Unintended consequences of market designs The role of inelastic demand and storage

Enrique Mallada

National Renewable Energy Laboratory
Human Dimensions of Energy Systems Workshop

September 7, 2022

Acknowledgements

Marcelo Fernandez

Dennice Gayme

Pengcheng You

Two-stage/Sequential Markets

Two-stage markets are the norm in energy systems!

Designed to incentivize transactions in the presence of uncertainty

- Forward Market: Future contracts
- **Spot Market:** Immediate commitments

Benefits of forward contracting

- Hedge against future risks
- Increased efficiency [Allaz & Vila '93]

Natural solution to electricity markets

- Day-ahead: Forward Market
 - Hedge via a forward position
- Real-time: Spot Market
 - Correct: Last-resort/realized uncertainty

ENERGY POLICY ACT OF 1992

TITLE VII—ELECTRICITY

Subtitle A-Exempt Wholesale Generators

- Sec. 711. Public Utility Holding Company Act reform.
 Sec. 712. State consideration of the effects of power purchases on utility cost of capital; consideration of the effects of leveraged capital structures on the reliability of wholesale power sellers; and consideration of adequate fuel
- Sec. 713. Public utility holding companies to own interests in cogeneration facili-
- Books and records

Subtitle B-Federal Power Act; Interstate Commerce in Electricity

- Sec. 721. Amendments to section 211 of Federal Power Act.
- Sec. 722. Transmission services.
- Sec. 723. Information requirements.
- Sec. 724. Sales by exempt wholesale generators
- 725. Penalties.

Subtitle C-State and Local Authorities

Sec. 731. State authorities

day-ahead vs real-time prices

Source: NYISO

Operational Challenges in Electricity Grids

- Undesired price manipulation by market participants
 - California Electricity Crisis Enron '00-'01
 - Today: \sim 2% hours with non-competitive bids in the CAISO market (2021)
- Proliferation of renewable energy sources

Rapid growth in solar and wind energy

Source: U.S. Energy Information Administration

SOURCE: Congressional Budget Office based on data for the northern and southern regions from the California Energy Commission (available at www.energy.ca.gov/electricity/wepr/monthly_day_ahead_prices.html).

Net demand trend

System demand minus wind and solar, in 5-minute increments, compared to total system and forecasted demand.

Source: California ISO

Opportunities

Utility-Scale Storage

- Rapidly growing technology
- Can be used across all grid services (regulation, ramping, volt/var, etc.)
- High cost, complex to quantify

Distributed Energy Resources (DERs)

- FERC 2222 opens the door for democratized participation in Markets
- Multiple types: solar, wind, batteries, smart meters, demand response, EVs, etc.
- Heterogeneous functionalities/incentives

Q1: How does participants' behavior affect market outcomes? What are their incentives?

Q2: How should new types of participants bid in energy markets?

Global cumulative energy storage installations

Source: BloombergNEF

18 CFR Part 35

[Docket No. RM18-9-000; Order No. 2222]

Participation of Distributed Energy Resource Aggregations in Markets Operated by Regional Transmission Organizations and Independent System Operators

(Issued September 17, 2020)

Unintended consequences of market designs

• The role of inelastic demand in two-stage markets

Mechanism design for storage participants

The Role of Strategic Participants in Two-Stage Settlement Markets

Pengcheng You, Marcelo A. Fernandez, Dennice F. Gayme, and Enrique Mallada

Preprint, August 2022

Existing Paradigm - Wholesale Energy Market Design

Generator centric view:

- Day-Ahead Market (Forward Market)
 - Market clears based on demand forecasts
 - Account for majority of trading in market
 - Hedge against uncertainty via a forward position

- Real-Time Market (Spot Market)
 - Market clears at faster timescale, typically 5 min
 - Participants buy or sell to adjust commitments
 - Correct: Last-resort/realized uncertainty

Two-stage Settlement in Electricity Markets

linear supply function $q^?=\beta^?\,\lambda^?$ [Klemperer, Meyer '89]

total generation $q = q^{RT} + q^{DA}$

total demand $d = d^{RT} + d^{DA}$

day ahead: forward position

real time: last resort/opportunity

Challenge: Operation Not Fully Understood

Market Power is Major Concern

- Competitive Equilibria -> Price Convergence $\lambda^{DA} = \lambda^{RT}$
- Evidence the lack of price convergence
 - MISO [Bowden et al. '09, Birge et al. '18]
 - NYISO [Jha & Wolak '19, You et al. '19]
 - CAISO [Borenstein '08] and more..

