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Introduction

* In deep learning, neural networks are typically overparametrized
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# of learned weights > # of training examples

= Highly underdetermined problem, many solutions

= Variants of gradient descent often find those with good generalization

* Question: What is the effect of overparameterization on the learning
dynamics of optimization algorithms?



Introduction

* Prior work suggests that in this overparametrized regime, specific initialization
may:
= Accelerate convergence (implicit acceleration)

= Promote generalization (implicit bias)

* Question: Are there general properties of initialization that benefit

convergence (this talk) and implicit bias?

* For overparametrized linear models, £ (W, -, W;): = f(W; W, --- W)

gradient flow, W, =—0L/0W,

the answer is YES!



Non-convex Optimization Landscape

* Loss function for neural network is

generally non-convex
Use proper

* The gradient flow/descent

" may get stuck at local minimum
(non-optimality)

" may take long time to escape some
saddle point
(slow convergence)

Infinitely many global optimal
solutions, how can GF/GD reach one

that generalizes well? (implicit bias)
[Min’21]

H Min, S Tarmoun, R Vidal, and E Mallada. “On the explicit role of initialization on the convergence and implicit bias of overparametrized linear networks.” ICML 2021.



Existing Analyses for Specific Initialization

* NTK Initialization [Jacot’18]; Large hidden layer width, random initialization

= Exponential convergence for GF

= “lazy regime”: rarely seen in practical networks [Chizat’19]

* Small initialization [Stoger’21]; All weight parameters are initialized close to zero

= |[nteresting studies on implicit bias: low-rank, sparse models

= Slow convergence (initialized close to origin, a stationary point)

Li’'21]: init.scale: a, # of iter.required: 0( . )

a(L—2)

A Jacot, F Gabriel, and C Hongler. Neural tangent kernel: Convergence and generalization in neural networks. NeurlPS 2018
L Chizat, E Oyallon, and F Bach. On lazy training in differentiable programming. NeurlPS 2019.
L)) R&SMHCMIM&&&SMptIOﬁlﬁ@nllnltbahz&ttﬁnctral learning: Optimization and generalization guarantees for

overparameterized low-rank matrix reconstruction. NeurlPS 2021.
J Li, TV Nguyen, C Hegde, and R K. W. Wong. Implicit sparse regularization: The impact of depth and early stopping. NeurIPS 2021.



Contribution

* Non-NTK, non-small initialization is mostly studied for linear networks

* Existing analyses for convergence under gradient flow 0 = —VL(0) require
strong assumptions on the initialization (balanced, or spectral)
Spectral Non-spectral
(with sufficient margin)
Balanced [Saxes’14] [Arora’18]
[Gidel’19]

Sufficiently [Tarmoun’21] Our work
Imbalanced [Yun’21]

A Saxe, J Mcclelland, and S Ganguli. “Exact solutions to the nonlinear dynamics of learning in deep linear neural network.” ICLR 2014

G Gidel, F Bach, and S Lacoste-Julien. “Implicit regularization of discrete gradient dynamics in linear neural networks.” NeurlPS 2019

S Arora, N Cohen, N Golowich, and W Hu. “A convergence analysis of gradient descent for deep linear neural networks.” ICLR 2018

S Tarmoun, G Franca, B D Haeffele, and R Vidal. “Understanding the dynamics of gradient flow in overparameterized linear models.” ICML 2021
C Yun, S Krishnan, and H Mobahi. A unifying view on implicit bias in training linear neural networks. ICLR2020
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Contribution

* Non-NTK, non-small initialization is mostly studied for linear networks

* Existing analyses for convergence under gradient flow 0 = —VL(0) require
strong assumptions on the initialization (balanced, or spectral)
Spectral Non-spectral
(with sufficient margin)
Balanced [Saxes’14] [Arora’18]
[Gidel’19]
Sufficiently [Tarmoun’21] Our work
Imbalanced [Yun’21]

