ROSEI SUMMIT 2023

Frequency Shaping Control for Low Inertia Power Systems

Enrique Mallada Associate Professor, ECE, JHU January 18, 2023

Acknowledgements

Hancheng Min

Eliza Cohn

Petr Vorobev

Richard Pates

Fernando Paganini

Frequency Control

JOHNS HOPKINS

Goal: Maintain frequency close to the nominal (60/50 Hz)

Mechanical Analogue

Goal: Maintain speed close to the nominal (60/50 Hz)

Low Inertia = Dynamic Degradation

In the United States:

"While the three [contiguous] U.S. interconnections currently exhibit adequate frequency response performance above their interconnection frequency response obligations, there has been a significant decline in the frequency response performance of the Western and Eastern Interconnections," FERC said.

Merits and Trade-offs of Inertia

$$\ddot{\theta} = -\frac{d}{m}\dot{\theta} - g\sin\theta + \frac{f}{m}$$

Merits and Trade-offs of Inertia

$$\ddot{\theta} = -\frac{d}{m}\dot{\theta} - g\sin\theta + \frac{f}{m}$$

Pros: Provides natural disturbance rejection

Cons: Hard to regain steady-state

Merits and Trade-offs of Low Inertia

$$\ddot{\theta} = -\frac{d}{m}\dot{\theta} - g\sin\theta + \frac{f}{m}$$

Cons: Susceptible to disturbances

Pros: Regains steady-sate faster

Freq. Control: Importance of Inertia

Frequency response to disturbance

Frequency response security map

S. Püschel-L@vengreen and P. Mancarella, "Mapping the frequency response adequacy of the Australian national electricity market," 2017 Australasian Universities Power Engineering Conference (AUPEC), Melbourne, VIC, Australia, 2017.

Freq. Control: Importance of Inertia

Low inertia frequency response

Frequency response security map

S. Püschel-L@vengreen and P. Mancarella, "Mapping the frequency response adequacy of the Australian national electricity market," 2017 Australasian Universities Power Engineering Conference (AUPEC), Melbourne, VIC, Australia, 2017.

Low Inertia = Dynamic Degradation

Frequency control by storage units

A new approach: frequency shaping control

A new approach: frequency shaping control

Frequency shaping control: advantages

- Separate tuning for **each performance metric**
- Optimal use of energy storage power and energy capacity
- Storage units and turbines complement each other
- Frequency security can be certified with algebraic calculations
- No need to run dynamic simulations for every configuration

Other talks from group members

• 2:45 pm, **Dhananjay Anand:**Testing and validation of inverter-based grid support functions

• 3:25 pm, **Hancheng Min**: Learning coherent clusters for modeling and analysis of power system dynamics

• 3:40 pm, **Rajni Bansal:**Efficient storage integration in electricity markets

Thanks!

Related Publications:

- Paganini and M, "Global analysis of synchronization performance for power systems: bridging the theory-practice gap," **IEEE TAC 2020**
- Jiang, Pates, M, "Dynamic Droop Control for Low Inertia Power Systems," IEEE TAC 2021
- Jiang, Cohn, Vorobev, M "Storage-Based Frequency Shaping Control," IEEE TPS 2021
- Min, Paganini, M, "Accurate Reduced Order Models for Coherent Synchronous Generators," L-CSS 2020

Yan Jiang

JOHNS HOPKINS

Hancheng Min
JOHNS HOPKINS

Eliza Cohn

JOHNS HOPKINS

UNIVERSITY

Enrique Mallada mallada@jhu.edu http://mallada.ece.jhu.edu

Richard Pates

Lund University

