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Broad Motivation: The Curse of Dimensionality

= Sampling in d dimension with resolution €

M@ M@)”'@

= Verifying non-negativity of polynomials

Copositive matrices:

[xZ ... x3]A[x? ...xczi]T >0
Murty&Kadabi [1987]: Testing co-positivity is NP-Hard
Sum of Squares (SoS):
z(x)TQz(x) =20, z(x) eR[x], xe R%E,Q =0
Artin [1927] (Hilbert’s 17t problem):

Non-negative polynomials are sum of square of rational functions
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O(e™9)

Fore=0.1and d = 100, we
would need 101%0 points.

Motzkin [1967]:

p = x4y2 4+ x2y4+1—3x2y?
is nonnegative,

not a sum of squares,

but (x2 + y?)?p is SoS



Question: Are we asking too much?

* Learnability requires uniform approximation errors across the entire domain

Q: Can we provide local guarantees, and progressively expand as needed?

[arXiv 22] Shen, Bichuch, M
* Lyapunov functions and control barrier functions require strict and exhaustive
notions of invariance

Q: Can we substitute invariance with less restrictive properties?
[arXiv 22] Shen, Bichuch, M
* Control synthesis usually aims for the best (optimal) controller

Q: Can we focus on feasibility, rather than optimality?

[arXiv’21, LADC 22] Castellano, Min, Bazerque, M

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, submitted to CDC 2022, preprint arXiv:2204.10372.
[LADC 22] Castellano, Min, Bazerque, M, Reinforcement Learning with Almost Sure Constraints, Learning for Dynamics and Control (L4DC) Conference, 2022

[arXiv 21] Castellano, Min, Bazerque, M, Learning to Act Safely with Limited Exposure and Almost Sure Certainty, submitted to IEEE TAC, 2021, under review, preprint arXiv:2105.08748
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Region of Attraction

Continuous time dynamical system: x(t) = f(x(t))
* With initial condition xy = x(0), solution at time t: ¢ (&, xp).

* The w-limit set of the system: Q(f)

______________________ . i X5
5
[i’;] - [—”31 +:§2ﬂ’31 _xJ 0 @
Q(f) ={(0,0), (~v3,0), (v3,0)} -2|
2 2 o
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Region of Attraction

Continuous time dynamical system: x(t) = f(x(t))
* With initial condition xy = x(0), solution at time t: ¢ (&, xp).
* The w-limit set of the system: Q(f)
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Region of Attraction

Continuous time dynamical system: x(t) = f(x(t))
* With initial condition xy = x(0), solution at time t: ¢ (&, xp).
* The w-limit set of the system: Q(f)

Q(f) — {(070)7(_\/57 0)7(\/§7 O)} -2/

Asymptotically stable equilibrium at x* = (0,0)
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Region of Attraction

Continuous time dynamical system: x(t) = f(x(t))
* With initial condition xy = x(0), solution at time t: ¢ (&, xp).
* The w-limit set of the system: Q(f)

Q(f) — {(07 O)v (_\/57 0)7 (\/§7 O)}
Unstable equilibria {(+/3,0), (—V3, 0)}
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Motivation: Estimation of Regions of Attraction
Having an approximation of the region of attraction allows us to

* Test the limits of controller designs
especially for those based on (possibly linear) approximations of nonlinear systems

O ®

(Cart-pole) (Quadcopter)
* Verify safety of certain operating condition

’
)
\F

»,

RADAR &
SENSORS

(

______________

NN\
\\\Q\\\
AN\\\\\\Y

(self-driving) (HVAC system)
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Is Invariance Key for Approximating RoAs?

Aset ] € R% is positively invariant if and only if: 90 € Z = ¢(t,z9) € Z, VtcRT
(Any trajectory starting in the set remains in inside it.)

* Invariant sets guarantee stability
(Lyapunov stability: solutions starting "close enough" to the equilibrium (within a
distance 0) remain "close enough" forever (within a distance ¢) )

* Invariant sets further certify asymptotic stability via Lyapunov’s direct method
(Asymptotic stability: solutions that start close enough not only remain close enough
but also eventually converge to the equilibrium.)

