=yPa)o+Y e

e’ —p(Aa—A )} Ao = =p(Ra — A)

unknowns 16




Dissipative Stochastic GDA for Constrained RL

* Oracle: At each time t sample Sy ~ q, (S, Ar) ~ &, Sip1 ~ P(- [St, Ap):
- DS-GDA Update:

NS, A . . v .
v =0t + o ﬂ{&(St,At>>o}_§(S:th—)(est—vest+1)—(1—7)eso—p(vt—vt)]7 o =0t — alp(0t ')
] Ny, a4, R 1
i = | g + ol (hi—Lie(s,,a,)>0} gzstt 1) —p(pi—ig) | - ptt=pt — ot p(ph— i)
t+1 _ t t Z? 1MzR§21+7vSt+1 Ugt t O\t ' Yt+1 t t 3\t t
>‘a - )‘a+a ]I{E(St,At)>0&At:a} S(St At) eSt_p()‘a_)‘a) 7>‘a :)‘a_& 10(>‘a_>‘a)

Theorem [Zheng, You, M '22]

Under mild assumptions, as t - o« the sequence (1%, uf, v?t) generated by S-GDA
converges to the optlmal solution to the C-RL LP Problem.

In particular, the iterates n.(als) = > Alt

- T a.s.

[Zheng, You, M 22] T Zheng P You, and E Mallada. Constrained reinforcement learning via dissipative saddle flow dynamics Asilomar 2022
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Challenges of RL for Physical Systems

* Physical systems must meet multiple objectives
- Need to trade off between the different goals ..
« Constrained RL allows to explore the Pareto Front [1.2]

0
m;mx (1 — ) T, So~q |:Zt 0 ’y g—i—)1j|

st (1= ) Er,symg | X055 7 REL | > by Vi€ 0]

- Failures have a qualitatively different impact i R
« Expectation constraints cannot meet safety requirements
- Hard (almost sure) constraints can guarantee safety [34]

max Er So~q [Z 0 Rt—l—l}

st Prosomg [st & g} =1, Vt >0

[1] Zheng, You, and M, Constrained reinforcement learning via dissipative saddle flow dynamics, Asilomar 2022

[2] You, and M, Saddle flow dynamics: Observable certificates and separable regularization, ACC 2021

[3] Castellano, Min, Bazerque, M, Reinforcement Learning with Almost Sure Constraints, L4ADC 2022

[4] Castellano, Min, Bazerque, M, Learning to Act Safely with Limited Exposure and Almost Sure Certainty, IEEE TAC, 2023
[5] Castellano, Min, Bazerque, M, Correct-by-design Safety Critics Using Non-contractive Bellman Operators, submitted
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[Submitted on 9 Dec 2021 (v1), last revised 7 Apr 2022 (this version, v2)]

Reinforcement Learning with Almost Sure Constraints

Agustin Castellano, Hancheng Min, Juan Bazerque, Enrique Mallada

a I'X]_V > cs > arXiv:2112.05198

[Submitted on 18 May 2021 (v1), last revised 25 May 2021 (this version, v2)]

Learning to Act Safely with Limited Exposure and Almost Sure Certainty

Agustin Castellano, Hancheng Min, Juan Bazerque, Enrique Mallada aniV> cess > arXiv:2105.08748

Agustin Castellano Hancheng Min Juan Bazerque
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Reinforcement Learning for Safety-Critical Systems

State Sii1
Reward Ry

+oo ¢t
mgx EW,SONQ [ t=0 "V Rt‘H}

st Py gy [St o g} —1, V¢ >0

safe trajectory

Action A

Challenges of SC-RL:

« Avoiding unsafe regions requires anticipation
« A car at 100 mph at 10 feet from a wall still hasn’t hit the wall!

20



Reinforcement Learning for Safety-Critical Systems

State St+1
Reward Ry

Environment

Challenges of S(

- Avoiding unsafe r @,
« A car at 100 mph at 10 feet from a wall still hasn't hit the wall!
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Reinforcement Learning for Safety-Critical Systems

State Sii1
Reward Ry

+oo ¢
mgx EW,SONQ [Zt:O 8 Rt—l—l}

st Py g [St o g} —1, V¢ >0

safe trajectory

Action A

Challenges of SC-RL:

« Avoiding unsafe regions requires anticipation
« A car at 100 mph at 10 feet from a wall still hasn’t hit the wall!
« Model-based & Reachability Theory

20



Reachability Theory

Consider a controlled system

s=f(sad)

a(:) : control/actions
d(-) : disturbance

Three flavor of reachability w.r.t a target set G:

1. Reach Problems G: set of goal states
— which states can reach G?

— which states can reach G and stay forever (c.f. invariance)?
 E.g.: G is a neighborhood of a system’s desired operating point.

