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The Future Grid
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Present grid Future

e dispatchable generation
* highinertial response

e strong voltage support
 well known physics

variable and distributed generation
limited inertia levels

weak voltage support
proprietary control laws (black box)

[1] Lin et al. Research roadmap on grid-forming inverters. Technical report, National Renewable Energy Lab.(NREL), Golden CO, 2020
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The Future Grid

*[1]
Future Selected challenges
s X% o i * increased system uncertainty
fg W H L/A sensitivity to disturbances
So| L O R ™ T  new forms of instabilities, induced by inverter-
S P \ﬁ‘ﬁﬁ@ =t based resources
e * need to compensate for reduced inertia
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* How should we control a grid with limited

Future inertial/voltage support?

. : . eration o |

. ﬁx:?gﬁﬁggiglf;\r,ggted generatio * Should we try to mimic SGs response? Or find new
* weak voltage support and more efficient control paradigms, suitable for
 proprietary control laws (black box) IBRs?

[1] Lin et al. Research roadmap on grid-forming inverters. Technical report, National Renewable Energy Lab.(NREL), Golden CO, 2020
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Outline

 Merits and trade-offs of low inertia
 Control Perspective: Lighter systems are easier to control!

* Analysis of Weakly-Connected Coherent Networks
* Generalized Center of Inertia captures IBR dynamics
* |dentification of coherent modes via spectral clustering

* Grid Shaping Control

* Grid-following/forming control framework for controlling future girds



Merits and Tradeoffs of Inertia

Enrique Mallada (JHU)

PHIL.OSOPHIA

NPT UER ARl S

FPRINCIPIA
MATHEMATICA

Autore 7S. NEWTON, Trin. Coll. Cantab. Soc. Mathefcos
Profeflore Lucafiano, & Societatis Regalis Sodali.

IMPRIMATUR:
S PEPYS, RegSc. PRESES
Julii 5. 1686.

LONDINI

Jufiu Societatis Regie ac Typis Fofepbi Streater. Proftat apud

gic pis Jofep r. T
plures Bibliopolas. ~ Amo MDCLXXXVIL




Merits and Trade-offs of Inertia
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Merits and Trade-offs of Low Inertia
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Control of Low Inertia Pendulum

Virtual Mass Control: mf = —df — mgsinf + f — 16

We can do better...

Pros: Cons:
Provides disturbance rejection Hard to regain steady-state + excessive control effort

Enrique Mallada (JHU) 7



Control of Low Inertia Pendulum

Yan Jiang Richard Pates

Dynamic Droop: mf = —df — mgsinf + f + x
—x — (r 10+ 7'1'6)

/ -
T X

1.0 2

time = 0.0s
0.5 - L,

0.0 1 ¢0

angle
ang. velocity

—0.5 1 F =1

time (s)
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[TAC 21] Jiang, Pates, M, Dynamic droop control in low inertia power systems, |IEEE Transactions on Automatic Control, 2021
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Control of Low Inertia Pendulum

Yan Jiang Richard Pates

Dynamic Droop: mf = —df — mgsinf + f + x

3518 |IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 8, AUGUST 2021 \&t_ IECESES
Dynamic Droop Control in Low-Inertia
Power Systems
Yan Jiang *“, Richard Pates ““, and Enrique Mallada “, Senior Member, IEEE

0 :) 5 10 15 20 2=5 S
Dynamic Droop Benefits
* Overshoot Elimination in Nadir* Disturbance Rejection
* Noise Attenuation * Reduce Inter-area Oscillations q
! il
Caveat

25

* Control design limited to co-located resources (SGs and IBRs)

[TAC 21] Jiang, Pates, M, Dynamic droop control in low inertia power systems, IEEE Transactions on Automatic Control, 2021
Enrique Mallada (JHU) 7



Outline

 Merits and trade-offs of low inertia
 Control Perspective: Lighter systems are easier to control!

* Analysis of Weakly-Connected Coherent Networks
* Generalized Center of Inertia captures IBR dynamics
* |dentification of coherent modes via spectral clustering

* Grid Shaping Control

* Grid-following/forming control framework for controlling future girds



Coherence in Power Networks

* St u d |e d S | nce t h e 705 Power Electronics and Power Systems

* Podmore, Price, Chow, Kokotovic, Verghese,
Pai, Schweppe,...