Regions of attraction are invariant sets, and so are the outcome of most
approximation methods!
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Challenges of Working with Invariant Set
Learning ROA A(x™) by finding an invariant set § € A(x")

Assumption 1. The system x(t) = f(x(t)) has an
asymptotically stable equilibrium at x™.

Remark 1. It follows from Assumption 1 that the (positively
invariant) ROA A(x™) is an open contractible set [Sontag,
2013], i.e., the identity map of A(x*) to itself is null-
homotopic [Munkres, 2000].

E. Sontag. “Mathematical Control Theory: Deterministic Finite Dimensional Systems.” Springer 2013
J. R. Munkres. “Topology.” Prentice Hall 2000
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Challenges of Working with Invariant Set

Learning ROA A(x™) by finding an invariant set § € A(x™)

S need to be a connected set

May 4 2022

Enrique Mallada (JHU)

Example 1: A good approximation
S € A(x™) is notinvariant

a2 0 2
A(x*) : s:

A not invariant trajectory: e __,



Challenges of Working with Invariant Set

Learning ROA A(x™) by finding an invariant set § € A(x™)

Example 2: Another good approximation
* 8§ needto beaconnected set § C A(x*) is not invariant

* f(x) should point inwards for x € 0§

-4 —é 0 2
A(x*) : s:

A not invariant trajectory: e __,
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Challenges of Working with Invariant Set

Learning ROA A(x™) by finding an invariant set § € A(x™)

e § needto be aconnected set

f should point inwards for x € 08

| A subset of an invariant set is not | :
|
| necessary an invariant set | A(X) :

A not invariant trajectory: «_ ,

May 4 2022 Enrique Mallada (JHU) 8



Recurrent Sets: Letting things go, and come back

A set R € R% is recurrent if and only if whenever x, € R, 3t > 0 s.t. ¢(t',20) € R

Property of Recurrent Sets
e R need not be connected

* R does not require f to point inwards on all R

Lemma 1. Consider a compact recurrent set R. Then for any
point xo € R and time Tt > 0, there exist a T' > T, such that

d(t',x9) € R.

______________________________________ Recurrent set R:

IRecurrent sets, while not invariant, guarantee that solutlons. A recurrent trajectory: o,

I that start in this set, will visit it back infinitely often. |

May 4 2022 Enrique Mallada (JHU) 9



Recurrent Sets: Letting things go, and come back

A set R € R% is recurrent if and only if whenever x, € R, 3t > 0 s.t. ¢(t',20) € R

Previous two good inner approximations of A(x™) are recurrent sets

May 4 2022 Enrique Mallada (JHU) 9



Recurrent sets *are subsets of the region of attraction

A set R € R% is recurrent if and only if whenever x, € R, 3t > 0 s.t. ¢(t',20) € R

Theorem 2. Let R c R% be a compact set Proof: [Sketch]
satisfying OR N Q(f) = @. Then: (=) If R is recurrent, solutions that start in R will visit it back
infinitely often. Thus, for each x, € R, we can construct an
o= mEm Em Em o Em EE EE EE EE EE D EE EE EE EE EE EE Em o Em E— |
I . . . [0'e) _ .
| R is recurrent b RNQ(f) =0 : infinite sequence {x,, };—o € R. Then Bolzano-Weierstrass
| R c AR NQ(f)) | theorem implies there exists a sub-sequence {x,, ;};~, that

converges to an accumulation point X € Q(f) N R + @.

(<) Starting from any x, € R € A(R N Q(f)), d(t, xo)
converges to R N Q(f) S int R. It then follows from the
continuity of ¢ that there always exists some time t > 0 such
that ¢(t, xo) € R. Thus, R is recurrent.

May 4 2022 Enrique Mallada (JHU) 10



Recurrent sets *are subsets of the region of attraction

A set R € R% is recurrent if and only if whenever x, € R, 3t > 0 s.t. ¢(t',20) € R

Assumption 2. The w-limit set Q(f) is composed
by hyperbolic equilibrium points, with only one of

d
Theorem 2. Let R C R™ be a compact set them, say x*, being asymptotically stable.

satisfying OR N Q(f) = @. Then:

' Risrecurrent <y D Qf) =0 Corollary 2. Let Assumption 2 hold and let R ¢ R4
______________________ be a compact set satisfying dR N Q(f) = @. Then:

| X
I R isrecurrent <=y ﬁ 2%}(2*; X :
|

May 4 2022 Enrique Mallada (JHU) 10



Recurrent sets imply a subset of the region of attraction

Assumption 2. The w-limit set Q(f) is composed

by hyperbolic equilibrium points, with only one of
Theorem 2. Let R c R? be a compact set

satisfying OR N Q(f) = @. Then:

them, say x*, being asymptotically stable.

