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Abstract—We propose a method for data-driven practical
stabilization of nonlinear systems with provable guarantees,
based on the concept of Nonparametric Chain Policies (NCPs). The
approach employs a normalized nearest-neighbor rule to assign,
at each state, a finite-duration control signal derived from stored
data, after which the process repeats. Unlike recent works that
model the system as linear, polynomial, or polynomial fraction,
we only assume the system to be locally Lipschitz. Our analysis
build son the framework of Recurrent Lyapunov Functions
(RLFs), which enable data-driven certification of (practical)
stability using standard norm functions instead of requiring
the explicit construction of a classical Lyapunov function. To
extend this framework, we introduce the concept of Recurrent
Control Lyapunov Functions (R-CLFs), which can certify the
existence of an NCP that practically stabilizes an arbitrarily
small c-neighborhood of an equilibrium point. We also provide
an explicit sample complexity guarantee of O

(
(3/ρ)d log(R/c)

)
number of trajectories—where R is the domain radius, d the state
dimension, and ρ a system-dependent constant. The proposed
Chain Policies are nonparametric, thus allowing new verified
data to be readily incorporated into the policy to either improve
convergence rate or enlarge the certified region. Numerical
experiments illustrate and validate these properties.

I. INTRODUCTION

Data-driven control methods offer a novel paradigm for
synthesizing controllers directly from trajectory observations,
potentially bypassing the need for accurate system models
while reducing computational burden and conservativeness
of classical control synthesis [1], [2]. Recent years have
witnessed significant progress in data-driven control. These
approaches, as well as their level of maturity, depend consider-
ably on the underlying system properties. For linear systems,
the field has substantially matured: LMI-based formulas [3]
and convex programs [4], [5] can transform trajectories into
stabilizing feedback controllers with robustness [3], [5]–[7],
performance [4], [5], [8] and sample complexity guaran-
tees [9], [10].

For nonlinear systems, several approaches have been pro-
posed, with methods highly dependent on the implicit as-
sumptions made on the nonlinear system class and the
control synthesis methodology. One prolific line of works
considers dynamics formed from dictionary-based hypothe-
sis classes—e.g., using polynomials [11]–[13], fractions of
polynomials [14], or general nonlinear functions [15]—and
formulate semidefinite programs that render policies with a
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wide variety of guarantees, including contraction-based sta-
bility [16]–[18] or robustness [13]. Other methods employ
general learning techniques to learn models or policies and
leverage intrinsic system properties to provide different guar-
antees, e.g., Koopman operator methods that exploit spectral
properties [19], sample complexity analysis for stochastic
dynamics [20], and conformal prediction approaches for sta-
tistical robustness [21].

Despite the effectiveness of these methods in synthesiz-
ing controllers with guarantee, many questions remain unan-
swered. First, sample complexity guarantees are typically
technique-dependent and do not provide clear understanding
of how data requirements scale with explicit system properties,
such as state dimension or attainable performance levels, or the
specific hypothesis class considered. Second, computational
complexity of optimization-based methods scales poorly with
dictionary size and state dimension. Third, incorporating new
data necessitates resolving the underlying optimization prob-
lem, often requiring complete recomputation and discarding
previous work. As a result, there remains a need for flexible
data-driven approaches that can adapt to new information
without structural assumptions while providing transparent
performance-data trade-offs.

To address these challenges, we introduce the concept of
Nonparametric Chain Policies (NCPs), a data-driven approach
that requires only Lipschitz assumptions on the system dy-
namics while providing explicit sample complexity guarantees
for practical stabilization. NCPs employ a normalized nearest-
neighbor rule to assign finite-duration control signals from a
stored library of verified trajectories, enabling direct use of
data without parametric modeling or optimization re-solving
when new data arrives. Our theoretical guarantees build on the
framework of Recurrent Lyapunov Functions [22], [23], which
we extend here for the control setting by introducing here
the notion of Recurrent Control Lyapunov Functions (RCLFs,
Section III).
Contributions. Our approach offers three key advantages over
existing methods:

1) Explicit sample complexity: NCPs achieve practical
exponential stabilization using O

(
(3/ρ)d log(R/δ)

)
sam-

ple trajectories, with transparent scaling in dimension
d, target radius R, precision δ, and a system-dependent
parameter ρ.