2. Avoid Problems G: set of unsafe states

— which states inevitably visit G?
« E.g.: G is a set of buses’ voltages outside [.95, 1.05] p.u., lines thermal limits.

1. Reach-avoid problems: combination of previous

21




Example: Transient Stability in Power Systems

E, E,
O]
Infinite
bus
3
(i — )
W=+ (u— Dw— P,.sind)
\u S [umiru umax]
5

* Q: Which states can reach a neighborhood of the stable equilibrium?

22



Example: Air Collision Avoidance

V,
X3
b
-~
1
evader (player ) pursuer (player 1) 0
¢ o
r1 = —0V +VCOST3 + ary -
< To = USINT3 — axs .
333 — b — o
. -0.5 o0

* Q: From which states can the evader avoid collision?

23



Reinforcement Learning for Safety-Critical Systems

+oo ¢t
m?”X EW,SONC] [ t=0 "V Rt‘H}

st Py g [St o g} —1, V¢ >0

safe trajectory

Challenges of SC-RL:

« Avoiding unsafe regions requires anticipation
« A car at 100 mph at 10 feet from a wall still hasn’t hit the wall!
« Model-based & Reachability Theory

« Model-free:
« Constraints not given a priori: Need to learn from experience!

« Constraint violations are inevitable  Maybe not all constraints can be learned online

Reward Ry

Action A

24



Related Work

Reachability Theoryl1-2]
+ Model-based: Via Hamilton Jacobi Issacs Equations (cont. time), or iterative set updates (discrete time).
+ Constraints: Provides hard/almost sure guarantees
* Output: Finds the maximum control invariant set (M-CIS) outside G

Control Barrier Functions (CBF)[3-4]
+ Model-based: Requires knowledge of dynamics and finding such CBF!
+ Constraints: Provides hard/almost sure guarantees
* Output: Possibly conservative CIS

Safety Critics (SC)[5-7]
* Model-free: Q-Learning-like algorithms, computes function such that Q. (s,a) = Npresn = “safety”
+ Constraints: Provides soft/approximate guarantees, depending on discounting factor y € (0,1)
* Output: Converges to maximum CIS asy - 1

[1] I Mitchell, A Bayen, and C Tomlin. “A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games.” IEEE TAC, 2005

[2] D Bertsekas. “Infinite time reachability of state-space regions by using feedback control.” IEEE TAC, 1972

[3] A Ames, X Xu, J Grizzle, and P Tabuada, “Control barrier function based quadratic programs for safety critical systems,” IEEE TAC, 2017.

[4] A Ames, S Coogan, M Egerstedt, G Notomista, K Sreenath, and P Tabuada. “Control barrier functions: Theory and applications” ECC, 2019

[5] J Fisac, N Lugovoy, V Rubies-Royo, S Ghosh, and C Tomlin, “Bridging Hamilton-Jacobi safety analysis and reinforcement learning,” ICRA, 2019.

[6] K Srinivasan, B Eysenbach, S Ha, J Tan, and C Finn. "Learning to be safe: Deep RL with a safety critic." arXiv preprint arXiv:2010.14603 (2020).

[7] B Thananjeyan, A Balakrishna, S Nair, M Luo, K Srinivasan, M Hwang, J E Gonzalez, J Ibarz, C Finn, and K Goldberg. Recovery RL: Safe reinforcement learning with learned
recovery zones. |[EEE Robotics and Automation Letters, 2021
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Related Work

Reachability Theory(1-2]
+ Model-based: Via Hamilton Jacobi Issacs Equations (cont. time), or iterative set updates (discrete time).

+ Constraints: Provides hard/almost sure guarantees
* Output: Finds the maximum control invariant set (M-CIS) outside G

Control Barrier Functions (CBF)[3-4]
+ Model-based: Requires knowledge of dynamics and finding such CBF!
+ Constraints: Provides hard/almost sure guarantees
* Output: Possibly conservative CIS

Safety Critics (SC)[5-7]
* Model-free: Q-Learning-like algorithms, computes function such that Q. (s,a) = Npresn = “safety”

+ Constraints: Provides soft/approximate guarantees, depending on discounting factor y € (0,1)
* Output: Converges to maximum CIS asy - 1

Reachability Theory(-2] Hard Maximal

Control Barrier
Functions[3-4]

Safety Critics!>7] Yes Soft/Approx. Maximal

No Hard Subset

25



Our Work

Reachability Theoryl1-2]
+ Model-based: Via Hamilton Jacobi Issacs Equations (cont. time), or iterative set updates (discrete time).
+ Constraints: Provides hard/almost sure guarantees
* Output: Finds the maximum control invariant set (M-CIS) outside G

