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Reality Kicks In _ _ _
Angry Residents, Abrupt Stops: Waymo Vehicles Are Still

Causing Problems in Arizona
RAY STERN ' MARCH 31, 2021 @ 8:26AM

DeepMind's Losses and the Future of Artificial Intelligence

Alphabet’s DeepMind unit, conqueror of Go and other games, is losing lots of money. Continued deficits could imperil investments in Al.

Uber Gives Up on the Self-Driving Dream

The ride-hail giant invested more than $1 billion in autonomous vehicles. Now it’s selling the unit to Aurora, which makes self-driving tech.

OpenAl disbands its robotics research team

KyleWiggers  @Kyle_L Wiggers  July 16,2021 11:24 AM

Self-driving Uber car that hit and killed
woman did not recognize that pedestrians

jaywalk

The automated car lacked "the capability to classify an object as a pedestrian unless that object
was near a crosswalk," an NTSB report said.
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Machine Learning for Energy System

Vast Opportunities Possible Concerns

* Load flow analysis/state estimation Power systems have little room for trial

_ , _ and error! Especially, at fast time scales
 Forecasting (wind, solar, load, prices)

* Fault detection, classification, and
localization

e Accelerated market clearing

* Nonlinear control design/RL

* Parameter estimation/Stability
assessment

* Many, many, more!
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Core challenge: The curse of dimensionality

= Statistical: Sampling in d dimension with resolution € \
Sample complexity: |
|
|

O(e™9)

M@ M@...@ M e /

Fore=0.1and d = 100, we
0100

,
l
l
l
|

would need 1 points.

= Computational: Verifying non-negativity of polvhomials

Copositive matrices:

[xZ ... x3]A[x? ...xczi]T >0

Murty&Kadabi [1987]: Testing co-positivity is NP-Hard - Motzkin [1967):
p = x*y2 4 x2y4 +1—3x2y2

Sum of Squares (SoS): ? is nonnegative

z(x)TQz(x) =20, z(x) eR[x], xe R%E,Q =0
Artin [1927] (Hilbert’s 17t problem):

not a sum of squares,
but (x? + y?)?p is SoS

Non-negative polynomials are sum of square of rational functions
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Question: Are we asking too much?

* Learnability requires uniform approximation errors across the entire domain

Q: Can we provide local guarantees, and progressively expand as needed?

[arXiv 22] Shen, Bichuch, M
* Lyapunov functions and control barrier functions require strict and exhaustive
notions of invariance

Q: Can we substitute invariance with less restrictive properties?
[arXiv 22] Shen, Bichuch, M
* Control synthesis usually aims for the best (optimal) controller

Q: Can we focus on feasibility, rather than optimality?

[arXiv’21, LADC 22] Castellano, Min, Bazerque, M

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, submitted to CDC 2022, preprint arXiv:2204.10372.
[LADC 22] Castellano, Min, Bazerque, M, Reinforcement Learning with Almost Sure Constraints, Learning for Dynamics and Control (L4DC) Conference, 2022

[arXiv 21] Castellano, Min, Bazerque, M, Learning to Act Safely with Limited Exposure and Almost Sure Certainty, submitted to IEEE TAC, 2021, under review, preprint arXiv:2105.08748
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Motivation: Estimation of regions of attraction
Having an approximation of the region of attraction allows us to

* Test the limits of controller designs
especially for those based on (possibly linear) approximations of nonlinear systems

S .

Cha(C

cart-pole quadcopter robot arm

* Verify safety of certain operating condition

(P
YOy
Vo

RADAR
SENSORS

self-driving HVAC system power grids
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢ (&, xp).

