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Real ity Kicks In Angry Residents, Abrupt Stops: Waymo Vehicles Are Still

Causing Problems in Arizona
RAY STERN ' MARCH 31, 2021 @ 8:26AM

DeepMind's Losses and the Future of Artificial Intelligence

Alphabet’s DeepMind unit, conqueror of Go and other games, is losing lots of money. Continued deficits could imperil investments in Al.

AARIAN MARSHALL BUSINESS 12.87.2828 B84:86 PM

llher Gives lIn on the Self-Drivina Dream

Can we adapt reinforcement learning algorithms to address
= physical systems challenges?

woman did not recognize that pedestrians
jaywalk

The automated car lacked "the capability to classify an object as a pedestrian unless that object

was near a crosswalk," an NTSB report said.



Challenges of RL for Physical Systems

* Physical systems must meet multiple objectives
* Need to trade off between the different goals
« Constrained RL allows to explore the Pareto Front [1.2]
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 Failures have a qualitatively different impact
« Expectation constraints cannot meet safety requirements
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» Intro to Constrained RL
» Dissipative Saddle Flows for Bilinear Saddles

» Solving Constrained RL via D-SGDA



Constrained Reinforcement Learning

Goal: Given initial state S, ~ g, find policy n* € [l that solves:

max V. 9(r) st. VY(r)>h; Vien]

wellyg
here VO(m) = (1 - y)E ‘R, |-
where () = ( Y) T,S0~q YisoY t+1

General Approach: Lagrange relaxation

max min L (7, 1) := Vq(o)(ﬂ') + Z ,uq;(Vq(i) (m) — hy)

wellg u>0

Non-convex yet has zero duality gap! [1],[2]

[1] S Paternain, L Chamon, M Calvo-Fullana, and A Ribeiro. Constrained reinforcement learning has zero duality gap. NeurlPS 2019
[2] E. Altman. Constrained Markov decision processes. Vol. 7. CRC press 1999
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Prior Work: Algorithms for Constrained RL [1]-[8]

Use primal and/or dual methods of the form:

o )TET NV L(mk, 5 C) foyy = 3 HE T NV L7, 15 Cr)
o arg max, L(m, pg; Ck) arg ming,>o L(7g, 1; (k)

where L(m, u; () = L(m,u; {) + Q(m, u; {) is a reqularized Lagrangian

- Parametrization of Ily: Soft-max [1.4], occupancy measures [2:3], greedy.
- Horizon: Infinite y-discounting [1-4], finite H [>-7], or average 8]

* Regret: value constraint satisfaction

T—1 T—1
E|Y VO =vOm) | =0@2)  E|Y -V (m)| =0(TP), pel0,3/4)
k=0 k=1

 Policy: Iterates m, lack convergence guarantees: Instead #iy = Y-t aymy, — m* [23]

[1] D Ding, K Zhang, T Basar, and M Jovanovic. Natural policy gradient primal-dual method for constrained markov decision processes. NeurlPS 2020

[2] Y Chen, J Dong, Z Wang, A Primal-Dual Approach to Constrained Markov Decision Processes, arXiv:2101.10895, 2021

[3] Q Bai, A S Bedi, M Agarwal, A Koppel, V Aggarwal. Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Primal-Dual Approach, AAAI 2022
[4] T Xu, Y Liang, and G Lan. CRPO: A new approach for safe reinforcement learning with convergence guarantee. ICML 2021

[5] D Ding, X Wei, Z Yang, Z Wang, and M Jovanovic. Provably efficient safe exploration via primal-dual policy optimization. AISTATS 2021

[6] H Wei, X Liu, and L Ying. A provably-efficient model-free algorithm for constrained markov decision processes. arXiv:2106.01577 2021.

