Unintended consequences of market designs The role of inelastic demand and market rules

Enrique Mallada

Agency for Science, Technology and Research
IHPC's Workshop on Power and Energy Systems of the (near) Future

December 11, 2023

Acknowledgements

Rajni K. Bansal
UC San Diego

Pengcheng You

Yue Chen

Marcelo Fernandez Dei

Dennice Gayme

Two-stage/Sequential Markets

Two-stage markets are the norm in energy systems!

Designed to incentivize transactions in the presence of uncertainty

- Forward Market: Future contracts
- **Spot Market:** Immediate commitments

Benefits of forward contracting

- Hedge against future risks
- Increased efficiency [Allaz & Vila '93]

Natural solution to electricity markets

- Day-ahead: Forward Market
 - Hedge via a forward position
- Real-time: Spot Market
 - Correct: Last-resort/realized uncertainty

ENERGY POLICY ACT OF 1992

TITLE VII—ELECTRICITY

Subtitle A-Exempt Wholesale Generators

- Sec. 711. Public Utility Holding Company Act reform.
 Sec. 712. State consideration of the effects of power purchases on utility cost of capital; consideration of the effects of leveraged capital structures on the reliability of wholesale power sellers; and consideration of adequate fuel
- Sec. 713. Public utility holding companies to own interests in cogeneration facili-
- Books and records

Subtitle B-Federal Power Act; Interstate Commerce in Electricity

- Sec. 721. Amendments to section 211 of Federal Power Act.
- Sec. 722. Transmission services.
- Sec. 723. Information requirements.
- Sec. 724. Sales by exempt wholesale generators
- 725. Penalties.

Subtitle C-State and Local Authorities

Sec. 731. State authorities

day-ahead vs real-time prices

Source: NYISO

Operational Challenges in Electricity Grids

- Undesired price manipulation by market participants
 - California Electricity Crisis Enron '00-'01
 - Today: \sim 2% hours with non-competitive bids in the CAISO market (2021)
- Proliferation of renewable energy sources

Rapid growth in solar and wind energy

Source: U.S. Energy Information Administration

SOURCE: Congressional Budget Office based on data for the northern and southern regions from the California Energy Commission (available at www.energy.ca.gov/electricity/wepr/monthly_day_ahead_prices.html).

Net demand trend

System demand minus wind and solar, in 5-minute increments, compared to total system and forecasted demand.

Source: California ISO

Opportunities

Utility-Scale Storage

- Rapidly growing technology
- Can be used across all grid services (regulation, ramping, volt/var, etc.)
- High cost, complex to quantify

Distributed Energy Resources (DERs)

- FERC 2222 opens the door for democratized participation in Markets
- Multiple types: solar, wind, batteries, smart meters, demand response, EVs, etc.
- Heterogeneous functionalities/incentives

Q1: How does participants' behavior affect market outcomes? What are their incentives?

Q2: How should new types of participants bid in energy markets?

Global cumulative energy storage installations

Source: BloombergNEF

18 CFR Part 35

[Docket No. RM18-9-000; Order No. 2222]

Participation of Distributed Energy Resource Aggregations in Markets Operated by Regional Transmission Organizations and Independent System Operators

(Issued September 17, 2020)

Unintended consequences of market designs

• The role of inelastic demand in two-stage markets

Market power mitigation via default bids

The Role of Strategic Participants in Two-Stage Settlement Markets

Pengcheng You, Marcelo A. Fernandez, Dennice F. Gayme, and Enrique Mallada

Preprint, August 2022

Existing Paradigm - Wholesale Energy Market Design

Generator centric view:

- Day-Ahead Market (Forward Market)
 - Market clears based on demand forecasts
 - Account for majority of trading in market
 - Hedge against uncertainty via a forward position

- Real-Time Market (Spot Market)
 - Market clears at faster timescale, typically 5 min
 - Participants buy or sell to adjust commitments
 - Correct: Last-resort/realized uncertainty

Two-stage Settlement in Electricity Markets

linear supply function $q^?=\beta^?\,\lambda^?$ [Klemperer, Meyer '89]

total generation $q = q^{RT} + q^{DA}$

total demand $d = d^{RT} + d^{DA}$

day ahead: forward position

real time: last resort/opportunity

Enrique Mallada (JHU) 8

Challenge: Operation Not Fully Understood

Market Power is Major Concern

- Competitive Equilibria -> Price Convergence $\lambda^{DA} = \lambda^{RT}$
- Evidence the lack of price convergence
 - MISO [Bowden et al. '09, Birge et al. '18]
 - NYISO [Jha & Wolak '19, You et al. '19]
 - CAISO [Borenstein '08] and more..

