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Reality Kicks In _ _ _
Angry Residents, Abrupt Stops: Waymo Vehicles Are Still

Causing Problems in Arizona
RAY STERN ' MARCH 31, 2021 @ 8:26AM

DeepMind's Losses and the Future of Artificial Intelligence

Alphabet’s DeepMind unit, conqueror of Go and other games, is losing lots of money. Continued deficits could imperil investments in Al.

Uber Gives Up on the Self-Driving Dream

The ride-hail giant invested more than $1 billion in autonomous vehicles. Now it’s selling the unit to Aurora, which makes self-driving tech.

OpenAl disbands its robotics research team

KyleWiggers  @Kyle_L Wiggers  July 16,2021 11:24 AM f ¥ in

Self-driving Uber car that hit and killed
woman did not recognize that pedestrians

jaywalk

The automated car lacked "the capability to classify an object as a pedestrian unless that object

was near a crosswalk," an NTSB report said.
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Core challenge: The curse of dimensionality

= Sampling in d dimension with resolution €

j&@ M@@.--@

= Verifying non-negativity of polynomials

Copositive matrices:

[xZ ... x3]A[x? ...xczi]T >0
Murty&Kadabi [1987]: Testing co-positivity is NP-Hard
Sum of Squares (SoS):
z(x)TQz(x) =20, z(x) eR[x], xe R%E,Q =0
Artin [1927] (Hilbert’s 17t problem):

Non-negative polynomials are sum of square of rational functions

May 26 2022
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O(e™9)

Fore=0.1and d = 100, we
would need 101%0 points.

Motzkin [1967]:

p = x4y £ x2y4+1—3x2y2
is nonnegative,

not a sum of squares,

but (x? + y?)?p is SoS



Question: Are we asking too much?

* Learnability requires uniform approximation errors across the entire domain

Q: Can we provide local guarantees, and progressively expand as needed?

[arXiv 22] Shen, Bichuch, M
* Lyapunov functions and control barrier functions require strict and exhaustive
notions of invariance

Q: Can we substitute invariance with less restrictive properties?
[arXiv 22] Shen, Bichuch, M
* Control synthesis usually aims for the best (optimal) controller

Q: Can we focus on feasibility, rather than optimality?

[arXiv’21, LADC 22] Castellano, Min, Bazerque, M

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, submitted to CDC 2022, preprint arXiv:2204.10372.
[LADC 22] Castellano, Min, Bazerque, M, Reinforcement Learning with Almost Sure Constraints, Learning for Dynamics and Control (L4DC) Conference, 2022

[arXiv 21] Castellano, Min, Bazerque, M, Learning to Act Safely with Limited Exposure and Almost Sure Certainty, submitted to IEEE TAC, 2021, under review, preprint arXiv:2105.08748
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Motivation: Estimation of regions of attraction
Having an approximation of the region of attraction allows us to

* Test the limits of controller designs
especially for those based on (possibly linear) approximations of nonlinear systems

S .

Cha(C

cart-pole quadcopter robot arm

* Verify safety of certain operating condition

(P
YOy
Vo

RADAR
SENSORS

self-driving HVAC system power grids
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))

* Initial condition xy = x(0), solution at time t: ¢ (&, xp).

* The w-limit set of the system: Q(f)

______________________ . . Xq
ol
[i’;] - [—”31 +:§2ﬂ’31 _xJ 0 @
Q(f) = {(0,0), (=V3,0), (V3,0)} -2
R 0
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Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢ (&, xp).
* The w-limit set of the system: Q(f)

4
2_

1| X2

[xJ - [—xl + 227 — xJ 0

Q(f) — {(070)7(_\/57 O)a(\/§7 O)} -2

Asymptotically stable equilibrium at x* = (0,0) »

May 26 2022 Enrique Mallada (JHU)




Problem setup

Continuous time dynamical system: x(t) = f(x(t))
* Initial condition xy = x(0), solution at time t: ¢ (&, xp).
* The w-limit set of the system: Q(f)

Q(f) — {(07 O)v (_\/57 0)7 (\/§7 O)}
Unstable equilibria {(+/3,0), (—V3, 0)}
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Region of attraction of stable equilibria

| A(S) = {xo c RY| lim (¢, z0) es} 4
t—00
2 i
Assumption 1. The system x(t) = f(x(t)) has an
asymptotically stable equilibrium at x™. )
_2 i
Remark 1. It follows from Assumption 1 that the
positively invariant ROA A(x*) is an open contractible —ff4

set [Sontag, 2013], i.e., the identity map of A(x™*) to
itself is null-homotopic [Munkres, 2000].