R is recurrent < RNQ(f) =0 Corollary 2. Let Assumption 2 hold and let R ¢ R%
R € AR NQ(f)) be a compact set satisfying dR N Q(f) = @. Then:
——— e ————————— |
| *
. RNQ(f) =x" 1
|
R is recurrent < R C A" :

Corollary 2 suggests that we may use recurrence as a mechanism for
practically finding inner approximations for A (x™).

However, we do not know a priori how long it may take for a trajectory to
come back to R after it leaves it.

May 4 2022 Enrique Mallada (JHU) 11



Set dependent bounds on recurrence

A set R € R% is t-recurrent if whenever x, €
R,then 3t" € (0,7] s.t. ¢(t',x9) €ER

Time elapsed < T

T-recurrent set R:

A T-recurrent trajectory: < <"

Assumption 1. The system x(t) = f(x(t)) has
an asymptotically stable equilibrium at x™.

Theorem 3. Let Assumption 1 hold and consider
a compact set R € A(x™) satisfying x™ € int R

and R N A(x*) = @. Then there exists positive

constants ¢, ¢, and a, depending on R such that
for all

_c—¢
T=>T = ,
a

the set R is z-recurrent . Further, starting from
any point x € R, the solution ¢(t, x) € R for all
t =T

May 4 2022 Enrique Mallada (JHU) 12



Set dependent bounds on recurrence

Theorem 3. Let Assumption 1 hold and consider a compact set R € A(x") satisfying x™ €int Rand R N

c—C

A(x*) = @. Then there exists positive constants ¢, ¢, and a, depending on R such that forallT > 7 := ~—

the set R is z=recurrent . Further, starting from any point x € R, the solution ¢(t,x) € R forall t > T.

Proof: [Sketch]

- Under Assumption 1, it follows from [Driver, 1964] that
there exists a Lyapunov function V (x) with domain on
A(x™) satisfying : - ~

. V(x*)=0,0<V(x) <1forall x € A(x)\x* =" .

« WOEHTf(x)=0 / WX /

e W()Tf(x) <0forallx € A(x*)\x* \\ _ - -
N < e

May 4 2022 Enrique Mallada (JHU) 13



Set dependent bounds on recurrence

Theorem 3. Let Assumption 1 hold and consider a compact set R € A(x") satisfying x™ €int Rand R N

c—C

A(x") = @. Then there exists positive constants ¢, ¢, and a, depending on R such that forall 7 > 7 := —,

the set R is z=recurrent . Further, starting from any point x € R, the solution ¢(t,x) € R forall t > T.

Proof: [Sketch]

- Under Assumption 1, it follows from [Driver, 1964] that Level sets

there exists a Lyapunov function V (x) with domain on

A(x*) satisfying : e RN

+ V(x*)=0,0<V() <1forall x € AX\x' P SN

¢ WEHTF(x*) =0 r0 T X 2 Y

e W()Tf(x) <0forallx € A(x*)\x* \\ \\\ \‘\_/”;/"; _-"
N P T

- Forany c € (0,1), we can further show the level set g = A(xY) :

V.. ={x:V(x) < c}is a contractible invariant subsets
of A(x™).

May 4 2022 Enrique Mallada (JHU) 14



Set dependent bounds on recurrence

Theorem 3. Let Assumption 1 hold and consider a compact set R € A(x") satisfying x™ €int Rand R N

A(x*) = @. Then there exists positive constants ¢, ¢, and a, depending on R such that forallT > 7 := %C,

the set R is z=recurrent . Further, starting from any point x € R, the solution ¢(t,x) € R forall t > T.