Is the Spot Market Operating as Last Resort?

• Systematic bias in real-time demand

Our focus: Understanding the role of strategic load participants

- Between *G* homogeneous generators and *L* heterogeneous inelastic loads
- Perfect foresight and complete information

Quadratic cost Individual generator $j \in \mathcal{G}$ $\frac{1}{2}c(q_j^{DA}+q_j^{RT})^2$

Day-ahead market clearing

Day-ahead market

$$\sum_{j \in \mathcal{G}} \beta_j^{DA} \lambda^{DA} = \sum_{l \in \mathcal{L}} d_l^{DA}$$

Real-time market

$$\sum_{j \in \mathcal{G}} \beta_j^{RT} \lambda^{RT} = \sum_{l \in \mathcal{L}} d_l^{RT}$$

Real-time market clearing

- Between G homogeneous generators and L heterogeneous inelastic loads
- Perfect foresight and complete information

- ullet Between G homogeneous generators and L heterogeneous inelastic loads
- Perfect foresight and complete information

Enrique Mallada (JHU)

- ullet Between G homogeneous generators and L heterogeneous inelastic loads
- Perfect foresight and complete information

Generation goal

$$\max_{q_j^{DA}q_j^{RT}} \lambda^{DA} q_j^{DA} + \lambda^{RT} q_j^{RT} - \frac{1}{2} c(q_j)^2$$
s.t.
$$q_j = q_j^{DA} + q_j^{RT}$$

Demand goal

$$\max_{d_l^{DA}d_l^{RT}} \lambda^{DA} d_l^{DA} + \lambda^{RT} d_l^{RT}$$

s.t.
$$d_l = d_l^{DA} + d_l^{RT}$$

Model: Nested Game

- Real-time subgame: given day-ahead market outcome
- Day-ahead competition: anticipate real-time market outcome (global view)

Model: Nested Game

- Real-time subgame: given day-ahead market outcome
- Day-ahead competition: anticipate real-time market outcome (global view)

Market Participant Types

- Price taker participants: respond (bid) optimally to given prices
- Competitive equilibrium
 - A set of two-stage bids $(\beta^{DA}, \beta^{RT}, d^{DA}, d^{RT})$ and prices $(\lambda^{DA}, \lambda^{RT})$ s.t.
 - Bids are optimal for individual participants, given the prices;
 - Supply matches demand in both stages.
- Strategic participants: anticipate
 - Bidding impacts on clearing prices (through power balance);
 - Day-ahead bidding impact on real-time market outcome;
- Nash equilibrium
 - A set of two-stage bids $(\beta^{DA}, \beta^{RT}, d^{DA}, d^{RT})$ and prices $(\lambda^{DA}, \lambda^{RT})$ s.t.
 - Bids are optimal for individual participants, given others' bids;
 - Symmetric decisions for homogeneous generators:
 - Supply matches demand in both stages.

Market Equilibria Characterization

Recall: Homogeneous

Generation: $c_i = c$

Competitive equilibrium

- Equal two-stage prices at marginal cost $\lambda^{DA*}=\lambda^{RT*}=rac{c}{G}\sum_{l\in\mathcal{L}}d_l$
- Any combination of bids with two-stage power balance

Generator:
$$\beta_j^{DA*} + \beta_j^{RT*} = \frac{1}{c}$$

Load: $d_{l}^{DA*} + d_{l}^{RT*} = d_{l}$

Nash equilibrium

- No price convergence: $\lambda^{DA*} = \frac{L}{L+1} \cdot \lambda^{RT*}$, with $\lambda^{RT*} = \frac{G-1}{G-2} \cdot \frac{c}{G} \sum_{l \in \mathcal{L}} d_l$

Demand allocation:

$$\frac{\sum_{l \in \mathcal{L}} d_l^{DA^*}}{\sum_{l \in \mathcal{L}} d_l} = \frac{L(G-1)+1}{(L+1)(G-1)} \in (0,1)$$