* We show
[ Rate > (constant)+/ (Imbalance)2+4(Margin)? ]

* Exponential convergence via sufficient imbalance or sufficient margin
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Problem Setting

* Find solution that obtains

fr=_min_f(W)

WeRnXTn

! ‘ overparametrization

* Gradient flow on multi-layer linear model:
LWy, W)= f(W Wy - W)
Wl - — aL/an

 Examples:
= Asymmetric matrix factorization: f(W) = ||Y — W||4/2, W = W, W,
= Multi-layer linear networks: f(W) = ||Y — XW||4/2, W =W, W,--W,



Problem Setting: Overparametrized Linear Model

* Multi-layer linear model(network):
LWy, , W)= fF(W, W, --- W)

* Overparametrized:
W, e R-* [ =1,... L
ho =n,hy =m
min{hq, -, h;_1} = min{n, m}
= (" =/

yT = xTW1W2 WL ]

Output vector

y

T

Wi

Network
Weights

Input vector

m:hL

Output Dim

hL—l ‘\

Hidden layer
Width

Input Dim

n:ho



Problem Setting: Assumptions

* Find solution that obtains

fr=_min_f(W)

WeRnXTn

* Assumptions: Objective f

» satisfies Polyak-tojasiewicz(PL)-inequality:

IVFMIIF =2 y(FW) — f),

* is u-strongly convex, and K-smooth
(Non-essential for convergence of GF)

viw



Problem Setting: Assumptions

* Find solution that obtains

fr=_min_f(W)

WeRnxm

* Assumptions: Objective f

» satisfies Polyak-tojasiewicz(PL)-inequality:

IVFMIE zy(FW) =), YW
/

Examples A

Matrix factorization: F(W) = [|¥ — W||12:/2 Exteno!s to classification losses
_ _ 5 assuming general
Linear regression:  f(W) = |IY — XW||z/2 tojasiewicz inequality
\I\/Iatrix sensing: faw) = ﬁvzl(yi — (4;, W))2/




Convergence with PL-inequality

Non-overparametrized

* Gradient Flow: W = =Vf (W)

e Global PL-Inequality .
IVFMINIE = y(FW) — f)

c fW) =(VFW), W)r=—IIVFMIIE < —y(FW) =)



Convergence with PL-inequality

Non-overparametrized 4 ™\
Gronwall’s inequality
e Gradient Flow: W = V(W) x(t) = —yx(t)
= x(t) < exp(—yt) x(0)
N\ )
e Global PL-Inequality .
IVF M = y(FW) = ) JL

* f) < —y(fFW) - f*)

(by Gronwall’s inequality)
> (FW®) — £ < exp(—yt) (f(W(0)) — £7)

f(W(t)) converges to f* exponentially
* Rate: PL-Constant y



Convergence under overparametrization

Non-overparametrized Overparametrized
f(w) LWy, , W) = fF(Wi W5 - W)

Gradient Flow: W = —Vf(W) | * Gradient Flow: W, = —aL/dW,

e Global PL-Inequality * Local (Weight-dependent) PL-inequality
IVF M = y(FW) = ) 77
* f converges exponentially to * L converges exponentially to L™ under
[ regardless of initialization proper initialization

Rate = PL-Constant y * Rate = y+/(Imbalance)2+4(Margin)?

10
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Warm-up Example: Scalar dynamics

* f(w)isafunctionofscalarw € R

* PL-inequality

W2 =z y(fw) — ),

 Simplest overparameterization w — uv

L (u,v) = f(uv)

Yw

11



Scalar Dynamics: Imbalance

u=—f"(uv)v
v=—f"(uv)u

imbalance d := u? — v?
Is time-invariant
« L(w,v) = |y —uv|?

