Model-Free Analysis of Dynamical Systems Using Recurrent Sets

Towards a GPU-based Approach to Control

Enrique Mallada

FIND Seminar Cornell University

A World of Success Stories

2017 Google DeepMind's DQN

2017 AlphaZero – Chess, Shogi, Go

Boston Dynamics

2019 AlphaStar – Starcraft II

OpenAI – Rubik's Cube

Waymo

Angry Residents, Abrupt Stops: Waymo Vehicles Are Still Causing Problems in Arizona

RAY STERN | MARCH 31, 2021 | 8:26AM

GARY MARCUS BUSINESS 00.14.2019 09:00 AM

DeepMind's Losses and the Future of Artificial Intelligence

Alphabet's DeepMind unit, conqueror of Go and other games, is losing lots of money. Continued deficits could imperil investments in Al.

AARIAN MARSHALL BUSINESS 12.07.2020 04:06 PM

Uber Gives Up on the Self-Driving Dream

The ride-hail giant invested more than \$1 billion in autonomous vehicles. Now it's selling the unit to Aurora, which makes self-driving tech.

Self-driving Uber car that hit and killed woman did not recognize that pedestrians jaywalk

The automated car lacked "the capability to classify an object as a pedestrian unless that object was near a crosswalk," an NTSB report said.

Core challenge: The curse of dimensionality

• Statistical: Sampling in d dimension with resolution ϵ

Sample complexity:
$$O(arepsilon^{-d})$$

For $\epsilon = 0.1$ and d = 100, we would need 10^{100} points. Atoms in the universe: 10^{78}

Computational: Verifying non-negativity of polynomials

Copositive matrices:

$$\left[x_1^2 \dots x_d^2\right] A \left[x_1^2 \dots x_d^2\right]^{\mathrm{T}} \ge 0$$

Murty&Kadabi [1987]: Testing co-positivity is NP-Hard

Sum of Squares (SoS):

$$z(x)^T Q z(x) \ge 0, \quad z_i(x) \in \mathbb{R}[x], \ x \in \mathbb{R}^d, Q \ge 0$$

Artin [1927] (Hilbert's 17th problem):

Non-negative polynomials are sum of square of *rational* functions

Motzkin [1967]: $p = x^4y^2 + x^2y^4 + 1 - 3x^2y^2$ is nonnegative, not a sum of squares, but $(x^2 + y^2)^2 p$ is SoS

Question: Are we asking too much?

Models are intrinsically valid across the *entire domain* Q: Can we provide local guarantees, and progressively expand as needed?

[arXiv '22] Shen, Bichuch, M - [CDC '23] Siegelmann, Shen, Paganini, M

- Safety/stability certificates require strict and exhaustive notions of *invariance* Q: Can we substitute invariance with less restrictive properties? [arXiv '22] Shen, Bichuch, M - [CDC '23] Siegelmann, Shen, Paganini, M
- Control synthesis usually aims for the *best* (optimal) controller
 Q: Can we focus on feasibility, rather than optimality?

[TAC '23, L4DC 22] Castellano, Min, Bazerque, M

[[]arXiv 22] Shen, Bichuch, M, *Model-free Learning of Regions of Attraction via Recurrent Sets,* **CDC 2022**, journal preprint arXiv:2204.10372. [CDC 23] Siegelmann, Shen, Paganini, M, *A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions*, **submitted CDC 2023** [L4DC 22] Castellano, Min, Bazerque, M, *Reinforcement Learning with Almost Sure Constraints*, **Learning for Dynamics and Control (L4DC) Conference**, **2022** [TAC 23] Castellano, Min, Bazerque, M, *Learning to Act Safely with Limited Exposure and Almost Sure Certainty*, **IEEE TAC**, **2023**

Question: Are we asking too much?

Models are intrinsically valid across the *entire domain* Q: Can we provide local guarantees, and progressively expand as needed?

[arXiv '22] Shen, Bichuch, M - [CDC '23] Siegelmann, Shen, Paganini, M

- Safety/stability certificates require strict and exhaustive notions of *invariance* Q: Can we substitute invariance with less restrictive properties? [arXiv '22] Shen, Bichuch, M - [CDC '23] Siegelmann, Shen, Paganini, M
- Control synthesis usually aims for the *best* (optimal) controller

Q: Can we focus on feasibility, rather than optimality?

