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Reality Kicks In _ _ _
Angry Residents, Abrupt Stops: Waymo Vehicles Are Still

Causing Problems in Arizona
RAY STERN ' MARCH 31, 2021 @ 8:26AM

DeepMind's Losses and the Future of Artificial Intelligence

Alphabet’s DeepMind unit, conqueror of Go and other games, is losing lots of money. Continued deficits could imperil investments in Al.

Uber Gives Up on the Self-Driving Dream

The ride-hail giant invested more than $1 billion in autonomous vehicles. Now it’s selling the unit to Aurora, which makes self-driving tech.

OpenAl disbands its robotics research team

KyleWiggers  @Kyle_L Wiggers  July 16,2021 11:24 AM

Self-driving Uber car that hit and killed
woman did not recognize that pedestrians

jaywalk

The automated car lacked "the capability to classify an object as a pedestrian unless that object
was near a crosswalk," an NTSB report said.
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Core challenge: The curse of dimensionality

= Statistical: Sampling in d dimension with resolution € \
Sample complexity: |
|
|

O(e™9)

M@ M@...@ M e /

Fore=0.1and d = 100, we
0100

,
l
l
l
|

would need 1 points.

= Computational: Verifying non-negativity of polynomials

Copositive matrices:

[xZ ... x3]A[x? ...xczi]T >0

Murty&Kadabi [1987]: Testing co-positivity is NP-Hard Motzkin [1967]:
p = x*y2 4 x2y4 +1—3x2y2

Sum of Squares (SoS): is nonnegative

z(x)TQz(x) =20, z(x) eR[x], xe R%E,Q =0
Artin [1927] (Hilbert’s 17t problem):

not a sum of squares,
but (x? + y?)?p is SoS

Non-negative polynomials are sum of square of rational functions
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Question: Are we asking too much?

* Models are intrinsically valid across the entire domain

Q: Can we provide local guarantees, and progressively expand as needed?

[arXiv 22] Shen, Bichuch, M - [CDC 23] Siegelmann, Shen, Paganini, M

* Lyapunov functions and control barrier functions require strict and exhaustive
notions of invariance

Q: Can we substitute invariance with less restrictive properties?
[arXiv 22] Shen, Bichuch, M - [CDC 23] Siegelmann, Shen, Paganini, M

* Control synthesis usually aims for the best (optimal) controller

Q: Can we focus on feasibility, rather than optimality?

[TAC’23, LADC 22] Castellano, Min, Bazerque, M
[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, CDC 2022, journal preprint arXiv:2204.10372

[CDC 23] Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions, submitted CDC 2023
[LADC 22] Castellano, Min, Bazerque, M, Reinforcement Learning with Almost Sure Constraints, Learning for Dynamics and Control (L4DC) Conference, 2022
[TAC 23] Castellano Mln Bazerque, M, Learning to Act Safely with Limited Exposure and Almost Sure Certainty, IEEE TAC, 2023
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Model-free Learning of Regions of
Attractions via Recurrent Sets

Y Shen, M. Bichuch, and E Mallada, “Model-free Learning of regions of attraction via recurrent sets.” CDC 2022.
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Motivation: Estimation of regions of attraction
Having an approximation of the region of attraction allows us to

* Test the limits of controller designs
especially for those based on (possibly linear) approximations of nonlinear systems

S ..

quadcopter robot arm

* Verify safety of certain operating condition

HVAC system power grids

July 6 2023 Enrique Mallada (JHU)



Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢ (&, xp).

I Q-Limit Set Q(f):
: r € Qf) < I xo,{tn}n>o0, s.t.nli_{rgo t, =00 and lim ¢(t,,xq) =

n—oo

Types of Q-limit set

equilibrium limit cycle limit torus chaotic attractor

July 6 2023 Enrique Mallada (JHU)



Problem setup

Example Il: Limit set Q(f)

u-x phage u-x phage

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢ (&, xp).
* The w-limit set of the system: Q(f)

O N A o a4 N W

l
1 A(S) = {CIZ e RY liminf d(é(t, x), S) = O}

t— 00

Example I:  Limit set Q(f) Basin of A(Q)
” —(-01,01, 2)
(-0.1, 0.1, -14)|
20} (0.1, -0.1, -14) \ )
- ' |
/
20} o
(a) .
5 0 5 - e
X a0 X 10
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢ (&, xp).
* The w-limit set of the system: Q(f)

| A(S) = {:c e RY| lim inf d(6(t, z), S) = o} ;

R S e .