Conservation law arises due to
scaling symmetry

v
u-su vV-o-

S
(Noether’s Theorem connects

symmetry to conservation law)

Gradient flow induces conservation law

|

|

| w2 —v2=0|."
|

|

|

|

Balanced \' ,
: Initialization -’
: Imbalanced
\\ \ Initialization

Jlu?2 —v2 =3

(0,0)
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Scalar Dynamics: Weight-dependent PL inequality

* Gradient flow on L(u,v) = f(uv)
u=—f"(uv)v, v=—f"(uv)u

o IVLIIE = If (wv)|*(u? + v?)

[PL-inequaIity If'1> = v(f — f*)]

c VL@ WIE =2 y(w® + v*)(L(w,v) — L)
(weight-dependent PL-inequality)

e Given initialization 1(0), v(0), find a lower bound for u?(t) + v?(t)

13



Scalar Dynamics: Rate Bound

o |IVL|IE = y(u? + v?)(L — LY Express u?, v by
imbalance d = u? — v?
. |VL|IE = y\/dz + 4(uv)2(L — L) and product uv
2 d +/d? + 4(uv)?

2

2 —d + \/d22+ 4(uv)?

14



Scalar Dynamics: Rate Bound

o |IVL|IE = y(u? + v?)(L — LY

o |IVL||Z = y/d? + 4(uv)2(L — LY)

* fis u-strongly convex, and K-smooth
d % * Loss L is non-increasing
4 N ( )
imbalance d is time invariant A lower bound on product uv

d(©)] = 1d(0)] u@v(t)l = [w| - VK/plw* = u(0)v(0)]

:= Imbalance _ +
= Margin

\ J \ J

N 2

[(uz +v?2) = yy/(Imbalance)2+4(Product)2> y\/(lmbalance)z+4(Margin)2]

14



Scalar Dynamics: Summary

(I.ocal (Weight-dependent) PL-inequality A

2 2 2 x
- IVEllE 2 y(u” + v )&~ 29 ) /Control imbalance and product )
- o ~N by initialization
“Weight” to imbalance and product
* Imbalance is time invariant
L (u? +v?) = /d? + 4(uv)? JAN Product = Margin Y
- -
/Initialization-dependent PL-inequality — Exponential Convergence )
VL] > )/\/(I‘mbalance)2 + 4(Margin)?(L — L")
(Gronwall)
\=> (L(t) — L") < exp (—)/\/(Imbalance)2 + 4(Margin)2t) (L(0) — L*)/

15
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To General Case

Warm-up Example: f (uv) General Case: f (W W, --- W)
f L—-1
Imbalance] d:=u? — v? {Dy =W W, — Wi Wi},
Margin] Wl =K ulw = u©@v O] |omnW") = K/ulW* = WOl
Local PL-ineq] IVLI2 =y @2 + )L~ L) VLI 2 ¥ Ain (T ) (£ £9)
-
Weight to imbalance |, ,
and prOdUCt ](u TV ) — \/dz + 4(UU)2 Amin (T{Wl}i;l) = CZ(Imbalance, Umin(W))
\- - -

[Control imbalance and product by initialization]
-

Exponential Convergence:
Rate >y a(Imbalance, Margin)




Warm-up Example: f (uv) General Case: f(W,; W, ---W})

( L—-1
Imbalance] d: = u? — v? {D, =W W, — Wz+1W17;1}l=1
LMargin] [|W*| — JK/u|lw* — u(O)v(O)IL [amm(w*) —JK/n||w* - W(O)IIFL
Local PL-ineq] IVLIZ =y @2 + 0L~ L) IVEIE 2 ¥ Amin (T e ) (£ = £9)
p
e = R i) 2 et oan)
\. - -

[Control imbalance and product by initialization]

- =

Exponential Convergence:
Rate = y a(Imbalance, Margin)




General Convergence Analysis: Imbalance

« LWy, W) = f(W Wy - W)

