On the Convergence of Gradient Flow on Multi-layer Linear Models

Enrique Mallada

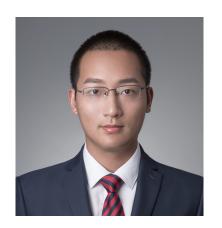
Massachusetts Institute of Technology

August 25, 2022

Acknowledgements

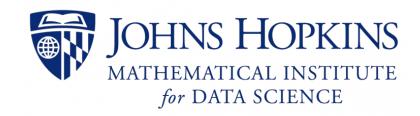
Hancheng Min

Salma Tarmoun



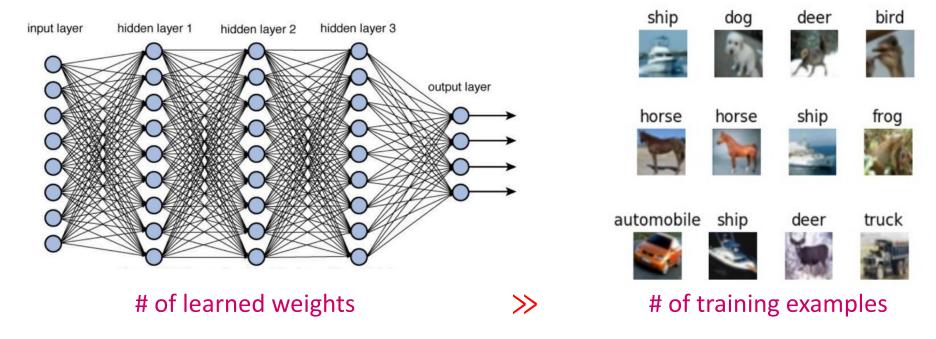
Ziqing Xu

René Vidal



Introduction

In deep learning, neural networks are typically overparametrized



- Highly underdetermined problem, many solutions
- Variants of gradient descent often find those with good generalization
- Question: What is the effect of overparameterization on the learning dynamics of optimization algorithms?

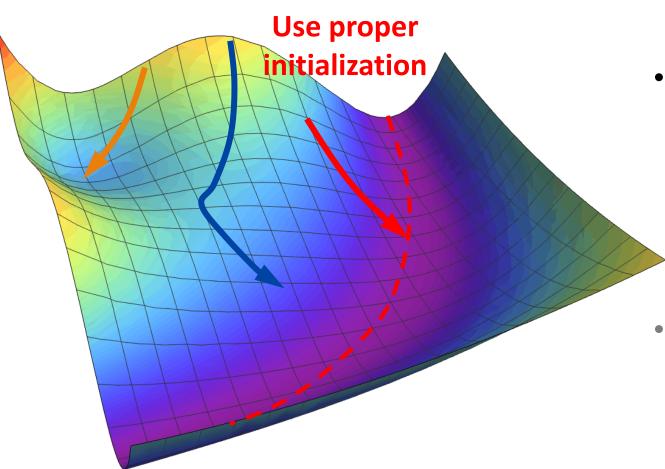
Introduction

- Prior work suggests that in this overparametrized regime, specific initialization may:
 - Accelerate convergence (implicit acceleration)
 - Promote generalization (implicit bias)
- Question: Are there general properties of initialization that benefit convergence (this talk) and implicit bias?

• For <u>overparametrized linear models</u>, $\mathcal{L}(W_1,\cdots,W_L):=f(W_1W_2\cdots W_L)$ gradient flow, $\dot{W}_l=-\partial\mathcal{L}/\partial W_l$

the answer is YES!

Non-convex Optimization Landscape



- Loss function for neural network is generally non-convex
- The gradient flow/descent
 - may get stuck at local minimum (non-optimality)
 - may take long time to escape some saddle point (slow convergence)
- Infinitely many global optimal solutions, how can GF/GD reach one that generalizes well? (implicit bias) [Min'21]

Existing Analyses for Specific Initialization

- NTK Initialization [Jacot'18]: Large hidden layer width, random initialization
 - Exponential convergence for GF
 - "lazy regime": rarely seen in practical networks [Chizat'19]

- Small initialization [Stöger'21]: All weight parameters are initialized close to zero
 - Interesting studies on implicit bias: low-rank, sparse models
 - Slow convergence (initialized close to origin, a stationary point)

[Li'21]: init.scale: α , # of iter.required: $\mathcal{O}\left(\frac{1}{\alpha^{(L-2)}}\right)$

A Jacot, F Gabriel, and C Hongler. Neural tangent kernel: Convergence and generalization in neural networks. NeurIPS 2018 L Chizat, E Oyallon, and F Bach. On lazy training in differentiable programming. NeurIPS 2019.

D Restrictive assumptions on initialization ctral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction. NeurIPS 2021.

J Li, T V Nguyen, C Hegde, and R K. W. Wong. Implicit sparse regularization: The impact of depth and early stopping. NeurIPS 2021.

Contribution

- Non-NTK, non-small initialization is mostly studied for linear networks
- Existing analyses for <u>convergence</u> under <u>gradient flow</u> $\dot{\theta} = -\nabla \mathcal{L}(\theta)$ require strong assumptions on the initialization (balanced, or spectral)

	Spectral	Non-spectral (with sufficient margin)
Balanced	[Saxes'14] [Gidel'19]	[Arora'18]
Sufficiently Imbalanced	[Tarmoun'21] [Yun'21]	Our work

A Saxe, J Mcclelland, and S Ganguli. "Exact solutions to the nonlinear dynamics of learning in deep linear neural network." ICLR 2014 G Gidel, F Bach, and S Lacoste-Julien. "Implicit regularization of discrete gradient dynamics in linear neural networks." NeurIPS 2019 S Arora, N Cohen, N Golowich, and W Hu. "A convergence analysis of gradient descent for deep linear neural networks." ICLR 2018 S Tarmoun, G França, B D Haeffele, and R Vidal. "Understanding the dynamics of gradient flow in overparameterized linear models." ICML 2021 C Yun, S Krishnan, and H Mobahi. A unifying view on implicit bias in training linear neural networks. ICLR2020

Contribution

- Non-NTK, non-small initialization is mostly studied for linear networks
- Existing analyses for <u>convergence</u> under <u>gradient flow</u> $\dot{\theta} = -\nabla \mathcal{L}(\theta)$ require strong assumptions on the initialization (balanced, or spectral)

	Spectral	Non-spectral (with sufficient margin)
Balanced	[Saxes'14] [Gidel'19]	[Arora'18]
Sufficiently Imbalanced	[Tarmoun'21] [Yun'21]	Our work

We show

$$Rate \geq (constant)\sqrt{(Imbalance)^2 + 4(Margin)^2}$$

• Exponential convergence via sufficient imbalance or sufficient margin

Outline

Problem Setting

Warm-up Example

Convergence Analysis for Multi-layer Linear Model

Convergence Rate Bound

Conclusion

Problem Setting

Find solution that obtains

$$f^* = \min_{W \in \mathbb{R}^{n \times m}} f(W)$$
overparametrization

Gradient flow on multi-layer linear model:

$$\mathcal{L}(W_1, \dots, W_L) := f(W_1 W_2 \dots W_L)$$
$$\dot{W}_l = -\partial \mathcal{L}/\partial W_l$$

- Examples:
 - Asymmetric matrix factorization: $f(W) = ||Y W||_F^2/2$, $W = W_1W_2$
 - Multi-layer linear networks: $f(W) = \|Y XW\|_F^2/2$, $W = W_1W_2 \cdots W_L$