[7] T Liu, R Zhou, D Kalathil, P Kumar, and C Tian. "Learning policies with zero or bounded constraint violation for constrained MDPs." NeurlPS 2021

[8] M Calvo-Fullana, S Paternain, L Chamon, and A Ribeiro. State augmented C-RL: Overcoming the limitations of learning with rewards. arXiv:2102.11941 2021 8



Prior Work: Algorithms for Constrained RL [1]-[8]

Use primal and/or dual methods of the form:

_ {Wk + 0V o L(7k, 115 Cr) B {Mk — 0V W L(T, i C)
Tk+1 = ~ HE+1 =

arg max, L(m, p; (k) arg min,>o E(T‘_kmu;Ck)

where L(m, u; () = L(m,u; () + Q(m, u; {) is a regularized Lagrangian

- Parametrization of Ily: Soft-max [1.4], occupancy measures [2:3], greedy.
- Horizon: Infinite y-discounting [1-4], finite H [>-7], or average 8]

* Regret: value constraint satisfaction
T-1 T-1 .

> Vi) = Vi () > ci— Vi (mo)
k=0 k=1

* Policy: Iterates m;, lack convergence guarantees: Instead fi; = YX!-¢ aymy — n* [23]

E = O(T?) E = O(TP), p € [0,3/4)

Question: Can we achieve convergence of the policy iterates
m, = m° a.s., or is learning from rewards a fundamental limitation?

8



Towards convergent r, iterates — Good news

Good news: Non-convexity of L(m,u) is not so bad...
* There exists a convex parametrization Il that makes it convex-concave

0
max (1 —7)Ex, 55~q [Zt 0 v 1<&+)1}

st (1= 7)Er,symg |05 VR, | > iy Wi € 0]

L

« LP Formulation:[1]
max . Alrg ()

A>0 As.a

st. 3. AP > by, Vi€ [n] (11:) rlals) = D

> =P =(1=7)g (v)
* where A, = (1 —y) X0V Prs,~q(Se = s, A = a) is the occupancy measure

[1] E. Altman. Constrained Markov decision processes. Vol. 7. CRC press 1999




Towards convergent n, iterates — Bad news

Bad news: Non-stricness of L(4, u,v)
 LP Formulation:

* Outline T (0)
W 2atare

st. S ATr > hy, Vi€ [n] (ki)
>l =P Aa=1—=7)q (v)

* where A, = (1 —y) X0V Prs,~q(Se = s, Ar = a) is the occupancy measure

— dual vars

- Bilinear Lagrangian:
« Lacks strict convexity/concavity necessary for convergence of primal-dual algorithms

min max L(\, p,v) = A' M [,u]
w=>0,v A>0 (V)

10
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Warm-up: Scalar Case

» We start by looking at a Naive GDA Flow on a scalar bilinear

Lagrangian
« Min-max Problem:

minmax L(z,y) :=xy =,y € R
Ty
« Saddle-point at (x*,y*) = (0,0)

* Nailve Gradient Descent-Ascent (GDA) Flow
| |—-ViL(z,y)| |0 -1} |z
gl |+VaLl(z,y)] |1 0|y
* Energy Dissipation: .
V(z,y) =32+ 39, V(z,y)=2(-y) +yz=0

Remark: Behavior generalizes for general non-strict
convex-concave Lagrangians [l

[1] T Holding, and | Lestas. Stability and instability in saddle point dynamics—Part I." IEEE TAC 2020

[2] A Cherukuri, B Gharesifard, and J Cortes. Saddle-point dynamics: conditions for asymptotic stability of saddle points." SIAM JC&O 2017

Trajectory x(t),y(t)

[3] A Cherukuri, E Mallada, S Low, and J Cortés. The role of convexity in saddle-point dynamics: Lyapunov function and robustness." IEEE TAC 2017
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Naive GDA Flow Scalar Case

Lagrangian

Dynamics

Energy Function

Energy Dissipation

Asympt. Behavior

Naive GDA Flow

L(x,y) = xy

12



Dissipative GDA Flow Algorithm

« Given general convex-concave L(x,y), we consider

- A A P . P .