[TAC '23, L4DC 22] Castellano, Min, Bazerque, M

Enrique Mallada (JHU)

 [[]arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.
 [CDC 23] Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, submitted CDC 2023
 [L4DC 22] Castellano, Min, Bazerque, M, Reinforcement Learning with Almost Sure Constraints, Learning for Dynamics and Control (L4DC) Conference, 2022
 [TAC 23] Castellano, Min, Bazerque, M, Learning to Act Safely with Limited Exposure and Almost Sure Certainty, IEEE TAC, 2023

Model-Free Analysis of Dynamical Systems using Recurrent Sets

- Uses of invariant sets in control theory
- Inner-approximation of regions of attractions
- Stability analysis using non-monotonic Lyapunov functions

Continuous time dynamical system: $\dot{x}(t) = f(x(t))$

• Initial condition $x_0 = x(0)$, solution at time t: $\phi(t, x_0)$.

Types of Ω -limit set

Continuous time dynamical system: $\dot{x}(t) = f(x(t))$

• Initial condition $x_0 = x(0)$, solution at time $t: \phi(t, x_0)$.

4

2

0

-2

Continuous time dynamical system: $\dot{x}(t) = f(x(t))$

- Initial condition $x_0 = x(0)$, solution at time t: $\phi(t, x_0)$.
- The ω -limit set of the system: $\Omega(f)$

Region of attraction (ROA) of a set $S \subseteq \Omega(f)$:

$$\mathcal{A}(S) := \left\{ x \in \mathbb{R}^d | \liminf_{t \to \infty} d(\phi(t, x), S) = 0 \right\}$$

Illustrative Example

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -x_1 + \frac{1}{3}x_1^3 - x_2 \end{bmatrix}$$
$$\Omega(f) = \{(0,0), (-\sqrt{3},0), (\sqrt{3},0)\}$$

Continuous time dynamical system: $\dot{x}(t) = f(x(t))$

- Initial condition $x_0 = x(0)$, solution at time t: $\phi(t, x_0)$.
- The ω -limit set of the system: $\Omega(f)$

Region of attraction (ROA) of a set $S \subseteq \Omega(f)$:

$$\mathcal{A}(S) := \left\{ x \in \mathbb{R}^d | \liminf_{t \to \infty} d(\phi(t, x), S) = 0 \right\}$$

Illustrative Example

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -x_1 + \frac{1}{3}x_1^3 - x_2 \end{bmatrix}$$
$$\Omega(f) = \{(0,0), (-\sqrt{3},0), (\sqrt{3},0)\}$$

Continuous time dynamical system: $\dot{x}(t) = f(x(t))$

- Initial condition $x_0 = x(0)$, solution at time t: $\phi(t, x_0)$.
- The ω -limit set of the system: $\Omega(f)$

Region of attraction (ROA) of a set $S \subseteq \Omega(f)$:

$$\mathcal{A}(S) := \left\{ x \in \mathbb{R}^d | \liminf_{t \to \infty} d(\phi(t, x), S) = 0 \right\}$$

Illustrative Example

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -x_1 + \frac{1}{3}x_1^3 - x_2 \end{bmatrix}$$
$$\Omega(f) = \{(0,0), (-\sqrt{3},0), (\sqrt{3},0)\}$$

Asymptotically stable equilibrium at $x^* = (0,0)$

Continuous time dynamical system: $\dot{x}(t) = f(x(t))$

- Initial condition $x_0 = x(0)$, solution at time t: $\phi(t, x_0)$.
- The ω -limit set of the system: $\Omega(f)$

Region of attraction (ROA) of a set $S \subseteq \Omega(f)$:

$$\mathcal{A}(S) := \left\{ x \in \mathbb{R}^d | \liminf_{t \to \infty} d(\phi(t, x), S) = 0 \right\}$$

Illustrative Example

 $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -x_1 + \frac{1}{3}x_1^3 - x_2 \end{bmatrix}$ $\Omega(f) = \{(0,0), (-\sqrt{3},0), (\sqrt{3},0)\}$ Unstable equilibria $\{(\sqrt{3},0), (-\sqrt{3},0)\}$

Invariant sets

A set $S \subseteq \mathbb{R}^d$ is **positively invariant** if and only if: $x_0 \in S \to \phi(t, x_0) \in S$, $\forall t \ge 0$ Any trajectory starting in the set remains in inside it

Enrique Mallada (JHU)

Source: K. Ghorbal, K. and A. Sogokon, Characterizing positively invariant sets: Inductive and topological methods. Journal of Symbolic Computation, 2022

Invariant sets

A set $S \subseteq \mathbb{R}^d$ is **positively invariant** if and only if: $x_0 \in S \to \phi(t, x_0) \in S$, $\forall t \ge 0$ Any trajectory starting in the set remains in inside it Invariant Set

Invariant sets approximate regions of attraction
 Compact invariant set S containing only {x*} in the interior and
 Ω(f) ∩ ∂S = Ø, must be in the region of attraction A(x*)

Proof sketch:

- Suppose $\phi(t, x_0)$ does not converge to x^*
- Then, no bounded seq satisfies $\phi(t_n, x_0) \rightarrow x^*$
- Bolzano-Weierstrass: There is bounded sub-seq $\phi(t_{n_i}, x_0) \rightarrow \bar{x} \neq x^*$
- Contradiction! x^* is the only limiting point

Invariant sets

A set $S \subseteq \mathbb{R}^d$ is **positively invariant** if and only if: $x_0 \in S \to \phi(t, x_0) \in S$, $\forall t \ge 0$ Any trajectory starting in the set remains in inside it Invariant Set

- Invariant sets approximate regions of attraction
 Compact invariant set S containing only {x*} in the interior and
 Ω(f) ∩ ∂S = Ø, must be in the region of attraction A(x*)
- Invariant sets guarantee stability
 Lyapunov stability: solutions starting "close enough" to the
 equilibrium (within a distance δ) remain "close enough" forever
 (within a distance ε)
- Invariant sets further certify asymptotic stability via Lyapunov's direct method Asymptotic stability: solutions that start close enough, remain close enough, and eventually converge to equilibrium.

Model-Free Analysis of Dynamical Systems using Recurrent Sets

- Uses of invariant sets in control theory
- Inner-approximation of regions of attractions
- Stability analysis using non-monotonic Lyapunov functions

Yue Shen Johns Hopkins

Model-free Learning of Regions of Attractions via Recurrent Sets

Y Shen, M. Bichuch, and E Mallada, "Model-free Learning of regions of attraction via recurrent sets." CDC 2022.

Motivation: Estimation of regions of attraction

Having an approximation of the region of attraction allows us to

• Test the limits of controller designs

especially for those based on (possibly linear) approximations of nonlinear systems

quadcopter

• • •

• Verify safety of certain operating condition

power grids Enrique Mallada (JHU) • • •

Recall: Problem setup

Continuous time dynamical system: $\dot{x}(t) = f(x(t))$

- Initial condition $x_0 = x(0)$, solution at time t: $\phi(t, x_0)$.
- The ω -limit set of the system: $\Omega(f)$

Region of attraction (ROA) of a set $S \subseteq \Omega(f)$:

$$\mathcal{A}(S) := \left\{ x \in \mathbb{R}^d | \liminf_{t \to \infty} d(\phi(t, x), S) = 0 \right\}$$

Illustrative Example

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -x_1 + \frac{1}{3}x_1^3 - x_2 \end{bmatrix}$$
$$\Omega(f) = \{(0,0), (-\sqrt{3},0), (\sqrt{3},0)\}$$

Asymptotically stable equilibrium at $x^* = (0,0)$

Recall: Problem setup

Continuous time dynamical system: $\dot{x}(t) = f(x(t))$

- Initial condition $x_0 = x(0)$, solution at time t: $\phi(t, x_0)$.
- The ω -limit set of the system: $\Omega(f)$

Region of attraction (ROA) of a set $S \subseteq \Omega(f)$: $\mathcal{A}(S) := \left\{ x \in \mathbb{R}^d | \liminf_{t \to \infty} d(\phi(t, x), S) = 0 \right\}$

Region of attraction of stable equilibria

Region of attraction (ROA) of a set $S \subseteq \Omega(f)$: $\mathcal{A}(S) := \left\{ x_0 \in \mathbb{R}^d | \lim_{t \to \infty} \phi(t, x_0) \in S \right\}$

Assumption 1. The system $\dot{x}(t) = f(x(t))$ has an asymptotically stable equilibrium at x^* .

Remark. It follows from Assumption 1 that the **positively invariant** ROA $\mathcal{A}(x^*)$ is an open contractible set [Sontag, 2013], i.e., the identity map of $\mathcal{A}(x^*)$ to itself is null-homotopic [Munkres, 2000].

E. Sontag. "Mathematical Control Theory: Deterministic Finite Dimensional Systems." Springer 2013 J. R. Munkres. "Topology." Prentice Hall 2000

Challenges of working with invariant set

Approximating ROA $\mathcal{A}(x^*)$ by finding an invariant set $\mathcal{S} \subseteq \mathcal{A}(x^*)$

- *S* is topologically constrained
 - If $\mathcal{S} \cap \Omega(f) = \{x^*\}$, then \mathcal{S} is connected

Example 1: $S \subseteq \mathcal{A}(x^*)$ is not connected, not invariant! x_2

Challenges of working with invariant set

Approximating ROA $\mathcal{A}(x^*)$ by finding an invariant set $\mathcal{S} \subseteq \mathcal{A}(x^*)$

- *S* is topologically constrained
 - If $\mathcal{S} \cap \Omega(f) = \{x^*\}$, then \mathcal{S} is connected
- *S* is geometrically constrained
 - f should not point outwards for $x \in \partial S$