Example lll ol

T1| X2

R I o

Q(f) — {(070)7(_\/57 O)a(\/§7 O)} —2(
-4
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢ (&, xp).
* The w-limit set of the system: Q(f)

| AS) = {x e RY| lim inf d(6(t, =), S) :o}

t— 00

Example lll

T1 T2
. : 1 3
o] a1+ ga) —

Q(f) — {(07 O)v (_\/57 0)7 (\/§7 O)}
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢ (&, xp).
* The w-limit set of the system: Q(f)

| A(S) = {:c e RY| lim inf d(¢(t, ), S) :o}
I t— 00

Example lll

[i;] N [—azl +?xi{> - xJ
Q(f) = {(0,0), (=v/3,0), (V3,0)}

Asymptotically stable equilibrium at x* = (0,0)
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢ (&, xp).
* The w-limit set of the system: Q(f)

Example lll

T1 T2
. : 1 3
o] a1+ ga) —

Q(f) — {(07 O)v (_\/57 0)7 (\/§7 O)}
Unstable equilibria {(+/3,0), (—V3, 0)}
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Region of attraction of stable equilibria

| A(S) = {xo c RY| lim (¢, z0) es} 4
t—00
2 i
Assumption 1. The system x(t) = f(x(t)) has an
asymptotically stable equilibrium at x™. )
_2 i
Remark 1. It follows from Assumption 1 that the
positively invariant ROA A(x*) is an open contractible —ff4

set [Sontag, 2013], i.e., the identity map of A(x™*) to
itself is null-homotopic [Munkres, 2000].

E. Sontag. “Mathematical Control Theory: Deterministic Finite Dimensional Systems.” Springer 2013
J. R. Munkres. “Topology.” Prentice Hall 2000
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Invariant sets

Aset ] € R% is positively invariant if and only if: g € T = ¢(t,x0) € Z, Vtc R*
Any trajectory starting in the set remains in inside it

* Invariant sets guarantee stability
Lyapunov stability: solutions starting "close enough" to the equilibrium (within a distance
0) remain "close enough" forever (within a distance €) )

* Invariant sets further certify asymptotic stability via Lyapunov’s direct method
Asymptotic stability: solutions that start close enough not only remain close enough but also
eventually converge to the equilibrium.)

* Regions of attraction are invariant sets, and so are the outcome of most
approximation methods!

July 6 2023 Enrique Mallada (JHU) 10



Challenges of working with invariant set

Learning ROA A(x™) by finding an invariant set § € A(x™)

Example 1: § € A(x") is not
* & is topologically constrained connected, not invariant!
 IfSNQ(f) = {x*}, then § is connected

a2 0 2
A(x*) : s:

A not invariant trajectory: e __,

July 6 2023 Enrique Mallada (JHU) 11



Challenges of working with invariant set

Learning ROA A(x™) by finding an invariant set § € A(x™)

. . . Example 2: § € A(x™), f points
* S is topologically constrained outward on @8, not invariant
 IfSNQ(f) = {x*}, then § is connected '

 §isgeometrically constrained
* f should point inwards for x € 08

-4 —é 0 2
A(x*) : s:

A not invariant trajectory: e __,
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Challenges of working with invariant set

Learning ROA A(x™) by finding an invariant set § € A(x™)

4

 §istopologically constrained
 IfSNQ(f) = {x*}, then § is connected

 §isgeometrically constrained
* f should point inwards for x € 08 -2

| A subset of an invariant set is not | : -4
I
| necessary an invariant set | A(X) :

A not invariant trajectory: «_ ,
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Recurrent sets: Letting things go, and come back

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Property of Recurrent Sets
e R need not be connected

* R does not require f to point inwards on all R

' Recurrent sets, while not invariant,

|
|
: guarantee that solutions that start in this set, :
|
|

. [ [ ° I
 Will come back infinitely often, forever! __ . Recurrent set X:

A recurrent trajectory: <

July 6 2023 Enrique Mallada (JHU) 12



Recurrent sets: Letting things go, and come back

A set R € R%is recurrent if forany xo € Rand t > 0, 3t' > ts.t. p(t', x,) € R.