Quantification of Market Power

Recall: Homogeneous

Generation: $c_i = c$

- Total generation cost: optimal and fixed at all equilibria
 - Reason: Generator symmetry and load inelasticity
- Market surplus allocation

- *Inter-group* market power shift
 - More degree of flexibility for generators;

Generator centric view

Generator profit: $\frac{1}{2} \cdot \frac{c \left(\sum_{l \in \mathcal{L}} d_l\right)^2}{G^2} \longrightarrow \left(\frac{1}{2} + \frac{1}{G-2}\right) \cdot \frac{c \left(\sum_{l \in \mathcal{L}} d_l\right)^2}{G^2}$

Competitive equilibrium

NE with strategic gens

- Inter-group market power shift
 - More degree of flexibility for generators;
 - Loads offset generators' market power by
 - allocating demand strategically;

Generator centric view

Generator profit:
$$\frac{1}{2} \cdot \frac{c \left(\sum_{l \in \mathcal{L}} d_l\right)^2}{G^2} \longrightarrow \left(\frac{1}{2} + \frac{1}{G-2}\right) \cdot \frac{c \left(\sum_{l \in \mathcal{L}} d_l\right)^2}{G^2}$$
NE with strategic gens
$$\left(\frac{1}{2} + \frac{1}{G-2}\right) \cdot \frac{c \left(\sum_{l \in \mathcal{L}} d_l\right)^2}{G^2} \longrightarrow \frac{L(G-1) + 1}{(L+1)^2(G-2)} \cdot \frac{c \left(\sum_{l \in \mathcal{L}} d_l\right)^2}{G^2}$$
NE with strategic gens

NE with strategic gens and loads

- *Inter-group* market power shift
 - More degree of flexibility for generators;
 - Loads offset generators' market power by
 - allocating demand strategically;

Generator profit:
$$\frac{1}{2} \cdot \frac{c}{2}$$

$$\frac{1}{2} \cdot \frac{c \left(\sum_{l \in \mathcal{L}} d_l\right)^2}{G^2}$$

Competitive equilibrium

$$\left(\frac{1}{2} + \frac{1}{G-2}\right) \cdot \frac{c \, (\sum_{l \in \mathcal{L}} d_l)^2}{G^2}$$
 NE with strategic gens

Normalized Agg. Generator Profit

$$\frac{c(\sum_{l \in \mathcal{L}} d_l)^2}{G^2} - \frac{L(G-1)+1}{(L+1)^2(G-2)} \cdot \frac{c(\sum_{l \in \mathcal{L}} d_l)^2}{G^2}$$

NE with strategic gens and loads

Enrique Mallada (JHU)

16

- *Inter-group* market power shift
 - More degree of flexibility for generators;
 - Loads offset generators' market power by
 - allocating demand strategically;

$$\frac{1}{2} \cdot \frac{c \left(\sum_{l \in \mathcal{L}} d_l\right)^2}{G^2}$$

Competitive equilibrium

$$\left(\frac{1}{2} + \frac{1}{G-2}\right) \cdot \frac{c\left(\sum_{l \in \mathcal{L}} d_l\right)^2}{G^2}$$
 NE with strategic gens

Normalized Agg. Generator Profit

$$\left(\frac{1}{2} + \frac{1}{G-2}\right) \cdot \frac{c\left(\sum_{l \in \mathcal{L}} d_l\right)^2}{G^2} - \frac{L(G-1) + 1}{(L+1)^2(G-2)} \cdot \frac{c\left(\sum_{l \in \mathcal{L}} d_l\right)^2}{G^2}$$

NE with strategic gens and loads

Reversal of market power: General Condition

$$\iff$$

$$G > L + 3$$

- Intra-group market power shift
 - Load payment reduced by a fixed amount, regardless of load size;

Load payment

$$\frac{G-1}{G-2} \cdot \frac{c \sum_{l \in \mathcal{L}} d_l}{G} \cdot d_l - \frac{L(G-1)+1}{L(L+1)^2(G-2)} \cdot \frac{c \left(\sum_{l \in \mathcal{L}} d_l\right)}{G}$$
NE with strategic gens

NE with strategic gens and loads

- Relatively, small loads are favored;
 - Incentive to split instead of aggregation