E. Sontag. “Mathematical Control Theory: Deterministic Finite Dimensional Systems.” Springer 2013
J. R. Munkres. “Topology.” Prentice Hall 2000
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Invariant sets

Aset ] € R% is positively invariant if and only if: g € T = ¢(t,x0) € Z, Vtc R*
Any trajectory starting in the set remains in inside it

* Invariant sets guarantee stability
Lyapunov stability: solutions starting "close enough" to the equilibrium (within a distance
0) remain "close enough" forever (within a distance €) )

* Invariant sets further certify asymptotic stability via Lyapunov’s direct method
Asymptotic stability: solutions that start close enough not only remain close enough but also
eventually converge to the equilibrium.)

* Regions of attraction are invariant sets, and so are the outcome of most
approximation methods!

May 26 2022 Enrique Mallada (JHU) 10



Challenges of working with invariant set

Learning ROA A(x™) by finding an invariant set § € A(x™)

S needs to be a connected set

May 26 2022

Example 1: § € A(x") is not
connected, not invariant!

-4 -2 0

2
s: [0
A not invariant trajectory: e __,
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Challenges of working with invariant set

Learning ROA A(x™) by finding an invariant set § € A(x™)

e 8 needs to be a connected set

* f should point inwards for x € 98

May 26 2022

Example 2: § € A(x™), f points
outward on 48§, not invariant

-4 -2 0

2
s: [0
A not invariant trajectory: e __,
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Challenges of working with invariant set

Learning ROA A(x™) by finding an invariant set § € A(x™)

e 8 needs to be a connected set

f should point inwards for x € 08

| A subset of an invariant set is not | :
|
| necessary an invariant set | A(X) :

A not invariant trajectory: «_ ,
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Recurrent sets: Letting things go, and come back

A set R € R% is recurrent if and only if for any x, € R, whenever ¢(t,x,) &€ R, t >
0, then 3t’ > t such that ¢(t', xy) € R.

Property of Recurrent Sets
e R need not be connected

* R does not require f to point inwards on all R

Lemma 1. Consider a compact recurrent set R. Then for any
point xy € R and time Tt > 0, there exist a T' > T, such that

d(t',x9) € R.

—————————————————————————————————————— - Recurrent set R:

I |
Recurrent sets, while not invariant, guarantee that solutions | A recurrent trajectory: ¢

:that start in this set, will come back infinitely often, forever! |
_______________________________________ |

May 26 2022 Enrique Mallada (JHU) 12



Recurrent Sets: Letting things go, and come back

A set R € R% is recurrent if and only if whenever xo € R,3t’ > 0s.t.¢p(t", x,) € R

Previous two good inner approximations of A(x™) are recurrent sets

May 26 2022 Enrique Mallada (JHU) 13



Recurrent sets are subsets of the region of attraction

A set R € R% is recurrent if and only if whenever xq € R,3t’ > 0s.t.¢(t', x) € R

Theorem 2. Let R c R% be a compact set satisfying 0R N Q(f) = @.

Then: [~ ~"~"~"~"~"""TT"--TTo TS mmmomsoes K
RNQ(f)=0

RCARNAS)) |

I

| .

. R isrecurrent <=y
|

not recurrent
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Recurrent sets are subsets of the region of attraction

A set R € R% is recurrent if and only if whenever xq € R,3t’ > 0s.t.¢(t', x) € R

Theorem 2. Let R c R% be a compact set satisfying 0R N Q(f) = @.

Then: [~~~ ~~"~"~"~""~"--------------—- F

. ROO()#0
: R is recurrent <=y R c AR N Qf)) !

Proof: [Sketch]
(=)
* Xo € R, the solution ¢(t, xy) visits R infinitely often, forever.
* Build a sequence {x(t,;)}n=0 € R with nl_i)r+noo t, =+
* Bolzano-Weierstrass = convergent subsequence x(t,,) > X € Q(f) NR # @

(&) Trivial.

May 26 2022 Enrique Mallada (JHU) 14



Recurrent sets are subsets of the region of attraction

A set R € R% is recurrent if and only if whenever xq € R,3t’ > 0s.t.¢(t', x) € R

Assumption 2. The w-limit set Q(f) is composed by hyperbolic equilibrium
points, with only one of them, say x*, being asymptotically stable.