Control Barrier Functions (CBF)[3-4]
+ Model-based: Requires knowledge of dynamics and finding such CBF!
+ Constraints: Provides hard/almost sure guarantees
* Output: Possibly conservative CIS

Safety Critics (SC)[5-7]
* Model-free: Q-Learning-like algorithms, computes function such that Q. (s,a) = Npresn = “safety”
+ Constraints: Provides soft/approximate guarantees, depending on discounting factor y € (0,1)
* Output: Converges to maximum CIS asy - 1

Reachability Theory(-2] Hard Maximal

Control Barrier

Functions[3-4] No Hard Subset

Safety Critics!>7] Yes Soft/Approx. Maximal

Ours Yes Hard Maximal and Subsets

26



Reinforcement Learning for Safety-Critical Systems

State Sii1
Reward R,y

+00 _ ¢
max Er,S0~q {tho g RtH}

st Py g [st o g} —1, V¢ >0

safe trajectory

; Action A

Methodology:

« Enhance RL with logical feedback naturally arising from constraint violations
St € g Lo Dt - 1

« Decouple feasibility from optimality: Separation Principle
« Develop algorithms for learning fixed points of non-contractive operators

27



Outline

« Separation Principle for Joint Safety & Optimality

« One-sided Bellman Equations for Continuous States



Recap: RL with Almost Sure Constraints

+oo ¢
mgx Er s5~q [tho Y Rt-H]

S.t. Pr go~g [St 7 Q} =1, Vt>0 <= D;;1 = 0 almost surely Vi

State Sti1
Reward R,y

Environment

Action A

- Damage indicator D; € {0,1} turns on (D; = 1) when constraints are violated

28



Formulation via hard barrier indicator

Safe RL problem: Equivalent unconstrained formulation:

oo ©.@)
V*(s) := max E- ZVthH | So=s ~ max [E. thRH_l + log[l — Di11] | So = s
-t=0 " t=0 l J
s.t.: Dyy1 = 0 almost surely Vt !
0 ifDey1 =0

=0  if Deyq =1

Questions/Comments: )

* |s this just a standard RL problem with R¢+1 = Riy1 +log(l — Dyqq) ?

e Standard MDP assumptions for Value Iteration, Bellman’s Eq., Optimality
Principle, etc., do not hold!

* Not to mention convergence of stochastic approximations.

Key idea: Separate the problem of safety from optimality

29



Hard Barrier Action-Value Functions

Consider the Q-function for a given policy =,
QW(S7 CL) =K, Z (VtRH—l + log(l — Dt_|_1)) ‘ S() = S,AQ =Q
t=0

and define the hard-barrier function

B™(s,a) = E, Zlog(l —Dyt1) | So=s,40=a
| t=0 i

Notes on B™(s,a):

* B™(s,a) € {0, —o0}

« Summarizes safety information
* B™(s,a) = 0 iff m is safe after choosing A; = a when §; =s

It is independent of the reward process



Separation Principle

Theorem (Separation principle)

Assume rewards R;,; are bounded almost surely for all t. Then for every policy m:

Q" (s,a) = Q" (s,a) + B (s, a)

In particular, for optimal .,

Q"(s,a) = Q"(s,a) + B™(s,a)

Approach: Learn feasibility (encoded in B*) independently from optimality.



Optimal Hard Barrier Action-Value Function

Theorem (Safety Bellman Equation for B*)
Let B*(s,a) := max B™(s,a) , then the following holds:

B*(s,a) =E {— log(1 — Dyy1) + mf}xB*(StH,a’) ‘ So =8, A = a}

Understanding B*(s, a):

B*(s,a) € {0, —oo} summarizes safety information of the entire MDP
 B*(s,a) = 0if 3 safe m after choosing A; = awhenS; =s  Control Invariant
 B*(s,a) = — if no safe policy exists after choosing A = awhen S; = s Unsafe

Discrete States Continuous States
controlled
safe trajectory

o V'(s) =maxB'(s,a) =0 ¢ V'(s) =maxB*(s,a) = — 3
a a



Properties of Safety Bellman Equation

Understanding the Solutions to the Safety Bellman Equation (SBE):

~

B(s,a) =E {— log(1 — Dyyq) + max B(StH, a) ’ Sog=s,A4 = a,}

* SBE can have multiple solutions, including B(s, a) = —oo, for all pairs (s, a)
e If the function B is a solution to the SBE, then:
e ThesetC := {S : max B(s,a) = 0} is a control invariant safe set
a

* Cismaximal:If So &€ C, then S; never reaches C for all policies

C={s: min b(s,a) =0} Solution

Solution

Not a Solution
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Outline

« Separation Principle for Joint Safety & Optimality

« One-sided Bellman Equations for Continuous States



Recall: Properties of Safety Bellman Equation

Understanding the Solutions to the Safety Bellman Equation (SBE):

~

B(s,a) =E {— log(1 — Dyyq) + max B(StH, a) ’ Sog=s,A4 = a,}

Understanding the Solutions to the Safety Bellman Equation (SBE):
* SBE can have multiple solutions, including B(s, a) = —oo, for all pairs (s, a)
« If the function B is a solution to the SBE, then:

e ThesetC := {S : rrzax B(s,a) = O} is a control invariant safe set

?