 Remarks:
« If (x*,v*) is a saddle point of L, then (x* x* y* v*) is a saddle point of L.
- [ is neither strictly convex, nor strictly concave (don’t worry)

- Dissipative GDA Flow:
» Just apply Naive GDA on L(x,%,vy,9)!

~V.L(z,y) — p(xr — ) y
T =—p(&— ) J

+VyL(z,y) — ply — 9)
—p(J — y)

T
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Dissipative GDA Flow Algorithm

- Dissipative GDA Flow:
- Just apply Naive GDA on L(z,%,v,4) = L(z,y) + BHx A BHy —g|* !

& =—-VyL(z,y) — plx — ) y=+VyL(z,y) — p(y — 9)
i =—p(&— ) 7 =—p(H —y)
- Scalar case: . =,
- ~ ~ N N SRS :
L0, 2,y,9) = xy + - (x = 2)? + 2 (y — 9)? b
@] [-p p -1 0] []
T | = 0 0 x of
Y L0 —p p| |y 4
gl L0 0 p —p] |4

13



Dissipative GDA Flow Scalar Case

Lagrangian

Dynamics

Energy Function

Energy Dissipation

Asympt. Behavior

Naive GDA Flow

L(x,y) = xy

=i

V(xy) = (% +y?)

V=0

V(t) =c

Dissipative GDA Flow

14



General Analysis of Dissipative GDA Flows

Theorem [You, M ACC 21]
Consider the minimax problem

' ax L
iy Loy

where L(x,y) is convex-concave, and the sets X and Y are convex polyhedral.
Then, for any initial feasible point (x,, Xy, vo, Vo) the Dissipative GDA Flow

=My, [-VeL(z,y) —plx — )] ¢=M0y, [+V,Liz,y) — ply — 9)]

i =—p(d —2) 7 =—p(§—y)
converges to some saddle point.

« Remarks:
« Convergence is guaranteed point-wise, to some saddle point

. .12 .12
« Proof uses LaSalle on the same dissipation property V < —p ||£|| —p ||y||
« For unconstrained bilinear problems convergence is exponential

[You, M ACC 21] P You, Pengcheng, and E Mallada. Saddle flow dynamics: Observable certificates and separable regularization, ACC 2021
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Dissipative GDA for Constrained MDPs

 LP Formulation of C-RL
max » A Ty.0)

A>0
T H
st AT > by Vi € ] S— Mrg%)nvr/l\l%cL()\ pv) =AM [v]
> oI =P )Aa = (1 =7)q

4

min max L(A, u,v) +
p>0,0,0,9 x>0, 3 (A 1:0) 2

'
-

(Il = A2 + llv = 811 = | = A=)

D-GDA Flow
0=, (I=7P) )\ —(1 v)q p(v—
i = HR+[M§ hi—> AL

A —HA[)\ i —(I=yPa)o+Y e

e’ —p(Aa—A )} Ao = =p(Ra — A)

unknowns 15




Dissipative Stochastic GDA for Constrained RL

* Oracle: At each time t sample Sy ~ q, (S, Ar) ~ &, Sip1 ~ P(- [St, Ap):
- S-GDA Update:

NS, A . . v .
v =0t + o Lie(s.40>0 g5, 4 (es, — vest+1)—(1—7)eso—p(vt—vt)] 7 o =0t — alp(0t ')
t4+1 _ - t t )‘ Athzzl t At ~At+1
I py + ' (hi—Ligs,, A,)>0} f(St ;) —p(s —f5) | i =t — o p(fih—pl)
t+1 _ t t Z? 1MzR§21+7vSt+1 Ugt t O\t ' Yt+1 t t 3\t t
>‘a - )‘a+a ]I{E(St,At)>0&At:a} S(St At) eSt_p()‘a_)‘a) ) >‘a :)‘a_& 10(>‘a_>‘a)

Theorem [Zheng, You, M '22]

Under mild assumptions, as t - o« the sequence (1%, uf, v?t) generated by S-GDA
converges to the optlmal solution to the C-RL LP Problem.