4
Corollary 2. Let Assumptions 1 and 2 hold,

and R c R? be a compact set satisfying 2]
OR N Q(f) = @. Then: 0
o RNA() =] | -2
| . — | —4T
| R is recurrent <=y R C A(x") :
___________________________ 4

May 26 2022 Enrique Mallada (JHU) 14



Recurrent sets are subsets of the region of attraction

4
Corollary 2. Let Assumptions 1 and 2 hold, \\
and R c R? be a compact set satisfying &l
OR N Q(f) = @. Then: 0 =
N
N
! : RNQ(f) ={x*} 1 -2
| R is recurrent <= R C A(x") :
T 2 0 2 4

Idea: Use recurrence as a mechanism for finding inner approximations of A (x™)

Potential Issues:
 We do not know how long it takes to come back!
* We need to adapt results to trajectory samples

May 26 2022 Enrique Mallada (JHU)
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T-recurrent sets Time elapsed < T

A set R is T-recurrent if whenever x, € R,3t’ € (0,7]s.t. p(t',x5) ER

Theorem 3. Under Assumption 1, any compact set R satisfying:

x*+Bs S R S Ax*)\{0A(x™) +int Bs}
c(8)-c(8)

is z-recurrent for t = T(0) =

a) T-recurrent set R:

trajectory: < "
Proof: [Sketch]
 Assumption 1 = 3 Lyapunov function (Zubov ‘64)
o V(x*)=0,0<V(x)<1forall x € A(x*)\x"
o WEHTf(x*)=0
o W) f(x) <0forallx € A(x*)\x*

* Define ¢(¢) := 0) := mi
efine ¢(9) ;rel.‘% Vi(z), ¢(9) ;2515 Vi(x),

and  a(6) := max VV(z)! f(z),

zeCly
where Cs = {x € R%:¢c(8) <V(x) < 5(6)}.

trajectory: ©.....v

May 26 2022 Enrique Mallada (JHU) 15



Recurrent sets are subsets of the region of attraction

4
Corollary 2. Let Assumptions 1 and 2 hold, \\
and R c R? be a compact set satisfying &l
OR N Q(f) = @. Then: 0 =
\
N
! : RNQ(f) ={x*} 1 -2
| R is recurrent <= R C A(x") :
T 2 0 2 4

Idea: Use recurrence as a mechanism for finding inner approximations of A (x™)

Potential Issues:
* We do not know how long it takes to come back! V
* We need to adapt results to trajectory samples

May 26 2022 Enrique Mallada (JHU)
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Learning recurrent sets from k-length trajectory samples

steps elapsed < k
* Consider finite length trajectories: (time e{gl?iedﬁ k)

Xy, = p(ntg, xp), xo € R4 n €N,
where 7, > 0 is the sampling period.

« AsetR € R%is k-recurrent if whenever x, € R,
thenan e {l, .., k}st.x, ER

k-recurrent set R:

Sufficiency:

trajectory: e .

R is T-recurrent

R is k-recurrent |==p =

R is compact
with T = ktg =

IRNQAf) =0

R c A(x")

(Corollary 2, under Assumption 2)
Necessity:

Theorem 4. Under Assumption 1, any compact set R satisfying:
Bs+x* SRS AMN")\{0A(x™) +int Bs}
is k-recurrent for any k > k := 7(8) /.

May 26 2022 Enrique Mallada (JHU) 17



Recurrent sets are subsets of the region of attraction

4
Corollary 2. Let Assumptions 1 and 2 hold, \\
and R c R? be a compact set satisfying &l
OR N Q(f) = @. Then: 0 =
\
N
! : RNQ(f) ={x*} 1 -2
| R is recurrent <= R C A(x") :
T 2 0 2 4

Idea: Use recurrence as a mechanism for finding inner approximations of A (x™)

Potential Issues:
* We do not know how long it takes to come back! V
* We need to adapt results to trajectory samples V

May 26 2022 Enrique Mallada (JHU)



Sphere approximations of ROA | A :

50:

Algorithm:

May 26 2022 Enrique Mallada (JHU) 19



Sphere approximations of RoA | A" :

50:

Algorithm:

 Foriterationi = 0,1, ... do: (set updates)

* Foriterationj = 0,1, ... do: (samples)

* Generate random sample p;; € SO uniformly

May 26 2022 Enrique Mallada (JHU) 19



Sphere approximations of RoA | A :

5 [
bt pij): ¢

Algorithm:

* Initialize $© as ; L S0 — {x|lIx]l, < b©® = ¢} 2 By 5

* Foriterationi = 0,1, ... do:

* Foriterationj = 0,1, ... do:

* Generate random sample p;; € SO uniformly

If pij Is ajcounter example|w.rt 5% do: We say sample point Pij is a valid k-recurrent point w.r.t

: : current approximation S if starting from x, = p;; i
: Ine{l,.. k} st x,€SW,
: Otherwise, we say p;; is a counter-example.