Problem Setting: Overparametrized Linear Model

Multi-layer linear model(network):

$$\mathcal{L}(W_1, \cdots, W_L) := f(W_1 W_2 \cdots W_L)$$

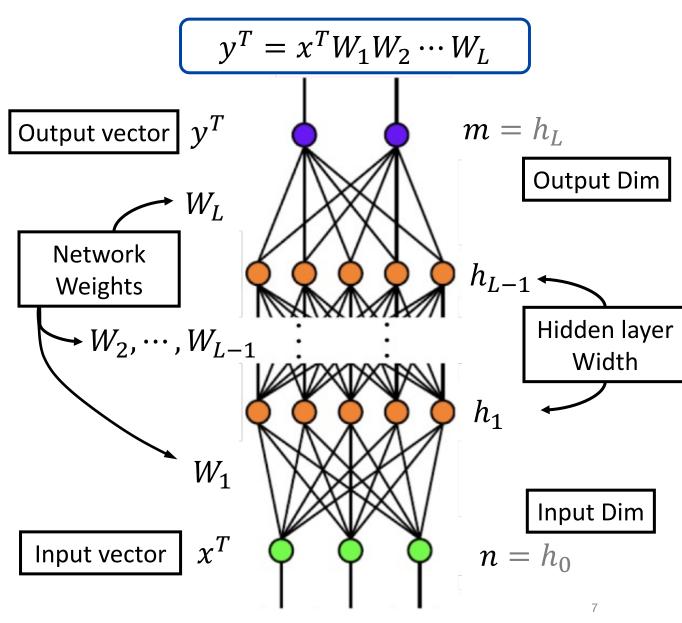
Overparametrized:

$$W_l \in \mathbb{R}^{h_{l-1} \times h_l}, \quad l = 1, \dots, L$$

$$h_0 = n, h_L = m$$

$$\min\{h_1, \dots, h_{L-1}\} \ge \min\{n, m\}$$

$$\Rightarrow (\mathcal{L}^* = f^*)$$



Problem Setting: Assumptions

Find solution that obtains

$$f^* = \min_{W \in \mathbb{R}^{n \times m}} f(W)$$

- Assumptions: Objective f
 - satisfies Polyak-Łojasiewicz(PL)-inequality:

$$\|\nabla f(W)\|_F^2 \ge \gamma(f(W) - f^*), \quad \forall W$$

• is μ -strongly convex, and K-smooth (Non-essential for convergence of GF)

Problem Setting: Assumptions

Find solution that obtains

$$f^* = \min_{W \in \mathbb{R}^{n \times m}} f(W)$$

- **Assumptions**: Objective f
 - satisfies Polyak-Łojasiewicz(PL)-inequality:

$$\|\nabla f(W)\|_F^2 \ge \gamma(f(W) - f^*), \qquad \forall W$$

Examples

Matrix factorization: $f(W) = ||Y - W||_F^2/2$

Linear regression: $f(W) = ||Y - XW||_F^2/2$ Matrix sensing: $f(W) = \sum_{i=1}^N (y_i - \langle A_i, W \rangle)^2$

Extends to classification losses assuming general Łojasiewicz inequality

Convergence with PL-inequality

Non-overparametrized

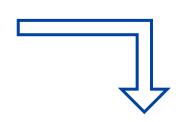
- Gradient Flow: $\dot{W} = -\nabla f(W)$
- Global PL-Inequality $\|\nabla f(W)\|_F^2 \ge \gamma(f(W) f^*)$

• $\dot{f}(W) = \langle \nabla f(W), \dot{W} \rangle_F = -\|\nabla f(W)\|_F^2 \le -\gamma (f(W) - f^*)$

Convergence with PL-inequality

Non-overparametrized

- Gradient Flow: $\dot{W} = -\nabla f(W)$
- Global PL-Inequality $\|\nabla f(W)\|_F^2 \ge \gamma(f(W) f^*)$



Grönwall's inequality

$$\dot{x}(t) \le -\gamma x(t)$$

$$\Rightarrow x(t) \le \exp(-\gamma t) x(0)$$

- $f(W) = \langle \nabla f(W), \dot{W} \rangle_F = -||\nabla f(W)||_F^2 \le -\gamma(f(W) f^*)$ (by Grönwall's inequality) $\rightarrow (f(W(t)) - f^*) \le \exp(-\gamma t) (f(W(0)) - f^*)$ f(W(t)) converges to f^* exponentially
- Rate: PL-Constant γ

Convergence under overparametrization

Non-overparametrized f(W)

- Gradient Flow: $\dot{W} = -\nabla f(W)$
- Global PL-Inequality $\|\nabla f(W)\|_F^2 \ge \gamma(f(W) f^*)$
- f converges **exponentially** to f^* regardless of initialization
- Rate = PL-Constant γ

Overparametrized

$$\mathcal{L}\left(W_{1},\cdots,W_{L}\right)=f(W_{1}W_{2}\cdots W_{L})$$

- Gradient Flow: $\dot{W}_l = -\partial \mathcal{L}/\partial W_l$
- Local (Weight-dependent) PL-inequality??
- \mathcal{L} converges **exponentially** to \mathcal{L}^* under **proper initialization**
- $Rate \ge \gamma \sqrt{(Imbalance)^2 + 4(Margin)^2}$

Outline

Problem Settings

• Warm-up Example

Convergence Analysis for Multi-layer Linear Model

Convergence Rate Bound

Conclusion

Warm-up Example: Scalar dynamics

- f(w) is a function of scalar $w \in \mathbb{R}$
- PL-inequality

$$|f'(w)|^2 \ge \gamma(f(w) - f^*), \quad \forall w$$

• Simplest overparameterization $w \rightarrow uv$

$$\mathcal{L}\left(u,v\right) = f(uv)$$

Scalar Dynamics: Imbalance

Gradient flow induces conservation law

$$\dot{u} = -f'(uv)v$$

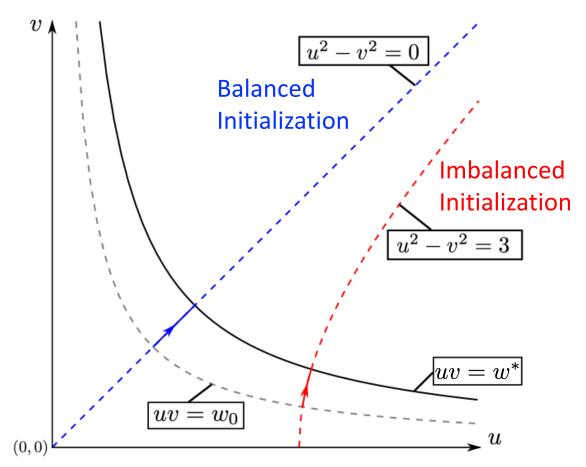
$$\dot{v} = -f'(uv)u$$

$$\Rightarrow$$
 $d\coloneqq u^2-v^2$, $\dot{d}\equiv 0$

- imbalance $d \coloneqq u^2 v^2$ is time-invariant
- $\mathcal{L}(u,v) = |y uv|^2$
- Conservation law arises due to scaling symmetry

$$u \to su$$
, $v \to \frac{v}{s}$

(Noether's Theorem connects symmetry to conservation law)



Scalar Dynamics: Weight-dependent PL inequality

- Gradient flow on $\mathcal{L}(u,v)=f(uv)$ $\dot{u}=-f'(uv)v, \qquad \dot{v}=-f'(uv)u$
- $\|\nabla \mathcal{L}\|_F^2 = |f'(uv)|^2 (u^2 + v^2)$

PL-inequality $|f'|^2 \ge \gamma(f - f^*)$

- $\|\nabla \mathcal{L}(u,v)\|_F^2 \ge \gamma (u^2 + v^2) (\mathcal{L}(u,v) \mathcal{L}^*)$ (weight-dependent PL-inequality)
- Given initialization u(0), v(0), find a lower bound for $u^2(t) + v^2(t)$

Scalar Dynamics: Rate Bound

•
$$\|\nabla \mathcal{L}\|_F^2 \ge \gamma (u^2 + v^2)(\mathcal{L} - \mathcal{L}^*)$$

• $\|\nabla \mathcal{L}\|_F^2 \ge \gamma \sqrt{d^2 + 4(uv)^2} (\mathcal{L} - \mathcal{L}^*)$

Express
$$u^2$$
, v^2 by imbalance $d \coloneqq u^2 - v^2$ and product uv

$$u^{2} = \frac{d + \sqrt{d^{2} + 4(uv)^{2}}}{2}$$

$$v^{2} = \frac{-d + \sqrt{d^{2} + 4(uv)^{2}}}{2}$$

Scalar Dynamics: Rate Bound

•
$$\|\nabla \mathcal{L}\|_F^2 \ge \gamma (u^2 + v^2)(\mathcal{L} - \mathcal{L}^*)$$