Special Case: virtual bidding

• a load bidder with $d_l = 0$, its payment (negative profit):

$$-\frac{L'(G-1)+1}{L'(L'+1)^2(G-2)} \cdot \frac{c(\sum_{l \in \mathcal{L}} d_l)}{G}$$

Normalized Agg. Load Payment

$$\frac{\lambda^{DA*} - \lambda^{RT*}}{\lambda^{DA*}} = \frac{1}{L'} \xrightarrow[L' \to \infty]{} 0$$

L' = L + num. of virtual bidder

1.8

1.6

1.4

1.2

0.8

Unintended consequences of market designs

• The role of inelastic demand in two-stage markets

Market power mitigation via default bids

Market Power Mitigation in Two-stage Electricity Markets with Supply Function and Quantity Bidding

Rajni Kant Bansal, Yue Chen, Pengcheng You, Enrique Mallada

IEEE TEMPR, September 2023

Recall: Two-Stage Standard Market

linear supply function

$$q^? = \beta^? \lambda^?$$

[Klemperer, Meyer '89]

generation goal

$$\max_{q_j^{DA}q_j^{RT}} \lambda^{DA} q_j^{DA} + \lambda^{RT} q_j^{RT} - \frac{1}{2} c(q_j)^2$$
s.t.
$$q_j = q_j^{DA} + q_j^{RT}$$

demand goal

$$\max_{d_l^{DA}d_l^{RT}} \lambda^{DA} d_l^{DA} + \lambda^{RT} d_l^{RT}$$
s.t.
$$d_l = d_l^{DA} + d_l^{RT}$$

Equilibrium Analysis Summary

 d_l^{DA} : Day-ahead allocation of load l d_l^{RT} : Real-time allocation of load l

Market	Competitive Equilibrium	Nash Equilibrium
Standard	$\lambda^{RT} = \lambda^{DA} = rac{\sum_l d_l}{\sum_j c_j^{-1}}, \qquad d_l^{DA} + d_l^{RT} = d_l$	$\lambda^{DA} = rac{L}{L+1} \lambda^{RT}, \qquad rac{\sum_l d_l^{DA}}{\sum_l d_l} < 1$

Market with Market Power Mitigation Policy

Day-Ahead MPM (DA-MPM) Policy

Real-Time MPM (RT-MPM) Policy

^{*}Assumption: Substituting with *default bids* – market estimates $\hat{c}_j = c_j + \varepsilon_j > c_j$

Enrique Mallada (JHU) 20

Main Results: Real-Time Market Power Mitigation (RT-MPM)

Competitive Equilibrium

- **Same** as the standard market
- Approximately efficient but non-unique
 - Equal Prices at approx. marginal cost:

$$\lambda^{RT} = \lambda^{DA} = \frac{d}{\sum_{j \in \mathcal{G}} \hat{c}_j^{-1}}$$

Load allocation:

$$d_l^{DA} + d_l^{RT} = d_l$$

Nash Equilibrium

- Does not exist!
 - Gens and loads incentivize to make bids $\beta_i^{DA} \rightarrow 0$ and demand $d^{DA} \rightarrow 0$

■ Prices are not clearly defined
$$\lambda^{DA} = \frac{d^{DA}}{\sum_j \beta_j^{DA}} \rightarrow ?$$

Equilibrium Analysis Summary

 d_l^{DA} : Day-ahead allocation of load l d_l^{RT} : Real-time allocation of load l

Market	Competitive Equilibrium	Nash Equilibrium
Standard	$\lambda^{RT} = \lambda^{DA} = \frac{\sum_{l} d_{l}}{\sum_{j} c_{j}^{-1}}, \qquad d_{l}^{DA} + d_{l}^{RT} = d_{l}$	$\lambda^{DA} = rac{L}{L+1} \lambda^{RT}, \qquad rac{\sum_l d_l^{DA}}{\sum_l d_l} < 1$
RT-MPM	$\lambda^{RT} = \lambda^{DA} = \frac{\sum_{l} d_{l}}{\sum_{j} c_{j}^{-1}}, \qquad d_{l}^{DA} + d_{l}^{RT} = d_{l}$	No Equilibrium $d^{DA} ightarrow 0$

Market with Market Power Mitigation Policy

Day-Ahead MPM (DA-MPM) Policy

Real-Time MPM (RT-MPM) Policy

^{*}Assumption: Substituting with default bids – market estimates $\hat{c}_i = c_i + \varepsilon_i > c_i$