2) Incremental learning: The nonparametric nature of
NCPs allows for new verified data to be seamlessly
incorporated to expand a certified region, or improve
performance, without discarding previous guarantees or
re-solving optimization problems.



3) Performance-complexity trade-offs: The framework ex-
plicitly controls the trade-off between sample require-
ments and performance through a user-specified param-
eter ρ that relates best achievable performance and the
performance guaranteed by the NCP.

Organization. Section II introduces preliminaries. Section III
presents Recurrent Control Lyapunov Functions (R-CLFs) and
stability guarantees. Section IV defines Nonparametric Chain
Policies and establishes sample complexity results. Section V
demonstrates the approach on nonlinear benchmarks, and
Section VI concludes.
Notation. ∥·∥ denotes an arbitrary norm on Rn. Given x ∈ Rn

and r > 0, we define the closed ball of radius r centered at
x as Br(x) := {y ∈ Rn | ∥y − x∥ ≤ r}. For a scalar a ∈ R,
we write [a]+ := max{a, 0}. For a set S ⊆ Rn and a point
x ∈ Rn, the signed distance from x to S is defined as

sd(x, S) :=

{
infy∈∂S ∥y − x∥, if x /∈ S,

− infy∈∂S ∥y − x∥, if x ∈ S.

II. PRELIMINARIES

We consider a nonlinear control system:

ẋ(t) = f(x(t), u(t)), (1)

with state x(t) ∈ Rn and input u(t) ∈ U ⊆ Rm. We define

U (a,b] := {u : (a, b] → U | u measurable},

as the set of admissible control signals on interval (a, b], and
set U := U (0,∞). Given u0 ∈ U (0,a] and u1 ∈ U (0,b], their
concatenation u0u1 ∈ U (0,a+b] is defined by

(u0u1)(t) =

{
u0(t), t ∈ (0, a],

u1(t), t ∈ (a, a+ b].

More generally, for a sequence of control signals un ∈ U (0,τn],
with τn > 0, ∀n ∈ N, we further use u[n] := u0u1 . . . un, and
u[∞] = limn→∞ u[n]. In some occasions we slightly abuse
notation by using u interchangeably to represent instantaneous
inputs in U and signals in U (a,b]; the intended meaning will
always be clear from context.

For an initial state x ∈ Rn and control signal u ∈ U (0,a],
we denote by ϕ(t, x, u) the solution of (1) for t ∈ (0, a]. We
further assume the following regularity conditions for (1).

Assumption 1 (Forward Completeness). The solutions of the
control system (1) are forward complete. Specifically, for each
initial condition x ∈ Rn and every control signal u ∈ U , the
trajectory ϕ(t, x, u) exists and remains bounded for all t ≥ 0.

Assumption 2 (Uniform Lipschitz Continuity). The vector
field f(x, u) of system (1) is locally Lipschitz continuous in x,
uniformly with respect to u. More precisely, for every compact
set S ⊆ Rn, there exists a constant LS ≥ 0 such that

∥f(y, u)− f(x, u)∥ ≤ LS∥y − x∥, ∀x, y ∈ S, ∀u ∈ U.

A. Practical Exponential Stabilizability
In this work, we aspire to render an equilibrium point x∗ ∈

Rn practical exponentially stable.

Definition 1 (Equilibrium Point). A point x∗ ∈ Rn is an
equilibrium point of system (1) if there exists a control input
u∗ ∈ U such that f(x∗, u∗) = 0.

Definition 2 ((Practical) Exponential Stabilizability). Let S ⊆
Rn. The equilibrium x∗ of system (1) is said to be:

(i) Exponentially Stabilizable on S if for every x ∈ S, there
exists a control signal u ∈ U satisfying

∥ϕ(t, x, u)− x∗∥ ≤ Ke−λt∥x− x∗∥, ∀t ≥ 0; (2)

(ii) Practically Exponentially Stabilizable on S if for every
x ∈ S, there exists a control signal u ∈ U satisfying

∥ϕ(t, x, u)− x∗∥ ≤ Ke−λt∥x− x∗∥+ c, ∀t ≥ 0, (3)

for constants K ≥ 1, λ > 0, and c ≥ 0.