---------------------------------------------------------------------------------------------------------------------------

May 26 2022 Enrique Mallada (JHU) 19



Sphere approximations of ROA | A :

O

ORI

Algorithm:

* Initialize $© as ; L S0 — {x|lIx]l, < b©® = ¢} 2 By 5

* Foriterationi = 0,1, ... do:

* Foriterationj = 0,1, ... do:

* Generate random sample p;; € SO uniformly

We say sample point p; ; j is a valid k-recurrent point w.r.t
Updatelb™ to b+, SO to STV i cyrrent approximation $® if starting from x, = p;; i :
E In€e{l, ..k} st x, €SV,
: Otherwise, we say p;; is a counter-example.

If p;; is a counter-example w.r.t §) do:

If pij is a counter-example, we update:

| b = [y, - &

. SU+1) — {x|||x|| < b(l+1)}
i where € > 0 is an algorithm parameter expressing the
: level of conservativeness in our update.

May 26 2022 Enrique Mallada (JHU) 19



Sphere approximations of ROA | A :

SO, ]

Algorithm:

* Initialize $© as ; L S0 — {x|lIx]l, < b©® = ¢} 2 By 5

* Foriterationi = 0,1, ... do:

* Foriterationj = 0,1, ... do:

* Generate random sample p;; € SO uniformly

_ _ _ ) : We say sample point p; ; j is a valid k-recurrent point w.r.t
«  Update bD to p(i+D) §O) o $E+D) : current approximation §© if starting from xo = p;j;,

If p;; is a counter-example w.r.t §) do:

e Break dn € {1, ...,k}, s.t. Xn € S(l) :
.« Endif : Otherwise, we say p;; is a counter-example.
* End for : If pij is a counter-example, we update:
* End for p+1) — ||pij||2 — &

. SU+1) — {x“lx”z < b(i+1)},
i where € > 0 is an algorithm parameter expressing the
: level of conservativeness in our update.

May 26 2022 Enrique Mallada (JHU) 19



Parameter choice

Choice of &1 h(*D = “pij” — ¢
« Givenk >k, anyset S® = {x: ||x|| < b} satisfying:
Bs € SO  A(0)\{0A(0) +int Bs)
is k-recurrent.
* Let B, the largest ball inside A(0)\{9dA(0) +int Bs}

 Then, if e < r — § we always guarantee Bs C s@

Choice of trajectory length k:
 k depends highly non-trivially on §.
e Ifk <k, weget b® < 0= Failure!

 Solution: doubling the size of k, i.e., k™ = 2k, every time we fail.

: With k-doubling, the total number of counter-examples is bounded by
: p(0) —
#counter-examples < Tlogz k

May 26 2022 Enrique Mallada (JHU) 20



Algorithm Result - Sphere Approximations

“HE - Complement of ROA i
B ——ROA approximation |
i * Equilibrium ¥

May 26 2022 Enrique Mallada (JHU)

21



Polytope approximations of ROA
Algorithm:

| A(x):
2(0),

ORI

Exploration directions matrix 4 == [ay, ..., a,] € R™"*¢, where each row
i vector a; is a normalized exploration direction indexed by [ € {1, ..., n}.

* Foriterationi = 0,1, ... do:

° Foriterationj — 0,1’ . do: :- ---------- : ----------------------------------------------------------------------------------- E
: If p;j is a counter-example, we update: :

* Generate random sample p;; € SO uniformly (i+1)
: pi+1) — b =arpi—¢&

If p;; is a counter-example w.r.t S® do: pGtD _ O,
l Il

R i1, (1 +1) &(1 &(i+1):
Updateib® to h+D) SO ¢o S+ : $U+D = (x|Ax < pU+DY,
* Break g \ alpij
: where € > 0 is fixed and " = argmaxeq1, ny 77>
 Endif : I el
df i is the index of exploration direction that minimizes the
End for : angle between p;; and a,. ;

May 26 2022 Enrique Mallada (JHU) 22



Algorithm Result — Polytope Approximation

May 26 2022

.................................................