Previous two good inner approximations of A(x") are recurrent sets

July 6 2023 Enrique Mallada (JHU) 12



Recurrent sets are subsets of the region of attraction

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Theorem 1. Let R c R% be a compact set satisfying 0R N Q(f) = @.

Then: [~ ~"~"~"~"~"""TT"--TTo TS mmmomsoes K
RNQ(f)=0

RCARNAS)) |

R is recurrent «=»

not recurrent
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Recurrent sets are subsets of the region of attraction

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Theorem 1. Let R c R% be a compact set satisfying 0R N Q(f) = @.

Then: [~~~ ~~"~"~"~""~"--------------—- F

: . RNQf) =0 :
: R is recurrent <=y R c AR N Qf)) !

Proof: [Sketch]
(=)
* Ifxy € R, the solution ¢(t, xy) visits R infinitely often, forever.

* We can build a sequence {x(t,;) }n=o € R with lir+n t, =+
n—>+1+00

* Bolzano-Weierstrass = convergent subsequence x(t,,) > X € Q(f) NR # @
« IRNQ(f) =0 + Rrecurrent = ¢(t,xy) leaves R finitely many times

(&) Trivial.

July 6 2023 Enrique Mallada (JHU) 13



Recurrent sets are subsets of the region of attraction

A set R € R% is recurrent if forany xo € Randt > 0, 3t’ > ts.t. p(t', xy) € R.

Assumption 2. The w-limit set Q(f) is composed by hyperbolic equilibrium
points, with only one of them, say x*, being asymptotically stable.

Corollary 2. Let Assumptions 1 and 2 hold, )

and R c R% be a compact set satisfying 27
ORNQ(f) =0 and RN Q(f) = {x*} .

Then:

Fe -~~~ - - m s 1 -2

. Risrecurrent =% R cC A(x™) i

| o o o e o o e o e e e e e e e e = 4
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Recurrent sets are subsets of the region of attraction

peneens ?
Aset R € R%is recurrent if forany x, € Rand t > 0:3t’i> t s.t. p(t', x,) € R.
4 ------- I-'
Corollary 2. Let Assumptions 1 and 2 hold, \
and R c R% be a compact set satisfying 27
ORNQ(f) =B and RN Q(f) = {x*} . |
Then: A\
e = = e e e e e e === - - 1 -2t
' Risrecurrent = R c A(x*) |
| o o e e e e e e e e | | —
2 -2 0 2 4

Idea: Use recurrence as a mechanism for finding inner approximations of A (x™)

Potential Issues:
 We do not know how long it takes to come back!
* We need to adapt results to trajectory samples

July 6 2023 Enrique Mallada (JHU)
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T-recurrent sets Time elapsed < T

A set R is T-recurrent if forany x, € Randt > 0,3 t'€ [t,t + 1] such
that p(t', xy) ER

Theorem 2. Under Assumption 1, any compact set R satisfying:

x*+Bs S R S Ax*)\{0A(x") +int Bs}

c(6)—-c(5) T-recurrent set R:

is z-recurrent for t = T(6) = )
trajectory: < "

__________
-
-
-
-
-
-
-

A(X) :
R:
trajectory: ©....»

