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Real ity Kicks In Angry Residents, Abrupt Stops: Waymo Vehicles Are Still

Causing Problems in Arizona
RAY STERN ' MARCH 31, 2021 @ 8:26AM

DeepMind's Losses and the Future of Artificial Intelligence

Alphabet’s DeepMind unit, conqueror of Go and other games, is losing lots of money. Continued deficits could imperil investments in Al.

AARIAN MARSHALL BUSINESS 12.87.2828 B84:86 PM

Can we adapt reinforcement learning algorithms to address

physical systems challenges?

N\ =2 woman did not recognize that pedestrians
= jaywalk

The automated car lacked "the capability to classify an object as a pedestrian unless that object

was near a crosswalk," an NTSB report said.
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Challenges of RL for Physical Systems

* Physical systems must meet multiple objectives
* Need to trade off between the different goals
« Constrained RL allows to explore the Pareto Front [1.2]
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- Failures have a qualitatively different impact ¢i R
« Expectation constraints cannot meet safety requirements
- Hard (almost sure) constraints can guarantee safety [3:4/°]
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Safety-critical Constraints in Dynamical Systems

Reachability Theoryl1-2]
+ Model-based: Via Hamilton Jacobi Issacs Equations (cont. time), or iterative set updates (discrete time).
+ Constraints: Provides hard/almost sure guarantees
* Output: Finds the maximum control invariant set (M-CIS) outside G

Control Barrier Functions (CBF)[3-4]
+ Model-based: Requires knowledge of dynamics and finding such CBF!
+ Constraints: Provides hard/almost sure guarantees
* Output: Possibly conservative CIS

Safety Critics (SC)[5-7]
* Model-free: Q-Learning-like algorithms, computes function such that Q. (s,a) = Npresn = “safety”
+ Constraints: Provides soft/approximate guarantees, depending on discounting factor y € (0,1)
* Output: Converges to maximum CIS asy - 1
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Safety-critical Constraints in Dynamical Systems

Reachability Theoryl1-2]
+ Model-based: Via Hamilton Jacobi Issacs Equations (cont. time), or iterative set updates (discrete time).
+ Constraints: Provides hard/almost sure guarantees
* Output: Finds the maximum control invariant set (M-CIS) outside G

Control Barrier Functions (CBF)[3-4]
+ Model-based: Requires knowledge of dynamics and finding such CBF!
+ Constraints: Provides hard/almost sure guarantees
* Output: Possibly conservative CIS

Safety Critics (SC)[5-7]
* Model-free: Q-Learning-like algorithms, computes function such that Q. (s,a) = Npresn = “safety”
+ Constraints: Provides soft/approximate guarantees, depending on discounting factor y € (0,1)
* Output: Converges to maximum CIS asy - 1

Reachability Theory(-2] Hard Maximum CIS

Control Barrier

Functions[3-4] No Hard Subset of M-CIS Yes

Safety Critics!>7] Yes Soft/Approx. Maximum ClSasy - 1 No



Safety-critical Constraints in Dynamical Systems

Reachability Theoryl1-2]
+ Model-based: Via Hamilton Jacobi Issacs Equations (cont. time), or iterative set updates (discrete time).
+ Constraints: Provides hard/almost sure guarantees
* Output: Finds the maximum control invariant set (M-CIS) outside G

Control Barrier Functions (CBF)[3-4]
+ Model-based: Requires knowledge of dynamics and finding such CBF!
+ Constraints: Provides hard/almost sure guarantees
* Output: Possibly conservative CIS

Safety Critics (SC)[5-7]
* Model-free: Q-Learning-like algorithms, computes function such that Q. (s,a) = Npresn = “safety”
+ Constraints: Provides soft/approximate guarantees, depending on discounting factor y € (0,1)
* Output: Converges to maximum CIS asy - 1

Reachability Theory(-2] Hard Maximum CIS

Control Barrier

Functions[3-4] No Hard Subset of M-CIS Yes

Safety Critics!>7] Yes Soft/Approx. Maximum ClSasy - 1 No
Ours Yes Hard M-CIS and Subsets Yes
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Learning for Safety-critical Sequential Decision Making

State Sti1
Reward Ry
Damage Dy,y

; Action A

Requirements:

High Priority -> Safety
o Limited Failures/Mistakes
o Hard Constraints/ A.S. Guarantees

Methodology:

Lower Priority -> Accuracy

O Optimality of the policy

« Enhance RL with logical feedback naturally arising from constraint violations

Steg@thl

« Decouple feasibility from optimality: Separation Principle

« Develop algorithms for learning fixed points of non-contractive operators



Recap: RL with Almost Sure Constraints

+oo ¢
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S.t. Pr go~g [St 7 Q} =1, Vt>0 <= D;;1 = 0 almost surely Vi

State Sti1
Reward R,y
Damage D4

Action A

- Damage indicator D; € {0,1} turns on (D; = 1) when constraints are violated
« Constraints not given a priori: Need to learn from experience!
* Notice: Model free & Constraint violations are inevitable