Challenges of working with invariant set

Approximating ROA $\mathcal{A}(x^*)$ by finding an invariant set $\mathcal{S} \subseteq \mathcal{A}(x^*)$

- *S* is topologically constrained
 - If $\mathcal{S} \cap \Omega(f) = \{x^*\}$, then \mathcal{S} is connected
- **S** is geometrically constrained
 - f should not point outwards for $x \in \partial S$

A subset or a superset of an invariant set is not necessarily an invariant set

Recurrent sets: Letting things go, and come back

A set $\mathcal{R} \subseteq \mathbb{R}^d$ is **recurrent** if for any $x_0 \in \mathcal{R}$ and $t \ge 0$, $\exists t' \ge t$ s.t. $\phi(t', x_0) \in \mathcal{R}$.

Property of Recurrent Sets

- \mathcal{R} need **not** be **connected**
- \mathcal{R} does **not** require f to **point inwards** on all $\partial \mathcal{R}$

Recurrent sets, while not invariant, guarantee that solutions that start in this set, will come back **infinitely often, forever!**

Recurrent sets: Letting things go, and come back

A set $\mathcal{R} \subseteq \mathbb{R}^d$ is recurrent if for any $x_0 \in \mathcal{R}$ and $t \ge 0$, $\exists t' \ge t$ s.t. $\phi(t', x_0) \in \mathcal{R}$.

Previous two good inner approximations of $\mathcal{A}(x^*)$ are recurrent sets

A set $\mathcal{R} \subseteq \mathbb{R}^d$ is **recurrent** if for any $x_0 \in \mathcal{R}$ and $t \ge 0$, $\exists t' \ge t$ s.t. $\phi(t', x_0) \in \mathcal{R}$.

A set $\mathcal{R} \subseteq \mathbb{R}^d$ is **recurrent** if for any $x_0 \in \mathcal{R}$ and $t \ge 0$, $\exists t' \ge t$ s.t. $\phi(t', x_0) \in \mathcal{R}$.

Theorem. Let $\mathcal{R} \subset \mathbb{R}^d$ be a <u>compact</u> set satisfying $\partial \mathcal{R} \cap \Omega(f) = \emptyset$. Then: $\mathcal{R} \text{ is recurrent} \iff \begin{array}{c} \mathcal{R} \cap \Omega(f) \neq \emptyset \\ \mathcal{R} \subset \mathcal{A}(\mathcal{R} \cap \Omega(f)) \end{array}$

Proof: [Sketch]

 $(\Rightarrow) \bullet$ If $x_0 \in \mathcal{R}$, the solution $\phi(t, x_0)$ visits \mathcal{R} infinitely often, forever.

- We can build a sequence $\{x(t_n)\}_{n=0}^{\infty} \in \mathcal{R} \text{ with } \lim_{n \to +\infty} t_n = +\infty$
- Bolzano-Weierstrass \Rightarrow convergent subsequence $x(t_{n_i}) \rightarrow \overline{x} \in \Omega(f) \cap \mathcal{R} \neq \emptyset$
- $\partial \mathcal{R} \cap \Omega(f) = \emptyset + \mathcal{R}$ recurrent $\implies \phi(t, x_0)$ leaves \mathcal{R} finitely many times
- \mathcal{R} is eventually invariant
- (\Leftarrow) By showing that $\phi(t, x_0)$ can only leave \mathcal{R} finitely many times

Idea: Use recurrence as a mechanism for finding inner approximations of $\mathcal{A}(x^*)$

Potential Issues:

- We do not know how long it takes to come back!
- We need to adapt results to trajectory samples

τ -recurrent sets

A set \mathcal{R} is τ -recurrent if for any $x_0 \in \mathcal{R}$ and $t \ge 0, \exists t' \in [t, t + \tau]$ such that $\phi(t', x_0) \in \mathcal{R}$

Theore. Under Assumption 1, any compact set \mathcal{R} satisfying:

 $x^* + \mathcal{B}_{\delta} \subseteq \mathcal{R} \subseteq \mathcal{A}(x^*) \setminus \{\partial \mathcal{A}(x^*) + \text{int } \mathcal{B}_{\delta}\}$

is τ -recurrent for $\tau \geq \overline{\tau}(\delta) \coloneqq \frac{\underline{c}(\delta) - \overline{c}(\delta)}{a(\delta)}$.