I Q-Limit Set Q(f):
: r € Qf) < I xo,{tn}n>o0, s.t.nli_{rgo t, =00 and lim ¢(t,,xq) =

n—oo

Types of Q-limit set

equilibrium limit cycle limit torus chaotic attractor
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Problem setup

Limit set Q(f)

u-x phage u-x phage

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution attime t: ¢(t, xg).
* The w-limit set of the system: Q(f)

O N A o a4 N W

Basin of A(Q)

i T

Tl TSN

Limit set Q(f) Basin of A(Q)
o (01,04, 2) '
(-0.1, 0.1, -14)
0| (0.1, -0.1, -14)
> |
o.
201}
4 (a)
-5 0
X
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢ (&, xp).
* The w-limit set of the system: Q(f)

4
g'ir;p_le_r Example ] 2|
[i;] B [—azl +§2x? - 5132] 0
Q(f) = {(0,0), (=v3,0),(v3,0)} -2

-4
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢ (&, xp).
* The w-limit set of the system: Q(f)

Simpler Example

T1 T2
. : 1 3
o] a1+ ga) —

Q(f) — {(07 O)v (_\/57 0)7 (\/§7 O)}
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢ (&, xp).
* The w-limit set of the system: Q(f)

Simpler Example

[i;] N [—azl +?xi{> - xJ
Q(f) = {(0,0), (=v/3,0), (V3,0)}

Asymptotically stable equilibrium at x* = (0,0)
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢ (&, xp).
* The w-limit set of the system: Q(f)

Simpler Example

T1 T2
. : 1 3
o] a1+ ga) —

Q(f) — {(07 O)v (_\/57 0)7 (\/§7 O)}
Unstable equilibria {(+/3,0), (—V3, 0)}
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Region of attraction of stable equilibria

| A(S) = {xo c RY| lim (¢, z0) es} 4
t—00
2 i
Assumption 1. The system x(t) = f(x(t)) has an
asymptotically stable equilibrium at x™. )
_2 i
Remark 1. It follows from Assumption 1 that the
positively invariant ROA A(x*) is an open contractible —ff4

set [Sontag, 2013], i.e., the identity map of A(x™*) to
itself is null-homotopic [Munkres, 2000].

E. Sontag. “Mathematical Control Theory: Deterministic Finite Dimensional Systems.” Springer 2013
J. R. Munkres. “Topology.” Prentice Hall 2000
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Invariant sets

Aset ] € R% is positively invariant if and only if: g € T = ¢(t,x0) € Z, Vtc R*
Any trajectory starting in the set remains in inside it

* Invariant sets guarantee stability
Lyapunov stability: solutions starting "close enough" to the equilibrium (within a distance
0) remain "close enough" forever (within a distance €) )

* Invariant sets further certify asymptotic stability via Lyapunov’s direct method
Asymptotic stability: solutions that start close enough not only remain close enough but also
eventually converge to the equilibrium.)

* Regions of attraction are invariant sets, and so are the outcome of most
approximation methods!

July 14 2022 Enrique Mallada (JHU) 11



Challenges of working with invariant set

Learning ROA A(x™) by finding an invariant set § € A(x™)

Example 1: § € A(x") is not
* & is topologically constrained connected, not invariant!
« IfS NQ(f) = {x*}, then Sis connected

a2 0 2
A(x*) : s:

A not invariant trajectory: e __,

July 14 2022 Enrique Mallada (JHU) 12



Challenges of working with invariant set

Learning ROA A(x™) by finding an invariant set § € A(x™)

. . . Example 2: § € A(x™), f points
* S is topologically constrained outward on @8, not invariant
« IfS NQ(f) = {x*}, then Sis connected '

 §isgeometrically constrained
* f should point inwards for x € 08

-4 —é 0 2
A(x*) : s:

A not invariant trajectory: e __,
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Challenges of working with invariant set

Learning ROA A(x™) by finding an invariant set § € A(x™)

4

 §istopologically constrained
« IfS NQ(f) = {x*}, then Sis connected

 §isgeometrically constrained
* f should point inwards for x € 08 -2

| A subset of an invariant set is not | : -4
I
| necessary an invariant set | A(X) :

A not invariant trajectory: «_ ,

July 14 2022 Enrique Mallada (JHU) 12



Recurrent sets: Letting things go, and come back

A set R € R% is recurrent if for any x, € R, whenever ¢(t,x,) € R, t = 0, then
3t’ > t such that ¢(t', xy) € R.