Outline

« Separation Principle for Joint Safety & Optimality
« Learning Safety with Limited Failures

« One-sided Bellman Equations for Continuous States



Formulation via hard barrier indicator

Safe RL problem: Equivalent unconstrained formulation:

oo ©.@)
V*(s) := max E- ZWthH | So=s ~ max [E. thRH_l + log[l — Di11] | So = s
Lt=0 " t=0 | J
s.t.: Dyy1 = 0 almost surely Vt !
0 ifDey1 =0

=0  if Deyq =1

Questions/Comments: )

* |s this just a standard RL problem with R¢+1 = Riy1 +log(l — Dyqq) ?

e Standard MDP assumptions for Value Iteration, Bellman’s Eq., Optimality
Principle, etc., do not hold!

* Not to mention convergence of stochastic approximations.

Key idea: Separate the problem of safety from optimality



Hard Barrier Action-Value Functions

Consider the Q-function for a given policy =,
QW(S7 CL) =K, Z <7th+1 + log(l — Dt_|_1)) ‘ S() = S,Ao =Q
t=0

and define the hard-barrier function

B™(s,a) = E, Zlog(l —Dyt1) | So=s,40=a
| t=0 i

Notes on B™(s,a):

* B™(s,a) € {0, —o0}

« Summarizes safety information
* B™(s,a) = 0 iff m is safe after choosing A; = a when §; =s

It is independent of the reward process



Separation Principle

Theorem (Separation principle)

Assume rewards R;,; are bounded almost surely for all t. Then for every policy m:

Q" (s,a) = Q" (s,a) + B (s, a)

In particular, for optimal .,

Q"(s,a) = Q"(s,a) + B™(s,a)

Approach: Learn feasibility (encoded in B*) independently from optimality.



Optimal Hard Barrier Action-Value Function

Theorem (Safety Bellman Equation for B*)
Let B*(s,a) := max B™(s,a) , then the following holds:

B*(s,a) =E {— log(1 — Dyy1) + mf}xB*(StH,a’) ‘ So =8, A = a}

Understanding B*(s, a):

B*(s,a) € {0, —oo} summarizes safety information of the entire MDP
 B*(s,a) = 0if 3 safe m after choosing A; = awhenS; =s  Control Invariant
 B*(s,a) = — if no safe policy exists after choosing A = awhen S; = s Unsafe

Discrete States Continuous States
controlled
safe trajectory

o V'(s) =maxB'(s,a) =0 ¢ V'(s) =maxB*(s,a) = — 12
a a



Properties of Safety Bellman Equation

Theorem (Safety Bellman Equation for B*)
Let B*(s,a) := max B"(s,a), then the following holds:

B*(s,a) =E {— log(1 — Dyy1) + max B (Siy1,a’) | So=s,40 = a}

Understanding the Solutions to the Safety Bellman Equation (SBE):
* SBE can have multiple solutions, including B(s, a) = —oo, for all pairs (s, a)
« If the function B is a solution to the SBE, then:

e ThesetC := {S : max l?(s, a) = O} is a control invariant safe set
a

* Cismaximal:If Sy & C, then S; never reaches C for all policies

‘\R(g) ‘Slnt
Solution Not a Solution




Outline

« Separation Principle for Joint Safety & Optimality
« Learning Safety with Limited Failures

« One-sided Bellman Equations for Continuous States



Learning the barrier in finite MDPs...

Algorithm 3: barrier_update Pros:

B-function (initialized as all-zeroes); * Wraps around learning algorithms ( Q-learning, SARSA)
Input: (s,a,s’,d)

Output: Barrier-function B(s, a)

B(s, a) «+ B(s,a) + log(1 — d) + max, B(s',a’)

e Use the B to trim the exploration set and avoid
repeating unsafe actions

...With a generative model:

* Sample a transition (s, a, s’, d) according to the MDP. Update barrier function.

Algorithm S5: Barrier Learner Algorithm

Data: Constrained Markov Decision Process M

Result: Optimal action-value function B*/ Initially, all (s, a)-pairs are “safe”
Initialize B(®)(s,a) = 0,V(s,a) € S x A
fort=20.1.--- do _ .
Draw (s, az) ~ Unif({(s,a) : BO(s,a) # —oo}) Draw (s, a)-pair uniformly among those
Sample transition (s¢, at, sy, d;) according to considered to be “safe” at time t
P (S =s5. Dy =di|So = 51, Ag = ay)
B(t+1) — barrier_update (B(t), St, ¢, S%) dt )L Update barrier function

€n

14



Convergence in Expected Finite Time

Theorem (Safety Guarantee): Let T = mtin{B(t) = B*}, then
|S]|A]

ISTIA] 1
ET < (L +1)—— -
H k=1 i

o AfterT = mtin{B(t) = B*} , all “unsafe” (s, a)-pairs are detected

e u: Lower bound on the non-zero transition probability
u=min{p(s’,d|s,a):p(s’,d|s,a) + 0}
e L:Lag of the MDP
Minimum number of transitions
L= max { needed to observe damage,