Is the Spot Market Operating as Last Resort?

• Systematic bias in real-time demand

Our focus: Understanding the role of strategic load participants

An Extensive-Form Game

- ullet Between G homogeneous generators and L heterogeneous inelastic loads
- Perfect foresight and complete information

Quadratic cost Individual generator $j \in \mathcal{G}$ $\frac{1}{2}c_{j}(q_{j}^{DA}+q_{j}^{RT})^{2}$

Day-ahead market clearing

Day-ahead market

$$\sum_{j \in \mathcal{G}} \beta_j^{DA} \lambda^{DA} = \sum_{l \in \mathcal{L}} d_l^{DA}$$

Real-time market

$$\sum_{j \in \mathcal{G}} \beta_j^{RT} \lambda^{RT} = \sum_{l \in \mathcal{L}} d_l^{RT}$$

Real-time market clearing

An Extensive-Form Game

- Between *G* homogeneous generators and *L* heterogeneous inelastic loads
- Perfect foresight and complete information

An Extensive-Form Game

- ullet Between G homogeneous generators and L heterogeneous inelastic loads
- Perfect foresight and complete information

Model: Nested Game

- Real-time subgame: given day-ahead market outcome
- Day-ahead competition: anticipate real-time market outcome (global view)

Model: Nested Game

- Real-time subgame: given day-ahead market outcome
- Day-ahead competition: anticipate real-time market outcome (global view)

Market Participant Types

- Price taker participants: respond (bid) optimally to given prices
- Competitive equilibrium
 - A set of two-stage bids $(\beta^{DA}, \beta^{RT}, d^{DA}, d^{RT})$ and prices $(\lambda^{DA}, \lambda^{RT})$ s.t.
 - Bids are optimal for individual participants, given the prices;
 - Supply matches demand in both stages.
- Strategic participants: anticipate
 - Bidding impacts on clearing prices (through power balance);
 - Day-ahead bidding impact on real-time market outcome;
- Nash equilibrium
 - A set of two-stage bids $(\beta^{DA}, \beta^{RT}, d^{DA}, d^{RT})$ and prices $(\lambda^{DA}, \lambda^{RT})$ s.t.
 - Bids are optimal for individual participants, given others' bids;
 - Symmetric decisions for homogeneous generators:
 - Supply matches demand in both stages.

Market Equilibria Characterization

Recall: Homogeneous

Generation: $c_i = c$

Competitive equilibrium

- Equal two-stage prices at marginal cost $\lambda^{DA*}=\lambda^{RT*}=rac{c}{G}\sum_{l\in\mathcal{L}}d_l$
- Any combination of bids with two-stage power balance

Generator:
$$\beta_j^{DA*} + \beta_j^{RT*} = \frac{1}{c}$$

Load: $d_{l}^{DA*} + d_{l}^{RT*} = d_{l}$

Nash equilibrium

- No price convergence: $\lambda^{DA*} = \frac{L}{L+1} \cdot \lambda^{RT*}$, with $\lambda^{RT*} = \frac{G-1}{G-2} \cdot \frac{c}{G} \sum_{l \in \mathcal{L}} d_l$

Demand allocation:

$$\frac{\sum_{l \in \mathcal{L}} d_l^{DA^*}}{\sum_{l \in \mathcal{L}} d_l} = \frac{L(G-1)+1}{(L+1)(G-1)} \in (0,1)$$

Quantification of Market Power

Recall: Homogeneous

Generation: $c_i = c$

- Total generation cost: optimal and fixed at all equilibria
 - Reason: Generator symmetry and load inelasticity
- Market surplus allocation

Negative payment of loads

- *Inter-group* market power shift
 - More degree of flexibility for generators;

Generator profit:
$$\frac{1}{2} \cdot \frac{c \left(\sum_{l \in \mathcal{L}} d_l\right)^2}{G^2} \longrightarrow \left(\frac{1}{2} + \frac{1}{G-2}\right) \cdot \frac{c \left(\sum_{l \in \mathcal{L}} d_l\right)^2}{G^2}$$

Competitive equilibrium NE with strategic gens

- *Inter-group* market power shift
 - More degree of flexibility for generators;
 - Loads offset generators' market power by allocating demand strategically;

$$\left(\frac{1}{2} + \frac{1}{G-2}\right) \cdot \frac{c\left(\sum_{l \in \mathcal{L}} d_l\right)^2}{G^2} - \frac{L(G-1)+1}{(L+1)^2(G-2)} \cdot \frac{c\left(\sum_{l \in \mathcal{L}} d_l\right)^2}{G^2}$$
 NE with strategic gens