•
$$\|\nabla \mathcal{L}\|_F^2 \ge \gamma \sqrt{d^2 + 4(uv)^2} (\mathcal{L} - \mathcal{L}^*)$$

- f is μ -strongly convex, and K-smooth
- Loss \mathcal{L} is non-increasing

imbalance
$$d$$
 is time invariant $|d(t)| = |d(0)|$ $= Imbalance$

A lower bound on product *uv*

$$|u(t)v(t)| \ge \left[|w^*| - \sqrt{K/\mu} |w^* - u(0)v(0)|\right]_+$$

$$= Margin$$

$$(u^{2} + v^{2}) = \gamma \sqrt{(Imbalance)^{2} + 4(Product)^{2}} \ge \gamma \sqrt{(Imbalance)^{2} + 4(Margin)^{2}}$$

Scalar Dynamics: Summary

Local (Weight-dependent) PL-inequality

$$\|\nabla \mathcal{L}\|_F^2 \ge \gamma (u^2 + v^2)(\mathcal{L} - \mathcal{L}^*)$$

"Weight" to imbalance and product

$$(u^2 + v^2) = \sqrt{d^2 + 4(uv)^2}$$

Control imbalance and product by initialization

- Imbalance is time invariant
- $Product \geq Margin$

Initialization-dependent PL-inequality → **Exponential Convergence**

$$\|\nabla \mathcal{L}\|_F^2 \ge \gamma \sqrt{(Imbalance)^2 + 4(Margin)^2} (\mathcal{L} - \mathcal{L}^*)$$

(Grönwall)

$$\Rightarrow (\mathcal{L}(t) - \mathcal{L}^*) \le \exp\left(-\gamma\sqrt{(Imbalance)^2 + 4(Margin)^2}t\right)(\mathcal{L}(0) - \mathcal{L}^*)$$

Outline

Problem Settings

Warm-up Example

Convergence Analysis for Multi-layer Linear Model

Convergence Rate Bound

Conclusion

To General Case

Warm-up Example: f(uv)

General Case: $f(W_1W_2\cdots W_L)$

Imbalance

$$d := u^2 - v^2$$

$$\left\{ D_l \coloneqq W_l^T W_l - W_{l+1} W_{l+1}^T \right\}_{l=1}^{L-1}$$

Margin

$$\left[|w^*| - \sqrt{K/\mu} |w^* - u(0)v(0)| \right]_+$$

$$\left[\sigma_{\min}(W^*) - \sqrt{K/\mu} \|W^* - W(0)\|_{F}\right]_{+}$$

Local PL-ineq

$$\|\nabla \mathcal{L}\|_F^2 \ge \gamma (u^2 + v^2)(\mathcal{L} - \mathcal{L}^*)$$

$$\|\nabla \mathcal{L}\|_F^2 \ge \gamma (u^2 + v^2)(\mathcal{L} - \mathcal{L}^*) \qquad \|\nabla \mathcal{L}\|_F^2 \ge \gamma \cdot \lambda_{\min} \left(\mathcal{T}_{\{W_l\}_{l=1}^L}\right) (\mathcal{L} - \mathcal{L}^*)$$

and product

$$(u^2 + v^2) = \sqrt{d^2 + 4(uv)^2}$$

Weight to imbalance and product
$$(u^2 + v^2) = \sqrt{d^2 + 4(uv)^2}$$
 $\lambda_{\min} \left(\mathcal{T}_{\{W_l\}_{l=1}^L} \right) \ge \alpha(Imbalance, \sigma_{\min}(W))$

Control imbalance and product by initialization

Exponential Convergence:

 $Rate \ge \gamma \alpha(Imbalance, Margin)$

Warm-up Example: f(uv)

General Case: $f(W_1W_2\cdots W_L)$

$$d := u^2 - v^2$$

$$\left\{ D_l \coloneqq W_l^T W_l - W_{l+1} W_{l+1}^T \right\}_{l=1}^{L-1}$$

Margin

Imbalance

$$|w^*| - \sqrt{K/\mu} |w^* - u(0)v(0)|$$

$$\left[|w^*| - \sqrt{K/\mu} |w^* - u(0)v(0)| \right]_+ \left[\sigma_{min}(W^*) - \sqrt{K/\mu} ||W^* - W(0)||_F \right]_+$$

Local PL-ineq

$$\|\nabla \mathcal{L}\|_F^2 \ge \gamma (u^2 + v^2)(\mathcal{L} - \mathcal{L}^*)$$

$$\|\nabla \mathcal{L}\|_F^2 \ge \gamma (u^2 + v^2)(\mathcal{L} - \mathcal{L}^*) \qquad \|\nabla \mathcal{L}\|_F^2 \ge \gamma \cdot \lambda_{\min} \left(\mathcal{T}_{\{W_l\}_{l=1}^L}\right) (\mathcal{L} - \mathcal{L}^*)$$

and product

$$(u^2 + v^2) = \sqrt{d^2 + 4(uv)^2}$$

Weight to imbalance and product
$$(u^2 + v^2) = \sqrt{d^2 + 4(uv)^2} \qquad \lambda_{\min} \left(\mathcal{T}_{\{W_l\}_{l=1}^L} \right) \geq \alpha(Imbalance, \sigma_{\min}(W))$$

Control imbalance and product by initialization

Exponential Convergence:

 $Rate \ge \gamma \alpha(Imbalance, Margin)$

- $\mathcal{L}(W_1, \dots, W_L) = f(W_1 W_2 \dots W_L)$
- Gradient Flow: $\dot{W}_I = -\partial \mathcal{L}/\partial W_I$
- Imbalance matrices D_1 , D_2 , \cdots , D_{L-1}

$$(n \times h_1) \ (h_1 \times h_2)$$

$$W = W_1 \cdot W_2 \cdot W_3 \cdot \cdots \cdot W_{L-1} \cdot W_L$$

Symmetry: $W_1 \rightarrow W_1 S$, $W_2 \rightarrow S^{-1} W_2$

Conservation law
$$D_1 = W_1^T W_1 - W_2 W_2^T, \qquad \dot{D}_1 \equiv 0$$

- $\mathcal{L}(W_1, \dots, W_L) = f(W_1 W_2 \dots W_L)$
- Gradient Flow: $\dot{W}_l = -\partial \mathcal{L}/\partial W_l$
- Imbalance matrices D_1 , D_2 , \cdots , D_{L-1}

$$(h_1 \times h_2) (h_2 \times h_3)$$

$$W = W_1 \cdot W_2 \cdot W_3 \cdots W_{L-1} \cdot W_L$$

$$D_2 = W_2^T W_2 - W_3 W_3^T$$

- $\mathcal{L}(W_1, \dots, W_L) = f(W_1 W_2 \dots W_L)$
- Gradient Flow: $\dot{W}_l = -\partial \mathcal{L}/\partial W_l$
- Imbalance matrices $D_1, D_2, \cdots, D_{L-1}$

$$(h_{L-2} \times h_{L-1}) (h_{L-1} \times m)$$

$$W = W_1 \cdot W_2 \cdot W_3 \cdots W_{L-1} \cdot W_L$$

$$D_{L-1} = W_{L-1}^T W_{L-1} - W_L W_L^T$$

- $\mathcal{L}(W_1, \dots, W_L) = f(W_1 W_2 \dots W_L)$
- Gradient Flow: $\dot{W}_l = -\partial \mathcal{L}/\partial W_l$
- Imbalance matrices $\left\{D_l\coloneqq W_l^TW_l-W_{l+1}W_{l+1}^T\right\}_{l=1}^{L-1}$
- Imbalance matrices are time-invariant under GF

$$\dot{D}_l \equiv 0, \qquad l = 1, \cdots, L-1$$

Warm-up Example: f(uv)