C={s: mgnl;(s,a) =0}

Problem: Maximal
solutions can be very close
to unsafe region R(G)

L o

Not a Solution
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One-Sided Safety Bellman Equation

Theorem (One-Sided Safety Bellman Equation)
Let B(s, a) be a solution of the following set of inequalities:

B(s,a) < E [— log(1 — Dp4q1) + max B (Sp41,a')|So = 5,40 = a]
a

The set C = {S : max B(s,a) = O} is a control invariant safe set, not
a

necessarily maximal

C={s: mainl;(s,a) =0}

C={s: mainl;(s,a) =0}

Not a Solution
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Learning Solutions to Bellman Inequalities

Architecture
- akin to Q-Learning

W
O /o X
50 A\\‘glf' ¥
VAV A 4
W% ".‘:,.,'" 2 \‘. 7
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Learning Solutions to Bellman Inequalities

Algorithm Summary
 Require:

- Axiomatic data (s,a,d,s") € Ds4¢. (dataset of safe transitions)
« Initialize:

« b9(s,a) =0, where b(s,a) =1 — 862 (all presumed safe)

« At each iteration:
- Take N episodes starting from D¢,

« Behavioral policy: uniform safe policy

0 (a|s) = {0 A ifl:)a(s,a) =1
1/> yea 1{t(s,a’) =0} ifb%(s,a) =0

« Train NN using SGD until fully fitting the data
« Start a new iteration (repeat)
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Numerical Illustration

Control Engineer Favorite’s: Inverted Pendulum

Lea8rned binary function: min, b(s,a) =1[s is unsafel, iterations=-11 .

L4 Dsafc
—— Boundary of G
6 - true safe region
| reach-avoid set
{ d - 08
4 -
2 -
- 0.6
3 0 -
-0.4
-2 =
= . w
G={(0O,w):0] > 7}
—4 -
- 0.2
_6 -
-8t ! . 0.0
- —m/2 0 w/2 ™




Numerical Illustration

Control Engineer Favorite’s: Inverted Pendulum

Le%rned binary function: min, b(s,a) = 1[s is unsafel, iterations=-1

1 1.0
. Dsu,fe
—— Boundary of g
6 - true safe region
| reach-avoid set
4 -
2 -
- 0.6
30
- 0.4
_2 -
— 5 m
G={(6w):|0 > 3}
-4 -
-0.2
_6 L
8k ' : 0.0

— —m/2 0 /2 ™



Numerical Illustration

Control Engineer Favorite’s: Inverted Pendulum

Le%rned binary function: min, b(s,a) =1[s is unsafe], iterations=-11 o
- . .

o| Dupe
—— Boundary of ¢
6 - true safe region
| ' reach-avoid set .
4 - A
2L
- 0.6
3 0 &=
-0.4
_2 |
_4 |
-0.2
_6 |5
8L ! ! 0.0
— —/2 0 /2 ™

500 -

»
o
o

Cumulative failures
N
o
o

100 -

300 -

1 1
2000 3000
Episodes

1
4000

- Ours
e SBE

1
5000

Entropy & Safety rate

0.6 -

0.4 -

0.2 -

- Entropy
- Safety rate

] 1 1 1 1 1 ] 1 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Threshold 5

SBE = Fisac’s ‘19 Safety Critic
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Summary and future work

« Methodologies to Adapt Reinforcement Learning to Safety-Critical Systems

« C-RL via Dissipative Saddle Flows
» Investigate methods to learn saddle-points in deterministic and stochastic settings
* Proposed a general methodology to ensure convergence to saddle points of general convex-concave functions
» Application to Constrained RL problems

+ Takeaways:
- Dissipative GDA guarantees convergence on a wide family of minimax problems

« When combined with stochastic approximations (D-SGDA) renders convergent policy iterates n, —» n* a.s.

* RL with Almost Sure Constraints
» Treat constraints separately or in parallel (Barrier Learner)
* Finite State-Spaces: Can characterize all feasible policies (D, = 0) with finite mistakes
» Continuous State-Spaces: Requires learning using Bellman equations with non-unique solutions
+ Takeaways:

+ Learning feasible policies is simpler than learning the optimal ones
« Adding constraints makes optimal policies, easier to find

« One-sided Safe Bellman can be used to find CISs that are not maximal
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Thanks!
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