. ComplementofROA§§
* Equilibrium
[T ROA approximation |}
/ééé”“%é *Center point "

.....

................

.....................
.............
...................
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Multi-center approximation

* Consider h € N™ center points x, indexed by q € {1, ..., h}.
* Let the first center pointx; = x* =0
* Additional center point x,, ..., x5 can be designed chosen uniformly.

May 26 2022 Enrique Mallada (JHU)
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Multi-center approximation

e Consider h € N* center points X4 indexed by q € {1, ..., h}.

Let the first center pointx; = x* =0

Additional center point x5, ..., x; can be designed chosen uniformly.

* Respectively defined approximations centered at each x,,

May 26 2022

(Sphere case) Sq(i) = {x]||x — xq”2 < bc(li)}

(Polytope case) Sq(i) = {x|A(x —x4) < bc(li)}

Enrique Mallada (JHU)
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Multi-center approximation

e Consider h € N* center points X4 indexed by q € {1, ..., h}.

Let the first center pointx; = x* =0

Additional center point x5, ..., x; can be designed chosen uniformly.

* Respectively defined approximations centered at each x,,

* (Polytope case) Sq(l) = {x|A(x —x4) < bc(li)}
* Multiple centers approximation Sr(ril)ﬂti = ngls'g‘)

May 26 2022

(Sphere case) Sq(i) = {x]||x — xq”2 < bc(li)}
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Multi-center approximation

Consider h € N center points x, indexed by q € {1, ..., h}.
* Let the first center pointx; = x* =0
* Additional center point x,, ..., x5 can be designed chosen uniformly.

Respectively defined approximations centered at each x,,
* (Sphere case) Sq(l) = {x|||x — xq”2 < bc(li)}
V= (A - xg) < by

* (Polytope case) S,

Multiple centers approximation Sr(ril)ﬂti = nglSCSZ)

If p;; is a counter-example w.r.t S

multi
* We shrink every Sq(l) satisfying p;; € Sq(l)
* For the rest approximations, we simply let Sq(lﬂ) = S‘q(l)

May 26 2022 Enrique Mallada (JHU) 24



Algorithm results — Multi-center approximation

..............
................

:i - Complement of ROA: i G - Complement of ROA
-1 & Equilibrium s \ |—ROA approximation |::
ROA approximation ¥
-] * Center point : FESEEEE

x1
(10 polytope approximations) (50 sphere approximations)
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Question: Are we asking too much?

* Learnability requires uniform approximation errors across the entire domain

Q: Can we provide local guarantees, and progressively expand as needed?

[arXiv 22] Shen, Bichuch, M
* Lyapunov functions and control barrier functions require strict and exhaustive
notions of invariance

Q: Can we substitute invariance with less restrictive properties?
[arXiv 22] Shen, Bichuch, M
* Control synthesis usually aims for the best (optimal) controller

Q: Can we focus on feasibility, rather than optimality?

[arXiv’21, LADC 22] Castellano, Min, Bazerque, M
[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, submitted to CDC 2022, preprint arXiv:2204.10372.

[LADC 22] Castellano, Min, Bazerque, M, Reinforcement Learning with Almost Sure Constraints, Learning for Dynamics and Control (L4DC) Conference, 2022

[arXiv 21] Castellano, Min, Bazerque, M, Learning to Act Safely with Limited Exposure and Almost Sure Certainty, submitted to IEEE TAC, 2021, under review, preprint arXiv:2105.08748
May 26 2022 Enrique Mallada (JHU)

26



Question: Are we asking too much?

* Learnability requires uniform approximation errors across the entire domain

Q: Can we provide local guarantees, and progressively expand as needed?

[arXiv 22] Shen, Bichuch, M
* Lyapunov functions and control barrier functions require strict and exhaustive
notions of invariance

Q: Can we substitute invariance with less restrictive properties?
[arXiv 22] Shen, Bichuch, M
 Control synthesis usually aims for the best (optimal) controller

Q: Can we focus on feasibility, rather than optimality?