General Case: $f(W_1W_2 \cdots W_L)$

Imbalance

$$d := u^2 - v^2$$

$$\left\{ D_l \coloneqq W_l^T W_l - W_{l+1} W_{l+1}^T \right\}_{l=1}^{L-1}$$

Margin

$$[|w^*| - \sqrt{K/\mu} |w^* - u(0)v(0)|]_+$$

$$\left[|w^*| - \sqrt{K/\mu} |w^* - u(0)v(0)| \right]_+ \left[\sigma_{min}(W^*) - \sqrt{K/\mu} ||W^* - W(0)||_F \right]_+$$

Local PL-ineq

$$\|\nabla \mathcal{L}\|_F^2 \ge \gamma (u^2 + v^2)(\mathcal{L} - \mathcal{L}^*)$$

$$\|\nabla \mathcal{L}\|_F^2 \ge \gamma \cdot \lambda_{\min} \left(\mathcal{T}_{\{W_l\}_{l=1}^L} \right) (\mathcal{L} - \mathcal{L}^*)$$

and product

$$(u^2 + v^2) = \sqrt{d^2 + 4(uv)^2}$$

Weight to imbalance and product
$$(u^2 + v^2) = \sqrt{d^2 + 4(uv)^2} \qquad \lambda_{\min} \left(\mathcal{T}_{\{W_l\}_{l=1}^L} \right) \geq \alpha(Imbalance, \sigma_{\min}(W))$$

Control imbalance and product by initialization

Exponential Convergence:

 $Rate \ge \gamma \alpha(Imbalance, Margin)$

General Convergence Analysis: PL-inequality

- $\mathcal{L}(W_1, \dots, W_L) = f(W_1 W_2 \dots W_L)$
- Gradient Flow: $\dot{W}_I = -\partial \mathcal{L}/\partial W_I$
- $\|\nabla \mathcal{L}(\{W_l\}_{l=1}^L)\|_E^2 = \langle \mathcal{T}_{\{W_l\}_{l=1}^L} \nabla f(W), \nabla f(W) \rangle_E$

Recall warm-up example: $||VL||_F^2$ = $|f'(uv)|^2(u^2 + v^2)$ = $\langle (u^2 + v^2)f', f' \rangle$.

```
\mathcal{T}_{\{W_l\}_{l=1}^L} is a positive semi-definite operator on \mathbb{R}^{n 	imes m}
```

$$\mathcal{T}_{\{W_1,W_2\}}E = W_1W_1^TE + EW_2^TW_2$$

• $\mathcal{L} = f(W_1 W_2)$, $\mathcal{T}_{\{W_1, W_2\}} E = W_1 W_1^T E + E W_2^T W_2$ • $\mathcal{L} = f(W_1 W_2 W_3),$ $\mathcal{T}_{\{W_1, W_2, W_3\}} E = W_1 W_2 W_2^T W_1^T E + W_1 W_1^T E W_3^T W_3 + E W_3^T W_2^T W_2 W_3$

General Convergence Analysis: PL-inequality

• $\mathcal{L}(W_1, \dots, W_L) = f(W_1 W_2 \dots W_L)$, Gradient Flow: $\dot{W}_l = -\partial \mathcal{L}/\partial W_l$

$$\begin{aligned} \bullet \quad \left\| \nabla \mathcal{L}(\{W_l\}_{l=1}^L) \right\|_F^2 &= \left\langle \mathcal{T}_{\{W_l\}_{l=1}^L} \nabla f(W), \quad \nabla f(W) \right\rangle_F \\ &\geq \lambda_{\min} \left(\mathcal{T}_{\{W_l\}_{l=1}^L} \right) \|\nabla f(W)\|_F^2 \\ &\geq \gamma \lambda_{\min} \left(\mathcal{T}_{\{W_l\}_{l=1}^L} \right) (\mathcal{L} - \mathcal{L}^*) \end{aligned}$$

Min-max theorem

 $|\mathsf{PL}: \|\nabla f\|_F^2 \ge \gamma (f - f^*)$

Local (weight-dependent) PL-inequality

$$\left\|\nabla \mathcal{L}(\{W_l\}_{l=1}^L)\right\|_F^2 \ge \gamma \lambda_{\min}\left(\mathcal{T}_{\{W_l\}_{l=1}^L}\right) (\mathcal{L} - \mathcal{L}^*)$$

Warm-up Example: f(uv)

General Case: $f(W_1W_2 \cdots W_L)$

$$d := u^2 - v^2$$

$$\left\{ D_l \coloneqq W_l^T W_l - W_{l+1} W_{l+1}^T \right\}_{l=1}^{L-1}$$

Margin

$$[|w^*| - \sqrt{K/\mu} |w^* - u(0)v(0)|]_+$$

$$\left[|w^*| - \sqrt{K/\mu} |w^* - u(0)v(0)| \right]_+ \left[\sigma_{min}(W^*) - \sqrt{K/\mu} ||W^* - W(0)||_F \right]_+$$

Local PL-ineq

$$\|\nabla \mathcal{L}\|_F^2 \ge \gamma (u^2 + v^2)(\mathcal{L} - \mathcal{L}^*)$$

$$\|\nabla \mathcal{L}\|_F^2 \ge \gamma (u^2 + v^2)(\mathcal{L} - \mathcal{L}^*) \qquad \|\nabla \mathcal{L}\|_F^2 \ge \gamma \cdot \lambda_{\min} \left(\mathcal{T}_{\{W_l\}_{l=1}^L}\right) (\mathcal{L} - \mathcal{L}^*)$$

$$(u^2 + v^2) = \sqrt{d^2 + 4(uv)^2}$$

Weight to imbalance and product
$$(u^2 + v^2) = \sqrt{d^2 + 4(uv)^2}$$
 $\lambda_{\min} \left(\mathcal{T}_{\{W_l\}_{l=1}^L} \right) \ge \alpha(Imbalance, \sigma_{\min}(W))$

Control imbalance and product by initialization

Exponential Convergence:

 $Rate \ge \gamma \alpha(Imbalance, Margin)$

Lower Bound on Convergence Rate: Summary

Linear model	Rate Bound	Expression
Multi-layer Scalar weights $f(w_1w_2\cdots w_L)$	$\alpha(\{d_l\}_{l=1}^{L-1}, \mathbf{w})$	$\sqrt{\left(\prod \frac{Cumulative}{imbalance}\right)^2 + (Lw^{2-2/L})^2}$
Two-layer Matrix weights $f(W_1W_2)$	$\alpha(D_1, \sigma_{\min}(W))$	$-Spread + \sqrt{(Spread + Gap)^2 + 4\sigma_{\min}^2(W)}$
Three-layer Matrix weights $f(W_1W_2W_3)$	$\alpha(D_1, D_2)$	A complicated expression $ \approx \sum \prod_{imbalance}^{Cumulative} $

Lower Bound on Convergence Rate: Summary

Linear model	Rate Bound	Expression
Multi-layer Scalar weights $f(w_1w_2\cdots w_L)$	$\alpha(\{d_l\}_{l=1}^{L-1}, \mathbf{w})$	$\sqrt{\left(\prod \frac{Cumulative}{imbalance}\right)^2 + (Lw^{2-2/L})^2}$
Two-layer Matrix weights $f(W_1W_2)$	$\alpha(D_1, \sigma_{\min}(W))$	$-Spread + \sqrt{(Spread + Gap)^2 + 4\sigma_{\min}^2(W)}$
Three-layer Matrix weights $f(W_1W_2W_3)$	$\alpha(D_1, D_2)$	A complicated expression $ \approx \sum \prod Cumulative \\ imbalance $

Convergence under overparametrization: Summary

Non-overparametrized f(W)

- Gradient Flow: $\dot{W} = -\nabla f(W)$
- Global PL-Inequality $\|\nabla f(W)\|_F^2 \ge \gamma(f(W) f^*)$
- f converges **exponentially** to f^* regardless of initialization
- Rate = PL-Constant γ