NE with strategic gens and loads

- Inter-group market power shift
 - More degree of flexibility for generators;
 - Loads offset generators' market power by allocating demand strategically;

$$\left(\frac{1}{2} + \frac{1}{G-2}\right) \cdot \frac{c\left(\sum_{l \in \mathcal{L}} d_l\right)^2}{G^2} - \frac{L(G-1)+1}{(L+1)^2(G-2)} \cdot \frac{c\left(\sum_{l \in \mathcal{L}} d_l\right)^2}{G^2}$$
 NE with strategic gens

NE with strategic gens and loads

Reversal of market power: General Condition

$$\frac{\text{gen profit}}{\text{NE both strategic}} \ \ \ \ \frac{\text{gen profit}}{\text{Comp. Equilibrium}} \ \ \ \frac{G}{L} \geq \left(1 + \frac{1}{L}\right)^2$$

- Intra-group market power shift
 - Load payment reduced by a fixed amount, regardless of load size;

Load payment

$$\frac{G-1}{G-2} \cdot \frac{c \sum_{l \in \mathcal{L}} d_l}{G} \cdot d_l - \frac{L(G-1)+1}{L(L+1)^2(G-2)} \cdot \frac{c \left(\sum_{l \in \mathcal{L}} d_l\right)}{G}$$
 NE with strategic gens

NE with strategic gens and loads

- Relatively, small loads are favored;
 - Incentive to split instead of aggregation
- Special Case: virtual bidding
 - a load bidder with $d_l = 0$, its payment (negative profit):

$$-\frac{L'(G-1)+1}{L'(L'+1)^2(G-2)} \cdot \frac{c\left(\sum_{l \in \mathcal{L}} d_l\right)}{G} \qquad \frac{\lambda^{DA*} - \lambda^{RT*}}{\lambda^{DA*}} = \frac{1}{L'} \xrightarrow[L' \to \infty]{} 0$$

L' = L + num. of virtual bidder

Unintended consequences of market designs

• The role of inelastic demand in two-stage markets

Mechanism design for storage participants

Contents lists available at ScienceDirect

Electric Power Systems Research

journal homepage: www.elsevier.com/locate/epsr

A market mechanism for truthful bidding with energy storage[★]

Rajni Kant Bansal*, Pengcheng You, Dennice F. Gayme, Enrique Mallada

June 2022

Putting storage in perspective – Related work

Market Perspective - minimizing cost of market operation

- Co-optimization of resources including storage in the market [PadManabhan et al. TPS'20]
- Quantify cost of Inter-temporal dispatch (short-term and long-term) [He et al. TPS'21]
- Aggregate energy resources [Qin et al. TSG'19, Elliott et al. TPS'19]

Assumptions: Storage unwillingly reveal private information Limit flexibility to seek profit maximization

Individual Perspective - maximizing profit

• Account for cost of operation and co-optimize different markets [He et al. TSG'15, Xu et al. TPS'18, Bhattarai et al. IEEE PES T&D'20, Thatte et al. TSG'13, Shafiee et al. TPS'17]

Assumptions: Market signals are exogenous

Basic Principles of Market Design

Linear supply function

$$g = \alpha \lambda$$

Generator Profit $\max_g \lambda g - \frac{c}{2}g^2$

Power Balance d=q

Towards a Market Mechanism for Storage

Cost of dispatching energy storage

Prosumer based market mechanism

Cycle aware market mechanism

Storage Cycling Cost

- Consensus on the use cycle-based degradation cost
 - Combine cycle stress function with Rainflow cycle counting

 $\Phi(\cdot)$ convex map that quantify the normalized capacity, degradation incurred by each half-cycle δ_i [Shi et al. TAC'19]

Storage Cost Model – Rainflow Algorithm

• To extract half-cycle depths v we use a cycle identification approach based on the Rainflow algorithm [Lee et al. Metal Fatigue Anslysis Handbook '11]

Three consecutive switching points difference:

$$\Delta_1 = x_1 - x_0$$
 $\Delta_2 = x_1 - x_2$
 $\Delta_3 = x_3 - x_2$

Full cycle if:

$$\Delta_1 \geq \Delta_2 \leq \Delta_3$$

Storage Cost Model – Rainflow Algorithm

• To extract half-cycle depths v we use a cycle identification approach based on the Rainflow algorithm [Lee et al. Metal Fatigue Anslysis Handbook '11]