Gradient Flow: W, = —dL/0W,

Imbalance matrices|D,,| D5, -, D;_4

(nXhy) (hyXh;)
W =[W1 . WZ]' [/l/3 WL—l . WL

™~

GymmEtry: Wl — W]_S, Wz — S_1W2

Conservation law
_ D, = Wlw, — w,W], D;=0

J

17



General Convergence Analysis: Imbalance

o LWy, W) = fF(W Wy - W)
* Gradient Flow: W, = —aL/0W,

* Imbalance matrices D, Dz,\---,DL_l

(h1Xhy) (h,Xh3)
W — Wl .[WZ . W3] WL—l . WL

N\

{ D, = WZTWZ - W3W3T J

17



General Convergence Analysis: Imbalance

o LWy, W) = fF(W Wy - W)
* Gradient Flow: W, = —aL/0W,

* Imbalance matrices Dy, D5, |D;_4

(hp—aXhp_q) (hy_y4Xm)
W — Wl . WZ . [/l/3 [WL—]. . WL]

.

[ Dj—1 = WLT—1WL—1 — WLWLT ]

17



General Convergence Analysis: Imbalance

LWy, -, W) = f(W Wy - W)
Gradient Flow: W, = —dL/0W,

. L—1
* |mbalance matrices {Dl = WITWI — Wl+1Wl£1}l_1

e Imbalance matrices are time-invariant under GF
D, =0, [=1,-,L—1

17



Warm-up Example: f (uv) General Case: f(W,; W, ---W})

( L—-1
Imbalance] d:=u? — v? {Dy = W' W, = Wi Wi}
LI\/Iargin] [|W*| — JK/u|lw* — u(O)v(O)IL lamm(W*) —JK/n||w* - W(O)IIFL
Local PL-ineq] IVL|Z = y(u? + v3) (L — L) IVLIZ = v+ Ain (T{Wl}lel) (L—LY
-
e ) < ETRGT o T, ) 2 it )
\. > = -

[Control imbalance and product by initialization]

-

Exponential Convergence:
Rate = y a(Imbalance, Margin)




General Convergence Analysis: PL-inequality

o LWy, W)= f(WW,5--W;) Recall warm-up example: A
* Gradient Flow: W, = —9.L/0W, IVLIIE
= |f'w)|*(w? + v?)
= (@ +v)f, ),
- |[veiwi 1)|| = (Towye VW), VEW)) N /
(F )

Wk, is a positive semi-definite operator on R™*™

« L= f(WW,),

\_

« L= f(WW,W3),
Ttw, w, wi E = WaiW, WS WE + WyW{ EW35 W3 + EW5 W, W, W;

:T{WIJWZ}E —_ W1W E + EW W2

18



General Convergence Analysis: PL-inequality

o« LWy, W) = f(W W, ---W,), Gradient Flow: W, = —aL/dW,

. ||vedwide 1)|| = (T VF W), Vf(W))

[Min-max theorem]

> Zanin (T, ) IVf VIR

(PLNVFIE = (= ) ]

Z ¥ Amin (T{Wl}zL=1) (L—-L%)

* Local (weight-dependent) PL-inequality

VLAWY, 2 ¥ Amin (T ) (£ = £7)

18



Warm-up Example: f (uv) General Case: f(W,; W, ---W})

( L—-1
Imbalance] d:=u? — v? {Dy = W' W, = Wi Wi}
LMargin] [|W*| — JK/u|lw* — u(O)v(O)IL lamm(W*) —JK/n||w* - W(O)IIFL
Local PL-ineq] IVLIZ =y @2 + 0L~ L) IVEIE 2 ¥ Amin (T e ) (£ = £9)
( . .
) < ETRGT T, ) 2 it 1)
- - -

[Control imbalance and product by initialization]

- =

Exponential Convergence:
Rate = y a(Imbalance, Margin)