Property of Recurrent Sets
e R need not be connected

* R does not require f to point inwards on all R

' Recurrent sets, while not invariant,

|
|
: guarantee that solutions that start in this set, |
1 will come back infinitely often, forever! ;

Recurrent set R:

A recurrent trajectory: <

July 14 2022 Enrique Mallada (JHU) 13



Recurrent sets: Letting things go, and come back

A set R € R% is recurrent if for any xq € R, whenever ¢(t, x,) € R, t = 0, then
Jt" > t such that ¢(t’, xy) € R.

Previous two good inner approximations of A(x™) are recurrent sets

July 14 2022 Enrique Mallada (JHU)
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Recurrent sets are subsets of the region of attraction

Aset R € R is recurrent if for xg € R, ¢(t,xo) € R = 3t' > t, s.t. p(t', xo) € R

Theorem 2. Let R c R% be a compact set satisfying 0R N Q(f) = @.

Then: [~ ~"~"~"~"~"""TT"--TTo TS mmmomsoes K
RNQ(f)=0

RCARNAS)) |

R is recurrent «=»

not recurrent

July 14 2022 Enrique Mallada (JHU)



Recurrent sets are subsets of the region of attraction

Aset R € R is recurrent if for xg € R, ¢(t,xo) € R = 3t' > t, s.t. p(t', xo) € R

Assumption 2. The w-limit set Q(f) is composed by hyperbolic equilibrium
points, with only one of them, say x*, being asymptotically stable.

4
Corollary 2. Let Assumptions 1 and 2 hold,

and R c R? be a compact set satisfying 2]
OR N Q(f) = @. Then: 0
o RNA() =] | -2
| . — | —4T
| R is recurrent <=y R C A(x") :
___________________________ 4

July 14 2022 Enrique Mallada (JHU) 14



Recurrent sets are subsets of the region of attraction

4
Corollary 2. Let Assumptions 1 and 2 hold, \\
and R c R? be a compact set satisfying &l
OR N Q(f) = @. Then: 0 =
N
N
! : RNQ(f) ={x*} 1 -2
| R is recurrent <= R C A(x") :
T 2 0 2 4

Idea: Use recurrence as a mechanism for finding inner approximations of A (x™)

Potential Issues:
 We do not know how long it takes to come back!
* We need to adapt results to trajectory samples

July 14 2022 Enrique Mallada (JHU)
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T-recurrent sets Time elapsed < T

A set R is T-recurrent if whenever x, € R,3t’ € (0,7] s.t. p(t', x5) ER

Theorem 3. Under Assumption 1, any compact set R satisfying:

x*+Bs € R € Ax*)\{0A(x") +int Bs}
c(8)—c(6)

is z-recurrent for t = T(0) =

a) T-recurrent set R:

trajectory: < "

A(X) :
R:
trajectory: ©....»

July 14 2022 Enrique Mallada (JHU) 15



Recurrent sets are subsets of the region of attraction

4
Corollary 2. Let Assumptions 1 and 2 hold, \\
and R c R? be a compact set satisfying &l
OR N Q(f) = @. Then: 0 =
\
N
! : RNQ(f) ={x*} 1 -2
| R is recurrent <= R C A(x") :
T 2 0 2 4

Idea: Use recurrence as a mechanism for finding inner approximations of A (x™)

Potential Issues:
* We do not know how long it takes to come back! V
* We need to adapt results to trajectory samples

July 14 2022 Enrique Mallada (JHU)
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Learning recurrent sets from k-length trajectory samples

steps elapsed < k
* Consider finite length trajectories: (time e{gl?ied < kty)

Xy, = p(ntg, xp), xo € R4 n €N,
where 7, > 0 is the sampling period.