It is well known from the topological entropy literature
that it is impossible to exponentially stabilize a system, i.e.,
achieve (2), using a finite number of control signals [24]. We
will therefore aim to enforce the weaker notion of practical
exponential stability, i.e., (3), which follows the terminology
of [25], [26].

B. Recurrent Lyapunov Functions

To provide guarantees for our data–driven stabilization
framework, we build on the theory of Recurrent Lyapunov
Functions (RLFs) [22], [23]. Unlike classical Lyapunov func-
tions, which require strict decrease along trajectories, RLFs
only require a decrease at a sequence of recurrent times. This
relaxation broadens the class of certificates available, while
still ensuring exponential stability.

We begin with the notion of containment times, which we
define for general trajectories of the controlled system.

Definition 3 (Containment Times). Given a set S ⊂ Rn,
an initial state x ∈ Rn, and an input u ∈ U , the set of
containment times is

TS(x, u) := {t ∈ R>0 | ϕ(t, x, u) ∈ S}.

For constants a, b > 0 we define

TS(x, u; a, b) := TS(x, u) ∩ (a, a+ b],

and for convenience TS(x, u; b) := TS(x, u; 0, b).

We now recall the definition of an RLF in the autonomous
case, where the trajectory is uniquely determined by the initial
condition. In this case we write ϕ(t, x) for the flow of the
system.

Definition 4 (Recurrent Lyapunov Function). Let S ⊂ Rn

be a compact set with x∗ ∈ int(S). A continuous function
V : Rn → R≥0 is called a Recurrent Lyapunov Function
(RLF) over S with rate α > 0 and horizon τ > 0 if

min
t∈TS(x;τ)

eαtV (ϕ(t, x)) ≤ V (x), ∀x ∈ S,

where TS(x; τ) := {t ∈ (0, τ ] | ϕ(t, x) ∈ S}.

It will also be useful to characterize the set of points that
can be reached within a finite interval of time.



Definition 5 (Reachable Tube). For the control system (1), a
constant τ > 0, and a set S ⊂ Rn, we denote the τ -reachable
tube from S within τ units of time by

Rτ (S) =
⋃

x∈S,u∈U,t∈[0,τ ]

{ϕ(t, x, u)}.

III. RECURRENT CONTROL LYAPUNOV FUNCTIONS

As mentioned before, our guarantees rely on the theory of
Recurrent Lyapunov Functions (RLFs) from [22]. In this sec-
tion, we extend this notion to the control setting, introducing
Recurrent Control Lyapunov Functions (R-CLFs), and illus-
trate how they can be used to certify practical stabilizability.
Though RLFs and R-CLFs have been shonw to to certify
stability, asymptotic stability and exponential stability [22],
[23], our focus here is on practical exponential stability and
thus we will use the following definition.

Definition 6 (Recurrent Control Lyapunov Function (R-CLF)).
Consider the control system (1) with equilibrium x∗ ∈ Rn. Let
S ⊆ Rn be a set satisfying x∗ ∈ int(S). A continuous function
V : Rn → R≥0 is a Recurrent Control Lyapunov Function
(R-CLF) over S if the following conditions hold:

(i) Positive Definiteness and Linear Bounds: There exist
constants a1, a2 > 0 such that

a1∥x− x∗∥ ≤ V (x) ≤ a2∥x− x∗∥, ∀x ∈ S. (4)

(ii) Control α-Exponential (τ, δ)-Recurrence: There exist
constants τ, α > 0 and δ ≥ 0 such that for every x ∈ S,
there exists u ∈ U [0,τ) satisfying

min
t∈TS(x,u;τ)

eαt(V (ϕ(t, x, u))−δ) ≤ [V (x)−δ]+ . (5)

The following lemma characterizes the long term behavior
of the control system (1) under the controls u ∈ U that are
build upon concatenation of controls satisfying property (ii)
of Definition 6.