Lower Bound on Convergence Rate: Summary

Linear model Rate Bound Expression
Multi-layer | 2
Scalar weights | a({d;};={, w) ( Cjurzufatwe) + (Lw2-2/L)2
F(Wiwsy W) y imbalance
Two-layer
Matrix weights | a(Dy, 01nin (W) ) | —Spread + \/ (Spread + Gap)?+4o5,, (W)
f(Wi3)
Three-layer A complicated expression

Matrix weights
f(WiW,W3)

a(D4,D5)

_ z Cumulative
imbalance

19




Lower Bound on Convergence Rate: Summary

Linear model Rate Bound Expression
Multi-layer | 2
Scalar weights | a({d;};={, w) ( Cjumulatwe) + (Lw2-2/L)2
F(Wywy - wy) . imbalance
Two-layer
Matrix weights | a(Dy, 01nin (W) ) | —Spread + \/ (Spread + Gap)?+4o5,,, (W)
f(WiWw3)
Three-layer A complicated expression
Matrix weights a (D4, Dy) - Z Cumulative
f (Wi WoW3) imbalance

Details to come!

19




Convergence under overparametrization: Summary

Non-overparametrized Overparametrized
f(w) LWy, -, W) = f(W Wy --- W)

Gradient Flow: W = =Vf(W) | * Gradient Flow: W, = —dL/oW,

* Global PL-Inequality * Local (Weight-dependent) PL-inequality
VFW)||% = w)—f* 2 )
” f( )“F V(f( ) f ) ”VL({WZ}%:QHF <vy- Amin (T{Wl}szl) (L — L )
* f converges exponentially to « L converges exponentially to L under
f ™ regardless of initialization proper initialization

* Rate = PL-Constant y * Rate =y a(Imbalance, Margin)

20



Outline

* Problem Settings
* Warm-up Example
* Meta-proof for Convergence

* Convergence Rate Bound
Amin (T{Wz}zL=1) > a( Imbalance, g, (W) )

* Conclusion



Lower Bound on Convergence Rate: Overview
* We want a lower bound that depends on both imbalance and product

Amin (jiwl}’f:l) = C(( {Dl}l 1, Omin (W) )

 The (arguably) optimal bound is given by

) i i)
{w l}l 1 [=1

s.t. WW, =Wy Wh,=D, 1l=1,-,L—

W1W2 WL =W

* We will compare our bound to the optimal value of (*)

1

21



Lower Bound on Convergence Rate

Linear model Rate Bound Expression
Multi-layer | 2
Scalar weights | a( {d;}[={,w) ( Qurzullatlve> + (Lw2-2/L)2
F(Wiwsy W) \ imbalance
Two-layer
Matrix weights | a(Dy, omin(W)) | —Spread + \/(Spread + Gap)?+4of, (W)
f(WiW3)
Three-layer A complicated expression

Matrix weights
f(WiW,Ws)

a(Dl, Dz)

~ 2 Cumulative
imbalance




Multi-layer Scalar Networks

* f(w)isafunctionofscalarw € R

e Multi-layer scalar networks
fwiwy --wy), weERIL=1,--L

* Imbalance

d; == wf — wWfiq, [=1,--L—1

* Analysis for scalar networks arises when studying general matrix model
= under specific initialization (spectral initialization)

= with additional network structure (diagonal linear networks)

22



Multi-layer Scalar Networks: Formulation

* We want a lower bound that depends on both imbalance and product

Amin (T{Wz}%=1) = (I( {dl}l 1, W )

* Ideally, we want to solve

W
SRS | R
{Wl}%zl =1 :W
L_

S.t. Wl Wl+1=dlll_1 1

W1W2 cee WL — W

= Only isolated points in the feasible set
= All feasible points have the same objective value a*( {d;}}={, w)
= a*({d;}i={, w) has no closed-form expression in general

(need to solve an L-th order polynomial)

