

Grid Shaping Control for High-IBR Power Systems

Enrique Mallada, Johns Hopkins

Panel on Future electricity systems: How to handle millions of power electronic-based devices and other emerging technologies

Acknowledgements

Students

Yan Jiang

Hancheng Min

Eliza Cohn

Collaborators

Petr Vorobev Skoltech

Richard Pates Fernando Paganini

Dominic Groß WISCONSIN UNIVERSITY OF WISCONSIN-MADISON

Bala K. Poolla

Yashen Lin

Andrey Bernstein

The Future Grid

Present grid

- dispatchable generation
- high inertial response
- strong voltage support
- well known physics

Future

- variable and distributed generation
- limited inertia levels
- weak voltage support
- proprietary control laws (black box)

The Future Grid

Future

- variable and distributed generation
- limited inertia levels
- weak voltage support
- proprietary control laws (black box)

Selected challenges

- increased system uncertainty
- sensitivity to disturbances
- new forms of instabilities, induced by inverterbased resources
- need to compensate for the limited number of SGs remaining

Research questions:

- How should we control a grid with limited inertial/voltage support?
- Should we try to mimic SGs response? Or find new and more efficient control paradigms, suitable for IBRs?

Outline

- Merits and trade-offs of low inertia
 - Control Perspective: Lighter systems are easier to control!
- Analysis of IBR-rich Coherent Networks
 - Generalized Center of Inertia captures IBR dynamics
- Grid Shaping Control
 - Grid-following/forming control framework for future girds

Merits and Trade-offs of Inertia

$$\ddot{\theta} = -\frac{d}{m}\dot{\theta} - g\sin\theta + \frac{f}{m}$$

Merits and Trade-offs of Inertia

$$\ddot{\theta} = -\frac{d}{m}\dot{\theta} - g\sin\theta + \frac{f}{m}$$

Pros: Provides natural disturbance rejection

Cons: Hard to regain steady-state

Merits and Trade-offs of Low Inertia

$$\ddot{\theta} = -\frac{d}{m}\dot{\theta} - g\sin\theta + \frac{f}{m}$$

Cons: Susceptible to disturbances

Pros: Regains steady-sate faster

Control of Low Inertia Pendulum

Virtual Mass Control: $m\ddot{\theta}=-d\dot{\theta}-mg\sin{\theta}+f-\nu\ddot{\theta}$

Pros:

Provides disturbance rejection

Cons:

Hard to regain steady-state + excessive control effort

Control of Low Inertia Pendulum

Dynamic Droop:
$$m\ddot{\theta} = -d\dot{\theta} - mg\sin\theta + f + x$$

$$\tau'\dot{x} = -x - (r_r^{-1}\dot{\theta} + \tau'\nu'\ddot{\theta})$$

Yan Jiang

Richard Pates

Outline

- Merits and trade-offs of low inertia
 - Control Perspective: Lighter systems are easier to control!
- Analysis of IBR-rich Coherent Networks
 - Generalized Center of Inertia captures IBR dynamics
- Grid Shaping Control
 - Grid-following/forming control framework for future girds

Coherence in Power Systems

Studied since the 70s

 Podmore, Price, Chow, Kokotovic, Verghese, Pai, Schweppe,...

Enables aggregation/model reduction

• Speed up transient stability analysis

Many important questions

- How to identify coherent modes?
- How to accurately reduce them?
- What is the cause?

Many approaches

- Timescale separations (Chow, Kokotovic,)
- Krylov subspaces (Chaniotis, Pai '01)
- Balanced truncation (Liu et al '09)
- Selective Modal Analysis (Perez-Arriaga, Verghese, Schweppe '82)

Question: What is the role of IBRs in determining the coherent response?

(32.7252, -114.6236) WECC Load Shedding: 610(MW)

(2011-09-08 22:38:19 UTC)

System response: Is affected by SG dynamics, network, disturbances,...

Analysis of Coherent Dynamics [CDC 19,ArXiv 23]

Hancheng Min Richard Pates

Problem Setup:

- Linearized power flows L_{ij}
- Bus i: arbitrary siso tf: $\omega_i = g_i(s) \Delta P_i$ (SGs or IBRs)

Analysis of Coherent Dynamics [CDC 19,ArXiv 23]

 $\hat{g}(s) = \left(\sum_{i=1}^{n} g_i^{-1}(s)\right)^{-1}$

Hancheng Min Richard Pates

- 1. Coherence can be understood as a **low rank** property the **closed-loop transfer matrix**
- 2. It emerges as the **effective algebraic connectivity** $\left|\frac{1}{s_0}\lambda_2\right|$ increases
- 3. The coherent dynamics is given by the **harmonic sum** of bus dynamics

Generalized Center of Inertia [CDC 19,ArXiv 23]

20 Time (s) 30

10

-600

Hancheng Min Richard Pates

Coherent Dynamics: $\widehat{g}(s)$

- Representation of aggregate response
- Accuracy of approximation:
 - is frequency dependent
 - increases with network connectivity
- Provides excellent template for reduced order models (via balance-truncations)
- More details [LCSS 20]

40

Weakly-Connected Coherent Networks [L4DC 23]

Hancheng Min

Weakly-Connected Coherent Networks [L4DC 23]

Hancheng Min

Three coherent groups:

- High intra-group connectivity
- Low inter-group connectivity

Hancheng Min

Approximate the network by a **reduced network** of three **aggregate nodes**We need to:

- Identify the coherent groups
- Find the right interconnection for the reduced network

Weakly-Connected Coherent Networks [L4DC 23]

Hancheng Min

- Spectral clustering on graph Laplacian identifies coherent groups
- Spectral embedding refinement finds the interconnection
- Structure-preserving model reduction

Outline

- Merits and trade-offs of low inertia
 - Control Perspective: Lighter systems are easier to control!
- Analysis of IBR-rich Coherent Networks
 - Generalized Center of Inertia captures IBR dynamics
- Grid Shaping Control
 - Grid-following/forming control framework for future girds

Grid Shaping Control

Use model matching control to shape SGs response

Grid-following IBRs

Grid-forming IBRs

Grid-shaping with GFL IBRs [TPS 21]

RoCoF =
$$\frac{1}{a}\Delta P$$
, $\Delta \omega = \frac{1}{b}\Delta P$

Grid-shaping with GFL IBRs [TPS 21]

RoCoF =
$$\frac{1}{a}\Delta P$$
, $\Delta \omega = \frac{1}{b}\Delta P$

Grid-shaping with GFL IBRs [TPS 21]

$$RoCoF = \frac{1}{a}\Delta P$$
, $\Delta \omega = \frac{1}{b}\Delta P$

Grid Shaping Control

Use model matching control to shape SGs response

Grid-following IBRs

Grid-forming IBRs

RoCoF =
$$\frac{1}{a}\Delta P$$
, $\Delta \omega = \frac{1}{b}\Delta P$

Grid-shaping with GFM IBRs [LCSS 20]

Grid Shaping Control

Use model matching control to shape SGs response

Grid-following IBRs

Grid-forming IBRs

Tunable Performance: RoCoF = $\frac{1}{a}\Delta P$, $\Delta\omega = \frac{1}{b}\Delta P$

Summary

- Merits and trade-offs of low inertia
 - Control Perspective: Lighter systems are easier to control!
- Analysis of IBR-rich Coherent Networks
 - Generalized Center of Inertia captures IBR dynamics
- Grid Shaping Control
 - Grid-following/forming control framework for future girds

