Coherence and Concentration in Tightly-Connected Networks

Enrique Mallada

ARO-Sponsored Workshop
Synchronization in Natural and Engineering Systems
March 30, 2022

Acknowledgements

Hancheng Min JOHNS HOPKINS
UNIVERSITY

Yan Jiang WASHINGTON

Petr Vorobev Skoltech Skolkovo Institute of Science and Technology

Andrey Bernstein Fernando Paganini

UNIVERSIDAD ORT Uruguay

Coherence in Power Networks

- Studied since the 70s
 - Podmore, Price, Chow, Kokotovic, Verghese, Pai, Schweppe,...
- Enables aggregation/model reduction
 - Speed up transient stability analysis
- Many important questions
 - How to identify coherent modes?
 - How to accurately reduce them?
 - What is the cause?
- Many approaches
 - Timescale separations (Chow, Kokotovic,)
 - Krylov subspaces (Chaniotis, Pai '01)
 - Balanced truncation (Liu et al '09)
 - Selective Modal Analysis (Perez-Arriaga, Verghese, Schweppe '82)

This talk

Goal: Characterize the coherence response from a frequency domain perspective

Outline

- Characterization of Coherent Dynamics [Min, M '21]
- Reduced-Order Model of Coherent Response [Min, Paganini, M '21]
- Grid-forming Frequency Shaping Control [Jiang, Bernstein, Vorobev, M '21]

Coherence and Concentration in Tightly-Connected Networks

Hancheng Min and Enrique Mallada

ArXiv preprint: arXiv:2101.00981

Coherence in networked dynamical systems

Block Diagram:

Node dynamics: $g_i(s), i = 1, 2, \dots, n$

Symmetric Real Network Laplacian: L

$$L = V\Lambda V^T, \ V = [1/\sqrt{n}, V_{\perp}]$$

 $\Lambda = \text{diag}\{0, \lambda_2(L), \dots, \lambda_n(L)\}$

Coupling dynamics: f(s)

Examples:

Consensus Networks:

$$g_i(s) = \frac{1}{s}$$
$$f(s) = 1$$

Power Networks (2nd order generator):

$$g_i(s) = \frac{1}{m_i s + d_i + \frac{r_i^{-1}}{\tau_i s + 1}}$$
$$f(s) = \frac{1}{s}$$

Coherence in networked dynamical systems

Block Diagram:

- Coherence can be understood as a low rank property the closed-loop transfer matrix
- 2. It emerges as the **effective algebraic connectivity** increases
- 3. The coherent dynamics is given by the harmonic mean of nodal dynamics

$$\bar{g}(s) = \left(\frac{1}{n} \sum_{i=1}^{n} g_i^{-1}(s)\right)^{-1}$$

5

Assume homogeneity: $g_i(s) = g(s), i = 1, \dots, n$

Eigendecomposition $L = V \Lambda V^T$

Assume homogeneity: $g_i(s) = g(s), i = 1, \dots, n$

Assume homogeneity: $g_i(s) = g(s), i = 1, \dots, n$

Merge forward path $\boldsymbol{V}^T\boldsymbol{V} = \boldsymbol{I}$

Assume homogeneity: $g_i(s) = g(s), i = 1, \dots, n$

Assume homogeneity: $g_i(s) = g(s), i = 1, \dots, n$

Assume homogeneity: $g_i(s) = g(s), i = 1, \dots, n$

The transfer matrix from input u to output y:

$$T(s) = V \operatorname{diag} \left\{ \frac{1}{g^{-1}(s) + f(s)\lambda_i(L)} \right\}_{i=1}^n V^T$$

$$V = [1/\sqrt{n}, V_{\perp}], \ \lambda_1(L) = 0$$

$$T(s) = \frac{1}{n}g(s)\mathbb{1}\mathbb{1}^{T} + V_{\perp}\operatorname{diag}\left\{\frac{1}{g^{-1}(s) + f(s)\lambda_{i}(L)}\right\}_{i=2}^{n} V_{\perp}^{T}$$

Coherent dynamics independent of the network structure

Dynamics dependent of the network structure

$$T(s) = \frac{1}{n}g(s)\mathbb{1}\mathbb{1}^T + V_{\perp}\operatorname{diag}\left\{\frac{1}{g^{-1}(s) + f(s)\lambda_i(L)}\right\}V^T$$

The rank-one property of the coherent dynamics leads to:

• Input aggregation, for any given input vector u(s):

$$y(s) = \frac{1}{n}g(s)\mathbb{1}\mathbb{1}^T u(s) = \frac{1}{n}g(s)\mathbb{1}\left(\sum_{i=1}^n u_i(s)\right)$$