* Enables aggregation/model reduction ToaHrwEE T
* Speed up transient stability analysis
T | Power System
* Many important questions
* How to identify coherent modes? COherenCy and

* How to accurately reduce them? MOdEl REdUCtion

* What is the cause?

 Many approaches
* Timescale separations (Chow, Kokotovic,)
* Krylov subspaces (Chaniotis, Pai ‘01)
* Balanced truncation (Liu et al ‘09)

 Selective Modal Analysis (Perez-Arriaga,
Verghese, Schweppe ‘82)

Goal: Understand how IBR presence affect classical coherence studies

Enrique Mallada (JHU) 8



Case Study 1: Network Coherence

FNET Data Display [9/8/201 1 Southwest Blackout]
Time: 22:37:54.0 UTC 60.0125 Hz
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Key Questions:
* How does coherence emerge, and what does it depend on?

 How to characterize the coherent response in the presence of IBRs?

Enrique Mallada (JHU)
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Case Study 2: Coherent Inter-area Modes

Florida Event Replay with FNET Data [2/26/2008]
Time: 18:09:4.9 UTC 60.0004 Hz

Key Questions:

Frequency, Hz
3
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18:09.04 18:09:08 18:09:12 18:09:17 18:09:21 18:09:25

How to identify coherent areas?

Time, UTC

© 2010 University of Tennessee

105 W 90' W

e UNIVERSITY of
TENNESSEEr"

Can we model the inter-area oscillations?

Enrique Mallada (JHU)
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Analysis of Coherent Dynamics [€PC 19,ArXiv 23]

g1
AP - . J
‘ ?

1 - gn . Z’L APfL wCOI
> g(S) >

2.What is the exact coherent
response of this network?

o=
h

1.When does this network
exhibit coherence?

* Problem Setup: Example I: SG + Turbine
* Linearized power flows L;; 1
e Busi: arbitrary siso tf: gi(s) = r1

[CDC 19] Min, M. Dynamics concentration of large-scale tightly-connected networks. Conference on Decision and Control 2019

Hancheng Min Richard Pates

[ArXiv 23] Min, Pates, M. A frequency domain analysis of slow coherency in networked systems. arXiv:2302.08438, 2023, submitted
11
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Analysis of Coherent Dynamics [€PC 19,ArXiv 23]

g1

AP

gi

W
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h

Hancheng Min Richard Pates

> i AP _ Weor
> g(S) >

1.When does this network

exhibit coherence? 2.What is the exact coherent

response of this network?

1. Coherence can be understood as a low rank property the closed-loop
transfer matrix

—1

mn
2. It emerges as the effective algebraic connectivity |Sl Ay (L)| increases §(S) = E gz-_1 (S)
0
1=1

3. The coherent dynamics is given by the harmonic sum of bus
dynamics

[CDC 19] Min, M. Dynamics concentration of large-scale tightly-connected networks. Conference on Decision and Control 2019
[ArXiv 23] Min, Pates, M. A frequency domain analysis of slow coherency in networked systems. arXiv:2302.08438, 2023, submitted
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Generalized Center of Inertia [CPC 19,ArXiv 23]

Hancheng Min Richard Pates

Zf; AP; Weor n -
1 9(s) > g(s) = D _gi ' (s)
i—1

200

— — Coherent Dynamics

 Coherent Dynamics: g(s)
* Representation of aggregate response

e Accuracy of approximation:
* is frequency dependent
* increases with network connectivity

* Provides excellent template for reduced
order models (via balance-truncations)

0 10 20 30 40 o ilc [LCSS 20
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[CDC 19] Min, M. Dynamics concentration of large-scale tightly-connected networks. Conference on Decision and Control 2019
[ArXiv 23] Min, Pates, M. A frequency domain analysis of slow coherency in networked systems. arXiv:2302.08438, 2023, submitted