July 6 2023 Enrique Mallada (JHU) 14



Recurrent sets are subsets of the region of attraction

Corollary 2. Let Assumptions 1 and 2 hold, ) \
and R c R? be a compact set satisfying 27
ORNQ(f) =B and RN Q(f) = {x*} . |
Then: \
F———————— ———— — ——————— - — = 1 ol
: R is recurrent = R c A(x") i
________________ g 2 0 2 4

Idea: Use recurrence as a mechanism for finding inner approximations of A (x™)

Potential Issues:
* We do not know how long it takes to come back! V
* We need to adapt results to trajectory samples

July 6 2023 Enrique Mallada (JHU)
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Learning recurrent sets from k-length trajectory samples

steps elapsed < k
* Consider finite length trajectories: (time e{gl?ied < kty)

Xy, = p(ntg, xp), xo € R4 n €N,
where 7, > 0 is the sampling period.

« AsetR € R%is k-recurrent if whenever x, € R,
thenan e {l, .., k}st.x, ER

k-recurrent set R:

Sufficiency:

trajectory: e .

R is T-recurrent

R is k-recurrent |==p =

R is compact
with T = ktg =

IRNQAf) =0

R c A(x")

(Corollary 2, under Assumption 2)
Necessity:

Theorem 3. Under Assumption 1, any compact set R satisfying:
Bs+x* SRS AMN")\{0A(x™) +int Bs}
is k-recurrent for any k > k := 7(8) /.

July 6 2023 Enrique Mallada (JHU) 16



Recurrent sets are subsets of the region of attraction

Corollary 2. Let Assumptions 1 and 2 hold, ) \
and R c R? be a compact set satisfying 27
ORNQ(f) =B and RN Q(f) = {x*} . |
Then: \
F———————— ———— — ——————— - — = 1 ol
: R is recurrent = R c A(x") i
________________ g 2 0 2 4

Idea: Use recurrence as a mechanism for finding inner approximations of A (x™)

Potential Issues:
* We do not know how long it takes to come back! V
* We need to adapt results to trajectory samples V
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Sphere approximations of RoA

Algorithm: Given k and € > 0:

At each iteration t
« Sample trajectories of length k from the sphere S, until recurrence is violated (counter-example)

| A(x™):

So: [

July 6 2023 Enrique Mallada (JHU) 18



Sphere approximations of RoA

Algorithm: Given k and € > 0:

At each iteration t
« Sample trajectories of length k from the sphere S, until recurrence is violated (counter-example)

t=20

| A(x™):
So: [

o(t,p): &

pP3: counter example
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Sphere approximations of RoA

Algorithm: Given k and € > 0:
At each iteration t
« Sample trajectories of length k from the sphere S, until recurrence is violated (counter-example)

* Update sphere Stﬂ to exclude counter example point p j
t=0

pP3: counter example

July 6 2023 Enrique Mallada (JHU) 18



Sphere approximations of RoA

Algorithm: Given k and € > 0:
At each iteration t
« Sample trajectories of length k from the sphere S, until recurrence is violated (counter-example)

 Update sphere Stﬂ to exclude counter example point p;, and start again
t=1

| A(x"):

Sy -

pP3: counter example

July 6 2023 Enrique Mallada (JHU) 18



Algorithm Result - Sphere Approximations

“HE - Complement of ROA i
B ——ROA approximation |
i * Equilibrium ¥

July 6 2023 Enrique Mallada (JHU)
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Multi-center approximation

* Consider h € N™ center points x, indexed by q € {1, ..., h}.
* Let the first center pointx; = x* =0
* Additional center point x,, ..., x5 can be designed chosen uniformly.

July 6 2023 Enrique Mallada (JHU)
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Multi-center approximation

e Consider h € N* center points X4 indexed by q € {1, ..., h}.
* Let the first center pointx; = x* =0
* Additional center point x,, ..., x5 can be designed chosen uniformly.

* Respectively define approximations centered at each x,,
S8 = xll|lx — x|, < b5

July 6 2023 Enrique Mallada (JHU) 20



Multi-center approximation

e Consider h € N* center points X4 indexed by q € {1, ..., h}.
* Let the first center point x; = x*
* Additional center point x,, ..., x5 can be designed chosen uniformly.

* Respectively define approximations centered at each x,,
S8 = xll|lx — x|, < b5

* Multi-center approximation given by St =UZ=1 S{’
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Multi-center approximation

Consider h € N center points x, indexed by q € {1, ..., h}.
* Let the first center pointx; = x* =0
* Additional center point x,, ..., x5 can be designed chosen uniformly.