Overparametrized

$$L(W_1, \cdots, W_L) = f(W_1 W_2 \cdots W_L)$$

- Gradient Flow: $\dot{W}_l = -\partial L/\partial W_l$
- Local (Weight-dependent) PL-inequality

$$\left\|\nabla \mathcal{L}(\{W_l\}_{l=1}^L)\right\|_F^2 \leq \gamma \cdot \lambda_{\min}\left(\mathcal{T}_{\{W_l\}_{l=1}^L}\right) (\mathcal{L} - \mathcal{L}^*)$$

- \mathcal{L} converges **exponentially** to \mathcal{L}^* under **proper initialization**
- $Rate \ge \gamma \alpha(Imbalance, Margin)$

Outline

Problem Settings

Warm-up Example

Meta-proof for Convergence

Convergence Rate Bound

$$\lambda_{\min}\left(\mathcal{T}_{\{W_l\}_{l=1}^L}\right) \geq \alpha(Imbalance, \sigma_{\min}(W))$$

Conclusion

Lower Bound on Convergence Rate: Overview

We want a lower bound that depends on both imbalance and product

$$\lambda_{\min}\left(\mathcal{T}_{\{W_l\}_{l=1}^L}\right) \ge \alpha(\{D_l\}_{l=1}^{L-1}, \sigma_{\min}(W))$$

• The (arguably) optimal bound is given by

(*)
$$\min_{\{W_l\}_{l=1}^L} \lambda_{\min} \left(\mathcal{T}_{\{W_l\}_{l=1}^L} \right)$$

s.t. $W_l^T W_l - W_{l+1} W_{l+1}^T = D_l$, $l = 1, \dots, L-1$
 $W_1 W_2 \cdots W_L = W$

We will compare our bound to the optimal value of (*)

Lower Bound on Convergence Rate

Linear model	Rate Bound	Expression	
Multi-layer Scalar weights $f(w_1w_2\cdots w_L)$	$\alpha(\{d_l\}_{l=1}^{L-1}, \mathbf{w})$	$\sqrt{\left(\prod \frac{Cumulative}{imbalance}\right)^2 + (Lw^{2-2/L})^2}$	
Two-layer Matrix weights $f(W_1W_2)$	$\alpha(D_1, \sigma_{\min}(W))$	$-Spread + \sqrt{(Spread + Gap)^2 + 4\sigma_{\min}^2(W)}$	
Three-layer Matrix weights $f(W_1W_2W_3)$	$\alpha(D_1, D_2)$	A complicated expression $ \approx \sum \prod_{imbalance}^{Cumulative} $	

Multi-layer Scalar Networks

- f(w) is a function of scalar $w \in \mathbb{R}$
- Multi-layer scalar networks

$$f(w_1w_2\cdots w_L), \qquad w_l\in\mathbb{R}, l=1,\cdots L$$

Imbalance

$$d_l \coloneqq w_l^2 - w_{l+1}^2, \qquad l = 1, \dots L - 1$$

- Analysis for scalar networks arises when studying general matrix model
 - under specific initialization (spectral initialization)
 - with additional network structure (diagonal linear networks)

Multi-layer Scalar Networks: Formulation

We want a lower bound that depends on both imbalance and product

$$\lambda_{\min}\left(\mathcal{T}_{\{w_l\}_{l=1}^L}\right) \ge \alpha(\{d_l\}_{l=1}^{L-1}, \mathbf{w})$$

Ideally, we want to solve

$$\min_{\{w_l\}_{l=1}^L} \lambda_{\min} \left(\mathcal{T}_{\{w_l\}_{l=1}^L} \right) = \sum_{l=1}^L \prod_{i \neq l} w_i^2 = \sum_{l=1}^L \frac{w^2}{w_l^2}$$

$$s. t. \quad w_l^2 - w_{l+1}^2 = d_l, \ l = 1, \dots, L-1$$

$$w_1 w_2 \cdots w_L = w$$

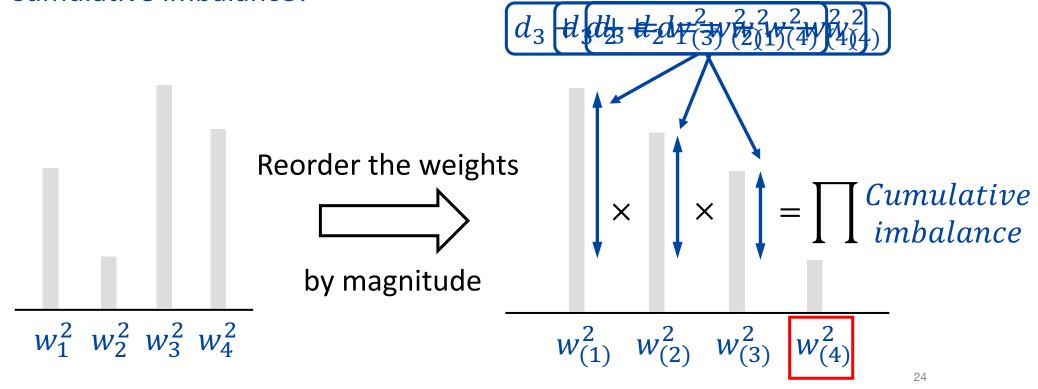
- Only isolated points in the feasible set
- All feasible points have the same objective value $\alpha^*(\{d_l\}_{l=1}^{L-1}, w)$
- $\alpha^*(\{d_l\}_{l=1}^{L-1}, w)$ has **no closed-form expression** in general (need to solve an L-th order polynomial)

Multi-layer Scalar Networks: Rate Bound

• $\alpha^*(\{d_l\}_{l=1}^{L-1}, w)$ has **no closed-form expression** in general

Proposition 1.
$$\alpha^*(\{d_l\}_{l=1}^{L-1}, \mathbf{w}) \ge \sqrt{\left(\prod_{imbalance}^{Cumulative}\right)^2 + (L\mathbf{w}^{2-2/L})^2}$$

Cumulative imbalance?

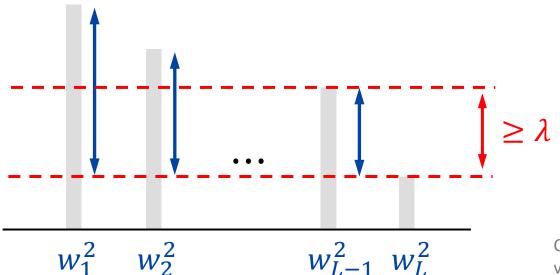


Multi-layer Scalar Networks: Effect of Imbalance

• $\alpha^*(\{d_l\}_{l=1}^{L-1}, w)$ has **no closed-form expression** in general

Proposition 1.
$$\alpha^*(\{d_l\}_{l=1}^{L-1}, \mathbf{w}) \ge \sqrt{\left(\prod_{imbalance}^{Cumulative}\right)^2 + (L\mathbf{w}^{2-2/L})^2}$$

Effect of imbalance in deep networks



$$\sqrt{(\lambda^{L-1})^2 + (Lw^{2-2/L})^2}$$

[Yun et al. 20] derived rate bound λ^{L-1} (w.o. product)

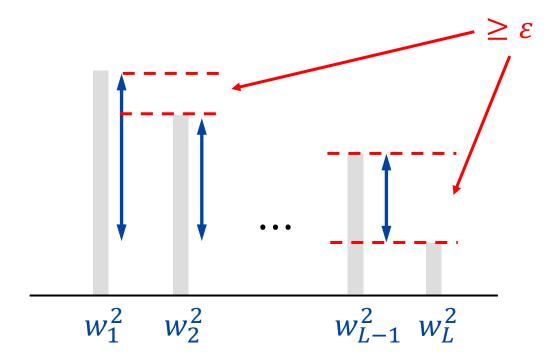
Chulhee Yun, Shankar Krishnan, and Hossein Mobahi. A unifying view on implicit bias in training linear neural networks. ICLR 2020

Multi-layer Scalar Networks: Effect of Imbalance

• $\alpha^*(\{d_l\}_{l=1}^{L-1}, w)$ has **no closed-form expression** in general

