Grid Shaping Control for High-IBR Power Systems

Stability Analysis and Control Design

Enrique Mallada

GE EDGE Symposium September 20, 2023

Acknowledgements

Students

Yan Jiang

Hancheng Min

Eliza Cohn

JOHNS HOPKINS
UNIVERSITY

Collaborators

Petr Vorobev Skoltech

Richard Pates Fernando Paganini

Bala K. Poolla

Yashen Lin

Andrey Bernstein

Dominic Groß

WISCONSIN UNIVERSITY OF WISCONSIN-MADISON

The Future Grid

Present grid

- dispatchable generation
- high inertial response
- strong voltage support
- well known physics

Future

- variable and distributed generation
- limited inertia levels
- weak voltage support
- proprietary control laws (black box)

^[1] Lin et al. Research roadmap on grid-forming inverters. Technical report, National Renewable Energy Lab.(NREL), Golden CO, 2020

The Future Grid

Future

- variable and distributed generation
- limited inertia levels
- weak voltage support
- proprietary control laws (black box)

Selected challenges

- increased system uncertainty
- sensitivity to disturbances
- new forms of **instabilities**, induced by inverter-based resources
- need to compensate for reduced inertia

Research questions:

- How should we control a grid with limited inertial/voltage support?
- Should we try to mimic SGs response? Or find new and more efficient control paradigms, suitable for IBRs?

^[1] Lin et al. Research roadmap on grid-forming inverters. Technical report, National Renewable Energy Lab.(NREL), Golden CO, 2020

Outline

- Merits and trade-offs of low inertia
 - Control Perspective: Lighter systems are easier to control!
- Scale-free Stability Analysis of Grids
 - Generalizes passivity notions using network information
- Grid Shaping Control
 - Grid-following/forming control framework for controlling future girds

Merits and Tradeoffs of Inertia

 $\ddot{\theta} = -\frac{d}{m}\dot{\theta} - g\sin\theta + \frac{f}{m}$

Merits and Trade-offs of Inertia

$$\ddot{\theta} = -\frac{d}{m}\dot{\theta} - g\sin\theta + \frac{f}{m}$$

Pros: Provides natural disturbance rejection

Cons: Hard to regain steady-state

Merits and Trade-offs of Low Inertia

Cons: Susceptible to disturbances

Pros: Regains steady-sate faster

Control of Low Inertia Pendulum

Virtual Mass Control:
$$m\ddot{\theta}=-d\dot{\theta}-mg\sin{\theta}+f-\nu\ddot{\theta}$$

Pros:

Provides disturbance rejection

Cons:

Hard to regain steady-state + excessive control effort

Control of Low Inertia Pendulum

Yan Jiang

Richard Pates

Control of Low Inertia Pendulum

Yan Jiang

Richard Pates

[TAC 21] Jiang, Pates, M, Dynamic droop control in low inertia power systems, IEEE Transactions on Automatic Control, 2021

Outline

- Merits and trade-offs of low inertia
 - Control Perspective: Lighter systems are easier to control!
- Scale-free Stability Analysis of Grids
 - Generalizes passivity notions using network information
- Grid Shaping Control
 - Grid-following/forming control framework for controlling future girds

Decentralized Stability Analysis in Power Grids [TCNS 19]

1. When does this interconnection is stable?

2. Can we do analysis and control design based on **local rules**?

Problem Setup:

• *Linearized* power flows, *lossless*

$$L_{ij} = b_{ij}v_iv_j\cos(\theta_i^* - \theta_j^*)$$

• Bus *i*: arbitrary *siso* transfer function:

$$\omega_i = p_i(s) \Delta P_i$$
 (SGs or IBRs)

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019

Decentralized Stability Analysis in Power Grids [TCNS 19]

Richard Pates

Can we use network information to relax passivity conditions?

Standard Approach: Passivity

• If $p_i(s)$ is strictly positive real (SPR), then the interconnection is stable for all networks L!

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019

Classical Result: Absolute Stability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Frequency Domain Stability Criteria—Part I

R. W. BROCKETT, MEMBER, IEEE AND J. L. WILLEMS

Abstract-The objective of this paper is to illustrate the limita-

II. THE GENERALIZED POPOV THEOREM

Stable for $0 \le K \le k^*$?

Assume: G(s) is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s)(1 + k^*G(s)) \in SPR$ (strictly passive)

then, yes!

Classical Result: Absolute Stability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Frequency Domain Stability Criteria—Part I

R. W. BROCKETT, MEMBER, IEEE AND J. L. WILLEMS

Abstract-The objective of this paper is to illustrate the limita-

II. THE GENERALIZED POPOV THEOREM

Stable for $0 \le K \le k^*$?

Assume: G(s) is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s)(1 + k^*G(s)) \in SPR$ (strictly passive)

then, yes!

Classical Result: Absolute Stability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Frequency Domain Stability Criteria—Part I

R. W. BROCKETT, MEMBER, IEEE AND J. L. WILLEMS

Abstract-The objective of this paper is to illustrate the limita-

II. THE GENERALIZED POPOV THEOREM

Stable for $0 \le K \le k^*$?

Assume: G(s) is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s)(1 + k^*G(s)) \in SPR$ (strictly passive)

then, yes!