Proof: [Sketch]

• Assumption $1 \implies \exists$ Lyapunov function (Zubov '64) $\circ V(x^*) = 0, 0 < V(x) < 1$ for all $x \in \mathcal{A}(x^*) \setminus x^*$

Time elapsed $\leq \tau$

 τ -recurrent set \mathcal{R} :

trajectory:

- $\circ \quad \nabla V(x^*)^T f(x^*) = 0$
- $\circ \quad \nabla V(x)^T f(x) < 0 \text{ for all } x \in \mathcal{A}(x^*) \setminus x^*$

• Define
$$\overline{c}(\delta) := \max_{x \in \mathcal{A}_{\delta}} V(x), \quad \underline{c}(\delta) := \min_{x \in \mathcal{A}_{\delta}} V(x),$$

and $a(\delta) := \max_{x \in C_{\delta}} \nabla V(x)^T f(x),$
where $C_{\delta} = \{x \in \mathbb{R}^d : \underline{c}(\delta) \leq V(x) \leq \overline{c}(\delta)\}.$

Idea: Use recurrence as a mechanism for finding inner approximations of $\mathcal{A}(x^*)$

Potential Issues:

- We do not know how long it takes to come back!
- We need to adapt results to trajectory samples

Learning recurrent sets from k-length trajectory samples

- Consider **finite length** trajectories: • $x_n = \phi(n\tau_s, x_0), \qquad x_0 \in \mathbb{R}^d, n \in \mathbb{N},$ where $\tau_s > 0$ is the sampling period.
- A cot $\mathcal{D} \subset \mathbb{D}^d$ is k recurrent if whenever $x \in \mathcal{D}$

• A set
$$\mathcal{K} \subseteq \mathbb{R}^{n}$$
 is k -recurrent in whenever $x_{0} \in \mathcal{K}$,
then $\exists n \in \{1, ..., k\}$ s.t. $x_{n} \in \mathcal{R}$
Sufficiency:
 \mathcal{R} is τ -recurrent
 ψ is ψ is ψ -recurrent
 ψ -recu

Necessity:

 \mathcal{R}

Theorem 3. Under Assumption 1, any compact set \mathcal{R} satisfying: $\mathcal{B}_{\delta} + x^* \subseteq \mathcal{R} \subseteq \mathcal{A}(x^*) \setminus \{\partial \mathcal{A}(x^*) + \text{int } \mathcal{B}_{\delta}\}$ is k-recurrent for any $k > \overline{k} := \overline{\tau}(\delta)/\tau_s$.

steps elapsed $\leq k$

(time elapsed $\leq k\tau_s$)

 χ_2

Idea: Use recurrence as a mechanism for finding inner approximations of $\mathcal{A}(x^*)$

Potential Issues:

- We do not know how long it takes to come back!
- We need to adapt results to trajectory samples

Algorithm: Given k and $\varepsilon > 0$: At each iteration l

• Sample trajectories of length k from the sphere \hat{S}_t until recurrence is violated (counter-example)

Algorithm: Given k and $\varepsilon > 0$: At each iteration l

l = 0

• Sample trajectories of length k from the sphere \hat{S}_t until recurrence is violated (counter-example)

Algorithm: Given k and $\varepsilon > 0$: At each iteration l

- Sample trajectories of length k from the sphere \hat{S}_t until recurrence is violated (counter-example)
- Update sphere \hat{S}_{l+1} to exclude counter example point p_i

l = 0

Algorithm: Given k and $\varepsilon > 0$: At each iteration l

- Sample trajectories of length k from the sphere \hat{S}_t until recurrence is violated (counter-example)
- Update sphere \hat{S}_{l+1} to exclude counter example point p_{j} , and start again

l = 1

Algorithm Result - Sphere Approximations

- Consider $h \in \mathbb{N}^+$ center points x_q indexed by $q \in \{1, ..., h\}$.
 - Let the first center point $x_1 = x^* = 0$
 - Additional center point $x_2, ..., x_h$ can be designed chosen uniformly.

- Consider $h \in \mathbb{N}^+$ center points x_q indexed by $q \in \{1, ..., h\}$.
 - Let the first center point $x_1 = x^* = 0$
 - Additional center point $x_2, ..., x_h$ can be designed chosen uniformly.
- Respectively define approximations centered at each x_q
 - $\mathcal{S}_l^q \coloneqq \{x \mid \left\| x x_q \right\|_2 \le b_q^{(i)}\}$

- Consider $h \in \mathbb{N}^+$ center points x_q indexed by $q \in \{1, ..., h\}$.
 - Let the first center point $x_1 = x^* = 0$
 - Additional center point $x_2, ..., x_h$ can be designed chosen uniformly.
- Respectively define approximations centered at each x_q
 - $\mathcal{S}_l^q \coloneqq \{x \mid \left\| x x_q \right\|_2 \le b_q^l\}$
- Multi-center approximation given by $\hat{S}_l = \bigcup_{q=1}^h S_l^q$