In particular, the iterates n.(als) = > Alt

- T a.s.

[Zheng, You, M 22] T Zheng P You, and E Mallada. Constrained reinforcement learning via dissipative saddle flow dynamics Asilomar 2022
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Summary and future work

Summary:

» Investigate primal-dual methods to learn saddle-points in deterministic and
stochastic settings

* Proposed a very general method for guaranteeing convergence to saddle points of
general convex-concave functions

» Application to Constrained RL problems

- Take aways:
« Dissipative-GDA guarantees convergence on a wide family of minimax problems

« When combined with stochastic approximations (D-SGDA) renders convergent policy iterates
T, = T a.s.

Current and future work:
 Finite iterate analysis for D-GDA and D-SGDA
« Extensions for learning in games and markets

17
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Learning for Safety-critical Sequential Decision Making

Requirements:

State Sti1
Reward R,
Damage D,y

High Priority -> Safety
o Limited Failures/Mistakes

o Hard Constraints/ A.S. Guarantees

Lower Priority -> Accuracy

O Optimality of the policy

Key ideas:

« Focus on almost sure feasibility, not optimality (Egerstedt
et al.,2018)

 Enhanced with logical feedback, naturally arising from
constraint violations

20



Background

State Sti1
Reward Ri,;
Damages DO,

- Constrained Markov Decision Processes ((

] ; Action A

max V7™(s) = E, nyth+1|So =3
e Lt=0 : — * Solvable if MDP is “known” (Linear Program).
» 3 stationary optimal solution T*(a|s)

7

st.. Cl'(s)=E, Z'ythﬂSo:s <¢ i=1,....m
=0 i

* What to do if MDP is “unknown”? Examples of Model-based and Model-free methods

* (MB) Learn transitions and reward/constraint signals, solve for a (near) optimal policy.
[Aria HZ et al‘20], [Bai et al‘20], [Wang et al 20], [Chen et al’21]

* (MF) Primal or Primal-dual methods.
[Chow et al’17], [Tessler et al‘19], [Paternain et al’19], [Ding et al’20], [Stooke et al. 20], [Xu et al’21]

21



Reinforcement Learning with Almost Sure Constraints

Y ' Regi | So = 8]
1=0

> A'Diga | So = s] <c <= D;1 1 =0 almost surely Vit
t=0

V*(s) := max E,

s.t.: K,

State Sti1
Reward R,y
Damage D4

Action A

- Damage indicator D; € {0,1} turns on (D; = 1) when constraints are violated
« Constraints not given a priori: Need to learn from experience!
* Notice: Model free & Constraint violations are inevitable

22



Formulation via hard barrier indicator

Safe RL problem: Equivalent unconstrained formulation:

oo ©.@)
V*(s) := max E- ZWthH | So=s ~ max [E. thRH_l + log[l — Di11] | So = s
Lt=0 " t=0 | J
s.t.: Dyy1 = 0 almost surely Vt !
0 ifDey1 =0

=0  if Deyq =1

Questions/Comments: )

* |s this just a standard RL problem with R¢+1 = Riy1 +log(l — Dyqq) ?

e Standard MDP assumptions for Value Iteration, Bellman’s Eq., Optimality
Principle, etc., do not hold!

* Not to mention convergence of stochastic approximations.