23



Multi-layer Scalar Networks: Rate Bound

« a*({d;}}={,w) has no closed-form expression in general

L2
Proposition 1. o*( {d;};={,w) = (H C;’ZZZIIZZCU:) + (Lw?2-2/L)2
\
Cumulative imbalance?
2. 12,2
[d3 H@% ZLTE NI 114)]
A 4\
Reorder the weights
_ Cumulative
X X = ,
> ! imbalance
by magnitude
Wi Wi Wi Wi Wi W) Wi (Wi



Multi-layer Scalar Networks: Effect of Imbalance

« a*({d;}}={,w) has no closed-form expression in general

Cumulative\*
Proposition 1. a™( {d , W) = ( , ) + (Lw2—2/L)2
p ({ l}l 1, W) \ Hlmbalance ( )
» Effect of imbalance in deep networks
A
\/(AL—l)Z + (LWZ—Z/L)Z
> .

' ] ‘ =4 Yun et al. 20] derived rate

I B R B bound 2“~1 (w.o. product)
2 2 2 2 Chulhee Yun, Shankar Krishnan, and Hossein Mobabhi. A unifying

W]_ WZ WL—]_ WL view on implicit bias in training linear neural networks. ICLR 2020
25



Multi-layer Scalar Networks: Effect of Imbalance

« a*({d;}}={,w) has no closed-form expression in general

Proposition 1. o*( {d;};={,w) =

\

(I

(2
Cumulatwe) + (Lw2-2/L)2

imbalance

Effect of imbalance in deep networks

J(SL_l(L _ 1)!)2 + (LWZ—Z/L)Z

25



Multi-layer Scalar Networks: Effect of Imbalance

« a*({d;}}={,w) has no closed-form expression in general

Proposition 1. o*( {d;};={,w) =

\

(I

(2
Cumulatwe) + (Lw2-2/L)2

imbalance

Effect of imbalance in deep networks

Imbalanced initialization could
accelerate convergence significantly
for deep networks

(For gradient flow!)

In practice, this is more related to
exploding gradient

25



Lower Bound on Convergence Rate

Linear model Rate Bound Expression
Multi-layer | 2
Scalar weights | a({d;};={, w) ( Cjumulatwe) + (Lw2-2/L)2
F(Wywy - wy) . imbalance
Two-layer
Matrix weights | a(Dy, 01nin (W) ) | —Spread + \/ (Spread + Gap)?+4oz;, (W)
f(WiW3)
Three-layer A complicated expression
Matrix weights a (D4, D;) - 2 Cumulative
f (Wi WoW3) imbalance

https://arxiv.org/abs/2105.06351




Imbalance quantities

¢ L= W), (W € R™M W, € R
* Imbalance D; = W W; — W,W.] := D

0.4r

0.3F

Nonzero 0.2L

Eigenvalues

Of D olp "xxx ------------------------------------------------------------------
Ai(D)

0Ok

-0.1F

-0.2

...............

-0.3




Imbalance quantities

« L= f(WW),

(Wl = Rnxh’ W2 = thm)
* Imbalance D; = W W; — W,W.] := D

e —— T A, Positive Spectral Spread
0.3+
Nonzero 0.2l
Eigenvalues
of D 0.1 ; A
(o) | T ey WaE
0 »
-0.1 [T AR —A_
ol |
_03 ] ] ] ]
1 . n h—m-+1

26



Two-layer Linear Networks

* We want a lower bound that depends on both imbalance and product

Amin(g-{wl,wz}) > a(Dy, 0min (W) )
and

Ttw, w3 E = WAiW{ E + EW, W,

* Ideally, we want to find
a*(Dy,W) = min Amin(WlwlT) + Amin(WZTWZ)

{W1,W,}
s.t. Wiw, —w,w}] =D,
W1W2 — W

27



Two-layer Linear Networks: Rate Bound

Proposition 2.

a*(Dy, W) =

—A, + \/(A+ +A)* + 402 (W) —A_ +\/(A_ +A)* + 402 (W)