Respectively define approximations centered at each x,
q ._ )
+ 80 = x|« _qulz < by}

Multi-center approximation given by S, :UZ=1 Sf

If p;; is a counter-example w.r.t S

multi

* We shrink every Sq(l) satisfying p;; € Sq(l)

A (i+1)

* For the rest approximations, we simply let §, ®

=38,

July 6 2023 Enrique Mallada (JHU) 20



Numerical illustrations — Multi-center approximation

July 6 2023

Enrique Mallada (JHU)

i - Complement of ROA
y|——ROA approximation :

50 sphere approximation
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Transient Stability Analysis

* Synchronous machine connected to infinite bus QW)

O
i
ah
®

R+ jX R+jX

Ve ~ (va,v,) —NW—— " VW— |V~ (Vi)
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Transient Stability Analysis

 Synchronous machine connected to infinite bus AR+ IX)

2

* t1 lower line is short-circuited @

»
G
(®)

R+jX R+jX

Va ~ (vd,vq) %% Voo ~ (Vs ws)

I\H
MH
I
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Transient Stability Analysis

* Synchronous machine connected to infinite bus

2R+ jX)

* t1 lower line is short-circuited @
* t, faultis cleared

July 6 2023 Enrique Mallada (JHU)
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Transient Stability Analysis

. « o . 2(R+3X
* Synchronous machine connected to infinite bus W)
* t1 lower line is short-circuited @ JE: Neo @
: A : , A
* t, faultis cleared R+jX o R+jX
Ve ~ (va, vg) —INN——— NN Voo ~ (Va,wa)
d—5 =W —w = =
dt °
d X — 1
2Hd—L: = P, — (vaiq + vgiq + eif + 7“2'62]) g = 7 +Zl;q g — T TVS sin(6)
de’ e
do o = € — (Ta — zy)ia + Efa T b T
dEdt vy = Rig + Xig + Vs cos(d)
fd _ _ (2 o
Ta dt = Efd+Ka(Vref ‘/t) ‘/; — ,UCQi_i_,Ug
P,
ng— = =P+ Prey + Kg(wrey —w)
dt o / 1L =067 wa=238 u,=0338 z, =1.21
. X wg)Vesin(9) — (B 4 1) (Vs cos(0) — ) H—3 r=0002 ws=uw;=1 R=0.01
1 (R+7)2 4+ (X +2) (X + x,) Xe=1.085 V=1 T, = Ki—70
Viep=1 T,=04 K,=05 Pros =0.7

July 6 2023
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Transient Stability Analysis

* Synchronous machine connected to infinite bus 2 g

* t1 lower line is short-circuited @
* t, fault is cleared

G Noo -
1 1

R+jX

R+3jX

VG’ o (’Ud,’Uq) VOO o (V87w8)

Multi-center in green: 7o = 1, k = 40, 1.5K points

-4 -10

M. Tacchi et al Power system transient stability analysis using SoS programming, Power System Computation Conference (PSCC) 2018
Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, Control and Decision Conference (CDC) 2022
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Recurrently Non-Increasing Lyapunov Functions

R. Siegelmann, Y. Shen, F. Paganini, and E. Mallada, “A recurrence-based direct method for stability analysis and
GPU-based verification of non-monotonic Lyapunov functions”, submitted CDC 2023
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Lyapunov’s Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

V(x)

Theorem [Lyapunov ‘1892]. Given V: R —
Rsq, with V(x) > 0,Vx € R\{x*}, then:
« V <0 - x*stable

e V <0 - x*as. stable

—_——

W

|: oV ]
ox

Challenge: Couples shape of I/ and vector field f

* Towards decoupling the V' — f geometry
* Controlling regions where V > 0 [Karalfyllis ‘09, Liu et al ‘20]
* Higher order conditions: g(V(q), ..,V,V) < 0 [Butz ‘69, Gunderson '71, Ahmadi 06, Meigoli ‘12]

* Discretization approach: V(x(T)) < V(x(0)) [Coron et al ‘94, Aeyels et. al ‘98, Karafyllis ‘12]