Proof: [Sketch] - Given compact set R, let us now define

c:= min V(z), ¢:= max V(z), anda := max VV (2)” f(z),
- Under Assumption 1, it follows from [Driver, 1964] that: TEIR T€IR zel
there exists a Lyapunov function V (x) with domainon | where C = {x € R%:¢ < V(x) < c}.
A(x™) satisfying : :
e V(x*)=0,0<V(x)<1forall x € A(x*)\x"
e WEHTf(x*)=0
e W()Tf(x) <0forallx € A(x*)\x*

- For any ¢ € (0,1), we can further show the level set
Vee = {x:V(x) < c}is a contractible invariant subsets
of A(x™). ’

May 4 2022 Enrique Mallada (JHU) 14



Set dependent bounds on recurrence

Theorem 3. Let Assumption 1 hold and consider a compact set R € A(x") satisfying x™ €int Rand R N

A(x*) = @. Then there exists positive constants ¢, ¢, and a, depending on R such that forallT > 7 := %C,
the set R is z=recurrent . Further, starting from any point x € R, the solution ¢(t,x) € R forall t > T.
Proof: [Sketch] - Given compact set R, let us now define

c:= min V(z), ¢:= max V (), anda := max VV (z)7 f(2),
- Under Assumption 1, it follows from [Driver, 1964] that: TzE€IR IR zed

there exists a Lyapunov function V (x) with domainon | where C = {x € R%:¢ < V(x) < c}.
A(x™) satisfying :

e V(x*)=0,0<V(x)<1forall x € A(x*)\x"
e WEHTf(x*)=0

e W()Tf(x) <0forallx € A(x*)\x*

- We can then conclude: V.. S R S V.. Moreover, for any
pomtx € R, the Lyapunov value V(qb(t x)) <c aftert >t:=

- For any ¢ € (0,1), we can further show the level set
Vee = {x:V(x) < c}is a contractible invariant subsets
of A(x™). ’

-~
S_ =" A(xY):

May 4 2022 Enrique Mallada (JHU) An example trajectory: ®....»  R: 14



Beyond set dependent bounds

Theorem 3. Let Assumption 1 hold and consider a compact set R € A(x") satisfying x™ € int R and
R N A(x*) = @. Then there exists positive constants ¢, ¢, and @, depending on R such that for all

y Cc—¢C
T 2>IT = ,
a

the set R is z-recurrent . Further, starting from any point x € R, the solution ¢(t,x) € R forall t > T.

i Recurrent bound depends on the set

May 4 2022 Enrique Mallada (JHU) 15



Beyond set dependent bounds

To eliminate this dependence, we consider the set:
As .= A(x")\ ({0A(x") + intBs }U{intBs + z*}) ,

where Bs = {x:||x||, < &} and § is chosen to be small
enough such that Bs + x* € A(x*)\{0A(x") + Bs} .

A(x")
N
6/”’ \\
/’{ o) \
/7
X . .
\ /”
N\ -~
N s
\_’,
c/l(g:
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Beyond set dependent bounds

To eliminate this dependence, we consider the set:
As .= A(x")\ ({0A(x") + intBs }U{intBs + z*}) ,

where Bs = {x:||x||, < &} and § is chosen to be small
enough such that Bs + x* € A(x*)\{0A(x") + Bs} .

May 4 2022 Enrique Mallada (JHU)

Then, we define:
c(d) = max Vi(z), c(6):= min Viz),
and a(6) := max VV ()T f(x),
zeCls

where C5 = {x € R%:¢(8) < V(x) < ¢(6)}.

Level sets
A(x")
-
- Y - ~
- T oSN
/’,”’ N \
s - < :, ,
[ A o TP
\ \\\ e ’,”: - -
\\ \\\ L ’/’ ,’
N
\; - -
= c(o
c6) <€) As

15



Beyond set dependent bounds

To eliminate this dependence, we consider the set: Then, we define:

As = Az )\ ({0A(x") + intBs}U{intBs + 2*}),  €(0):= max V(z), ¢(0):= min V(z),
where Bs = {x: ||x||, < 8} and § is chosen to be small and a(6) := max VV(z)T f(z),
xecCs

enough such that Bs + x* € A(x*)\{0A(x") + Bs} .

where Cg = {x € R%c(8) <V(x) < 5(5)}.