- Consider $h \in \mathbb{N}^+$ center points x_q indexed by $q \in \{1, ..., h\}$.
 - Let the first center point $x_1 = x^* = 0$
 - Additional center point $x_2, ..., x_h$ can be designed chosen uniformly.
- Respectively define approximations centered at each x_q
 - $\mathcal{S}_l^q \coloneqq \{x \mid \left\| x x_q \right\|_2 \le b_q^l\}$
- Multi-center approximation given by $\hat{S}_l = \bigcup_{q=1}^h S_l^q$
- If p_l is a counter-example w.r.t \hat{S}_l
 - We shrink every \hat{S}_q^l satisfying $p_l \in \hat{S}_q^l$
 - For the rest approximations, we simply let $\hat{S}_q^{l+1} = \hat{S}_q^l$

Sample complexity:
$$m \ge \frac{V(\hat{s}_l + B_\eta)}{V(B_\eta)} \log\left(\frac{1}{\rho}\right)$$

Numerical illustrations

• Run: 200 center points sampled (uniformly)

2

× 0

-2

= 2s

-2

0 *x*1 2

- Stopping criteria: $\rho=10^{-5}$

2

× 0

-2

= 5*s*

-2

0 *x*1 2

Δ

τ (s)	Running time	Volume %		
5	57.7	72.0%		
2	55.8	51.2%		
.6	47.1	31.2%		
.3	28.7	3.24%		

Using multiple runs to increase volume

- At Each Episode:
 - Sample 50 center points (uniformly)
 - Stopping criteria: $\rho=10^{-5}$

of the ROA volume %09 %09

Percentage

0%

• Synchronous machine connected to infinite bus

- Synchronous machine connected to infinite bus
- t_1 lower line is short-circuited

- Synchronous machine connected to infinite bus
- t_1 lower line is short-circuited
- t_2 fault is cleared

- Synchronous machine connected to infinite bus
- t_1 lower line is short-circuited
- t_2 fault is cleared

 $\begin{array}{cccccc} T'_{d_0} = 9.67 & x_d = 2.38 & x'_d = 0.336 & x_q = 1.21 \\ H = 3 & r = 0.002 & \omega_s = \omega_{ref} = 1 & R = 0.01 \\ X = 1.185 & V_s = 1 & T_a = 1 & K_a = 70 \end{array}$

 $V_{ref} = 1$ $T_q = 0.4$ $K_q = 0.5$ $P_{ref} = 0.7$

$$\begin{aligned} \frac{d\delta}{dt} &= \omega - \omega_s \\ 2H \frac{d\omega}{dt} &= P_m - (v_d i_d + v_q i_q + e i_d^2 + r i_q^2) \\ T'_{d_0} \frac{de'_q}{dt} &= -e'_q - (x_d - x'_d) i_d + E_{fd} \\ T_a \frac{dE_{fd}}{dt} &= -E_{fd} + K_a (V_{ref} - V_t) \\ T_g \frac{dP_m}{dt} &= -P_m + P_{ref} + K_g (\omega_{ref} - \omega) \\ i_q &= \frac{(X - x'_d) V_s \sin(\delta) - (R + r) (V_s \cos(\delta) - e'_q)}{(R + r)^2 + (X + x'_d) (X + x_q)} \end{aligned}$$

 $v_d = x_q i_q - r - i_d$

 $V_t = \sqrt{v_d^2 + v_q^2}$

 $v_q = Ri_q + Xi_d + V_s \cos(\delta)$

- Synchronous machine connected to infinite bus
- t_1 lower line is short-circuited
- t_2 fault is cleared

G

 $V_G \sim (v_d, v_q)$

 N_{∞}

 $V_{\infty} \sim (V_s, \omega_s)$

2(R+jX)

R + jX

R + jX

M. Tacchi et al "Power system transient stability analysis using SoS programming" Power System Computation Conference (PSCC) 2018

Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, Control and Decision Conference (CDC) 2022

Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, Control and Decision Conference (CDC) 2022

Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, Control and Decision Conference (CDC) 2022

Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, Control and Decision Conference (CDC) 2022

Model-Free Analysis of Dynamical Systems using Recurrent Sets

- Uses of invariant sets in control theory
- Inner-approximation of regions of attractions
- Stability analysis using non-monotonic Lyapunov functions

Roy Siegelmann

JOHNS HOPKINS

Yue Shen

Fernando Paganini

Recurrently Non-Increasing Lyapunov Functions

R. Siegelmann, Y. Shen, F. Paganini, and E. Mallada, "A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions", submitted CDC 2023

Lyapunov's Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

Theorem [Lyapunov '1892]. Given $V: \mathbb{R}^d \to \mathbb{R}_{\geq 0}$, with $V(x) > 0, \forall x \in \mathbb{R}^d \setminus \{x^*\}$, then:

- $\dot{V} \leq 0 \rightarrow x^*$ stable
- $\dot{V} < 0 \rightarrow x^*$ as. stable

