Grid Shaping Control for High-IBR Power Systems

Enrique Mallada, Johns Hopkins

Panel on Future electricity systems: How to handle millions of power electronic-based devices and other emerging technologies
Acknowledgements

Students

Yan Jiang
Hancheng Min
Eliza Cohn

Collaborators

Petr Vorobev
Richard Pates
Fernando Paganini

Dominic Groß
Bala K. Poolla
Yashen Lin
Andrey Bernstein
The Future Grid

Present grid
- dispatchable generation
- high inertial response
- strong voltage support
- well known physics

Future
- variable and distributed generation
- limited inertia levels
- weak voltage support
- proprietary control laws (black box)

The Future Grid

Selected challenges
- increased system **uncertainty**
- **sensitivity** to disturbances
- new forms of **instabilities**, induced by inverter-based resources
- need to compensate for the limited number of SGs remaining

Research questions:
- How should we control a grid with limited inertial/voltage support?
- Should we try to mimic SGs response? Or find new and more efficient control paradigms, suitable for IBRs?

Outline

• Merits and trade-offs of low inertia
 • Control Perspective: Lighter systems are easier to control!

• Analysis of IBR-rich Coherent Networks
 • Generalized Center of Inertia captures IBR dynamics

• Grid Shaping Control
 • Grid-following/forming control framework for future girds
Merits and Trade-offs of Inertia

\[
\ddot{\theta} = -\frac{d}{m} \dot{\theta} - g \sin \theta + \frac{f}{m}
\]
Merits and Trade-offs of Inertia

\[\ddot{\theta} = -\frac{d}{m} \dot{\theta} - g \sin \theta + \frac{f}{m} \]

Pros: Provides natural disturbance rejection

Cons: Hard to regain steady-state
Merits and Trade-offs of Low Inertia

\[\ddot{\theta} = -\frac{d}{m} \dot{\theta} - g \sin \theta + \frac{f}{m} \]

Cons: Susceptible to disturbances

Pros: Regains steady-state faster

What happens when one adds control?
Control of Low Inertia Pendulum

Virtual Mass Control: \[m\ddot{\theta} = -d\dot{\theta} - mg\sin\theta + f - \nu\dot{\theta} \]

Pros:
Provides disturbance rejection

Cons:
Hard to regain steady-state + excessive control effort
Control of Low Inertia Pendulum

Dynamic Droop:

\[m\ddot{\theta} = -d\dot{\theta} - mg \sin \theta + f + x \]
\[\tau' \dot{x} = -x - (r_1^{-1} \dot{\theta} + \tau' \nu' \ddot{\theta}) \]

Dynamic Droop Control in Low-Inertia Power Systems

Yan Jiang, Richard Pates, and Enrique Mallada, Senior Member, IEEE

Dynamic Droop Benefits

- Overshoot Elimination in Nadir
- Noise Attenuation
- Disturbance Rejection
- Reduce Inter-area Oscillations

Outline

• Merits and trade-offs of low inertia
 • Control Perspective: Lighter systems are easier to control!

• Analysis of IBR-rich Coherent Networks
 • Generalized Center of Inertia captures IBR dynamics

• Grid Shaping Control
 • Grid-following/forming control framework for future grids
Coherence in Power Systems

Studied since the 70s
• Podmore, Price, Chow, Kokotovic, Verghese, Pai, Schwepppe,…

Enables aggregation/model reduction
• Speed up transient stability analysis

Many important questions
• How to identify coherent modes?
• How to accurately reduce them?
• What is the cause?

Many approaches
• Timescale separations (Chow, Kokotovic,)
• Krylov subspaces (Chaniotis, Pai ’01)
• Balanced truncation (Liu et al ‘09)
• Selective Modal Analysis (Perez-Arriaga, Verghese, Schwepppe ’82)

Question: What is the role of IBRs in determining the coherent response?
Coherence in Power Systems

System response: Is affected by SG dynamics, network, disturbances,...
Problem Setup:

- Linearized power flows L_{ij}
- Bus i: arbitrary siso tf:
 \[\omega_i = g_i(s) \Delta P_i \text{ (SGs or IBRs)} \]
1. Coherence can be understood as a low rank property the closed-loop transfer matrix

2. It emerges as the effective algebraic connectivity $\frac{1}{s_0} \lambda_2$ increases

3. The coherent dynamics is given by the harmonic sum of bus dynamics

$\hat{g}(s) = \left(\sum_{i=1}^{n} g_i^{-1}(s) \right)^{-1}$

1. When does this network exhibit coherence?

2. What is the exact coherent response of this network?

[CDC 19] Min, M. Dynamics concentration of large-scale tightly-connected networks. CDC 2019

Generalized Center of Inertia [CDC 19, ArXiv 23]

\[
\hat{g}(s) = \left(\sum_{i=1}^{n} g_i^{-1}(s) \right)^{-1}
\]

Coherent Dynamics: \(\hat{g}(s) \)
- Representation of aggregate response
- Accuracy of approximation:
 - is frequency dependent
 - increases with network connectivity
- Provides excellent template for reduced order models (via balance-truncations)
- More details [LCSS 20]