• Output synchronization, given any two nodes i and j:

$$y_i(s) - y_j(s) = \frac{1}{n}g(s)\mathbb{1}^T u(s) - \frac{1}{n}g(s)\mathbb{1}^T u(s) = 0$$

The **rank-one** coherence dynamics effectively synchronizes the response of every node to that of $\bar{y}(s) = \frac{1}{n}g(s)\sum_{j=1}^{n}u_{j}(s)$

$$T(s) = \frac{1}{n}g(s)\mathbb{1}\mathbb{1}^T + V_{\perp}\operatorname{diag}\left\{\frac{1}{g^{-1}(s) + f(s)\lambda_i(L)}\right\}V^T$$

The effect of non-coherent dynamics vanishes as:

- The algebraic connectivity $\lambda_2(L)$ of the network increases
 - For almost any $s_0 \in \mathbb{C}$

$$\lim_{\lambda_2(L) \to +\infty} \left\| T(s_0) - \frac{1}{n} g(s_0) \mathbb{1} \mathbb{1}^T \right\| = 0 \qquad \lim_{s \to s_0} \left\| T(s) - \frac{1}{n} g(s) \mathbb{1} \mathbb{1}^T \right\| = 0$$

• The *s*-region of interest gets close to a **pole** of f(s)

For $s_0 \in \mathbb{C}$, a pole of f(s)

$$\lim_{s \to s_0} \left\| T(s) - \frac{1}{n} g(s) \mathbb{1} \mathbb{1}^T \right\| = 0$$

Our **frequency-dependent** coherence measure $||T(s) - \frac{1}{n}g(s)\mathbb{1}\mathbb{1}^T||$ is controlled by the **effective algebraic connectivity** $|f(s)|\lambda_2(L)$

The transfer matrix from input u to output y:

$$T(s) = V \left(V^T \operatorname{diag} \{ g_i^{-1}(s) \} V + f(s) \Lambda \right)^{-1} V^T$$

The transfer matrix from input u to output y:

$$T(s) = V \left(V^T \operatorname{diag}\{g_i^{-1}(s)\}V + f(s)\Lambda \right)^{-1} V^T$$

$$T(s) = \boxed{\frac{1}{n}\bar{g}(s)\mathbb{1}\mathbb{1}^T} + \boxed{N(s)}$$
 Coherent Network Dynamics? Dependent?

Informed guess for coherent dynamics: $\overline{g}(s)$

Block Diagram:

Coherent Dynamics:

$$\bar{y}(s) = \left(\frac{1}{n}\sum_{i=1}^n g_i^{-1}(s)\right)^{-1} \frac{1}{n}\sum_{i=1}^n u_i(s) \left| \begin{array}{c} \text{Average equations from } i=1 \text{ to } n: \\ \text{Average equations from } i$$

$$\bar{g}(s) = \left(\frac{1}{n} \sum_{i=1}^{n} g_i^{-1}(s)\right)^{-1}$$

Harmonic mean of all $g_i(s)$

Dynamics for node *i*

$$y_i(s) = g_i(s)(u_i(s) - d_i(s)), i = 1, \dots, n$$

Assume all nodes output are **identical** as the result of coherence

$$g_i^{-1}(s)\bar{y}(s) = u_i(s) - d_i(s), \ i = 1, \dots, n$$

$$\mathbb{1}^T L = \mathbb{0}$$

$$\left(\frac{1}{n}\sum_{i=1}^{n}g_{i}^{-1}(s)\right)\bar{y}(s) = \frac{1}{n}\sum_{i=1}^{n}u_{i}(s) - \left[\frac{1}{n}\sum_{i=1}^{n}d_{i}(s)\right]$$

$$T(s) = \frac{1}{n}\bar{g}(s)\mathbb{1}\mathbb{1}^T + T(s) - \frac{1}{n}\bar{g}(s)\mathbb{1}\mathbb{1}^T$$

$$\bar{g}(s) = \left(\frac{1}{n} \sum_{i=1}^{n} g_i^{-1}(s)\right)^{-1}$$

The effect of non-coherent dynamics vanishes as:

• For almost any $s_0 \in \mathbb{C}$

$$\lim_{\lambda_2(L) \to +\infty} \left\| T(s_0) - \frac{1}{n} \bar{g}(s_0) \mathbb{1} \mathbb{1}^T \right\| = 0 \qquad \lim_{s \to s_0} \left\| T(s) - \frac{1}{n} \bar{g}(s) \mathbb{1} \mathbb{1}^T \right\| = 0$$