The associated cycling cost:

$$C_S(x) = 2\Phi(x_1 - x_2)BE + \Phi(x_3 - x_0)BE$$

Storage Cycling Cost – Reformulation

- Consensus on the use cycle-based degradation cost
 - Combine cycle stress function with Rainflow cycle counting

Towards a Market Mechanism for Storage

Cost of dispatching energy storage

Prosumer based market mechanism

Cycle aware market mechanism

Generalized linear supply function

n Lir

Linear supply function

$$g = \alpha \lambda$$

 $u = \beta \lambda$

Power Balance

$$d = g + u$$

Market Model Review

Market Model	Existing	Prosumer Based
--------------	----------	----------------

Theorem: The competitive equilibrium is incentive aligned iff ∃ convex coefficients $\gamma_k \geq 0$, $\sum_{k=1}^m \gamma_k = 1$ such that for demand d $\sum_{k=1}^m \gamma_k N_k(d)^T N_k(d) d = \frac{\|N(d)d\|^2}{\|d\|^2} d$

$$\sum_{k=1}^{m} \gamma_k N_k(d)^T N_k(d) d = \frac{\|N(d)d\|^2}{\|d\|^2} d^2$$

Towards a Market Mechanism for Storage

Cost of dispatching energy storage

Prosumer based market mechanism

Cycle aware market mechanism

Time horizon: **H** time slots

$$g = \alpha \lambda$$

$$\max_{\nu} \theta^T \nu - \frac{b}{2} \|\nu\|^2$$

Power Balance

$$d = g + u$$

Market Model Review

Market Model	Existing	Prosumer Based		Cycle
Participants	Generator	Generator	Storage	
Bid Function	$g = \alpha \lambda$	$g = \alpha \lambda$	$u = \beta \lambda$	
Cost to Operator	$\frac{1}{2\alpha}\ g\ ^2$	$\frac{1}{2\alpha} \ g\ ^2$	$\frac{1}{2\beta}\ u\ ^2$	
Actual Cost	$\frac{c}{2} \ g\ ^2$	$\frac{c}{2} g ^2$	$\frac{b}{2} N(u)u ^2$	
Optimal Bid	$\alpha^* = \frac{1}{c}$	$\alpha^* = \frac{1}{c}$	$\beta^* = \frac{1}{b} \frac{\ \lambda\ ^2}{\ N(\lambda)\lambda\ ^2}$	

Numerical Results Metric – Storage Profit

Mechanisms

Cycle based (CBM):
 Generator: power
 Storage: cycle depth

Prosumer based (PBM)
 Generator: power
 Storage: power

Current Market

Generation Centric
 Dispatch (GCD):
 Social cost =
 Generation cost
 + (hidden) cycling cost

w.r.t Storage Capital Cost

Talk Summary

- The Role of Strategic Load Participants in Two Stage Markets
 - Model and studied the role of strategic load participants in two-stage markets
 - Characterize competitive and Nash equilibria
 - Perfect competition does not lead to all load in day ahead
 - Load strategic behaviour matters! It can even beat generators.
 - Virtual bidders benefit from, and limits only, demand market power
- Market Mechanism for Energy Storage
 - Storage operational cost (cycles) is different from generation cost (power)
 - Bidding mechanisms designed for generators do not apply to storage.
 - Proposed cycle-based market mechanism (bids, prices, clearing)
 - Equilibrium analysis (price takers)
 - Competitive Equilibrium = Social Planner's Optimal

Thanks!

Papers

- P. You, M. Fernandez, D. Gayme, E. M., "The Role of Strategic Participants in Two-Stage Settlement Markets," Preprint, 2022
- R. K. Bansal, P. You, D. F. Gayme, and E. Mallada, "A Market Mechanism for Truthful Bidding with Energy Storage," EPSR, Jun 2022.

Other Related Work

• R. K. Bansal, Y. Chen, P. You, and E. Mallada, "Equilibrium Analysis of Electricity Markets with Day-Ahead Market Power Mitigation and Real-Time Intercept Bidding," in e-Energy, Jun. 2022.

Enrique Mallada mallada@jhu.edu http://mallada.ece.jhu.edu

Dennice Gayme

JOHNS HOPKINS
UNIVERSITY