Proposition 1.
$$\alpha^*(\{d_l\}_{l=1}^{L-1}, \mathbf{w}) \ge \sqrt{\left(\prod_{imbalance}^{Cumulative}\right)^2 + (L\mathbf{w}^{2-2/L})^2}$$

Effect of imbalance in deep networks



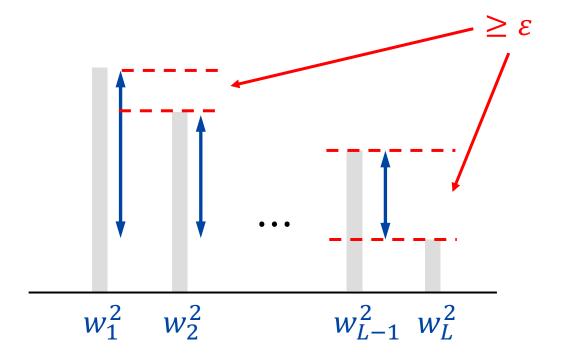
$$\sqrt{(\varepsilon^{L-1}(L-1)!)^2 + (Lw^{2-2/L})^2}$$

Multi-layer Scalar Networks: Effect of Imbalance

• $\alpha^*(\{d_l\}_{l=1}^{L-1}, w)$ has **no closed-form expression** in general

Proposition 1.
$$\alpha^*(\{d_l\}_{l=1}^{L-1}, w) \ge \sqrt{\left(\prod_{imbalance}^{Cumulative}\right)^2 + (Lw^{2-2/L})^2}$$

Effect of imbalance in deep networks



- Imbalanced initialization could accelerate convergence significantly for deep networks (For gradient flow!)
- In practice, this is more related to exploding gradient

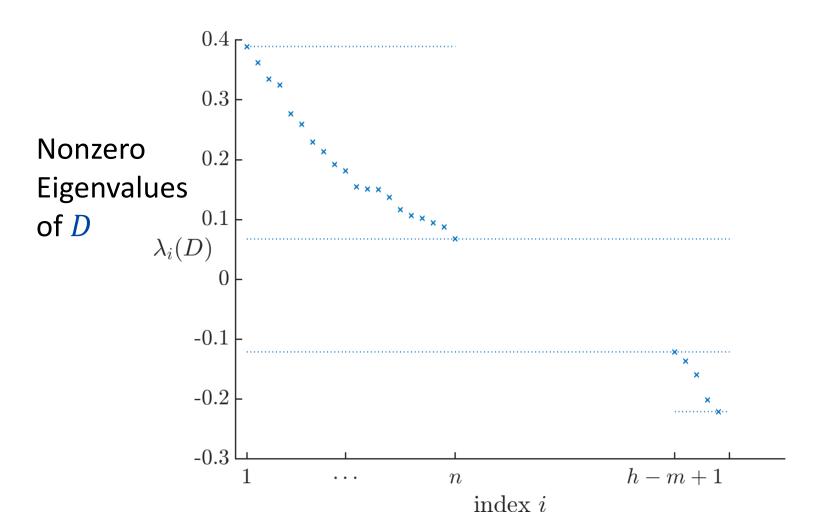
Lower Bound on Convergence Rate

Linear model	Rate Bound	Expression	
Multi-layer Scalar weights $f(w_1w_2\cdots w_L)$	$\alpha(\{d_l\}_{l=1}^{L-1}, w)$	$\left(\prod_{imbalance}^{Cumulative}\right)^{2} + (Lw^{2-2/L})^{2}$	
Two-layer Matrix weights $f(W_1W_2)$	$\alpha(D_1, \sigma_{\min}(W))$	$-Spread + \sqrt{(Spread + Gap)^2 + 4\sigma_{\min}^2(W)}$	
Three-layer Matrix weights $f(W_1W_2W_3)$	$\alpha(D_1, D_2)$	A complicated expression $ \approx \sum \prod_{imbalance}^{Cumulative} $	

https://arxiv.org/abs/2105.06351

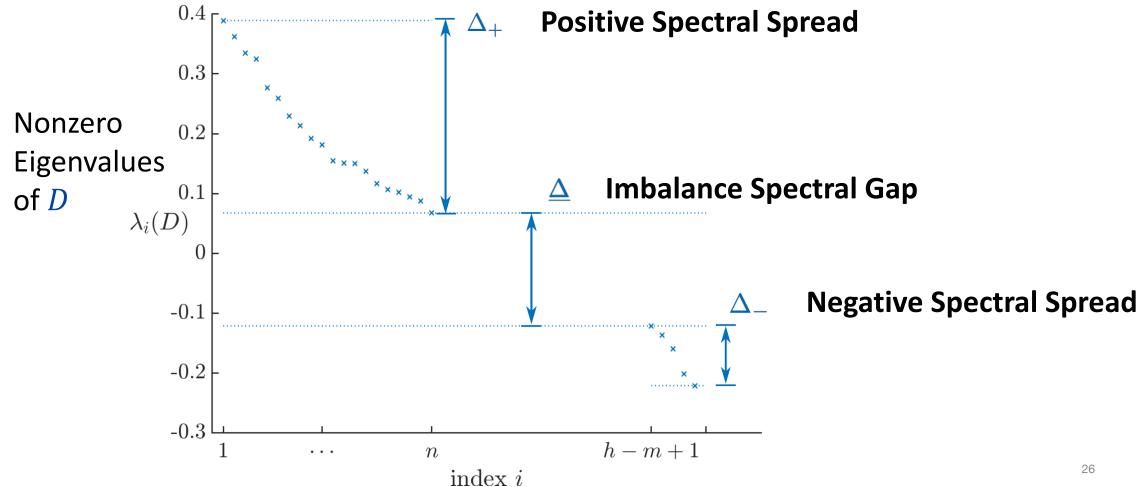
Imbalance quantities

- $\mathcal{L} = f(W_1 W_2), \quad (W_1 \in \mathbb{R}^{n \times h}, W_2 \in \mathbb{R}^{h \times m})$
- Imbalance $D_1 = W_1^T W_1 W_2 W_2^T := D$



Imbalance quantities

- $\mathcal{L} = f(W_1 W_2), \quad (W_1 \in \mathbb{R}^{n \times h}, W_2 \in \mathbb{R}^{h \times m})$
- Imbalance $D_1 = W_1^T W_1 W_2 W_2^T := D$



Two-layer Linear Networks

We want a lower bound that depends on both imbalance and product

$$\lambda_{\min}(\mathcal{T}_{\{W_1,W_2\}}) \ge \alpha(D_1, \sigma_{\min}(W))$$

and

$$\mathcal{T}_{\{W_1,W_2\}}E = W_1W_1^TE + EW_2^TW_2$$

Ideally, we want to find

$$\alpha^*(D_1, W) = \min_{\{W_1, W_2\}} \lambda_{\min}(T_{\{W_1, W_2\}}) = \lambda_{\min}(W_1 W_1^T) + \lambda_{\min}(W_2^T W_2)$$
s.t. $W_1^T W_1 - W_2 W_2^T = D_1$