Key idea: Separate the problem of safety from optimality

23



Hard Barrier Action-Value Functions

Consider the Q-function for a given policy =,
QW(S7 CL) =K, Z <7th+1 + log(l — Dt_|_1)) ‘ S() = S,Ao =Q
t=0

and define the hard-barrier function

B™(s,a) = E, Zlog(l —Dyt1) | So=s,40=a
| t=0 i

Notes on B™(s,a):

* B™(s,a) € {0, —o0}

« Summarizes safety information
* B™(s,a) = 0 iff m is safe after choosing A; = a when §; =s

It is independent of the reward process



Separation Principle

Theorem (Separation principle)
Assume rewards R;,; are bounded almost surely for all t. Then for every policy m:

Q" (s,a) = Q" (s,a) + B (s, a)

In particular, for optimal .,

Q"(s,a) = Q"(s,a) + B™(s,a)

Idea: Learn feasibility (encoded in B*) independently from optimality.



Optimal Hard Barrier Action-Value Function

Theorem (Bellman Equation for BY)
Let B*(s,a) := max B"(s,a), then the following holds:

B*(s,a) =E {— log(1 — Dyy1) + max B (Siy1,a’) | So=s,40 = a}

Understanding B*(s, a):

B*(s,a) € {0, —o} summarizes safety information of the entire MDP
 B*(s,a) = 0if 3 safe  after choosing A; = awhen S; = s
 B*(s,a) = —ooif no safe policy exists after choosing A = awhen S; = s

26



Learning the barrier...

Algorithm 3: barrier_update Pros:

B-function (initialized as all-zeroes); * Wraps around learning algorithms ( Q-learning, SARSA)
Input: (s,a,s’, d)

Output: Barrier-function B(s, a)

B(s, a) «+ B(s,a) + log(1 — d) + max, B(s',a’)

e Use the HBF to trim exploration set and avoid
repeating unsafe actions

...With a generative model:

* Sample a transition (s, a, s’, d) according to the MDP. Update barrier function.

Algorithm S5: Barrier Learner Algorithm

Data: Constrained Markov Decision Process M

Result: Optimal action-value function B*/ Initially, all (s, a)-pairs are “safe”
Initialize B(®)(s,a) = 0,V(s,a) € S x A
fort=20.1.--- do _ .
Draw (s, az) ~ Unif({(s,a) : BO(s,a) # —oo}) Draw (s, a)-pair uniformly among those
Sample transition (s¢, at, sy, d;) according to considered to be “safe” at time t
P (S =s5. Dy =di|So = 51, Ag = ay)
B(t+1) — barrier_update (B(t), St, ¢, S%) dt )L Update barrier function

€n

27



Convergence in Expected Finite Time

Theorem (Safety Guarantee): Let T = mtin{B(t) = B*}, then
|S]|A]

ISTIA] 1
ET < (L +1)—— -
H k=1 i

o AfterT = mtin{B(t) = B*} , all “unsafe” (s, a)-pairs are detected

e u: Lower bound on the non-zero transition probability
u=min{p(s’,d|s,a):p(s’,d|s,a) + 0}
e L:Lag of the MDP
Minimum number of transitions
L= max { needed to observe damage,

B*(S(ZQ_OO starting from unsafe (s, a)




Lag of the MDP: L

= max |

B*(s,a)=—o0

Minimum number of transitions needed to

observe damage, starting from unsafe (s, a)

j

29



Sample Complexity of Safety

Theorem (Sample Complexity): With at least 1 — 6 probability, the algorithm learns

optimal barrier function B* after
IS4l

IEEVLILY () o
(L+1) i\ L 08

iterations

* Concentration of sum of exponential random variables

 Much more sample-efficient than “learning an e-optimal policy with 1 — §
probability” (Li et al. 2020)

v _lstial_( Islial
A —p*e 8 \(1—y)ed




Sample Complexity of Safety

Theorem (Sample Complexity): With at least 1 — 6 probability, the algorithm learns

optimal barrier function B* after
IS4l

IEEVLILY () o
(L+1) i\ L 08

iterations

* Concentration of sum of exponential random variables

* |f the Barrier Function is learnt first, then learning an e-optimal policy takes
N' = |Ssafe||Asafe| log? |Ssafe||Asafe|
(1 —y)*e? (1-y)eé
samples (Trimming the MDP by learning the barrier)