Scale-free Stability Analysis

Key Idea: Exploit limited network information to relax passivity condition

• Let γ_i be a local connectivity bound: $[L]_{ii} = \sum_{i \in N_i} L_{ij} \leq \frac{\gamma_i}{2}$

Brockett & Willems '65

Assume: G(s) is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s)(1 + k^*G(s)) \in SPR$ (strictly)

then system is stable for all $0 \le K \le k^*$

Pates & Mallada 2019

Assume: $p_i(s)$ is stable

Define: $h(s) \in PR$ (passive)

Test: If $h(s)\left(1+\gamma_i\frac{1}{s}p_i(s)\right)\in SPR$, $\forall i$, then system stable for networks $[L']_{ii}\leq \frac{\gamma_i}{2}$, $\forall i$

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019

Outline

- Merits and trade-offs of low inertia
 - Control Perspective: Lighter systems are easier to control!
- Scale-free Stability Analysis of Grids
 - Generalizes passivity notions using network information
- Grid Shaping Control
 - Grid-following/forming control framework for controlling future girds

Grid Shaping Control

Use model matching control to shape system response

Grid-following IBRs

Grid-forming IBRs

Grid-shaping with GFL IBRs [TPS 21]

Yan Jiang

Eliza Cohn

12

Petr Vorobev

Tunable Performance:

$$RoCoF = \frac{1}{a}\Delta P$$
, $\Delta \omega = \frac{1}{b}\Delta P$

Grid-shaping with GFL IBRs [TPS 21]

Yan Jiang

Eliza Cohn

Petr Vorobev

Example: Efficient Elimination of Nadir

Tunable Performance:

$$RoCoF = \frac{1}{a}\Delta P$$
, $\Delta \omega = \frac{1}{b}\Delta P$

Grid-shaping with GFL IBRs [TPS 21]

Yan Jiang

Eliza Cohn

Petr Vorobev

Tunable Performance:

$$RoCoF = \frac{1}{a}\Delta P, \ \Delta \omega = \frac{1}{b}\Delta P$$

Example II: Tuning RoCoF

Grid Shaping Control

Use model matching control to shape system response

Grid-following IBRs

Tunable Performance:

$$RoCoF = \frac{1}{a}\Delta P$$
, $\Delta\omega = \frac{1}{b}\Delta P$

Grid-forming IBRs

Generalized Center of Inertia (COI) [CDC 19,ArXiv 23]

14

Hancheng Min Richard Pates

What is the exact **response** of the **COI** of this network?

Generalized COI:

$$\hat{g}(s) = \left(\sum_{i=1}^{n} g_i^{-1}(s)\right)^{-1}$$

- Properties of $\widehat{g}(s)$:
- Representation of aggregate response
- Accuracy of approximation:
 - is frequency dependent
 - increases with network connectivity
- Provides excellent template for reduced order models (via balance-truncations)

[CDC 19] Min, M. Dynamics concentration of large-scale tightly-connected networks. **Conference on Decision and Control 2019**[ArXiv 23] Min, Pates, M. A frequency domain analysis of slow coherency in networked systems. arXiv:2302.08438, **2023**, **submitted**Enrique Mallada (JHU)

GFM System-wide Grid-shaping [LCSS 20]

15

Tunable Performance: RoCoF =
$$\frac{1}{a}\Delta P$$
, $\Delta\omega = \frac{1}{b}\Delta P$

[LCSS 20] Jiang, Bernstein, Vorobev, M. Grid-forming frequency shaping control for low-inertia power systems IEEE Control Systems Letters 2020

Enrique Mallada (JHU)

GFM System-wide Grid-shaping [LCSS 20]

15

Grid Shaping Control

Use model matching control to shape system response

Grid-following IBRs

Grid-forming IBRs

Tunable Performance: RoCoF =
$$\frac{1}{a}\Delta P$$
, $\Delta \omega = \frac{1}{b}\Delta P$, τ' , ...

Summary

Merits and trade-offs of low inertia

- Control Perspective: Lighter systems are easier to control!
- Smarter controller can provide multiple benefits in Nadir, RoCoF, inter-area oscillations, and disturbance rejection, with less effort

Scale-free Stability Analysis of Grids

- Generalizes passivity notions using network information
- Decentralized test based on local models
- Compatible with H_{∞} -synthesis methods

Grid Shaping Control

- Grid-following/forming control framework for future girds
- Leverages IBRs to shape the generalized COI response

Thanks!

Yan Jiang

Hancheng Min

Eliza Cohn

Petr Vorobev

Richard Pates Fernando Paganini

Dominic Groß

Bala K. Poolla

Yashen Lin

Andrey Bernstein

Merits and trade-offs of low inertia

[TAC 21] Jiang, Pates, M, Dynamic droop control in low inertia power systems, IEEE Transactions on Automatic Control, 2021

Scale-free Stability Analysis

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems, IEEE Transactions on Control of Network Systems, 2019

Generalized Center of Inertia

[CDC 19] Min, M. Dynamics concentration of large-scale tightly-connected networks. Conference on Decision and Control 2019

[ArXiv 23] Min, Pates, M. A frequency domain analysis of slow coherency in networked systems. arXiv:2302.08438 2023, submitted

Grid Shaping Control

[LCSS 20] Jiang, Bernstein, Vorobev, M. Grid-forming frequency shaping control for low-inertia power systems IEEE Control Systems Letters 2020

[TPS 21] Jiang, Cohn, Vorobev, M. Storage-based frequency shaping control Transactions on Power Systems 2021

[LCSS 23] Poolla, Lin, Bernstein, M, Groß. Frequency shaping control for weakly-coupled grid-forming IBRs IEEE Control Systems Letters 2023

mallada@jhu.edu • Enrique Mallada • http://mallada.ece.jhu.edu