$$W_1 W_2 = W$$

Two-layer Linear Networks: Rate Bound

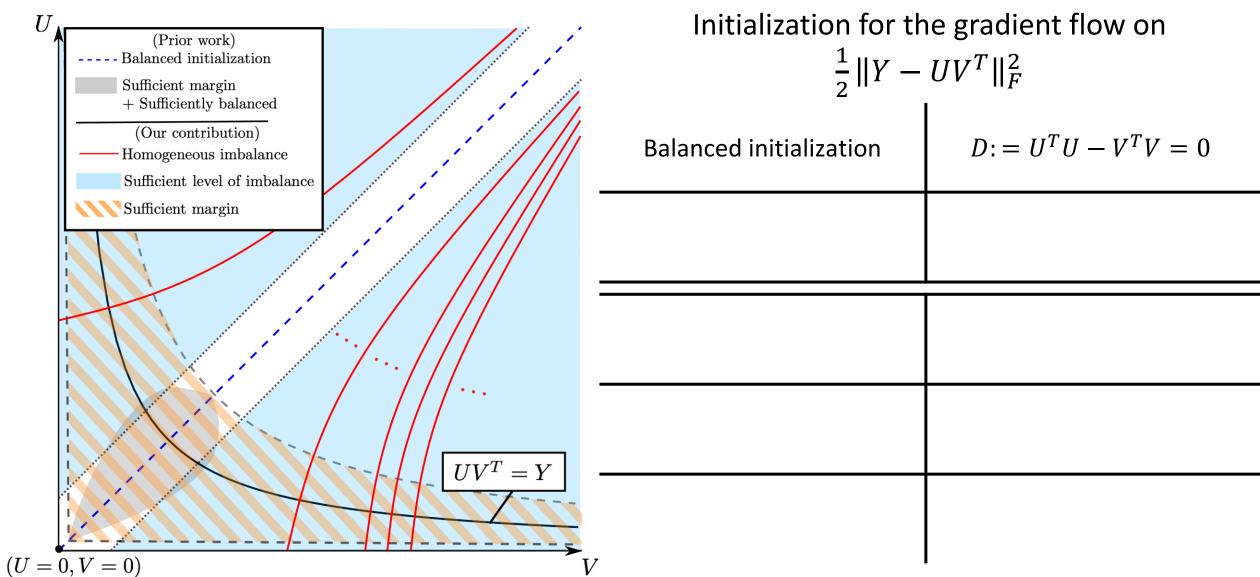
Proposition 2.

$$\alpha^*(D_1, W) \ge -\Delta_+ + \sqrt{\left(\Delta_+ + \underline{\Delta}\right)^2 + 4\sigma_m^2(W) - \Delta_- + \sqrt{\left(\Delta_- + \underline{\Delta}\right)^2 + 4\sigma_n^2(W)}}$$

Equality holds when $n \neq m$

•
$$-Spread + \sqrt{(Spread + Gap)^2 + 4\sigma_{\min}^2(W)}$$

Two-layer Linear Networks: Summary



Lower Bound on Convergence Rate

Linear model	Rate Bound	Expression	
Multi-layer Scalar weights $f(w_1w_2\cdots w_L)$	$\alpha(\{d_l\}_{l=1}^{L-1}, w)$	$\left(\prod accumulative \atop imbalance\right)^2 + (Lw^{2-2/L})^2$	
Two-layer Matrix weights $f(W_1W_2)$	$\alpha(D_1, \sigma_{\min}(W))$	$-spread + \sqrt{(gap + spread)^2 + 4\sigma_{\min}^2(W)}$	
Three-layer Matrix weights $f(W_1W_2W_3)$	$\alpha(D_1, D_2)$	A complicated expression $ \approx \sum \prod_{imbalance}^{Cumulative} $	

Three-layer Linear Model

• $\mathcal{L} = f(W_1 W_2 W_3)$. Find a lower bound on $\lambda_{\min}(\mathcal{T}_{\{W_1, W_2, W_3\}})$

$$\mathcal{T}_{\{W_1, W_2, W_3\}} E = W_1 W_2 W_2^T W_1^T E + W_1 W_1^T E W_3^T W_3 + E W_3^T W_2^T W_2 W_3$$

• When $w=W_1W_2W_3$ is a **scalar**, so is $\mathcal{T}_{\{W_1,W_2,W_3\}}$

$$\lambda_{\min}(\mathcal{T}_{\{W_1,W_2,W_3\}}) = (W_1 W_2 W_2^T W_1^T) + (W_1 W_1^T) (W_3^T W_3) + (W_3^T W_2^T W_2 W_3)$$

- When $W = W_1 W_2 W_3$ is a **matrix**,
 - no closed-form expression for $\lambda_{\min}(\mathcal{T}_{\{W_1,W_2,W_3\}})$
 - $\lambda_{\min}(\mathcal{T}_{\{W_1,W_2,W_3\}})$ $\geq \lambda_{\min}(W_1W_2W_2^TW_1^T) + \lambda_{\min}(W_1W_1^T) \lambda_{\min}(W_3^TW_3) + \lambda_{\min}(W_3^TW_2^TW_2W_3)$

Three-layer Linear Model: Formulation

- Our result: Find a lower bound on $\lambda_{\min}(\mathcal{T}_{\{W_1,W_2,W_3\}})$ considering only the effect of imbalance
- Ideally, we may want to solve

$$\min_{W_1, W_2, W_3} \lambda_{\min} \left(\mathcal{T}_{\{W_1, W_2, W_3\}} \right)$$
s. t. $W_1^T W_1 - W_2 W_2^T = D_1$

$$W_2^T W_2 - W_3 W_3^T = D_2$$

Technical difficulty: **no closed-form expression** for $\lambda_{\min}(\mathcal{T}_{\{W_1,W_2,W_3\}})$

- Our result: Find a lower bound on $\lambda_{\min}(\mathcal{T}_{\{W_1,W_2,W_3\}})$ considering only the effect of imbalance
- Instead, we solve

$$\min_{W_1,W_2,W_3} \lambda_{\min}(W_1W_2W_2^TW_1^T) + \lambda_{\min}(W_1W_1^T) \lambda_{\min}(W_3^TW_3) + \lambda_{\min}(W_3^TW_2^TW_2W_3)$$

$$s.t.W_1^TW_1 - W_2W_2^T = D_1$$

$$W_2^TW_2 - W_3W_3^T = D_2$$

The optimal value is

$$\alpha(D_1, D_2) = \frac{1}{2} \left(\Delta_{21}^{(2)} + \Delta_{21} \right) + \Delta_{21} \cdot \Delta_{23} + \frac{1}{2} \left(\Delta_{23}^{(2)} + \Delta_{23} \right)$$

• Δ_{21} , $\Delta_{21}^{(2)}$, Δ_{23} , $\Delta_{23}^{(2)}$ have complicated expressions

- Our result: Find a lower bound on $\lambda_{\min}(\mathcal{T}_{\{W_1,W_2,W_3\}})$ considering only the effect of imbalance
- Instead, we solve

$$\min_{W_1,W_2,W_3} \lambda_{\min}(W_1W_2W_2^TW_1^T) + \lambda_{\min}(W_1W_1^T) \lambda_{\min}(W_3^TW_3) + \lambda_{\min}(W_3^TW_2^TW_2W_3)$$

$$s.t. W_1^TW_1 - W_2W_2^T = D_1$$

$$W_2^TW_2 - W_3W_3^T = D_2$$

The optimal value is obtained by solving 4 optimization problems

$$\alpha(D_1, D_2) = \frac{1}{2} \left(\Delta_{21}^{(2)} + \Delta_{21} \right) + \Delta_{21} \cdot \Delta_{23} + \frac{1}{2} \left(\Delta_{23}^{(2)} + \Delta_{23} \right)$$

- Our result: Find a lower bound on $\lambda_{\min}(\mathcal{T}_{\{W_1,W_2,W_3\}})$ considering only the effect of imbalance
- Instead, we solve

$$\min_{W_1,W_2,W_3} \lambda_{\min}(W_1W_2W_2^TW_1^T) + \lambda_{\min}(W_1W_1^T) \lambda_{\min}(W_3^TW_3) + \lambda_{\min}(W_3^TW_2^TW_2W_3)$$

$$s.t. W_1^TW_1 - W_2W_2^T = D_1$$

$$W_2^TW_2 - W_3W_3^T = D_2$$

The optimal value is obtained by solving 4 optimization problems

$$\alpha(D_1, D_2) = \frac{1}{2} \left(\Delta_{21}^{(2)} + \Delta_{21} \right) + \Delta_{21} \cdot \Delta_{23} + \frac{1}{2} \left(\Delta_{23}^{(2)} + \Delta_{23} \right)$$