[LCSS 20] Min, Paganini, M. Accurate reduced-order models for heterogeneous coherent generators. IEEE LCSS 2020
Enrique Mallada (JHU) 12



Weakly-Connected Coherent Networks

g1 U1 —@1
U ' Y U2 _ Y2
)( ) — gz 'Il3 gl — _@3
A g2 el
- = 277 A 5
o ) o

* Aggregate each coherent area

* Inter-area oscillation can be
modeled as the interaction
among aggregate nodes

[LADC 23] Min, M. Learning coherent clusters in weakly-connected network systems. Leaning for Dynamics and Control 2023
Enrique Mallada (JHU)
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Structure-preserving Network Reduction
2

Hancheng Min

Step 1: Identifying coherent areas

—()r— 9:] i3 g1l yi Tightly-connected
1 - - 72 % Networks are coherent
_ f() Lk U
— - Use spectral clustering

algorithm to find
tightly-connected
: k subnetworks/areas

1 Iz 1=
L. _)[ Spectral } _{_ _}_ _1_ .
g

Clusterin

[LADC 23] Min, M. Learning coherent clusters in weakly-connected network systems. Leaning for Dynamics and Control 2023
Enrique Mallada (JHU) 14



Structure-preserving Network Reduction

P

Hancheng Min

Step 2: Aggregate coherent areas

g1 R —?31
U AN Yo
—>Q—> 9i = s, Coherent dynamics are
A AN .
- Tn N Aggregation given by )
-~ A~ _ -1 -
-1, gi:(z §) =197 )
i=1,- 1
Aggregate each
identified coherent area
: AL into its corresponding
L | Spectral S . A
>[ Clustering} > coherent dynamics j(s)

[LADC 23] Min, M. Learning coherent clusters in weakly-connected network systems. Leaning for Dynamics and Control 2023
Enrique Mallada (JHU) 14



Structure-preserving Network Reduction

P

Hancheng Min

Step 3: Model the interaction among aggregate nodes

Construct the reduced
network L; by solving
an optimization problem
(it has closed-form

solution)
: T} _
L' _,| Spectral _{_ _}_Z__l_:_) st.  Ser =1
! Clustering STdiag{|Z;|}F_,S = I
e e e e e e e - - - > L. = (S~ 1H)TA.S1
- k= (57) A Y,

[LADC 23] Min, M. Learning coherent clusters in weakly-connected network systems. Leaning for Dynamics and Control 2023
Enrique Mallada (JHU) 14



Approximation Errors

I7Cs0) = Tic Gso)l,
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Hancheng Min
[ 1 .
Uo ApprOleatlon error
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—>>

L\ ___| Spectral _{_ _}___1_ .
: Clustering

min
S

Vi, = Pizpe_ S|I%

s.t. Sep =1

STdiag{|I,-|}leS = Ik .

~

Ly = (S_l)TAkS_l

-

)

e Whether the network
has a multi-cluster
structure

* Whether the SC
algorithm finds the
right clusters

[LADC 23] Min, M. Learning coherent clusters in weakly-connected network systems. Leaning for Dynamics and Control 2023
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Numerical validation — RTS 96 test case
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Hancheng Min

The IEEE reliability test system: 1996
3 areas, 33 generators in total

Different rotor angles across each area
at initialization

Solid lines: actual frequency response
Dashed lines: reduced model

[L4DC 23] Min, M. Learning coherent clusters in weakly-connected network systems. Leaning for Dynamics and Control 2023
Enrique Mallada (JHU)
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Outline

 Merits and trade-offs of low inertia
 Control Perspective: Lighter systems are easier to control!