Uniform bounds on recurrence

Theorem 4. Under Assumption 1, any compact set R satisfying:

May 4 2022 Enrique Mallada (JHU)

i ]

i i

i i

: Bs+x" SRS AMx")\{O0A(x™) +int Bs} : _ ==

\ is zrecurrent for any i ‘/ ¥

i N o

I _ I \ S
c(6) —c(o I

I 1> 7(8) = S0 €O oy

! a(o) ! N o

| Moreover, whent = T, ¢(t,x) € R for any point x € R. !

! . ¢(8)

L i

Level sets

—’—— \\\ \
\\ \
1
----- .*6x7 ’»’,// 7
N/ - -
- -
- -
" ) _- ,/
- s
-~
-
c(8) .

An example trajectory: ®-.....v
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Learning Recurrent Sets

* We now propose a method to compute inner-| ¢ Notion of discrete recurrence w.r.t. a length k
approximations of the region of attraction trajectory:
A(x*) based on checking the recurrence

. : Aset R € R% is k-recurrent if whenever x, €
property on finite-length trajectory.

R,then dn e {1,...,k} s.t. z,, € R.

Index elapsed < k

* Consider the following type of sample
(Time elapsed < kt,)

trajectories:
x, = p(ntg,xy), xo€ RY n €N,
where 75, > 0 is the sampling period.

k-recurrent set R:

A k-recurrent trajectory: &

May 4 2022 Enrique Mallada (JHU) 16



Learning Recurrent Sets

: (Theorem 4). Under Assumption 1, any compact
* Aset R being k-recurrent implies R is T-recurrent  : 4+ satisfying: :

with T = kt,. We can further conclude R € A(x™) . . o
CRC
under the assumptions of Corollary 2. Bs +x" S R S AXI\{0A(x") +int Bs}
is z-recurrent for any

« To ensure one can find such a k-recurrent set, we _ c(6) —c(6)
provide the following sufficient condition for a set : T21(0) = a(d)
R to be k-recurrent . Moreover, whent > T, ¢(t,x) € R for any
F R e e N e e Ea A Ea NN A A A A AN ANANENENEN RN R R R rarararararararat ; point x € R. _
: Theorem 5. Under Assumption 1, any compact Set R & furevressesssssssssssssssssssssssssssasssssssssassasssassassasssnssns

satisfying: /

: Bs+x" SRS Ax*)\{0A(x™) +int Bs}
: is k-recurrent for any k > k := 7(8) /.

May 4 2022 Enrique Mallada (JHU) 16



Algorithm Explanation

Assumptions:

» (Assumption 2). The w-limit set Q(f) is composed by hyperbolic equilibrium points, with

only one of them, say x*, being asymptotically stable.

 We further assume w.o.l.g x* = 0 for simplicity.

Goal:

With a compact initial approximation §(© c R? of the ROA satisfying $(® 2 B, we seek to
find a subset of ROA within A(x*) N $© by learning a k-recurrent set R.

Sufficiency:

| R is k-recurrent |->

Necessity:

]

R is T-recurrent
with T = kT

R is compact
ORNQ(f) =0

(Theorem 5). Under Assumption 1, any compact set R satisfying:
Bs+x" SRS Ax*)\{0A(x™) +int Bs}
is k-recurrent for any k > k := 7(8) /7.

= RcAx |

(Corollary 2, under Assumption 2)

May 4 2022

Enrique Mallada (JHU)
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Algorithm Explanation | AxY):

50:

Algorithm (sphere approximation):

May 4 2022 Enrique Mallada (JHU) 17



Algorithm Explanation | AGX):

50:

Algorithm (sphere approximation):

 Foriterationi = 0,1, ... do: (set updates)
* Foriterationj = 0,1, ... do: (samples)

* Generate random sample p;; € SO uniformly

May 4 2022 Enrique Mallada (JHU) 17



Algorithm Explanation | A(X):

5 [
bt pij): ¢

Algorithm (sphere approximation):

* Foriterationi = 0,1, ... do:

* Foriterationj = 0,1, ... do:

* Generate random sample p;; € SO uniformly

We say sample point p; ; j is a valid k-recurrent point w.r.t
: : current approximation S f starting from Xo = Dij, '
: Ine{l,.. k} st x,€SW,

OtherWlse we say p;; is a counter-example.