[CDC 19] Min, M. Dynamics concentration of large-scale tightly-connected networks. CDC 2019
[LCSS 20] Min, Paganini, M. Accurate reduced-order models for heterogeneous coherent generators. IEEE LCSS 2020
Weakly-Connected Coherent Networks \[\text{[L4DC 23]}\]

\[\Delta P \rightarrow g_1 \rightarrow \ldots \rightarrow g_i \rightarrow \ldots \rightarrow g_n \rightarrow \omega \]

\[\frac{1}{s}L\]

[Min, M. Learning coherent clusters in weakly-connected network systems. L4DC 2023]
Weakly-Connected Coherent Networks [L4DC 23]

Three coherent groups:
- High intra-group connectivity
- Low inter-group connectivity

Min, M. Learning coherent clusters in weakly-connected network systems. L4DC 2023
Approximate the network by a reduced network of three aggregate nodes

We need to:

- Identify the coherent groups
- Find the right interconnection for the reduced network

Min, M. Learning coherent clusters in weakly-connected network systems. L4DC 2023
Weakly-Connected Coherent Networks \[\text{[L4DC 23]}\]

- Spectral clustering on graph Laplacian identifies coherent groups
- Spectral embedding refinement finds the interconnection
- Structure-preserving model reduction

\[\Delta P \]
\[\omega \]
\[\hat{\omega}_1\]
\[\hat{\omega}_2\]
\[\hat{\omega}_3\]

\[\hat{\omega}_1 \hat{\omega}_2 \hat{\omega}_3 \]

\[\hat{\Delta P}_1 \hat{\Delta P}_2 \hat{\Delta P}_3 \]

\[\hat{g}_1 \hat{g}_2 \hat{g}_3 \]

\[\frac{1}{s} L \]

\[\frac{1}{s} L_k \]

\[\{\mathcal{I}_i\}_{i=1}^k \]

\[\min_S \quad \| V_k - P_{\mathcal{I}_i}^k S \|_F^2 \]

\[\text{s.t.} \quad S e_1 = 1_k \]
\[S^T \text{diag}\{\mathcal{I}_i\}_{i=1}^k S = I_k . \]
\[L_k = (S^{-1})^T \Lambda_k S^{-1} \]

\[\Lambda_k: \text{bottom } k \text{ eigenvalues} \]
\[V_k: \text{bottom } k \text{ eigenvectors} \]

Min, M. Learning coherent clusters in weakly-connected network systems. \textbf{L4DC 2023}
Outline

• Merits and trade-offs of low inertia
 • Control Perspective: Lighter systems are easier to control!

• Analysis of IBR-rich Coherent Networks
 • Generalized Center of Inertia captures IBR dynamics

• Grid Shaping Control
 • Grid-following/forming control framework for future grids
Grid Shaping Control

Use model matching control to shape SGs response

Grid-following IBRs Grid-forming IBRs
Grid-shaping with GFL IBRs [TPS 21]

Tunable Performance:

\[
\text{RoCoF} = \frac{1}{a} \Delta P, \quad \Delta \omega = \frac{1}{b} \Delta P
\]

[TPS 21] Jiang, Cohn, Vorobev, M. Storage-based frequency shaping control TPS 2021
Grid-shaping with GFL IBRs [TPS 21]

\[\frac{1}{\alpha s + b} \]

\[
\omega = \frac{1}{a} \Delta P, \quad \omega = \frac{1}{b} \Delta P
\]

Tunable Performance:

\[
\text{RoCoF} = \frac{1}{a} \Delta P, \quad \Delta \omega = \frac{1}{b} \Delta P
\]

[TPS 21] Jiang, Cohn, Vorobev, M. Storage-based frequency shaping control TPS 2021
Grid-shaping with GFL IBRs

\[P_L = \frac{1}{as + b} \]

Tunable Performance:

\[\text{RoCoF} = \frac{1}{a} \Delta P, \quad \Delta \omega = \frac{1}{b} \Delta P \]

[TPS 21] Jiang, Cohn, Vorobev, M. Storage-based frequency shaping control TPS 2021
Grid Shaping Control

Use model matching control to shape SGs response

Grid-following IBRs

Grid-forming IBRs

Tunable Performance:

\[\text{RoCoF} = \frac{1}{a} \Delta P, \quad \Delta \omega = \frac{1}{b} \Delta P \]
Grid-shaping with GFM IBRs [LCSS 20]

\[\sum_i \Delta P_i \rightarrow \left(\sum_{i \in \text{SG}} g_i^{-1}(s) + \sum_{i \in \text{IBR}} g_i^{-1}(s) \right)^{-1} \rightarrow \omega_{\text{COI}} \]

\[\sum_i \Delta P_i \rightarrow \frac{1}{as + b} \rightarrow \omega_{\text{COI}} \]

Tunable Performance: RoCoF = \(\frac{1}{a} \Delta P \), \(\Delta \omega = \frac{1}{b} \Delta P \)

Grid Shaping Control

Use model matching control to shape SGs response

Grid-following IBRs

Grid-forming IBRs

Tunable Performance: RoCoF = \frac{1}{a} \Delta P, \Delta \omega = \frac{1}{b} \Delta P
Summary

• Merits and trade-offs of low inertia
 • Control Perspective: Lighter systems are easier to control!

• Analysis of IBR-rich Coherent Networks
 • Generalized Center of Inertia captures IBR dynamics

• Grid Shaping Control
 • Grid-following/forming control framework for future grids
Thanks!