* Analysis of Weakly-Connected Coherent Networks
* Generalized Center of Inertia captures IBR dynamics
* |dentification of coherent modes via spectral clustering

* Grid Shaping Control

* Grid-following/forming control framework for controlling future girds



Grid Shaping Control
Use model matching control to shape system response

Grid-following IBRs Grid-forming IBRs

Enrique Mallada (JHU)
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Grid-shaping with GFL IBRs [TPS21]

lw Aw
+ : A
_; a) g a)
Wref Turbine l+ :
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B Grid Shaping
g w
Turbine bZSZ + bys + by , & ref
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| Tunable Performance:
{
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[TPS 21] Jiang, Cohn, Vorobev, M. Storage-based frequency shaping control Transactions on Power Systems 2021
Enrique Mallada (JHU) 18



Grid-shaping with GFL IBRs [TPS21]

A Yan Jiang Eliza Cohn Petr Vorobev

w CU
_ l+ ; l Tunable Performance:
wref ), @ Pref+ - 1 w — l — 1
|_. —O0— | =53 RoCoF = —AP, Aw = AP
Pref PL

Grid Shaping

A — Vi v = Upin

Wyef

iDroop: a = mH

Example: Efficient Elimination of Nadir
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Power Output from Storage
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Frequency Deviation
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[TPS 21] Jiang, Cohn, Vorobev, M. Storage-based frequency shaping control Transactions on Power Systems 2021
Enrique Mallada (JHU) 18



Grid-shaping with GFL IBRs [TPS21]

A m Yan Jiang Eliza Cohn Petr Vorobev
w o)
5 P 4 )\
_ l+ l t Tunable Performance:
) P - 1 1 1
Wref @ 50— | =3 2 RoCoF = ~AP, Aw = —~AP
Pref Py Grid Shaping
. Wyef
Example Il: Tuning RoCoF
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[TPS 21] Jiang, Cohn, Vorobev, M. Storage-based frequency shaping control Transactions on Power Systems 2021
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Grid Shaping Control
Use model matching control to shape system response

Grid-following IBRs Grid-forming IBRs

w w
By :] |
Wyref " @
| P
Pref L

Tunable Performance:
RoCoF = %AP, Aw = %AP
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GFM Grid-shaping Through Lines [L¢55 23] @ i)

\ v
B. K. Poolla Y. Lin A. Bernstein D. GroR
A
w F
B —
ik T
P P
B Pref L
P, ( ~ 0 T T T
P - 1
ref 4+ w ~ —100 — 04 N
T'g >
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5‘ —200 = e (). 95
g I
Grid Shaping % — 0.0s 0.2} g? .
1 S 300 —0.75 ] o
Wyref H s ().38
f"\+ s (), 58
< s (). 35 0
~ - —400 |- \ \ \ ! i | | \ |
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Tunable Performance: Time (5 Time (5
E.g.: Turbine Time Constant = 7’ Frequency response for a 1 p.u. load step IBR power injection for a 1 p.u. load step

[LCSS 23] Poolla, Lin, Bernstein, M, Grol3. Frequency shaping control for weakly-coupled grid-forming IBRs IEEE Control Systems Letters 2023
Enrique Mallada (JHU) 20



GFM System-wide Grid-shaping [L¢55 20l

AP

O

g1

gi

oy,

In

SGs
IBRs

Zi AP, -1 Wcor
> ( + ) >
e
Zi AP; 1 Weor
- as+ b —
Grid Shaping

Tunable Performance: RoCoF = %AP, Aw = %AP

[LCSS 20] Jiang, Bernstein, Vorobev, M. Grid-forming frequency shaping control for low-inertia power systems IEEE Control Systems Letters 2020
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GFM System-wide Grid-shaping [1¢55 20]

9
AP w % N
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[LCSS 20] Jiang, Bernstein, Vorobev, M. Grid-forming frequency shaping control for low-inertia power systems IEEE Control Systems Letters 2020
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Grid Shaping Control

Use model matching control to shape system response

Grid-following IBRs Grid-forming IBRs
) Ao . .

wr—‘éﬁ waéﬁf—w BNy Py

, ref Turb r\f\_y I I -

ref Pres _lPL Py

9
AP i w
Gi .
- .gn Zl AP; ‘[ 1 ] wC?I

— T . as +b g

(‘)ref o~ ) 'E.L Grid Shaping

Tunable Performance: RoCoF = iAP, Aw = %AP, 7', ...
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Summary

* Merits and trade-offs of low inertia
 Control Perspective: Lighter systems are easier to control!