Challenge: Couples shape of V and vector field f

- Towards decoupling the V f geometry
 - Controlling regions where $\dot{V} \ge 0$ [Karalfyllis '09, Liu et al '20]
 - Higher order conditions: $g(V^{(q)}, ..., \dot{V}, V) \le 0$ [Butz '69, Gunderson '71, Ahmadi '06, Meigoli '12]
 - Discretization approach: $V(x(T)) \le V(x(0))$ [Coron et al '94, Aeyels et. al '98, Karafyllis '12]

Karafyllis, Kravaris, Kalogerakis. Relaxed Lyapunov criteria for robust global stabilisation of non-linear systems. International Journal of Control, 2009 Liu, Liberzon, Zharnitsky. Almost Lyapunov functions for nonlinear systems. Automatica, 2020 A Butz. Higher order derivatives of Lyapunov functions. IEEE Transactions on automatic control, 1969 Gunderson. A comparison lemma for higher order trajectory derivatives. Proceedings of the American Mathematical Society, 1971 Ahmadi. Non-monotonic Lyapunov functions for stability of nonlinear and switched systems: theory and computation, 2008 Meigoli, Nikravesh. Stability analysis of nonlinear systems using higher order derivatives of Lyapunov function candidates. Systems & Control Letters, 2012 Coron, Lionel Rosier. A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Syst., Estimation, Control, 1994 Aeyels, Peuteman. A new asymptotic stability criterion for nonlinear time-variant differential equations. IEEE Transactions on automatic control, 1998 Karafyllis. Can we prove stability by using a positive definite function with non sign-definite derivative? IMA Journal of Mathematical Control and Information, 2012

Lyapunov's Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

Theorem [Lyapunov '1892]. Given $V: \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$, with $V(x) > 0, \forall x \in \mathbb{R}^d \setminus \{x^*\}$, then:

- $\dot{V} \leq 0 \rightarrow x^*$ stable
- $\dot{V} < 0 \rightarrow x^*$ as. stable

Challenge: Couples shape of V and vector field f

- Towards decoupling the V f geometry
 - Controlling regions where $\dot{V} \ge 0$ [Karalfyllis '09, Liu et al '20]
 - Higher order conditions: $g(V^{(q)}, ..., \dot{V}, V) \le 0$ [Butz '69, Gunderson '71, Ahmadi '06, Meigoli '12]
 - Discretization approach: $V(x(T)) \le V(x(0))$ [Coron et al '94, Aeyels et. al '98, Karafyllis '12]

Question: Can we provide stability conditions based on recurrence?

Recurrently Decreasing Lyapunov Functions

A continuous function $V: \mathbb{R}^d \to \mathbb{R}_+$ is a **recurrently non-increasing Lyapunov function** over intervals of length $\boldsymbol{\tau}$ if

$$\mathcal{L}_f^{(0,\tau]}V(x) := \min_{t \in (0,\tau]} V(\phi(t,x)) - V(x) \le 0 \quad \forall x \in \mathbb{R}^d$$

Preliminaries:

- Sub-level sets $\{V(x) \le c\}$ are τ -recurrent sets.
- When *f* is globally *L*-Lipschitz, one can trap trajectories.

Recurrently Non-Increasing Lyapunov Functions

A continuous function $V: \mathbb{R}^d \to \mathbb{R}_+$ is a **recurrently non-increasing Lyapunov function** over intervals of length τ if

$$\mathcal{L}_f^{(0,\tau]}V(x) := \min_{t \in (0,\tau]} V(\phi(t,x)) - V(x) \le 0 \quad \forall x \in \mathbb{R}^d \quad (*)$$

Theorem [CDC 23*]: Let $V: \mathbb{R}^d \to \mathbb{R}_{\geq 0}$ be a recurrently non-increasing Lyapunov function over intervals of length τ . Let f be L-Lipschitz

- Then the equilibrium x^* is stable.
- Further, if the **inequality is strict**, then x^* is asymptotically stable!

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, submitted CDC 2023

Exponential Stability Analysis

The function $V: \mathbb{R}^d \to \mathbb{R}_+$ is α -exponentially recurrently non-increasing Lyapunov function over intervals of length τ if

$$\mathcal{L}_{f,\boldsymbol{\alpha}}^{(0,\tau]}V(x) := \min_{t \in (0,\tau]} \boldsymbol{e}^{\boldsymbol{\alpha} t} V(\phi(t,x)) - V(x) \le 0 \quad \forall x \in \mathbb{R}^d$$

Theorem [CDC 23*]: Let $V: \mathbb{R}^d \to \mathbb{R}_{\geq 0}$ satisfy $\alpha_1 ||x - x^*|| \leq V(x) \leq \alpha_2 ||x - x^*||.$ Then, if V is α -exponentially recurrently nonincreasing Lyapunov function over intervals of length τ , then x^* is exponentially stable.