- Our result: Find a lower bound on $\lambda_{\min}(\mathcal{T}_{\{W_1,W_2,W_3\}})$ considering only the effect of imbalance
- Instead, we solve

$$\min_{W_1,W_2,W_3} \lambda_{\min}(W_1 W_2 W_2^T W_1^T) + \lambda_{\min}(W_1 W_1^T) \lambda_{\min}(W_3^T W_3) + \lambda_{\min}(W_3^T W_2^T W_2 W_3)$$

$$s.t. W_1^T W_1 - W_2 W_2^T = D_1$$

$$W_2^T W_2 - W_3 W_3^T = D_2$$

The optimal value is obtained by solving 4 optimization problems

$$\alpha(D_1, D_2) = \frac{1}{2} \left(\Delta_{21}^{(2)} + \Delta_{21} \right) + \Delta_{21} \cdot \Delta_{23} + \frac{1}{2} \left(\Delta_{23}^{(2)} + \Delta_{23} \right)$$

- Our result: Find a lower bound on $\lambda_{\min}(\mathcal{T}_{\{W_1,W_2,W_3\}})$ considering only the effect of imbalance
- Instead, we solve

$$\min_{W_1,W_2,W_3} \lambda_{\min}(W_1W_2W_2^TW_1^T) + \lambda_{\min}(W_1W_1^T) \lambda_{\min}(W_3^TW_3) + \lambda_{\min}(W_3^TW_2^TW_2W_3)$$

$$s.t. W_1^TW_1 - W_2W_2^T = D_1$$

$$W_2^TW_2 - W_3W_3^T = D_2$$

The optimal value is obtained by solving 4 optimization problems

$$\alpha(D_1, D_2) = \frac{1}{2} \left(\Delta_{21}^{(2)} + \Delta_{21} \right) + \Delta_{21} \cdot \Delta_{23} + \frac{1}{2} \left(\Delta_{23}^{(2)} + \Delta_{23} \right)$$

 Solving these optimization problems relies on novel eigenvalue bound based on generalized eigenvalue interlacing relation

Three-layer Linear Model: Cumulative imbalance

Our bound:

$$\alpha(D_1, D_2) = \frac{1}{2} \left(\Delta_{21}^{(2)} + \Delta_{21} \right) + \Delta_{21} \cdot \Delta_{23} + \frac{1}{2} \left(\Delta_{23}^{(2)} + \Delta_{23} \right)$$

Three-layer Linear Model: Cumulative imbalance

Consider the case

$$\begin{array}{ll} D_1 = W_1^T W_1 - W_2 W_2^T \ge 0 & \Longrightarrow W_1^T W_1 \ge W_2 W_2^T \\ D_2 = W_2^T W_2 - W_3 W_3^T \ge 0 & \Longrightarrow W_2^T W_2 \ge W_3 W_3^T \end{array}$$

Our bound (Simplified Expression):

$$\alpha(D_1, D_2) = \boxed{\frac{1}{2} \left(\Delta_{21}^{(2)} + \Delta_{21} \right)} + \Delta_{21} \cdot \Delta_{23} + \boxed{\frac{1}{2} \left(\Delta_{23}^{(2)} + \Delta_{23} \right)} = 0$$

Three-layer Linear Model: Cumulative imbalance

Our bound:

$$\alpha(D_1, D_2) = \frac{1}{2} \left(\Delta_{21}^{(2)} + \Delta_{21} \right) + \Delta_{21} \cdot \Delta_{23} + \frac{1}{2} \left(\Delta_{23}^{(2)} + \Delta_{23} \right)$$

$$\approx \sum Cumulative_{imbalance}$$

- Each $\left(\prod \frac{Cumulative}{imbalance}\right)$ is associated with some positive semi-definite ordering on the weights
- We conjecture that similar bound can be derived for deep networks L > 3.

General Convergence Analysis: Rate Bound

- Local PL-inequality: $\left\|\nabla \mathcal{L}(\{W_l\}_{l=1}^L)\right\|_F^2 \ge \gamma \lambda_{\min}\left(\mathcal{T}_{\{W_l\}_{l=1}^L}\right) (\mathcal{L} \mathcal{L}^*)$
- Given initialization $\{W_l(0)\}_{l=1}^L$, find a lower bound on $\lambda_{\min}\left(\mathcal{T}_{\{W_l(t)\}_{l=1}^L}\right)$

Our bound: $\lambda_{\min} \left(\mathcal{T}_{\{W_l\}_{l=1}^L} \right) \ge \alpha \left(\{D_l\}_{l=1}^{L-1}, \sigma_{\min}(W) \right)$

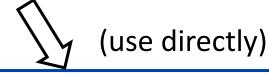
 α increasing function of $\sigma_{\min}(W)$

Consider the effect of imbalance only

$$\lambda_{\min} \left(\mathcal{T}_{\{W_l\}_{l=1}^L} \right) \ge \alpha(\{D_l\}_{l=1}^{L-1}, 0)$$

Consider balanced initialization

$$\lambda_{\min} \left(\mathcal{T}_{\{W_l\}_{l=1}^L} \right) \ge \alpha \left(0, \sigma_{\min}(W) \right) \\ \ge \alpha \left(0, margin \right)$$



$$\lambda_{\min}\left(\mathcal{T}_{\{W_l\}_{l=1}^L}\right) \geq \alpha\left(\{D_l\}_{l=1}^{L-1}, margin\right)$$

Exponential Convergence

"trajectory" PL-inequality: $\left\|\nabla\mathcal{L}(\{W_l\}_{l=1}^L)\right\|_F^2 \geq \gamma \alpha \left(\{D_l\}_{l=1}^{L-1}, margin\right) (\mathcal{L} - \mathcal{L}^*)$

General Convergence Analysis: Comparison

# of layers	$\alpha(\{D_l\}_{l=1}^{L-1}, 0)$	$\alpha(0, margin)$	$\alpha(\{D_l\}_{l=1}^{L-1}, margin)$
$(L \ge 2)$ Scalar weights	[Yun et al. 20]* Our work	[Saxes et al. 14] Our work	[Tarmoun et al. 21]* Our work
(L = 2) Matrix weights	Our work	[Arora et al. 18] Our work	[Tarmoun et al. 21]* Our work
(L > 2) Matrix weights	[Yun et al. 20]* Our work**	[Arora et al. 18]	None

*: with additional assumptions

**: three-layer networks

Our work: new bounds derived in our paper

Our work: automatically covered by our bound

Outline

Problem Settings

Warm-up Example

Meta-proof for Convergence

Convergence Rate Bound

Conclusion

Conclusion

We study the gradient flow on $\mathcal{L}(W_1, \dots, W_L) = f(W_1 W_2 \dots W_L)$:

$$Rate \ge \gamma \alpha(Imbalance, Margin)$$

Our analysis also works for classification task with exponential loss

$$\|\nabla f(W)\|_F \ge \gamma(f(W) - f^*) \Longrightarrow \mathcal{L}(t) = \mathcal{O}\left(\frac{1}{t}\right)$$

Future work:

- Gradient Descent (Ongoing work)
- Extension to nonlinear networks (ReLU net, etc.)

Thank you!

Reference

H Min, S Tarmoun, R Vidal, and E Mallada. "On the explicit role of initialization on the convergence and implicit bias of overparametrized linear networks." ICML 2021.

A Saxe, J Mcclelland, and S Ganguli. "Exact solutions to the nonlinear dynamics of learning in deep linear neural network." ICLR 2014

G Gidel, F Bach, and S Lacoste-Julien. "Implicit regularization of discrete gradient dynamics in linear neural networks." NeurIPS 2019

S Arora, N Cohen, N Golowich, and W Hu. "A convergence analysis of gradient descent for deep linear neural networks." ICLR 2018

S Arora, N Cohen, and E Hazan. "On the optimization of deep networks: Implicit acceleration by overparameterization." ICML 2018

S Tarmoun, G França, B D Haeffele, and R Vidal. "Understanding the dynamics of gradient flow in overparameterized linear models." ICML 2021

S Du and W Hu. "Width provably matters in optimization for deep linear neural networks". ICML 2019

Z Li, Y Luo, and K Lyu. "Towards Resolving the Implicit Bias of Gradient Descent for Matrix Factorization: Greedy Low-Rank Learning." ICLR 2021

S Arora, S Du, W Hu, Z Li, R Salakhutdinov, and R Wang. "On exact computation with an infinitely wide neural net." NeurIPS 2019