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variable and distributed generation
limited inertia levels

weak voltage support
proprietary control laws (black box)

[1] Lin et al. Research roadmap on grid-forming inverters. Technical report, National Renewable Energy Lab.(NREL), Golden CO, 2020
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Selected challenges

* increased system uncertainty

e sensitivity to disturbances

 new forms of instabilities, induced by inverter-
based resources

* need to compensate for the limited number of
SGs remaining

Research questions:

 How should we control a grid with limited
inertial/voltage support?

e Should we try to mimic SGs response? Or find
new and more efficient control paradigms,
suitable for IBRs?

[1] Lin et al. Research roadmap on grid-forming inverters. Technical report, National Renewable Energy Lab.(NREL), Golden CO, 2020
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 Merits and trade-offs of low inertia
 Control Perspective: Lighter systems are easier to control!

* Analysis of IBR-rich Coherent Networks
 Generalized Center of Inertia captures IBR dynamics

* Grid Shaping Control

e Grid-following/forming control framework for future girds
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Virtual Mass Control: m@ = —dé’ —mgsinf + f — Vé

We can do better.... 20
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Provides disturbance rejection Hard to regain steady-state + excessive control effort
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Dynamic Droop: mf = —df — mgsinf + f + z

@FES

Powe&E ergy Society®

< IEEE

h;

10 A

la o (1] 1.0 ,
T = L (T"“ 9 —|_ TV 9) Yan Jiang Richard Pates

IEEE

3518 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 8, AUGUST 2021\ CSS
Dynamic Droop Control in Low-Inertia
Power Systems
Yan Jiang @, Richard Pates @, and Enrique Mallada ©, Senior Member, IEEE
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Dynamic Droop Benefits

Overshoot Elimination in Nadir *

Noise Attenuation

Disturbance Rejection

Reduce Inter-area Oscillations

[TAC 21] Jiang, Pates, M, Dynamic droop control in low inertia power systems, |IEEE Transactions on Automatic Control, 2021
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 Merits and trade-offs of low inertia
 Control Perspective: Lighter systems are easier to control!

* Analysis of IBR-rich Coherent Networks
 Generalized Center of Inertia captures IBR dynamics

* Grid Shaping Control

e Grid-following/forming control framework for future girds
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Coherence in Power Systems

St“diEd Since the 7OS Power Electronics and Power Systems

* Podmore, Price, Chow, Kokotovic, Verghese, Pai,
Schweppe,...

Enables aggregation/model reduction
* Speed up transient stability analysis

Many important questions Power System
* How to identify coherent modes? Coherency and

* How to accurately reduce them?
* What is the cause?

Joe H. Chow Editor

Model Reduction

Many approaches
* Timescale separations (Chow, Kokotovic,)
* Krylov subspaces (Chaniotis, Pai ‘01)
* Balanced truncation (Liu et al ‘09)

* Selective Modal Analysis (Perez-Arriaga,
Verghese, Schweppe ‘82) &) Springer

Question: What is the role of IBRs in determining the coherent response?
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Analysis of Coherent Dynamics [€PC 19,ArXiv 23]

Problem Setup:
*  Linearized power flows L;;

e Busi: arbitrary siso tf:
w; = g;(s) AP; (SGs or IBRs)

[CDC 19] Min, M. Dynamics concentration of large-scale tightly-connected networks. CDC 2019

[ArXiv 23] Min, Pates, M. A frequency domain analysis of slow coherency in networked systems. arXiv:2302.08438, 2023, submitted
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A

- 71 9(s) g

i " 1.When does this network
' exhibit coherence?

|~

2.What is the exact coherent
response of this network?

1. Coherence can be understood as a low rank property the closed-
loop transfer matrix o 1

. . .. |1 , ~ _
2. It emerges as the effective algebraic connectivity |S— AZ| increases g(S) — E g,
0

3. The coherent dynamics is given by the harmonic sum of bus
dynamics

[CDC 19] Min, M. Dynamics concentration of large-scale tightly-connected networks. CDC 2019
[ArXiv 23] Min, Pates, M. A frequency domain analysis of slow coherency in networked systems. arXiv:2302.08438, 2023, submitted
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Generalized Center of Inertia [€PC 19,ArXiv 23]
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— — Coherent Dynamics

Coherent Dynamics: g(s)
* Representation of aggregate response
e Accuracy of approximation:

* is frequency dependent

o

Frequency (mH2z)
R
8

* increases with network connectivity
* Provides excellent template for reduced

order models (via balance-truncations)

0 10 .20 30 40 o ilc [LCSS 20]
Tirhe (s) More details

|
N
o
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-600

[CDC 19] Min, M. Dynamics concentration of large-scale tightly-connected networks. CDC 2019
[ArXiv 23] Min, Pates, M. A frequency domain analysis of slow coherency in networked systems. arXiv:2302.08438, 2023, submitted
[LCSS 20] Min, Paganini, M. Accurate reduced-order models for heterogeneous coherent generators. IEEE LCSS 2020
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[LADC 23] Min, M. Learning coherent clusters in weakly-connected network systems. L4DC 2023
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Weakly-Connected Coherent Networks [14PC ZN
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Three coherent groups:

* High intra-group connectivity
* Low inter-group connectivity

[LADC 23] Min, M. Learning coherent clusters in weakly-connected network systems. L4DC 2023
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* Identify the coherent groups
* Find the right interconnection for the
reduced network

[LADC 23] Min, M. Learning coherent clusters in weakly-connected network systems. L4DC 2023
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[LADC 23] Min, M. Learning coherent clusters in weakly-connected network systems. L4DC 2023
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Use model matching control to shape SGs response

Grid-following IBRs Grid-forming IBRs
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[TPS 21] Jiang, Cohn, Vorobev, M. Storage-based frequency shaping control TPS 2021
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Use model matching control to shape SGs response

Grid-following IBRs Grid-forming IBRs
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Tunable Performance:
ROCOF = %AP, Aw = %AP
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Grid-shaping with GFM IBRs [LCSS 20] \
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Tunable Performance: RoCoF = %AP, Aw = %AP

[LCSS 21] Jiang, Bernstein, Vorobev, M. Grid-forming frequency shaping control for low-inertia power systems IEEE LCSS 2020
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Use model matching control to shape SGs response

Grid-following IBRs Grid-forming IBRs
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Summary

 Merits and trade-offs of low inertia
 Control Perspective: Lighter systems are easier to control!

* Analysis of IBR-rich Coherent Networks
 Generalized Center of Inertia captures IBR dynamics

* Grid Shaping Control

e Grid-following/forming control framework for future girds
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