« AsetR € R%is k-recurrent if whenever x, € R,
thenan e {l, .., k}st.x, ER

k-recurrent set R:

Sufficiency:

trajectory: e .

R is T-recurrent

R is k-recurrent |==p =

R is compact
with T = ktg =

IRNQAf) =0

R c A(x")

(Corollary 2, under Assumption 2)
Necessity:

Theorem 4. Under Assumption 1, any compact set R satisfying:
Bs+x* SRS AMN")\{0A(x™) +int Bs}
is k-recurrent for any k > k := 7(8) /.

July 14 2022 Enrique Mallada (JHU) 17



Recurrent sets are subsets of the region of attraction

4
Corollary 2. Let Assumptions 1 and 2 hold, \\
and R c R? be a compact set satisfying &l
OR N Q(f) = @. Then: 0 =
\
N
! : RNQ(f) ={x*} 1 -2
| R is recurrent <= R C A(x") :
T 2 0 2 4

Idea: Use recurrence as a mechanism for finding inner approximations of A (x™)

Potential Issues:
* We do not know how long it takes to come back! V
* We need to adapt results to trajectory samples V

July 14 2022 Enrique Mallada (JHU)



Sphere approximations of ROA | A :

50:

Algorithm:

July 14 2022 Enrique Mallada (JHU) 19



Sphere approximations of RoA | A" :

50:

Algorithm:

 Foriterationi = 0,1, ... do: (set updates)

* Foriterationj = 0,1, ... do: (samples)

* Generate random sample p;; € SO uniformly

July 14 2022 Enrique Mallada (JHU) 19



Sphere approximations of RoA | A :

5 [
bt pij): ¢

Algorithm:

* Initialize $© as ; L S0 — {x|lIx]l, < b©® = ¢} 2 By 5

* Foriterationi = 0,1, ... do:

* Foriterationj = 0,1, ... do:

* Generate random sample p;; € SO uniformly

If pij Is ajcounter example|w.rt 5% do: We say sample point Pij is a valid k-recurrent point w.r.t

: : current approximation S if starting from x, = p;; i
: Ine{l,.. k} st x,€SW,
: Otherwise, we say p;; is a counter-example.

---------------------------------------------------------------------------------------------------------------------------

July 14 2022 Enrique Mallada (JHU) 19



Sphere approximations of ROA | A :

O

ORI

Algorithm:

* Initialize $© as ; L S0 — {x|lIx]l, < b©® = ¢} 2 By 5

* Foriterationi = 0,1, ... do:

* Foriterationj = 0,1, ... do:

* Generate random sample p;; € SO uniformly

We say sample point p; ; j is a valid k-recurrent point w.r.t
Updatelb™ to b+, SO to STV i cyrrent approximation $® if starting from x, = p;; i :
E In€e{l, ..k} st x, €SV,
: Otherwise, we say p;; is a counter-example.

If p;; is a counter-example w.r.t §) do:

If pij is a counter-example, we update:

| b = [y, - &

. SU+1) — {x|||x|| < b(l+1)}
i where € > 0 is an algorithm parameter expressing the
: level of conservativeness in our update.

July 14 2022 Enrique Mallada (JHU) 19



Sphere approximations of ROA | A :

SO, ]

Algorithm:

* Initialize $© as ; L S0 — {x|lIx]l, < b©® = ¢} 2 By 5

* Foriterationi = 0,1, ... do:

* Foriterationj = 0,1, ... do:

* Generate random sample p;; € SO uniformly

_ _ _ ) : We say sample point p; ; j is a valid k-recurrent point w.r.t
«  Update bD to p(i+D) §O) o $E+D) : current approximation §© if starting from xo = p;j;,

If p;; is a counter-example w.r.t §) do:

e Break dn € {1, ...,k}, s.t. Xn € S(l) :
.« Endif : Otherwise, we say p;; is a counter-example.
* End for : If pij is a counter-example, we update:
* End for p+1) — ||pij||2 — &

. SU+1) — {x“lx”z < b(i+1)},
i where € > 0 is an algorithm parameter expressing the
: level of conservativeness in our update.

