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Learning for Safety-critical Sequential Decision Making

Requirements:

State Sti1
Reward R,
Damage D,y

High Priority -> Safety
o Limited Failures/Mistakes

o Hard Constraints/ A.S. Guarantees

Lower Priority -> Accuracy

O Optimality of the policy

Key ideas:

* Focus on almost sure feasibility, not optimality (Egerstedt et al.,2018)

* Enhanced with logical feedback, naturally arising from constraint
violations
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Background

State Sti1
Reward Ri,;
Damages DO,

* Constrained Markov Decision Processes (CMDPs) [altman’9s]

] ; Action A

max VT(s) =E, nyth+1|So =5
e Lt=0 : — * Solvable if MDP is “known” (Linear Program).
» 3 stationary optimal solution T*(a|s)

7

st.. Cl'(s)=E, thDgﬁSo:s <¢ i=1,....m
=0 i

 What to do if MDP is “unknown”? Examples of Model-based and Model-free methods

* (MB) Learn transitions and reward/constraint signals, solve for a (near) optimal policy.
[Aria HZ et al‘20], [Bai et al‘20], [Wang et al 20], [Chen et al’21]

* (MF) Primal or Primal-dual methods.
[Chow et al’17], [Tessler et al‘19], [Paternain et al’19], [Ding et al’20], [Stooke et al. 20], [Xu et al’21]
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Reinforcement Learning with Almost Sure Constraints

ZWthH | So = 8]

t=0

V*(s) := max E,

s.t.: K,

> A'Diga | So = s] <c <= D;y1 = 0 almost surely Vit

t=0

State Sti1
Reward R;,;
Damage D4

Action A

* Damage indicator D; € {0,1} turns on (D; = 1) when constraints are violated
 Constraints not given a priori: Need to learn from experience!
* Notice: Model free = Constraint violations are inevitable
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Formulation via hard barrier indicator

Safe RL problem: Equivalent unconstrained formulation:

V*(s) :=max E,

Z”}/th—l—l | So = 3] ~ max E ZVthH + log[l — Di11] | So = s

t=0 +—0 l ]
|

0 ifDey1 =0
=0  if Deyq =1

s.t.: Dyy1 = 0 almost surely Vt

Questions/Comments: )

* |s this just a standard RL problem with R¢+1 = Riy1 +log(l — Dyqq) ?

e Standard MDP assumptions for Value Iteration, Bellman’s Eq., Optimality
Principle, etc., do not hold!

* Not to mention convergence of stochastic approximations.

Key idea: Separate the problem of safety from optimality
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Hard Barrier Action-Value Functions

Consider the Q-function for a given policy 7,

oo

Q"(s,a) =Ex | Y (Y'Reg1 +log(1 — Diy1)) | So = s, 49 = a
t=0

and define the hard-barrier function

B™(s,a) = E, Zlog(l —Dyt1) | So=s,40=a

| t=0 J

Notes on B™(s,a):

* B™(s,a) € {0, —0}

* Summarizes safety information
* B™(s,a) = 0 iff  is safe after choosing A; = awhen S; = s

* It is independent of the reward process
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Separation Principle

Theorem (Separation principle)
Assume rewards R;,; are bounded almost surely for all t. Then for every policy m:

Q" (s,a) = Q"(s,a) + B"(s,a)

In particular, for optimal .,

Q"(s,a) = Q"(s,a) + B™(s,a)

Idea: Learn feasibility (encoded in B*) independently from optimality.



Optimal Hard Barrier Action-Value Function

Theorem (Bellman Equation for BY)
Let B*(s,a) := max B"(s,a), then the following holds:

B*(s,a) =E {— log(1 — Dyy1) + max B (Siy1,a’) | So=s,40 = a}

Understanding B*(s, a):

B*(s,a) € {0, —o} summarizes safety information of the entire MDP
 B*(s,a) = 0if 3 safe  after choosing A; = awhen S; = s
 B*(s,a) = —ooif no safe policy exists after choosing A = awhen S; = s
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Learning the barrier...

Algorithm 3: barrier_update Pros:

B-function (initialized as all-zeroes); * Wraps around learning algorithms ( Q-learning, SARSA)
Input: (s,a,s’, d)

Output: Barrier-function B(s, a)

B(s, a) «+ B(s,a) + log(1 — d) + max, B(s',a’)

e Use the HBF to trim exploration set and avoid
repeating unsafe actions

...With a generative model:

* Sample a transition (s, a, s’, d) according to the MDP. Update barrier function.