Numerical Experiments Aactions
Goal: Reach the end of the aisle (R;y1 = 10 S1 | Sy | s3 | 84 | --- s14 | 815
Touching the wall gives D, =1,

Results
250 Transitions until first goal-reach ' i ‘ ngl bumps qntil ﬁrst gogl-reacl:h . ' Wall bumps until first gogl-reach
B Assured Q-Learning EEl Assured Q-Learning I Q-Learning
I Q-Learning
500
200
, 400 | ol
2 150 E E
% g a
s 'S 300} G |
3 3 3
E £ £
2 2 200 z !
2r 100 |
5 2000 ioa G060 H0G0 T % 14 16 18 20 22 24 26 28 30 o0 100 200 300 400 500 600
Transitions Wall bumps Wall bumps
Why does Assured Q-learning perform much better?
If D;y; =1 = B,(s,a) = —oo = Never take action a at s again!

Takeaways:
* Adding constraints to the problem can accelerate learning
e Barrier function avoids actions that lead to further wall bumps
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Almost sure RL with positive budget (A)

* Almost Sure RL with positive budget * Augmented
©.@) ~ ~
Sy = (St, Ky) Dyy1 = 1{K; — Dyyy <0}
ﬂm Er ZRt+1 ‘SO_S Sx{A]  Sx{A-1} ... &x{0}

S.t:Pﬂ- ZDt—i—1§A|SOZS =1
t=0

[1;: history-dependent policies
hy = (So, Ao, Ry, D1, ..., St); m(alhs)

* Equivalent problem:

O
E Ry
t—0

S.t: Pﬁ— (Dt+1:O):1 VtZO

(SO’ KO) — (87 A)

max E%,M
melly

« Current budg?tlat time t:

Ky=A-=) Dy Vt>1
£=0

Fits previous formulation! —
“How much more damage | can sustain and still * Could learn B*(s, k, a)

be feasible” * Separation & Feasibility Principles
e Potential drawback: working in

32



Experiment: comparing constraints

Frequency
o o o o
N w s ()

o
.

2
=}

75

Goal

00
max Eﬂ- E Rt_|_1
s

t=0

1) Proposed constraint

P, (ZDt+1<A ‘ S0_3> =1

t=0

2) Classic CMDP constraint

o0
Er, | Diypr| <c
t=0

Safety of assured m, with A=5 vs expectation-based constraint n/; P(d=1)=1

10.0 125 15.0

15

i 0.20

. 0.15-
0.10 -

0.05 -

[ ' 0.00- 0
20 25 30 0 10

Total damage per episode

0.175 -

0.150 -

0.125 -

0.100 -

0.075 -

0.050

0.025 -

0.000-

20 30 40
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Experiment: comparing constraints

Goal 1) Proposed constraint 2) Classic CMDP constraint

t=0 t=0

oo o o0
m;}’X Eﬂ' Z Rt—|—1 IPTrA ZDt+1 S A SO = S - ]. ]E'Trc Z Dt_|_1 S C
t=0

Safety of assured m, with A=5 vs expectation-based constraint n/; P(d=1)=1

0.175 -
0.5 * et * 0.20
R | 0 TS 0.150 -
0.20
‘_>,‘ 0.4 = rf: [me] rr: 0.15 0.125 -
C
Qo3 013 0.100 -
=) 0.10 -
o 0.10 ' 0.075 -
Q0.2 .
[ S| 0.050
.05 o
O:% a0 0.025 -
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Summary and future work

Summary

« Reinforcement Learning for safety critical systems

* Treat constraints separately, or in parallel (Barrier Learner)

- Can characterize all feasible policies (D; = 0) with finite mistakes
- Take aways:

« Learning feasible policies is simpler than learning the optimal ones

« Adding constraints makes optimal policies easier to find

Future work:
* Theory: Extensions to continue state and action spaces
« Application: Deep RL with almost sure constraints



Thanks!
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