[arXiv 21, LADC 22] Castellano, Min, Bazerque, M

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, submitted to CDC 2022, preprint arXiv:2204.10372.
[LADC 22] Castellano, Min, Bazerque, M, Reinforcement Learning with Almost Sure Constraints, Learning for Dynamics and Control (L4DC) Conference, 2022

[arXiv 21] Castellano, Min, Bazerque, M, Learning to Act Safely with Limited Exposure and Almost Sure Certainty, submitted to IEEE TAC, 2021, under review, preprint arXiv:2105.08748
May 26 2022 Enrique Mallada (JHU)

26



[Submitted on 9 Dec 2021 (v1), last revised 7 Apr 2022 (this version, v2)]

Reinforcement Learning with Almost Sure Constraints
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Safety-critical Sequential Decision Making

State Sti1
Reward R,
Damage Dy,;

Key ideas:

Requirements:

High Priority -> Safety

o Sequential / Online / Real-time

o Limited Failures/Mistakes

o High-probability (or A.S.) Guarantees
Lower Priority -> Accuracy

O Optimality of the policy

o Full characterization of the safety set?

* Focus on almost sure feasibility, not optimality (Egerstedt et al.,2018)

* Enhanced with logical feedback, naturally arising from constraint violations
* Damage may depend on R, or not. May not be directly accessible

28



Background

State Sti1
Reward Ri,;
Damages DO,

* Constrained Markov Decision Processes (CMDPs) [altman’9s]

| ; Action A

max V7™(s) = E, nyth+1|So =3
e | t=0 : — * Solvable if MDP is “known” (Linear Program).
» 3 stationary optimal solution T*(a|s)

7

st.: CT(s) =E; i'ythﬁSo:s <¢ i=1,....m
| t=0 i
* What to do if MDP is “unknown”? Examples of Offline (OFF) and Online (ON) methods

* (OFF) Learn transitions and reward/constraint signals, solve for a (near) optimal policy.

* (ON) Primal-dual methods.
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Reinforcement Learning with Almost Sure Constraints

ZWthH | So = 8]

t=0

V*(s) := max E,

s.t.: K,

> A'Diga | So = s] <0 <= D;y1 = 0 almost surely Vt

t=0

State Sti1
Reward R;,;
Damage D4

Action A

 Constraints not given a priori: Need to learn from experience!
* Notice: Model free = Constraint violations are inevitable
* Damage indicator D; € {0,1} turns on (D; = 1) when constraints are violated
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Formulation via hard barrier indicator

Safe RL problem: Equivalent unconstrained formulation:

V*(s) :=max E,

Z”}/th—l—l | So = 3] ~ max E ZVthH + log[l — Di11] | So = s

t=0 +—0 l ]
|

0 ifDey1 =0
=0  if Deyq =1

s.t.: Dyy1 = 0 almost surely Vt

Questions/Comments: )

* |s this just a standard RL problem with R¢+1 = Riy1 +log(l — Dyqq) ?

e Standard MDP assumptions for Value Iteration, Bellman’s Eq., Optimality
Principle, etc., do not hold!

* Not to mention convergence of stochastic approximations.

Key idea: Separate the problem of safety from optimality
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Hard Barrier Action-Value Functions

Consider the Q-function for a given policy 7,

oo

Z (VthH — log(1 — Dt+1)) | So=5,4=a

t=0

QW(Sa CL) — Eﬂ'

and define the hard-barrier function

o

Z—log(l —Diiq1) | So=s,40=a

t=0

B™(s,a) =E;

Notes on B™(s,a):

* B™(s,a) € {0, —0}

* Summarizes safety information
* B™(s,a) = 0 iff  is safe after choosing A; = awhen S; = s

* It is independent of the reward process

May 26 2022 Enrique Mallada (JHU)
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Separation Principle

Theorem (Separation principle)
Assume rewards R;,; are bounded almost surely for all t. Then for every policy m:

Q" (s,a) = Q"(s,a) + B"(s,a)

In particular, for optimal .,

Q"(s,a) = Q"(s,a) + B™(s,a)

Idea: Learn feasibility (encoded in B*) independently from optimality.