Algorithm S5: Barrier Learner Algorithm

Data: Constrained Markov Decision Process M

Result: Optimal action-value function B*/ Initially, all (s, a)-pairs are “safe”
Initialize B(®)(s,a) = 0,V(s,a) € S x A
fort=20.1.--- do _ .
Draw (s, az) ~ Unif({(s,a) : BO(s,a) # —oo}) Draw (s, a)-pair uniformly among those
Sample transition (s¢, at, sy, d;) according to considered to be “safe” at time t
P (S =s5. Dy =di|So = 51, Ag = ay)
B(t+1) — barrier_update (B(t), St, ¢, S%) dt )L Update barrier function

€n
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Convergence in Expected Finite Time

Theorem (Safety Guarantee): Let T = rntin{B(t) = B*}, then
|S]|A]

ISTIA] 1
ET < (L +1)—— -
H k=1 i

o AfterT = mtin{B(t) = B*} , all “unsafe” (s, a)-pairs are detected

e u: Lower bound on the non-zero transition probability
u =min{p(s’,dls,a):p(s’,d|s,a) # 0}

e L:Lag of the MDP
Minimum number of transitions
L= max { needed to observe damage,

B*(S(ZQ_OO starting from unsafe (s, a)




Lag of the MDP: L

L= max
(s,a)

B*(s,a)=—o0
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Minimum number of transitions needed to

observe damage, starting from unsafe (s, a)
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Sample Complexity of Safety

Theorem (Sample Complexity): With at least 1 — 6 probability, the algorithm learns
optimal barrier function B* after
IS4l

IEEVLILY () o
(L+1) i\ L 08

iterations

* Concentration of sum of exponential random variables

 Much more sample-efficient than “learning an e-optimal policy with 1 — §
probability” (Li et al. 2020)

v _lstial_( Islial
A —p*e 8 \(1—y)ed




Sample Complexity of Safety

Theorem (Sample Complexity): With at least 1 — 6 probability, the algorithm learns
optimal barrier function B* after
IS4l

IEEVLILY () o
(L+1) i\ L 08

iterations

* Concentration of sum of exponential random variables

* |f the Barrier Function is learnt first, then learning an e-optimal policy takes

N' = |Ssafe||Asafe| log? |Ssafe||Asafe|
(1 —y)*e? (1-y)eé
samples (Trimming the MDP by learning the barrier)




Numerical Experiments Actions

S14 | 815

Wall bumps until first goal-reach

Goal: Reach the end of the aisle (R;+1 = 10) s1 | 59 | 53 | 54
Touching the wall gives Dy, = 1,
Results
250 Transitions until first goal-reach ‘ i ‘ W‘all bumps qntil ﬁll'st gogl-rea(l:h .
I Assured Q-Learning EEm Assured Q-Learning
I Q-Learning
500
200
" 400 | ol
g 150 ‘i ‘i
é 100 'g 'g
= Z 200 | =1
07 100 |
5 2000 4000 6000 8000 10000 %2 14 16 18 20 22 24 26 28 30 0
Transitions Wall bumps
Why does Assured Q-learning perform much better?
If D;y; =1 = B,(s,a) = —oo = Never take action a at s again!

Takeaways:
* Adding constraints to the problem can accelerate learning
e Barrier function avoids actions that lead to further wall bumps
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Almost sure RL with positive budget (A)

* Almost Sure RL with positive budget * Augmented
0o - .
St - (St, Kt), Dt_|_1 == 1{Kt - Dt_|_1 < O} .
max [ ZRt+1 ‘SO_S Sx{A]  Sx{A-1} ... &x{0}

t=0

[1;: history-dependent policies
hy = (So, Ao, Ry, D1, ..., St); m(alhs)

* Equivalent problem:

~IIlan Eﬁ,./\;l ZRH_l (S(), KQ) = (8, A)
e Current budget at time t: retla =0
t—1 s.t: Ps (m+1 - 0) —1  Wt>0
Ky=A-=) Dy Vt>1
£=0 Fits previous formulation! —
“How much more damage | can sustain and still * Could learn B*(s, k, a)
be feasible”  Separation & Feasibility Principles

e Potential drawback: working in
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Experiment: comparing constraints

Frequency
o o o o
N w s ()

o
.

2
=}
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Goal
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max Eﬂ- E Rt_|_1
s

t=0

1) Proposed constraint

P, (ZDt+1<A ‘ So_s> =1

t=0

2) Classic CMDP constraint

(@)
Er, |Y Dipi| <c
t=0

Safety of assured m, with A=5 vs expectation-based constraint n/; P(d=1)=1
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Experiment: comparing constraints

Goal 1) Proposed constraint 2) Classic CMDP constraint

t=0 t=0

oo o o0
méi’X Eﬂ' Z Rt—|—1 IP)TrA ZDt+1 S A SO = S - ]. ]E'Trc Z Dt_|_1 S C
t=0

Safety of assured m, with A=5 vs expectation-based constraint n/; P(d=1)=1
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* . . . *
Return of assured m, with A=5 vs. expectation-based constraint . ; P(d=1)=0.6
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Summary and future work

Summary

* Reinforcement Learning for safety critical systems

* Treat constraints separately, or in parallel (Barrier Learner)

* Can characterize all feasible policies (D; = 0) with finite mistakes

* Take aways:

* Learning feasible policies is simpler than learning the optimal ones

* Adding constraints makes optimal policies easier to find

Future work:
* Theory: Extensions to continue state and action spaces

* Application: Deep RL with almost sure constraints



Thanks!
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