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The Future Grid
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e dispatchable generation
* highinertial response

e strong voltage support
 well known physics

variable and distributed generation
limited inertia levels

weak voltage support
proprietary control laws (black box)

[1] Lin et al. Research roadmap on grid-forming inverters. Technical report, National Renewable Energy Lab.(NREL), Golden CO, 2020
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The Future Grid
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Future Selected challenges
s X% o i * increased system uncertainty
fg W H L/A sensitivity to disturbances
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S P \ﬁ‘ﬁﬁ@ =t based resources
e * need to compensate for reduced inertia

cagl
¥
¥
\ | ¥

\ﬁl\ :
el

‘
AT B

=gencrator  @Rn @En @ | SSROWNR Research questions:

‘ = inverter

* How should we control a grid with limited

Future inertial/voltage support?

. : . eration o |

. ﬁx:?gﬁﬁggiglf;\r,ggted generatio * Should we try to mimic SGs response? Or find new
* weak voltage support and more efficient control paradigms, suitable for
 proprietary control laws (black box) IBRs?

[1] Lin et al. Research roadmap on grid-forming inverters. Technical report, National Renewable Energy Lab.(NREL), Golden CO, 2020
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Outline

 Merits and trade-offs of low inertia
 Control Perspective: Lighter systems are easier to control!

e Scale-free Stability Analysis of Grids
* Generalizes passivity notions using network information

* Grid Shaping Control

* Grid-following/forming control framework for controlling future girds



Merits and Tradeoffs of Inertia
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Merits and Trade-offs of Inertia
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Merits and Trade-offs of Low Inertia
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Control of Low Inertia Pendulum

Virtual Mass Control: mf = —df — mgsinf + f — 16

We can do better...

Pros: Cons:
Provides disturbance rejection Hard to regain steady-state + excessive control effort

Enrique Mallada (JHU) 7



Control of Low Inertia Pendulum

Yan Jiang Richard Pates

Dynamic Droop: mf = —df — mgsinf + f + x
—x — (r 10+ 7'1'6)
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[TAC 21] Jiang, Pates, M, Dynamic droop control in low inertia power systems, |IEEE Transactions on Automatic Control, 2021
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Control of Low Inertia Pendulum

Yan Jiang Richard Pates

Dynamic Droop: mf = —df — mgsinf + f + x

3518 |IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 8, AUGUST 2021 \&t_ IECESES
Dynamic Droop Control in Low-Inertia
Power Systems
Yan Jiang *“, Richard Pates ““, and Enrique Mallada “, Senior Member, IEEE

0 :) 5 10 15 20 2=5 S
Dynamic Droop Benefits
* Overshoot Elimination in Nadir* Disturbance Rejection
* Noise Attenuation * Reduce Inter-area Oscillations q
! il
Caveat

25

* Control design limited to co-located resources (SGs and IBRs)

[TAC 21] Jiang, Pates, M, Dynamic droop control in low inertia power systems, IEEE Transactions on Automatic Control, 2021
Enrique Mallada (JHU) 7



Outline

 Merits and trade-offs of low inertia
 Control Perspective: Lighter systems are easier to control!

e Scale-free Stability Analysis of Grids
* Generalizes passivity notions using network information

* Grid Shaping Control

* Grid-following/forming control framework for controlling future girds



Decentralized Stability Analysis in Power Grids [TCNS 19]

AP = w1 - Richard Pates
; O ' i | 1.When does this
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2. Can we do analysis and control design
based on local rules?

Problem Setup:
* Linearized power flows, lossless
Lij = bijvivjcos(ef — 9;)

 Busi: arbitrary siso transfer function:
w; = p;(s) AP; (SGs or IBRs)

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019
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Decentralized Stability Analysis in Power Grids [TCNS 19]

AP o = w1 APl_tD_, - g Richard P)ates

; : ; S 1.When does this
A.Pn |:wJ interconnection is stable? %71 -

- Pn S .
Can we use network information to relax
passivity conditions?
Standard Approach: Passivity N e
« If p;(s) is strictly positive real (SPR), then the Positive Real (PR) TF

) ) ) Re[pi(s)] = 0
interconnection is stable for all networks L! [p(s)] - Re)

Strictly Positive Real TF
Re[pi(s —€)] =0
_

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019
Enrique Mallada (JHU) 8



Classical Result: Absolute Stability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Frequency Domain Stability Criteria—Part I

R. W. BROCKETT, MEMBER, IEEE AND J. L. WILLEMS
Abstract—The objective of this paper is to illustrate the limita-~ II. Tue GENERALIZED Porov THEOREM

Nyquist Diagram

gain plant 15
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[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019
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Classical Result: Absolute Stability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Frequency Domain Stability Criteria—Part I
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[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019
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Classical Result: Absolute Stability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Frequency Domain Stability Criteria—Part I