 Smarter controller can provide multiple benefits in Nadir, RoCoF, inter-area oscillations,
and disturbance rejection, with less effort

* Analysis of Weakly-Connected Coherent Networks
* Generalized Center of Inertia captures IBR dynamics
 Provide a new tunable target to meet system specs
 Coherent modes identified via spectral clustering

* Grid Shaping Control
* Grid-following/forming control framework for future girds
* Leverages IBRs to shape the coherent response
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Network Coherence: Heterogeneous Case

Zgz

T(s) = —(s)127 4| T(s) — ~g(s)11"

The effect of non-coherent dynamics vanishes as:

* Foralmostany sy € C * For sp € C,apoleof f(s)
1 1
li T(so) — —g(so)117|| =0 lim ||T(s) — —g(s)117]| =
i 760) - 2g0) tim ||7(s) = Lge117] = 0

e Excluding zeros: the limit holds at zero, but by different convergence result

e We can further prove uniform convergence over a compact subset of complex plane, if it doesn’t contain any
zero nor pole of g(s)

e Extensions for random network ensembles, g;(s) := g(s,w;) (w; random), then g(s) = (E,,[ g (s, w)]D~?!

e Convergence of transfer matrix is related to time-domain response by Inverse Laplace Transform

26
Enrique Mallada (JHU)



Connection to Time Domain

If g(s) and T(s) stable (| |g_||oo, ||T||Oo < y), then thereis A = 0(Y/¢) such that:

* g-approximation, for any network L, with A,(L) > 1

sup |yi (1) —y(t)| <e
£>0 |
where y(t) is the coherence dynamics response: y(s) = §(s)5 Z u; (S)

* element-wise coherence, for any pair of nodes i and j

sup [y () — y; ()] < 2¢
t>0

Enrique Mallada (JHU) 27



Icelandic Grid

Example: Icelandic Power Grid
* |celand power network: 189 buses, 35 generators, load 1.3GW (PSAT) i
ot
,., Ead
u . Y byt
—— O~ diag{g:(s)} >
N Step Disturbance
T 02
f(s)L |+ >l
2 |
S -0.2 1
> | e
gi(s) — 1 E\ -0.4 g .
mis +di 2 2 0.6
1 =
fls)= - o 0.8 1
5 0 50 100

Enrique Mallada (JHU)
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Example: Effect of Network Algebraic Connectivity, (L) 1

200 ; ; ; 200
— — Coherent Dynamics — — Coherent Dynamics

N0 0
E
)
= -200 1-200 ¢}
o
-
&
e -400 t 1-400 ¢t

-600 ' ' ' -600 ' ' '

0 10 .20 30 40 0 10 20 30 40
Time (s) Tims (s)

Coherent dynamics acts as a more accurate version of the Center of Inertia (Col)

Enrique Mallada (JHU) 29



Example: Sinusoidal Disturbances: sin(w t) wy T

300 ; ; ; 300
— — Coherent Dynamics — — Coherent Dynamics

—~ 200t 1 200}
N
L
é 100t 1 100t . . ;
c 0 0 |
% _
o-100¢} 1-100 \/\ | I
"= 200} 1-200 :

-300 ' ' ' -300 : : :

0 5 10 15 20 0 S . 10 15 20

Time (s) Time (s)
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Frequency-dependent Coherence from Coupling Dynamics

0.16

* Frequency dependent coherence: : ' L
014 f T |

A stable network responds coherently

012

when subject to signal with its o _\,

Node Outputs
o

-0.005

0.08 } |

frequency component concentrated

001 ||

0.06 1|

around pole of f(s)

210 215 220 225 230 235

0.04 R

Node Outputs

0.02 R4y

* An Artificial Example: LRSI
R

100 150 200 250 300

A stable heterogenous network with 002}
2

S -0.04
f(S) o s%+w§

is “synchronized” by 0 50
1
external sinusoidal input sin wgt

m;s+d;
20 nodes with m;~Unif (1,5),d;~Unif (0.1,0.5)
12-regular graph with unit weights

Sin input to the first node(shown in blue) only

Enrique Mallada (JHU)

First order nodal dynamics g;(s) =

(Such coherence is robust to small

changes in input frequency)