Equality holds whenn # m

« —Spread + J(Spread + Gap)?+4c?

min

W)

28



Two-layer Linear Networks: Summary

(Prior work)
----- Balanced initialization

Sufficient margin
+ Sufficiently balanced

(Our contribution)

Homogeneous imbalance
Sufficient level of imbalance

Sufficient margin

—— o - o - e o e e o e e e e o e o] -

Initialization for the gradient flow on
1
Y —uvTliz

Balanced initialization D:=UTU -VTV =0

29



Lower Bound on Convergence Rate

Linear model Rate Bound Expression
Three-layer A complicated expression
Matrix weights a(D4,D5)

f (W1 W, Ws)

_ z Cumulative
imbalance




Three-layer Linear Model

« L= f(W;W,Ws5).Find a lower bound on Amin(ﬂ"{wl’wz,ws})
Ttw, w,wo E = WiW, W) WI'E + Wy W EWS W3 + EWS W) W, W
* Whenw = W W,Ws is a scalar, so is Tqy, w, w,)
Amin(j-{Wl,Wz,Wﬁ) = (WA W, Wy W) + (Wy Wiy (W5 Wa) + (W4 Wy W,oWs)
* When W = W;W,W5 is a matrix,

* no closed-form expression for A,ip (17"{W1,W2,W3})

* Amin(j‘iWLWz»Wﬁ)
= min(W1W2W2TW1T)+ Amin(WlwlT) Amin(Ws;TWB) T+ Amin(WgWZTWZWB)



Three-layer Linear Model: Formulation

* Our result: Find a lower bound on Amin(ﬂ"{wl,wz,wg}) considering only the effect of
imbalance

* Ideally, we may want to solve

min  Aqinl T3
‘/]/1"/]/2,‘/]/3 mln( {W1;W2;W3})

s.t. Wiw, — wWo,W.,f = D,
WZTWZ - W3W3T =D,

Technical difficulty: no closed-form expression for Ay, (T{Wl,wz,wg})



Three-layer Linear Model: Rate Bound

* Our result: Find a lower bound on Amin(ﬂ"{wl,wz,wg}) considering only the effect of
imbalance

* [nstead, we solve
anlvinw Amin(W1W2W2TW1T)+ /lmin(WlwlT) /lmin(WSTWB) + Amin(WBTWZTWZWB)
1,Vv2,Vv3
s.t. wliw, —w,W.f = D,
wiw, — wswi =D,

 The optimal value is

1 2 1 2
a(Dl, DZ) — z (Agl) + AZl) + A21 ¢ A23 + E (Agg) + Azg)

. A21,Agzl),A23,A%) have complicated expressions



Three-layer Linear Model: Rate Bound

* Our result: Find a lower bound on Amin(fr{wl,wz,wg}) considering only the effect of
imbalance

* [nstead, we solve
min Amin(WlwlT)

W11W21W3
s.t. WIw, — Wo,W, = D,
WZTWZ — W3W3T =D,

 The optimal value is obtained by solving 4 optimization problems

a(Dy,Dy) = + Ayq -



Three-layer Linear Model: Rate Bound

* Our result: Find a lower bound on Amin(fr{wl,wz,wg}) considering only the effect of
imbalance

* [nstead, we solve
min Amin(W1W2W2TW1T)

W11W21W3
s.t. wliw, —w,W.f = D,
WzTWZ — W3W3T =D,

 The optimal value is obtained by solving 4 optimization problems

1
a(Dy,Dy) = E (Agz1) + A21)



Three-layer Linear Model: Rate Bound

* Our result: Find a lower bound on Amin(fr{wl,wz,wg}) considering only the effect of
imbalance

* [nstead, we solve
, T
min Amin (W3 W3)

W11W21W3
s.t. WIw, — Wo,W, = D,
WZTWZ — W3W3T =D,

 The optimal value is obtained by solving 4 optimization problems

a(Dy,Dy) = FAVE:



Three-layer Linear Model: Rate Bound

Our result: Find a lower bound on Amin(ﬂ"{wl,WZ,WS}) considering only the effect of
imbalance

Instead, we solve
er,rl/ll/izr,lW3 /1mi n (WBT WZT WZ W3 )
s.t. wliw, —w,W.f = D,
WzTWZ - W3W3T =D,

The optimal value is obtained by solving 4 optimization problems

1
a(Dy,D;) = > (Agzs) T A23)

Solving these optimization problems relies on novel eigenvalue bound based on
generalized eigenvalue interlacing relation



Three-layer Linear Model: Cumulative imbalance

e Qur bound:

1 2 1 2
a(Dl, DZ) = E (Agl) + AZl) + AZl . A23 + E (Agg) + A23)



Three-layer Linear Model: Cumulative imbalance

* Consider the case
D =W{w, —wW,W)] =0 = WIw, = W,WJ
D, =WIiW, —W, W =0 = WSW, = WaWd
* Qur bound (Simplified Expression):

1 1
_ (2) | (2)
a(Dl, Dz) = E (A21 ~+ AZl) ] A21 . A23 + E (A23 -+ A23)
\ =0 =0
Recall: multi-layer scalar weights 2)
v, +d, (A% + 221) /2 = (DD A(D1) + An(Dy)]
2 .
Cumulative
} X ‘ imbalance 2(dy +d2)




Three-layer Linear Model: Cumulative imbalance

e QOur bound:

1/ 2 1/
a(Dq,D;y) = > (A( ) + A21) + Ayq - Ap3 + > (Agg) + Azs)

z Cumulative
imbalance

~y
~

. Each( Cumulative

imbalance
the weights

) is associated with some positive semi-definite ordering on

* We conjecture that similar bound can be derived for deep networks L > 3.



General Convergence Analysis: Rate Bound
* Local PL-inequality: | VL{W;}}: 1)” > Y Amin (‘T{Wz} ) (L—-LY)

* Given initialization {W;(0)}}4, find a lower bound on A, (T{wm}%:l)

« increasing function

/ [Our bound: Amin (T{Wz}zL=1) 2 a({Di=1, min (W) ] of Opin (W)

(Consider the effect of imbalance only A % (use directly)
\. Amin (gin}%=1) = a({Dl}l 1 ) ] (T ) > ({D } . )
(Consider balanced initialization N[ i i, a({Ddi=i, margin

Awnin (g%Wl}%ﬂ) = CZ(O, Umin(W))

\_ > (0, margin) ﬂ
S 9 Exponential Convergence

[('trajectory” PL-inequality: | VL({W;}; 1)“ > ya((DJi=i, margin) (£ — L*)J




General Convergence Analysis: Comparison

Matrix weights

#of layers | a({D;}/=},0) a (0, margin) a({D;}i=1, margin)

(L=2) [Yun et al. 20]* | [Saxes et al. 14] [Tarmoun et al. 21]*
Scalar weights Our work

(L=2) Our work [Arora et al. 18] [Tarmoun et al. 21]*

Our work

(L > 2)
Matrix weights

[Yun et al. 20]*
Our work**

[Arora et al. 18]

*: with additional assumptions
**: three-layer networks
Our work: new bounds derived in our paper

: automatically covered by our bound




Outline

* Problem Settings

 Warm-up Example

* Meta-proof for Convergence

* Convergence Rate Bound

e Conclusion



Conclusion
We study the gradient flow on L(Wy, -+, W) = f(W W, --- W}):

Rate >y a(Imbalance, Mar gin)
Our analysis also works for classification task with exponential loss

1
IVFMllr 2y (FW) = f*) = L() = 0 (?)

Future work:
* Gradient Descent (Ongoing work)
e Extension to nonlinear networks (ReLU net, etc.)

Thank you!
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