R. W. BROCKETT, MEMBER, IEEE AND J. L. WILLEMS

Abstract—The objective of this paper is to illustrate the limita- II. Tueg GENERALIZED Porov THEOREM

Nyquist Diagram
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[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019
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Scale-free Stability Analysis

Key Idea: Exploit limited network information to relax passivity condition

) . , _ Yi
Let y; be a local connectivity bound:[L]; = X jen, Lij < ~
Brockett & Willems ‘65 Pates & Mallada 2019
Assume: G(s) is stable Assume: p;(s) is stable
Define: h(s) € PR (passive) Define: h(s) € PR (passive)
1 }
Test: If h(s)(1+ k*G(s)) € SPR (strictly) Test: If h(s) gl + yi;pi(s)) € SPR, Vi, then
then system is stable forall 0 < K < k* system stable for networks [L'];; < %,Vi
gain plant A.Pll = {M]
r + e u y : Di . w
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[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019
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Outline

 Merits and trade-offs of low inertia
 Control Perspective: Lighter systems are easier to control!

e Scale-free Stability Analysis of Grids
* Generalizes passivity notions using network information

* Grid Shaping Control

* Grid-following/forming control framework for controlling future girds



Grid Shaping Control
Use model matching control to shape system response

Grid-following IBRs Grid-forming IBRs

Enrique Mallada (JHU)
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Grid-shaping with GFL IBRs [TPS21]
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[TPS 21] Jiang, Cohn, Vorobev, M. Storage-based frequency shaping control Transactions on Power Systems 2021
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Grid-shaping with GFL IBRs [TPS21]

A

w i
) :] |
Wyef " @
| P
Pref L

Yan Jiang Eliza Cohn Petr Vorobev

Tunable Performance:

1 w
as+ b

ROCOF = ~AP, Aw = ~ AP
a b

Grid Shaping

Example: Efficient Elimination of Nadir
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[TPS 21] Jiang, Cohn, Vorobev, M. Storage-based frequency shaping control Transactions on Power Systems 2021
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Grid-shaping with GFL IBRs [TPS21]

A m Yan Jiang Eliza Cohn Petr Vorobev
w o)
5 P 4 )\
_ l+ l t Tunable Performance:
) P - 1 1 1
Wref @ 50— | =3 2 RoCoF = ~AP, Aw = —~AP
Pref Py Grid Shaping
. Wyef
Example Il: Tuning RoCoF
O T T -
N
s
E 100!t _

e ———

————r—
—

)
S
S

no storage

V1D My = My min

iDroop: a = m iy
fs: a = FyAP/0.2

10 15

N
S
S

Frequency Deviation f
»
S
S

o .

W

Time t (s)

[TPS 21] Jiang, Cohn, Vorobev, M. Storage-based frequency shaping control Transactions on Power Systems 2021
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Grid Shaping Control
Use model matching control to shape system response

Grid-following IBRs Grid-forming IBRs
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Tunable Performance:
RoCoF = %AP, Aw = %AP
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Generalized Center of Inertia (COI) [cDC 19,ArXiv 23]
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* Properties of g(s):
* Representation of aggregate response
e Accuracy of approximation:

* is frequency dependent
* increases with network connectivity

* Provides excellent template for reduced
order models (via balance-truncations)

()= (Yo'

[CDC 19] Min, M. Dynamics concentration of large-scale tightly-connected networks. Conference on Decision and Control 2019
[ArXiv 23] Min, Pates, M. A frequency domain analysis of slow coherency in networked systems. arXiv:2302.08438, 2023, submitted
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GFM System-wide Grid-shaping [L¢55 20l
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[LCSS 20] Jiang, Bernstein, Vorobev, M. Grid-forming frequency shaping control for low-inertia power systems IEEE Control Systems Letters 2020
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GFM System-wide Grid-shaping [1¢55 20]
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[LCSS 20] Jiang, Bernstein, Vorobev, M. Grid-forming frequency shaping control for low-inertia power systems IEEE Control Systems Letters 2020
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Grid Shaping Control

Use model matching control to shape system response

Grid-following IBRs Grid-forming IBRs
) Ao . .
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Summary

* Merits and trade-offs of low inertia
 Control Perspective: Lighter systems are easier to control!

 Smarter controller can provide multiple benefits in Nadir, RoCoF, inter-area oscillations,
and disturbance rejection, with less effort

* Scale-free Stability Analysis of Grids
* Generalizes passivity notions using network information
 Decentralized test based on local models
e Compatible with H,,-synthesis methods

* Grid Shaping Control
* Grid-following/forming control framework for future girds
 Leverages IBRs to shape the generalized COIl response
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