Optimal Hard Barrier Action-Value Function

Theorem (Separation principle)
Assume rewards R;,; are bounded almost surely for all t. Then for optimal =, we have

Q"(s,a) = Q"(s,a) + B™(s,a)

Understanding B*(s, a):

B*(s,a) € {0, —oo} summarizes safety information of the entire MDP
 B*(s,a) = 0if 3 safe  after choosing A; = awhen S; = s
 B*(s,a) = —oo if no safe policy exists after choosing A = awhen S; = s

May 26 2022 Enrique Mallada (JHU)
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Optimal Hard Barrier Action-Value Function

Theorem (Separation principle)

Assume rewards R;,; are bounded almost surely for all t. Then for optimal =, we have
Q*(s,a) = Q"(s,a) + B*(s,a)

Understanding B*(s, a):

B*(s,a) € {0, —oo} summarizes safety information of the entire MDP
 B*(s,a) = 0if 3 safe  after choosing A; = awhen S; = s
 B*(s,a) = —oo if no safe policy exists after choosing A = awhen S; = s

Theorem (Bellman Equation for B¥)
Let B*(s,a) := max B" (s, a), then the following holds:

B*(s,a) = E [— log(1 — Dy 1) + max B*(Sys1,a') | Sop = 5, Ag = a]

Idea: Use this Bellman Equation to learn B* (coming up next)



Learning the barrier...

Algorithm 3: barrier_update Pros:

B-function (initialized as all-zeroes); * Wraps around learning algorithms ( Q-learning, SARSA)
Input: (s,a,s’, d)

Output: Barrier-function B(s, a)

B(s, a) «+ B(s,a) + log(1 — d) + max, B(s',a’)

e Use the HBF to trim exploration set and avoid
repeating unsafe actions

...With a generative model:

* Sample a transition (s, a, s’, d) according to the MDP. Update barrier function.

Algorithm S5: Barrier Learner Algorithm

Data: Constrained Markov Decision Process M

Result: Optimal action-value function B*/ Initially, all (s, a)-pairs are “safe”
Initialize B(®)(s,a) = 0,V(s,a) € S x A
fort=20.1.--- do _ .
Draw (s, az) ~ Unif({(s,a) : BO(s,a) # —oo}) Draw (s, a)-pair uniformly among those
Sample transition (s¢, at, sy, d;) according to considered to be “safe” at time t
P (S =s5. Dy =di|So = 51, Ag = ay)
B(t+1) — barrier_update (B(t), St, ¢, S%) dt )L Update barrier function

€n
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Assured Q-Learning with Generative Model

Theorem (Safety Guarantee): Let T = rntin{B(t) = B*}, then
|S]|A]

ISTIA] 1
ET < (L +1)—— -
H k=1 i

o AfterT = mtin{B(t) = B*} , all “unsafe” (s, a)-pairs are detected

e u: Lower bound on the non-zero transition probability
u =min{p(s’,dls,a):p(s’,d|s,a) # 0}
e L:Lag of the MDP

Minimum number of transitions

L= I(r;% { needed to observe damage,
B*(S,C{):_Oo starting from unsafe (s, a)




Lag of the MDP: L

L= max
(s,a)

B*(s,a)=—o0

May 26 2022

{

Minimum number of transitions needed to

observe damage, starting from unsafe (s, a)

Enrique Mallada (JHU)
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Assured Q-Learning with Generative Model

Theorem (Sample Complexity): With at least 1 — 6 probability, the algorithm learns
optimal barrier function B* after
IS4l

IEEVLILY () o
(L+1) i\ L 08

iterations
* Concentration of sum of exponential random variables

 Much more sample-efficient than “learning an e-optimal policy with 1 — §
probability” (Li et al. 2020)

v _lstial_( Islial
A —p*e 8 \(1—y)ed




Assured Q-Learning with Generative Model

Theorem (Sample Complexity): With at least 1 — 6 probability, the algorithm learns
optimal barrier function B* after
IS4l

IEEVLILY () o
(L+1) i\ L 08

iterations

* Concentration of sum of exponential random variables

* |f the Barrier Function is learnt first, then learning an e-optimal policy takes

N' = |Ssafe||Asafe| log? |Ssafe||Asafe|
(1 —y)*e? (1-y)eé
samples (Trimming the MDP by learning the barrier)




Numerical Experiments Actions

S14 | 815

Wall bumps until first goal-reach

Goal: Reach the end of the aisle (R;+1 = 10) s1 | 59 | 53 | 54
Touching the wall gives Dy, = 1,
Results
250 Transitions until first goal-reach ‘ i ‘ W‘all bumps qntil ﬁll'st gogl-rea(l:h .
I Assured Q-Learning EEm Assured Q-Learning
I Q-Learning
500
200
" 400 | ol
g 150 ‘i ‘i
é 100 'g 'g
= Z 200 | =1
07 100 |
5 2000 4000 6000 8000 10000 %2 14 16 18 20 22 24 26 28 30 0
Transitions Wall bumps
Why does Assured Q-learning perform much better?
If D;y; =1 = B,(s,a) = —oo = Never take action a at s again!