Karafyllis, Kravaris, Kalogerakis. Relaxed Lyapunov criteria for robust global stabilisation of non-linear systems. International Journal of Control, 2009

Liu, Liberzon, Zharnitsky. Almost Lyapunov functions for nonlinear systems. Automatica, 2020

A Butz. Higher order derivatives of Lyapunov functions. IEEE Transactions on automatic control, 1969

Gunderson. A comparison lemma for higher order trajectory derivatives. Proceedings of the American Mathematical Society, 1971

Ahmadi. Non-monotonic Lyapunov functions for stability of nonlinear and switched systems: theory and computation, 2008

Meigoli, Nikravesh. Stability analysis of nonlinear systems using higher order derivatives of Lyapunov function candidates. Systems & Control Letters, 2012

Coron, Lionel Rosier. A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Syst., Estimation, Control, 1994

Aeyels, Peuteman. A new asymptotic stability criterion for nonlinear time-variant differential equations. IEEE Transactions on automatic control, 1998

Karafyllis. Can we prove stability by using a positive definite function with non sign-definite derivative? IMA Journal of Mathematical Control and Information, 2012
Enrique Mallada (JHU)
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Lyapunov’s Direct Method

Key idea: Make sub-level sets invariant to trap trajectories

Theorem [Lyapunov ‘1892]. Given V: R* — ———
Rso, with V(x) > 0,Vx € R*\{x*}, then: : -
e V<0 - x*stable < = :." 5]
e V <0 - x*as. stable - )

Challenge: Couples shape of I/ and vector field f

* Towards decoupling the V' — f geometry
« Controlling regions where V > 0 [Karalfyllis ‘09, Liu et al ‘20]
* Higher order conditions: g(V(q), .V, V) < 0 [Butz ‘69, Gunderson '71, Ahmadi ‘06, Meigoli ‘12]
* Discretization approach: V(x(T)) < V(x(0)) [Coron et al ‘94, Aeyels et. al ‘98, Karafyllis ‘12]

Question: Can we provide stability conditions based on recurrence?

July 6 2023 Enrique Mallada (JHU) 24



Recurrently Decreasing Lyapunov Functions

A continuously differentiable function V: R¢ — R, is a recurrently non-increasing
Lyapunov function over intervals of length T if

OV (z) == min V(g(t,x)) ~ V(z) <0 VoeR?

te(0,7]
Preliminaries:

* Sub-level sets {V(x) < c} are T-recurrent sets.

* When f is globally L-Lipschitz, one can trap
trajectories.

Fre™

F=r;ggg<llf(x)ll
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Recurrently Non-Increasing Lyapunov Functions

A continuously differentiable function V: R¢ — R, is a recurrently non-increasing
Lyapunov function over intervals of length T if

LYV (z) == min V(g(t,2)) ~V(z) <0 VYzeR? ®
te(0,7]
Theorem [CDC 23*]: Let V: R? — R be a
recurrently non-increasing Lyapunov function

over intervals of length .
* Then when fis L-Lipschitz, the equilibrium x~*
is stable.

* Further, if the inequality is strict, then x™ is

asymptotically stable!

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions,

submitted CDC 2023
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Exponential Stability Analysis

The function V: R% — R, is a-exponentially recurrently non-increasing Lyapunov
function over intervals of length T if

LYV (2) = min eV (p(t,z)) — Vi(z) <0 Vo e R
’ te (0,7

Theorem [CDC 23*]: Let V: R? — R.q satisfy min
a1||x — x| < V(x) < a2||x — x*]
Then, if V is a-exponentially recurrently non-

increasing Lyapunov function over intervals of
length 7, then x™ is exponentially stable. | 1. P B

V(gjl) ........... tér(l(]jri_ @O‘tV(qb(t’ng))

Siegelmann, Shen, Paganini, M, A recurrence-based direct method for stability analysis and GPU-based verification of non-monotonic Lyapunov functions,

*submitted CDC 2023
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Verification of Exponential Stability