Lemma 1 (Characterization of R-CLF). Let assumptions 1
and 2 hold. Consider an equilibrium x∗ of (1) and a compact
set S satisfying x∗ ∈ int(S). A function V : Rn → R≥0

satisfying (4) is a Recurrent Control Lyapunov Function (R-
CLF) over S if and only if there exists parameters α, τ > 0
and δ ≥ 0 such that for any x ∈ S there is a sequence {tn}n∈N
and u ∈ U satisfying the following conditions:

lim
n→+∞

tn = +∞, with tn+1 − tn ∈ (0, τ ], (6a)

ϕ(tn, x, u) ∈ S , and (6b)

V (ϕ(tn, x, u))− δ ≤

{
e−αtn(V (x)− δ) , n ≤ n̄ ,

0 , o.w. ,
(6c)

for a non necessarily finite n̄ ∈ N ∪ {∞}.

Proof of Lemma 1. We prove each direction separately.
Necessity (⇒): Suppose that V is a Recurrent Control
Lyapunov Function (R-CLF) over the compact set S. By
Definition 6, there exist constants α, τ > 0 and δ ≥ 0 such
that, for any x ∈ S, there exists ū ∈ U [0,τ) satisfying (5).

We will build u ∈ U and the sequence {tn}n∈N inductively.
Let t0 = 0, x0 := x ∈ S, and define for n ≥ 0,

τn := max

{
argmin

t∈TS(xn,ūn;τ)

eαt(V (ϕ(t, xn, ūn))−δ)

}
, (7)

tn+1 := tn + τn , and xn+1 := ϕ(τn, xn, un) ,

where ūn ∈ U [0,τ) is a control satisfying (5), un is its restric-
tion to the interval (0, τn], and xn ∈ S ∀n ∈ N, by definition.
Next, let u := limt→∞ u[n]. Note that ϕ(t0, x, u) = x0 ∈ S,
and whenever for some n, ϕ(tn, x, u) = xn ∈ S that by the
group property of the flow

ϕ(tn+1, x, u) = ϕ(tn+1 − tn, ϕ(tn, x, u), un)

= ϕ(τn, xn, un) = xn+1 ∈ S ,

which by induction ensures that (6b) holds.
Next, from the recurrence condition (5), it

follows that as long as V (ϕ(tn, x, u)) ≥ δ, then
eατn (V (ϕ(τn, xn, ūn))−δ)≤V (xn)−δ, which implies

eαtn+1(V (ϕ(tn+1, x, u))−δ)≤eαtn(V (ϕ(tn, x, u))−δ) , (8)

and, in particular,

eαtn (V (ϕ(tn, x, u))− δ)≤V (x)− δ, ∀n ≤ n̄ ,

where n̄ is the last instance with V (xn̄) ≥ δ. It also
follows from (5) that, when n̄ < ∞, for all n ≥ n̄ + 1,
V (ϕ(tn, x, u)) ≤ δ, which completes (6c).

To show (6a), we first note that by definition, tn+1 − tn =
τn ∈ (0, τ ]. Next, we will show that t∗ = ∞. Suppose not,
i.e., t∗ < ∞. By continuity of ϕ(t, x, u) and compactness of
S, ϕ(tn, x, u) → ϕ(t∗, x, u) ∈ S.

Now, let vn := V (xn) − δ and v∗ = V (ϕ(t∗, x, u)) − δ.
If v∗ > 0, it follows from (8) and the continuity of V that
vn ↓ v∗ := V (ϕ(t∗, x, u) − δ), and eαt

∗
v∗ ≤ eαtn+1vn+1 ≤

eαtnvn . Thus, for large enough n, t∗ ∈ (tn, tn + τ ] and t∗ >
tn+1, which implies

eαt
∗−tnv∗ ≤ eατnvn+1 ≤ vn ,

which contradicts τn being the max in (7). As similar argument
holds when v∗ < 0, and thus t∗ = ∞.
Sufficiency (⇐): To show that V is a R-CLF, it is sufficient
for any x ∈ S to restrict the corresponding u ∈ U that satisfies
(6) to the interval [0, τ) and choosing t1 from the sequence
(6) to show (5).