If p;; is alcounter-example|w.r.t §) do:

May 4 2022 Enrique Mallada (JHU) 17



Algorithm Explanation | A(xY):

O

ORI

Algorithm (sphere approximation):

* Foriterationi = 0,1, ... do:

* Foriterationj = 0,1, ... do:

* Generate random sample p;; € SO uniformly

We say sample point p; ; j is a valid k-recurrent point w.r.t

Updatelb™ to b+, SO to STV i cyrrent approximation $® if starting from x, = p;; i :
: In€e{l, ..k} st x, €SV,

Otherw:se we say p;; is a counter-example.

If p;; is a counter-example w.r.t §) do:

If pij is a counter-example, we update:

| b = [y, - &

. SU+1) — {x|||x|| < b(l+1)}
i where € > 0 is an algorithm parameter expressing the
: level of conservativeness in our update.

May 4 2022 Enrique Mallada (JHU) 17



Algorithm Explanation | A(xY):

SO, ]

Algorithm (sphere approximation):

* Foriterationi = 0,1, ... do:

* Foriterationj = 0,1, ... do:

* Generate random sample p;; € SO uniformly

: We say sample point p; ; j is a valid k-recurrent point w.r.t
«  Update bD to p(i+D) §O) o $E+D) : current approximation §® if starting from xo = p;;, :
e Break Ane{l,.. k} st x, €SV,

: Otherwise, we say p;; is a counter-example.

If p;; is a counter-example w.r.t §) do:

N = T et SO
* End for : If pij is a counter-example, we update:
* End for pl+1) — ||pij||2 — &;

. SU+1) — {x“lx”z < b(i+1)},
i where € > 0 is an algorithm parameter expressing the
: level of conservativeness in our update.

May 4 2022 Enrique Mallada (JHU) 17



Algorithm Explanation

Choice of &:

(Theorem 5). Under Assumption 1, any compact set R

satisfying:

B(g +x"CRC Jl(O)\{f)‘a‘l(O) +int 35}

is k-recurrent for any k > k := 7(8) /7.

May 4 2022

Given k > k, and an arbitrary approximation §®
satisfying Bs € S® < A(0)\{0-A(0) +int Bs},
then any sample p;; € SO will be classified as a
valid k-recurrent point.

As a result, the algorithm will stop updating at this
point since we cannot find further counter-examples
within §®.

This means that, if it is possible for § ) to become a
subset of A(0)\{dA(0) +int Bs}, without violating

the condition Bg © S® then the algorithm will stop
updating and never fail.

Enrique Mallada (JHU)




Algorithm Explanation

Choice of &:

(Theorem 5). Under Assumption 1, any compact set R
satisfying:

Bs +x* S R < A0)\{0A(0) +int Bs}
is k-recurrent for any k > k := 7(8) /7.

« Givenk >k, and an arbitrary approximation §®
satisfying Bs € S® < A(0)\{0-A(0) +int Bs},
then any sample p;; € SO will be classified as a
valid k-recurrent point.

* Asaresult, the algorithm will stop updating at this

point since we cannot find further counter-examples

within §®,

« This means that, if it is possible for §® to become a
subset of A(0)\{dA(0) +int Bs}, without violating

the condition Bg © S® then the algorithm will stop

updating and never fail.

?

* I|tis possible, whenever € andi_lf_iare properly chosen.

pij, the resulting updated set satisfies Bs < S+ ywhenever

e<r-—9,

where r is the smallest distance between the origin 5
 (equilibrium) and the boundary 0{A(0)\{d-A(0) +int Bs}}.

May 4 2022 Enrique Mallada (JHU) 17



Algorithm Explanation
Choice of k:

k depends in a highly non-trivial way on §.

If k < k, algorithm may reach a b® < 0. We declare the search a failure.

We solve this issue by, doubling the size of k, i.e., kt = 2k, every time we fail.

: With k-doubling after each failure, the total number of counter-examples we
: encountered is bounded by

#counter-examples < glogz k

May 4 2022 Enrique Mallada (JHU)
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Algorithm Result

Result (sphere approximation):

May 4 2022

x2

...............................................