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, *submitted CDC 2023

Verification of Exponential Stability

Proposition [CDC 23*]: Let $V: \mathbb{R}^d \to \mathbb{R}_{\geq 0}$ satisfy $\alpha_1 ||x - x^*|| \leq V(x) \leq \alpha_2 ||x - x^*||$, and $0 < \mu < 1$. Then, whenever

$$\begin{split} \min_{t \in (0,\tau]} e^{\alpha t} V(\phi(x,t)) &\leq \mu \left(\frac{\alpha_1}{\alpha_2}\right)^2 V(x) \\ if \exists \kappa, \rho > 0 \text{ s.t. } \rho < g(\kappa, \mu, \alpha_1, \alpha_2), \text{ for all } y \text{ with } \left||y - x|\right| \leq r \coloneqq \frac{\rho}{\alpha_2} V(x) \\ \min_{t \in (0,\tau]} e^{\kappa t} V(\phi(y,t)) \leq V(y) \end{split}$$

GPU-based Algorithm

• Basic Algorithm:

- Consider $V(x) = ||x x^*||_{\infty}$
- Build a grid of hypercubes surrounding x^*
- Test the center point and find κ s.t. the verified radius is $r \geq \ell/2$
- If one hypercube is not verified, split in 3^d parts
- Repeat testing of new points

GPU-based Algorithm

• Basic Algorithm:

- Consider $V(x) = ||x x^*||_{\infty}$
- Build a grid of hypercubes surrounding x^*
- Test the center point and find κ s.t. the verified radius is $r \geq \ell/2$
- If one hypercube is not verified, split in 3^d parts
- Repeat testing of new points
- Exponentially expand to the following layer
- Repeat testing in new layer

•	٠	•			٠		٠	٠
•	٠	٠			٠		٠	٠
•	•	• •	• • • •	•	•		•	•
•	•	• · ·	• •	•	•	• • •	٠	•
•	•	•			•		٠	٠
•	•	٠			•		٠	٠

GPU-based Algorithm

• Basic Algorithm:

- Consider $V(x) = ||x x^*||_{\infty}$
- Build a grid of hypercubes surrounding x^*
- Test the center point and find κ s.t. the verified radius is $r \geq \ell/2$
- If one hypercube is not verified, split in 3^d parts
- Repeat testing of new points
- Exponentially expand to the following layer
- Repeat testing in new layer

		•			•			•	•
•	•	•			•			•	•
	•	•	•	•	•	•			
	•	•			•	•	•	•	
		•	•	• • •	• • • • •	•	•	•	•
		·	•	•	•	•	•		
•	•	•		•			•	•	
•	•	•		•			•	•	

Numerical Illustration

Consider the 2-d non-linear system: with $B_{ij} \sim \mathcal{N}(0, \sigma^2)$

$$\sigma = 0.2$$

Parameter	Value
L	1.8
τ	1.5
l	0.01

Numerical Illustration

Consider the 2-d non-linear system: with $B_{ij} \sim \mathcal{N}(0, \sigma^2)$

$$\dot{x} = \begin{bmatrix} 0 & 2 \\ -1 & -1 \end{bmatrix} x + B \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}$$

 $\sigma = 0.5$ Phase Portrait 1.00 1.00 0.27 0.0 0.75 0.75 -0.0 0.50 0.50 0.25 0.25 0.00 0.00 -0.25 -0.25 -0.50-0.50 -0.75 -0.75-1.00-1.00-0.75 -0.50-0.25 0.00 0.25 0.50 0.75 1.00 -1.00-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Conclusions and Future work

- Takeaways
 - Proposed a relaxed notion of invariance known as recurrence.
 - Provide **necessary and sufficient conditions** for a recurrent set to be an **inner approximation** of the ROA.
 - Generalized Lyapunov Theory for recurrently decreasing functions using recurrent sets
 - Our algorithms are **parallelizable via GPUs and progressive/sequential.**
- Ongoing work
 - **Recurrent Sets:** Smart choice of multi-points, control recurrent sets, GPU implementation
 - Lyapunov Functions: Generalize other Lyapunov notions, Control Lyapunov Functions, Barrier Functions, Control Barrier Functions, Contraction, etc.
 - **Recurrence Entropy:** Understanding the complexity of making a set recurrent when compared with invariance.

Thanks!

Related Publications:

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372.

[CDC 23] Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, CDC 2023

Roy Siegelmann JOHNS HOPKINS

Enrique Mallada

mallada@jhu.edu http://mallada.ece.jhu.edu

Maxim Bichuch University at Buffalo Fernando Paganini

Enrique Mallada (JHU)