• For $s_0 \in \mathbb{C}$, a pole of f(s)

$$\lim_{s \to s_0} \left\| T(s) - \frac{1}{n} \overline{g}(s) \mathbb{1} \mathbb{1}^T \right\| = 0$$

- Excluding zeros: the limit holds at zero, but by different convergence result
- We can further prove **uniform convergence** over a compact subset of complex plane, if it doesn't contain any zero nor pole of $\bar{g}(s)$
- Extensions for random network ensembles, $g_i(s) = g(s, w_i)$ (w_i random), then $\bar{g}(s) = (E_w[g^{-1}(s, w)])^{-1}$
- Convergence of transfer matrix is **related to time-domain response** by Inverse Laplace Transform

Connection to Time Domain

If $\bar{g}(s)$ and T(s) stable $(||\bar{g}||_{\infty}, ||T||_{\infty} \leq \gamma)$, then there is $\bar{\lambda} = O(\gamma/\epsilon)$ such that:

• ε -approximation, for any network L, with $\lambda_2(L) \geq \lambda$

$$\sup_{t>0} |y_i(t) - \bar{y}(t)| \le \varepsilon$$

 $\sup_{t>0}|y_i(t)-\bar{y}(t)|\leq \varepsilon$ where $\bar{y}(t)$ is the coherence dynamics response: $y(s)=\bar{g}(s)\frac{1}{n}\sum_{i=1}^n u_i(s)$

element-wise coherence, for any pair of nodes i and j

$$\sup_{t>0} |y_i(t) - y_j(t)| \le 2\varepsilon$$

Example: Icelandic Power Grid

Icelandic Grid

Iceland power network: 189 buses, 35 generators, load 1.3GW (PSAT)

$$g_i(s) = \frac{1}{m_i s + d_i + \frac{r_i^{-1}}{\tau_i s + 1}}$$
$$f(s) = \frac{1}{s}$$

Example: Effect of Network Algebraic Connectivity $\lambda_2(L) \uparrow$

Coherent dynamics acts as a more accurate version of the Center of Inertia (CoI)

Outline

- Characterization of Coherent Dynamics [Min, M '21]
- Reduced-Order Model of Coherent Response [Min, Paganini, M '21]
- Grid-forming Frequency Shaping Control [Jiang, Bernstein, Vorobev, M '21]

Accurate Reduced-Order Models for Heterogeneous Coherent Generators

Hancheng Min, Fernando Paganini, and Enrique Mallada

IEEE Control Systems Letters, 2021

Aggregation of Coherent Generators

 m_i : inertia

 d_i : damping coefficient

 r_i^{-1} : droop coefficient

 τ_i : turbine time constant

Aggregation of Coherent Generators

 $\widetilde{w_1}$

Question: How to choose the different parameters of $\hat{g}(s)$?

coherent group of n generators

$$\hat{g}(s) = \frac{1}{\hat{m}s + \hat{d} + \frac{\hat{r}^{-1}}{\hat{\tau}s + 1}}$$

Answer: Use instead

$$\hat{g}(s) = \frac{1}{n}\bar{g}(s) = \left(\sum_{i=1}^{n} g_i^{-1}(s)\right)^{-1}$$

Challenges on Aggregating Coherent Generators

For generator dynamics given by a swing model with turbine control:

$$g_i(s) = \frac{1}{m_i s + d_i + \frac{r_i^{-1}}{\tau_i s + 1}}$$

The aggregate dynamics:

Need to find a low-order approximation of $\hat{g}(s)$

$$\hat{g}(s) = \frac{1}{\hat{m}s + \hat{d} + \sum_{i=1}^{n} \frac{r_i^{-1}}{\tau_i s + 1}}$$

high-order if τ_i are heterogeneous

Prior Work: Aggregation for heterogeneous au_i s

When time constants are **heterogenous**:

Drawbacks:

- the order of overall approximation model is restricted to 2nd order
- the only "decision variable" is the time constant
- does not consider the effect of inertia or damping in the approx.