Takeaways:
* Adding constraints to the problem can accelerate learning
e Barrier function avoids actions that lead to further wall bumps

May 26 2022 Enrique Mallada (JHU)
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Numerical Experiments Il

Setup: Rectangular grid, stepping into holes gives damage D, = 1.

Actions A = {up,down, left,right}.

With every action, small probability to move to a random adjacent state.
Result: Barrier-learner identifies all the state space as unsafe.

Immediately unsafe states (near damage) are identified first.

t=0
- aall
- e

=
o

—— barrier learner

. "’"ﬁ'f" (L + D)log(]S]]A])

. S

©
o

©
o

o
I

o
N

©
o

Proportion of unsafe states detected

-
o_
o

Iterations
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Numerical Experiments Il

Setup: Rectangular grid, stepping into holes gives damage D; = 1.

Actions A = {up,down, left,right}.

With every action, small probability to move to a random adjacent state.
Result: Barrier-learner identifies all the state space as unsafe.

Immediately unsafe states (near damage) are identified first.

t=0

=
o

—— barrier learner

—— B+ 1)l0g(]s]14])

©
0

©
o

o
I

©
N

Proportion of unsafe states detected

o
o

e
o_
o

Iterations
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Generalization

So far:

* Studied “assured” RL under a very

particular type of constraint

oo
Z'Yth+1 | So =5
=0

V*(s) :=max E,

|

s.t.:|Dyyr1 = 0 almost surely V¢t

May 26 2022

Upcoming:

Can we generalize this? E.g.:

(Z Dt+1> < A|Sy =s almost surely
t=0

“Allow no more than A units of damage
along a trajectory”
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RL with almost sure constraints and positive budget (A)

ZRH_l ’ S() = S]
t=0

8.t:| Pr (Z Dy <A Sy = S) =1 _ Outside the usual realm of CMDPs
t=0

Ex

[y : history-dependent policies he = (So, Ao, R1, Dy, ..., S¢); m(alhs)

e Can we find (as in Part 1) an optimal stationary policy?
* In general, NO!

d=1,r=1

d=0,r=0 Optimal policy: VTH = A

The only feasible stationary policy has Vs = (

What if we track the total damage encountered so far?
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Current budget & the augmented MDP

e Current budget at time t: « Equivalent problem:
t—1
Kt:A_ZDE—l—l \V/tZ]. 0o
=0 nax Ex oo | Y Resr | (S0, Ko) = (s,A)
TSRH t=0

“How much more damage | can sustain and still
be feasible”

Claim: 3 optimal policy 7*(a |

* Augmented

St = (St, Kt) , Dii1 = 1{K; — Dyy1 < 0}.

S x {A} Sx{A-1} S x {0}

Enrique Mallada (JHU)

st: Ps (Dt+1 - 0) —1  Wt>0

|

Fits previous formulation! —

Could learn B*(s, k, a)
Separation & Feasibility Principles

Drawback: working in
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Experiment: comparing constraints

Frequency
© o o o o
— ~N w S w

o
=}

May 26 2022

Goal

1) Proposed constraint

o
mEX ]Eﬂ' Z Rt—|—1 IPTrA (Z Dt+1 < A ‘ SO = S> =1
t=0 t=0

2) Classic CMDP constraint

(@)
Er, |Y Dipi| <c
t=0

Safety of assured m, with A=5 vs expectation-based constraint n/; P(d=1)=1

10.0 125 15.0

15

0.175 -
= 0.20
e T 0.150 -
*
. 0.15 0.125 -
0.100 -
10 0.075 -
0.050
0.05
0.025 -
\ . 000- ! ' : . 0.000 - !
20 25 30 0 10 20 30 40

Total damage per episode
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Summary and future work

Approximations of ROA

* Propose a flexible notion of invariance known as recurrence.
* Provide necessary and sufficient conditions for recurrent set to be inner-approximations of ROAs
e Algorithms: sequential, and incur limited number of counter-examples.

* Future work: sample complexity, smart choice of multi-points, control recurrent sets

RL with Almost Sure Constraints
* Studied safe/constrained sequential learning:

* Focus on safety first, show it can be achieved quickly, and with strong guarantees

* Motivate the need of additional information, damage
* Treat constraints separately, or in parallel
» Safety can be learnt more efficiently! and helps learning optimal policies.

* Future work: extensions to continue state and action spaces.



Thanks!
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