...........

S -1 - Complement of ROA

B ——ROA approximation |
: ; * Equilibrium ¥

Enrique Mallada (JHU)
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Algorithm Explanation | A(X):

£(0),

ORI

Algorithm (Polytope approximation):

Exploration directions matrix 4 == [ay, ..., a,] € R™"*¢, where each row
i vector a; is a normalized exploration direction indexed by [ € {1, ..., n}.

* Foriterationi = 0,1, ... do:

° Foriterationj — 0,1’ . do: :- ---------- : ----------------------------------------------------------------------------------- E
: If p;j is a counter-example, we update: :

* Generate random sample p;; € SO uniformly (i+1)
: pi+1) — b =arpi—¢&

If p;; is a counter-example w.r.t S® do: pGtD _ O,
l Il

R i1, (1 +1) &(1 &(i+1):
Updateib® to h+D) SO ¢o S+ : $U+D = (x|Ax < pU+DY,
* Break g \ alpij
: where € > 0 is fixed and " = argmaxeq1, ny 77>
 Endif : I el
df i is the index of exploration direction that minimizes the
End for : angle between p;; and a,. ;

May 4 2022 Enrique Mallada (JHU) 19



Algorithm Result

Result (Polytope approximation):

May 4 2022

i 11+ Complement of ROA

i * Equilibrium i
SESEEEEE: = ROA approximation |::
© * Center point i

.................................

T T — |

L4 B jeriiiiiini, i
-4 -2 0 2 4
x1
Enrique Mallada (JHU) 20



Algorithm Explanation
Multiple center points approximation:
* Consider h € N™ center points x, indexed by q € {1, ..., h}.

* Let the first center point x; = x* =0
e Additional center point x,, ..., x, can be designed chosen uniformly.

May 4 2022 Enrique Mallada (JHU)
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Algorithm Explanation

Multiple center points approximation:

* Consider h € N* center points x, indexed by q € {1, ..., h}.
* Let the first center point x; = x* =0
* Additional center point x5, ..., x;, can be designed chosen uniformly.

* Respectively defined approximations centered at each x,,
* (Sphere case) S‘q(l) = {x|||x - xq”z < bc(li)}

* (Polytope case) Sq(i) = {x|A(x —x4) < béi)}
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Algorithm Explanation

Multiple center points approximation:

* Consider h € N* center points x, indexed by q € {1, ..., h}.
* Let the first center point x; = x* =0
* Additional center point x5, ..., x;, can be designed chosen uniformly.

* Respectively defined approximations centered at each x,,

« (Sphere case) S‘q(i) = {x]||x — xq”z < bc(li)}

* (Polytope case) Sq(l) = {x|A(x —x4) < béi)}
* Multiple centers approximation Sr(rfl)ﬂti = nglséi)

May 4 2022 Enrique Mallada (JHU) 21



Algorithm Explanation

Multiple center points approximation:

Consider h € N* center points X4 indexed by q € {1, ..., h}.
* Let the first center point x; = x* =0
e Additional center point x,, ..., x, can be designed chosen uniformly.

Respectively defined approximations centered at each x,,

« (Sphere case) S‘q(i) = {x|||x - xq”z < bc(li)}

* (Polytope case) S‘q(l) = {x|A(x —x4) < bc(li)}
* Multiple centers approximation SI(ril)ﬂti = nglséi)

If p;; is a counter-example w.r.t S

multi
* We shrink every Sq(l) satisfying p;; € Sq(l)
i1 r
* For the rest approximations, we simply let Sq(H ) = Sq(l)

May 4 2022 Enrique Mallada (JHU) 21



Algorithm Result

Result (Multiple centers approximation):

........
.........

SIS - Complement of ROA
fi 11 F Equilibrium
: ROA approximation |::
*  Center point £

(10 polytope approximations) (50 sphere approximations)
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Conclusions

We propose the use of a more flexible notion of invariance known as
recurrence.

* We provide necessary and sufficient conditions for a recurrent set to be an
inner-approximation of the ROA.

* Our algorithms are sequential, and only incur on a limited number of counter-

examples.

* Future work includes
 Sample complexity bounds
* Smart choice of multi-points
e Control recurrent sets