July 14 2022 Enrique Mallada (JHU) 19



Parameter choice

Choice of &1 h(*D = “pij” — ¢
« Givenk >k, anyset S® = {x: ||x|| < b} satisfying:
Bs € SO  A(0)\{0A(0) +int Bs)
is k-recurrent.
* Let B, the largest ball inside A(0)\{9dA(0) +int Bs}

 Then, if e < r — § we always guarantee Bs C s@

Choice of trajectory length k:
* k(&) depends highly non-trivially on §.
e Ifk < k(5), weget b < 0= Failure!

 Solution: doubling the size of k, i.e., k™ = 2k, every time we fail.

: With k-doubling, the total number of counter-examples is bounded by
. b(O) _
#icounter-examples < Tlogz k(o)

July 14 2022 Enrique Mallada (JHU) 20



Algorithm Result - Sphere Approximations

“HE - Complement of ROA i
B ——ROA approximation |
i * Equilibrium ¥

July 14 2022 Enrique Mallada (JHU)
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Polytope approximations of RoA
A|gorithm- B .

: Exploration direction matrix A == [aq, ..., a,] €
: R"*?, where each row vector q; is a :
: normalized exploration direction indexed by [ E

A(xY) :
$(0),

July 14 2022 Enrique Mallada (JHU) 22



Algorithm Result — Polytope Approximation

July 14 2022

.................................................

. ComplementofROA§§
* Equilibrium
[T ROA approximation |}
/ééé”“%é *Center point "

.....

................

.....................
.............
...................
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Multi-center approximation

* Consider h € N™ center points x, indexed by q € {1, ..., h}.
* Let the first center pointx; = x* =0
* Additional center point x,, ..., x5 can be designed chosen uniformly.

July 14 2022 Enrique Mallada (JHU)
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Multi-center approximation

e Consider h € N* center points X4 indexed by q € {1, ..., h}.

Let the first center pointx; = x* =0

Additional center point x5, ..., x; can be designed chosen uniformly.

* Respectively defined approximations centered at each x,,

July 14 2022

(Sphere case) Sq(i) = {x]||x — xq”2 < bc(li)}

(Polytope case) Sq(i) = {x|A(x —x4) < bc(li)}

Enrique Mallada (JHU)
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Multi-center approximation

e Consider h € N* center points X4 indexed by q € {1, ..., h}.

Let the first center pointx; = x* =0

Additional center point x5, ..., x; can be designed chosen uniformly.

* Respectively defined approximations centered at each x,,

* (Polytope case) Sq(l) = {x|A(x —x4) < bc(li)}
* Multiple centers approximation Sr(ril)ﬂti = ngls'g‘)

July 14 2022

(Sphere case) Sq(i) = {x]||x — xq”2 < bc(li)}
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Multi-center approximation

Consider h € N center points x, indexed by q € {1, ..., h}.
* Let the first center pointx; = x* =0
* Additional center point x,, ..., x5 can be designed chosen uniformly.

Respectively defined approximations centered at each x,,
* (Sphere case) Sq(l) = {x|||x — xq”2 < bc(li)}
V= (A - xg) < by

* (Polytope case) S,

Multiple centers approximation Sr(ril)ﬂti = nglSCSZ)

If p;; is a counter-example w.r.t S

multi
* We shrink every Sq(l) satisfying p;; € Sq(l)
* For the rest approximations, we simply let Sq(lﬂ) = S‘q(l)

July 14 2022 Enrique Mallada (JHU) 24



Algorithm results — Multi-center approximation

..............
................