Inaccurate Approximation

Our Approach

Leverage weighted balance truncation to build a hierarchy of approximations

$$\hat{g}(s) = \frac{1}{\hat{m}s + \hat{d} + \sum_{i=1}^{n} \frac{r_i^{-1}}{\tau_i s + 1}} \qquad \Longrightarrow \qquad \tilde{g}_k(s) = \frac{1}{\tilde{m}s + \tilde{d} + \tilde{g}_{tb,k-1}(s)}$$

The case k = 3, leads to a more flexible approximation

Comparison with (Some) Existing Methods

By essentially relaxing the restrictions on reduced order model:

- increase the model order to 3rd order,
- reduction on closed-loop dynamics, our proposed models outperform models by conventional approach

Outline

- Characterization of Coherent Dynamics [Min, M '21]
- Reduced-Order Model of Coherent Response [Min, Paganini, M '21]
- Grid-forming Frequency Shaping Control [Jiang, Bernstein, Vorobev, M '21]

Storage-Based Frequency Shaping Control

Yan Jiang, Eliza Cohn, Petr Vorobev, Member, IEEE, and Enrique Mallada, Senior Member, IEEE

[TPS 21]

IEEE Transactions on Power Systems, 2021

Grid-forming frequency shaping control

Yan Jiang¹, Andrey Bernstein², Petr Vorobev³, and Enrique Mallada¹

IEEE Control Systems Letters, 2021

[L-CSS 21]

Grid-following Frequency Shaping Control

Key idea: use model matching control (at each bus/area)

$$c_{\text{fs}}(s) := \frac{A_1 s^2 + A_2 s + A_3}{\tau s + 1}$$

$$A_1 = \tau (\mathbf{a} - m)$$

$$A_2 = \mathbf{b}\tau + \mathbf{a} - m$$

$$A_3 = \mathbf{b} - r_{g} - d$$

$$u_i$$

$$\frac{1}{f_i} \frac{1}{as+b}$$
 w_i

Leads to Col Frequency \overline{w} with:

RoCof:
$$||\dot{\bar{w}}||_{\infty} = \frac{|\sum_i u_{0i}|}{\sum_i f_i} \frac{1}{a}$$

Steady-state:
$$\bar{w}(\infty) = \frac{\sum_i u_{0i}}{\sum_i f_i} \frac{1}{b}$$

Trading off Control Effort and RoCoF

Mar 30 2022 Enrique Mallada (JHU) 16

Trading off Control Effort and RoCoF

Challenge: Solution Limited to Grid-following Inverters

Grid-forming Frequency Shaping Control

Key idea: use model matching control on coherent dynamics

Generation:

$$g_i(s) = \frac{1}{m_i s + d_i + \frac{r_i^{-1}}{\tau_i s + 1}}, \quad i \in \mathcal{G}$$

$$b := \sum_{i \in \mathcal{G}} (d_i + r_i^{-1}) + \sum_{i \in \mathcal{I}} d_i$$

$$\mathbf{a} := \sum_{i \in \mathcal{G}} m_i + \sum_{i \in \mathcal{I}} m_i$$

$$b := \sum_{i \in \mathcal{G}} (d_i + r_i^{-1}) + \sum_{i \in \mathcal{I}} d_i$$

$$\sum_{i \in \mathcal{I}} c_i(s) = \sum_{i \in \mathcal{G}} \frac{r_i^{-1} \tau_i s}{\tau_i s + 1}$$

RoCoF:

$$||\dot{\bar{w}}||_{\infty} = \frac{|\sum_{i} u_{0i}|}{a}$$

Steady-state:

$$\bar{w}(\infty) = \frac{\sum_{i} u_{0i}}{b}$$

Inverters:

$$h_i(s) = \frac{1}{m_i s + d_i + c_i(s)}, \quad i \in \mathcal{I}$$

Summary

• Frequency domain characterization of **coherent dynamics**, as a low rank property of the transfer function.

- Coherence is a frequency dependent property:
 - Effective algebraic connectivity $f(s)\lambda_2(L)$
 - Disturbance frequency spectrum
- We use frequency weighted balanced truncation to suggest possible improvements to obtain accurate reduced order model of aggregated dynamics of coherent generators:
 - increase model complexity (3rd order/two turbines)
 - model reduction on closed-loop dynamics
- Grid-forming Frequency Shaping Control

Thanks!

Related Publications:

- Min, M, "Coherence and Concentration in Tightly Connected Networks," submitted
- Min, Paganini, M, "Accurate Reduced Order Models for Coherent Synchronous Generators," L-CSS 2021
- Jiang, Bernstein, Vorobev, M, "Grid-forming Frequency Shaping Control," L-CSS 2021

Enrique Mallada mallada@jhu.edu http://mallada.ece.jhu.edu

Petr Vorobev Skoltech

Andrey Bernstein Fernando Paganini

Backup Slides

Numerical Examples

Modal Decomposition

Coherence