B*(S(ZQ_OO starting from unsafe (s, a)




Lag of the MDP: L

= max |

B*(s,a)=—o0

Minimum number of transitions needed to

observe damage, starting from unsafe (s, a)

j

16



Sample Complexity of Safety

Theorem (Sample Complexity): With at least 1 — 6 probability, the algorithm learns

optimal barrier function B* after
IS4l

IEEVLILY () o
(L+1) i\ L 08

iterations

* Concentration of sum of exponential random variables

 Much more sample-efficient than “learning an e-optimal policy with 1 — §
probability” (Li et al. 2020)

v _lstial_( Islial
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Sample Complexity of Safety

Theorem (Sample Complexity): With at least 1 — 6 probability, the algorithm learns

optimal barrier function B* after
IS4l

IEEVLILY () o
(L+1) i\ L 08

iterations

* Concentration of sum of exponential random variables

* |f the Barrier Function is learnt first, then learning an e-optimal policy takes
N' = |Ssafe||Asafe| log? |Ssafe||Asafe|
(1 —y)*e? (1-y)eé
samples (Trimming the MDP by learning the barrier)




Actions

Numerical Experiments

Goal: Reach the end of the aisle (R;+1 = 10) S1 | S2 | S3 | Sq4 | *°- S14

Touching the wall gives D;,; =1,

o Transitions until first goal-reach e Wall bumps until first goal-reach Wall bumps until first goal-reach
BN Assured Q-Learning EEE Assured Q-Learning B Q-lLearning
[ Q-Learning
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2000 6000 12 14 16 18 20 22 24 26 28 30 O 100 200 300 400 500 600
Transitions Wall bumps Wall bumps

Why does Assured Q-learning perform much better?
If D;y; =1 = B,(s,a) = —oo = Never take action a at s again!
Takeaways:
* Adding constraints to the problem can accelerate learning
e Barrier function avoids actions that lead to further wall bumps
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Numerical Experiments 11

Setup: Rectangular grid, stepping into holes gives damage D, = 1.
Actions A = {up,down,left,right}.

With every action, small probability to move to a random adjacent
state.

Result: Barrier-learner identifies all the state space as unsafe.
- = .- ! Sta L.
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Numerical Experiments 11

Setup: Rectangular grid, stepping into holes gives damage D, = 1.
Actions A = {up,down,left,right}.

With every action, small probability to move to a random adjacent
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Outline

« Separation Principle for Joint Safety & Optimality
« Learning Safety with Limited Failures

« One-sided Bellman Equations for Continuous States



Recall: Properties of Safety Bellman Equation

Theorem (Safety Bellman Equation for B*)

Let B*(s,a) := max B"(s,a), then the following holds:

B*(s,a) =E {— log(1 — Dyy1) + m@xB*(StH,a’) ‘ So =8, A = a}

Understanding the Solutions to the Safety Bellman Equation (SBE):
* SBE can have multiple solutions, including B(s, a) = —oo, for all pairs (s, a)
« If the function B is a solution to the SBE, then:

e ThesetC := {S : max l?(s, a) = O} is a control invariant safe set
a

s -

ﬂ‘_
-

Solution

Not a Solution

Problem: Maximal
solutions can be very close
to unsafe region R(G)

19



One-Sided Safety Bellman Equation

Theorem (One-Sided Safety Bellman Equation)
Let B(s, a) be a solution of the following set of inequalities:

B(s,a) < E [— log(1 — Dp4q1) + max B (Sp41,a')|So = 5,40 = a]
a

The set C = {S : max B(s,a) = O} is a control invariant safe set, not
a

necessarily maximal

C = {S } max B(s,a) = 0}

e -

C = {5 : max B(s,a) = 0}

.- -

~
~ -
~. -
-~

Solution Not a Solution New Solutions




Learning CIS Using Deep Neural Nets

Algorithm Summary
 Uses axiomatic data (s,a,d,s') € Dgqre known to be safe
o Initialize b%(s,a) = 0, where b(s,a) = 1 — e85 (all presumed safe)

- At each iteration, take N episodes starting from D¢,
« Behavioral policy: uniform safe policy

70 (als) = {0 A ifli)e(s,a) =1
1/> yea 1{t(s,a’) =0} ifb%(s,a) =0

« Train NN using SGD until fully fitting the data
« Start a new iteration, and repeat

21



Numerical Illustration

Control Engineer Favorite’s

Legrned binary function: min, b(s,a) = 1[s is unsafe], iterations=-11 o
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Summary and future work

« Reinforcement Learning for Safety-Critical Systems
* Treat constraints separately or in parallel (Barrier Learner)

« Can characterize all feasible policies (D; = 0) with finite
mistakes

* Requires learning using Bellman equations with non-unique
solutions

 Takeaways:

- Learning feasible policies is simpler than learning the optimal ones
« Adding constraints makes optimal policies, easier to find
« One-sided Safe Bellman can be used to find CISs that are not maximal



Thanks!
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