:i - Complement of ROA: i G - Complement of ROA
-1 & Equilibrium s \ |—ROA approximation |::
ROA approximation ¥
-] * Center point : FESEEEE

x1
(10 polytope approximations) (50 sphere approximations)
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Transient Stability Analysis

* Synchronous machine connected to infinite bus QW)

O
i
ah
®

R+ jX R+jX

Ve ~ (va,v,) —NW—— " VW— |V~ (Vi)
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Transient Stability Analysis

 Synchronous machine connected to infinite bus AR+ IX)

2

* t1 lower line is short-circuited @

»
G
(®)

R+jX R+jX

Va ~ (vd,vq) %% Voo ~ (Vs ws)

I\H
MH
I
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Transient Stability Analysis

* Synchronous machine connected to infinite bus

2R+ jX)

* t1 lower line is short-circuited @
* t, faultis cleared

July 14 2022 Enrique Mallada (JHU)

R+ jX R+jX

a6
®

Voo o~ (Vvas)
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Transient Stability Analysis

. « o . 2(R+3X
* Synchronous machine connected to infinite bus w)
* t1 lower line is short-circuited @ JE: Neo @
: A : , A
* t, faultis cleared R+jX o R+jX
Ve ~ (Va, vg) ——INN—— N A— Voo ~ (Va, ws)
d_(S =W —w = =
dt °
d X — 1
2Hd—L: = P, — (vaiq + vgiq + eif + 7“2'62]) g = 7 +a;q g — T TVS sin(6)
de’ e
do o = € — (Ta — zy)ia + Efa T b T
dEdt vy = Rig + Xig + Vs cos(d)
fd _ _ (2 o
Ta dt = Efd+Ka(Vref ‘/t) ‘/; — ,UCQi_i_,Ug
P,
ng— = =P+ Prey + Kg(wrey —w)
dt o / 1L =067 wa=238 u,=0338 z, =1.21
. X wg)Vesin(9) — (B 4 1) (Vs cos(0) — ) H—3 r=0002 ws=uw;=1 R=0.01
1 (R+7)2 4+ (X +2) (X + x,) Xe=1.085 V=1 T, = Ki—70
Viep=1 T,=04 K,=05 Pros =0.7

July 14 2022
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Transient Stability Analysis

e Synchronous machine connected to infinite bus

2R + jX)

* t1 lower line is short-circuited @

' X3 Q

* t, fault is cleared

VG’ o (vda vq)

SoS approx. in red (2d-sections)

100 |

-50

(b)

R+jX

R+3jX

03[

02

0.1

011

021

031

M. Tacchi et al “Power system transient stability analysis using SoS programming” Power System Computation Conference (PSCC) 2018

July 14 2022 Enrique Mallada (JHU)
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Transient Stability Analysis

e Synchronous machine connected to infinite bus

* t, lower line is short-circuited @ @ Neo @
: A : : A
* t, faultis cleared R+jX o R+jX
Vo~ @av)| MW NWN— [V~ (V,00)
Multi-center in : T = 1, k = 40, 2.5K centers e e
- Complement of ROA - =
100 ©TUTIiilD + Center point 04+

—ROA circle approximation
%
@ 6 —S0S ROA estimate

i ©®:
2 ©

0.2}.

Efd

)
0.0, ¢4 Fpa0] - @@

-3 -2 -1 0 1
eq!
[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, submitted to CDC 2022, preprint arXiv:2204.10372.

-50 -
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Transient Stability Analysis

. . feo e 2(R+3X
e Synchronous machine connected to infinite bus W)
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Conclusions and Future work

* Take-aways
* Proposed a relaxed notion of invariance known as recurrence.

* Provide necessary and sufficient conditions for a recurrent set to be an inner-

approximation of the ROA.

e OQOur algorithms are sequential, and only incur a limited number of counter-examples.

* Ongoing work
* Sample complexity bounds, smart choice of multi-points, control recurrent sets
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