Enrique Mallada (JHU) 23

Main Results: Real-Time Market Power Mitigation (RT-MPM)

Competitive Equilibrium

- Same as the standard market
- Approximately efficient but non-unique
 - Larger prices than true marginal cost:

$$\lambda^{RT} = \lambda^{DA} = \frac{d}{\sum_{j \in \mathcal{G}} c_j^{-1}}$$

Load allocation:

$$\sum_{l} d_{l}^{DA} = \frac{\sum_{j} (c_{j} + \varepsilon_{j})^{-1}}{\sum_{j} c_{j}^{-1}} \sum_{l} d_{l}$$

Nash Equilibrium

- Exists for: $G \ge 3$, $\frac{1}{L} \ge \frac{c \varepsilon(G 2)}{(c + \varepsilon)(G 2)}$
- Mild reduction in the market power
 - Prices as in the standard NE:

$$\lambda^{DA} = \frac{L}{L+1} \lambda^{RT}$$

Load allocation:

$$\sum_{l} d_{l}^{DA} = \frac{c}{c + \varepsilon} \frac{L}{L + 1} \frac{G - 1}{G - 2} \sum_{l} d_{l}$$

Equilibrium Analysis Summary

 d_l^{DA} : Day-ahead allocation of load l d_l^{RT} : Real-time allocation of load l

Market	Competitive Equilibrium	Nash Equilibrium
Standard	$\lambda^{RT} = \lambda^{DA} = \frac{\sum_l d_l}{\sum_j c_j^{-1}}, \qquad d_l^{DA} + d_l^{RT} = d_l$	$\lambda^{DA} = rac{L}{L+1} \lambda^{RT}, \qquad rac{\sum_l d_l^{DA}}{\sum_l d_l} < 1$
RT-MPM	$\lambda^{RT} = \lambda^{DA} = \frac{\sum_{l} d_{l}}{\sum_{j} \hat{c}_{j}^{-1}}, \qquad d_{l}^{DA} + d_{l}^{RT} = d_{l}$	No Equilibrium $d^{DA} ightarrow 0$
DA-MPM	$\lambda^{RT} = \lambda^{DA} = \frac{\sum_{l} d_{l}}{\sum_{j} \hat{c}_{j}^{-1}}, \qquad \frac{\sum_{l} d_{l}^{DA}}{\sum_{l} d_{l}^{DA}} = \frac{\sum_{j} (c_{j} + \varepsilon_{j})^{-1}}{\sum_{j} c_{j}^{-1}}$	$\lambda^{DA} = \frac{L}{L+1} \lambda^{RT}, \qquad \frac{\sum_{l} d_{l}^{DA}}{\sum_{l} d_{l}} < 1$

Remarks:

- CE is efficient, unique and aligns with the standard market
- NE does not always exist
- DA-MPM results in mild market power mitigation, while RT-MPM leads to undesirable market outcome

Summary

- The role of strategic load participants in two-stage markets
 - Modeling framework that accounts for gen and loads' strategic behavior.
 - Existence and uniqueness of Nash equilibrium
 - Quantification of market power shift among participants
- Take-away messages:
 - Accounting for load behavior is critical
 - Competitive two-stage markets do not incentive clearing all the demand in day ahead
 - Loads can only manipulate prices if generators are strategic!
 - Generator's profit can be below the competitive eq. profit
- Analysis further allows characterization of the impact of many policies, e.g.,
 - Virtual bidding -> benefits from load market power
 - Default-bid market power mitigation policies
 - Real-time transaction charges

Thanks!

Papers

- P. You, M. Fernandez, D. Gayme, E. M., "The Role of Strategic Participants in Two-Stage Settlement Markets," *Preprint*
- R. K. Bansal, Y. Chen, P. You, and E. Mallada, "Equilibrium Analysis of Electricity Markets with Day-Ahead Market Power Mitigation and Real-Time Intercept Bidding," in e-Energy, Jun. 2022.

Other Related Papers

• R. K. Bansal, P. You, D. F. Gayme, and E. Mallada, "A Market Mechanism for Truthful Bidding with Energy Storage," EPSR, Jun 2022.

Yue Chen 香港中文大學 CUHK

Enrique Mallada mallada@jhu.edu http://mallada.ece.jhu.edu