Proposition [CDC 23*]: Let V: R? — R, satisfy a1||
and 0 < u < 1. Then, whenever

min e“tV(qb(x t)) < ,u( 1) V(x)

te(0,7]
if 3k, p > 0s.t. p < gk, 1, @y, ay), forally with ||y — x|| < r = aﬁV(x)
2

trer%(l)n e V(p(y, 1) < V()

<V(x) < a2||

— -
- -~
- ~~

~
~ -
~—ao -
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GPU-based Algorithm

* Basic Algorithm:
 Consider V(x) = ||x — x™||w
* Build a grid of hypercubes surrounding x

 Test the center point and find k s.t. the
verified radiusisr > £ /2

* If one hypercube is not verified, split in
34 parts

* Repeat testing of new points

B split
. ‘
_ . .} ¢/3

July 6 2023 Enrique Mallada (JHU)
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GPU-based Algorithm

* Basic Algorithm: . 5 . .
 Consider V(x) = ||x — x™||w

* Build a grid of hypercubes surrounding x*

 Test the center point and find k s.t. the
verified radiusisr = £/2

* If one hypercube is not verified, split in
34 parts y ¢

* Repeat testing of new points
* Exponentially expand to the following

layer * *
* Repeat testing in new layer
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GPU-based Algorithm

* Basic Algorithm:
e Consider V(x) = ||x — x*||

* Build a grid of hypercubes surrounding x*

 Test the center point and find k s.t. the
verified radiusisr = £/2

* If one hypercube is not verified, split in
34 parts

* Repeat testing of new points

* Exponentially expand to the following
layer
* Repeat testing in new layer
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Numerical lllustration X2

Consider the 2-d non-linear system: X = [ 01 21] x + B |x1x; L 8
S 2 T 15

with B;; ~ N(0,02) L X2 y 0.01

o=0.2

Phase Portrait

100 .———-——‘—~ T —— “\—QQ }\ Q \ Q Q 3\ 1004 @ 027 \\\\\\\\\\\\\\\
. - B A ™ J iy . B T ey
S —a o N R I MRS TR
0.75 |t —— > : 0751 ® 0.03 ) ' N
L~ =3 > NN OO ; \
- “~ 0.01 A
Wl A SR 3 R
- —— — q : NN
0-25 /‘/ / P 1 —— = \‘:\ \\n n \X \‘ 0'25_ ’ f \ \
7 (/ P i AY by X
B \
> 0.00 .I [ .///ﬁ 0.00 - : : v
TR \\\\\\ P -
~0.25 LA\ A\ o ~0254 N \ i i
\\ ! \\ \\\ . 801 \ \ S
_0.50 \ \\\\\‘\ \ \\\\ ""0.50- Q Q -
PN R >
-0.75 ":}\\\\ = . -0.75 Q‘Q\ ' o~ R
\\\\\\\\\Nsﬂ-w—«—
-1.00 \: < \: S \ " - -1oo-\\\\\\\\\\\\\\\\-‘“‘_h
. \ \\\ . . T T T T
-1.00 -0.75 -0.50 -0.2! -1.00 -0.75 -0.50 -0.25 0.00 025 050 0.75 1.00

0_
150 175 2.00 225 250 275 300 325 350
Time per Iteration
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Numerical lllustration L

Consider the 2-d non-linear system: X = [ 0 _21] x + B |[X1X5
with Bl] ~ N(O,O’Z) L X2

o=0.5

Phase Portrait
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Conclusions and Future work

 Takeaways
* Proposed a relaxed notion of invariance known as recurrence.
* Provide necessary and sufficient conditions for a recurrent set to be an inner
approximation of the ROA.
* Generalized Lyapunov Theory for recurrently decreasing functions using recurrent sets
* QOur algorithms are parallelizable via GPUs and progressive/sequential.

* Ongoing work
* Recurrent sets: Sample complexity bounds, smart choice of multi-points, control recurrent

sets, GPU implementation
* Lyapunov functions: Generalize other Lyapunov notions, Control Lyapunov Functions,

Barrier Functions, Control Barrier Functions, etc.



Thanks!
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