We will leverage Lemma 1 to prove (practical) exponential
convergence of trajectories. To that end, we need to bound how
much a trajectory can travel in between instance of exponential
convergence (6c). The following lemma provides a mechanism
to obtain such bounds. The proof is based on Grönwall’s
Lemma [27, Lemma A.1] and can be found in [28].

Lemma 2 (Containment Lemma). Let Assumption 2 hold.
Consider a compact set S ⊂ Rn and a constant τ > 0. Then,
for any x ∈ S, u ∈ U the following holds:

max
t∈[0,τ ]

d(ϕ(t, x, u), S) ≤ FS τeLτ



where L := LRτ (S).

We are now ready to show that R-CLFs as defined in
Definition 6 guarantee exponential stabilizability.

Theorem 1 (R-CLF Implies (Practical) Exponential Stabi-
lizability). Consider the control system (1) with equilibrium
x∗ ∈ Rn, and let S be a set satisfying S ⊆ Rn and
x∗ ∈ int(S). Let Assumption 1 and Assumption 2 hold, and
V : Rn → R≥0 be a Recurrent Control Lyapunov Function
over S, with constants α, τ > 0, δ ≥ 0, and linear bound
constants a1, a2 > 0 from (4).

Then, the equilibrium x∗ is (practically) exponentially sta-
bilizable on S (when δ > 0). In particular, for every initial
condition x ∈ S, a control signal u ∈ U satisfying (6) for
some sequence of times {tn}n∈N ensures:

∥ϕ(t, x, u)− x∗∥ ≤ Ke−λt∥x− x∗∥+ c, ∀t ≥ 0,

where

λ :=α, K :=
a2
a1

eατ (1+LτeLτ ), and c :=
δ

a1
(1+LτeLτ ),

with L:=LRτ (S).

Proof. We will use the control u ∈ U from Lemma 1 to prove
this theorem. Given x ∈ S, by Lemma 1, there exists u ∈ U
and a sequence tn, xn := ϕ(tn, x) ∈ S satisfying (6). There
are two cases. First, assume that n ≤ n̄ ∈ N ∪ {∞}. Since
V (xn) ≤ e−αtn(V (x)− δ) + δ and V (xn) ≥ a1∥xn − x∗∥, it
follows that

rn := ∥xn − x∗∥ ≤ 1

a1
V (xn) ≤

a2
a1

e−αtn∥x− x∗∥+ δ

a1
.

Consider any time t ∈ (tn, tn+1] and Bn := Bn(x
∗) ∩ S. By

applying the containment lemma on Bn and using the fact that
L ≥ LRτ (Bn), we get, using the triangle inequality:

∥ϕ(t, x, u)− x∗∥ ≤ ∥xn − x∗∥+ ∥ϕ(t, x, u)− xn∥
≤ rn + Frnτe

Lτ ≤ (1 + LτeLτ )rn

where rn := ||xn − x∗||. Then for any n ≤ n̄ and any t ∈
(tn, tn+1] we have,

∥ϕ(t, x, u)− x∗∥ ≤ (1 + LτeLτ )rn

≤ (1 + LτeLτ )

(
a2
a1

e−αtn∥x− x∗∥+ δ

a1

)
≤ Ke−ατe−αtn∥x− x∗∥+ δ

a1
(1 + LτeLτ )

≤ Ke−αt||x− x∗||+ c

where the last step follows, since t ≤ tn+1 ≤ tn + τ , which
implies −tn − τ ≤ −t, so that e−ατe−αtn ≤ e−αt.

If n̄ = ∞ we are done. Otherwise, consier n > n̄. We have
rn = ∥xn−x∗∥ ≤ V (xn)

a1
≤ δ

a1
∀n > n̄, and thus by Lemma 2

again, for all t > tn̄

∥ϕ(t, x, u)− x∗∥ ≤ (1 + LτeLτ )rn ≤ (1 + LτeLτ )
δ

a1
= c.

Thus, for all t ≥ 0,

∥ϕ(t, x, u)− x∗∥ ≤ Ke−λt∥x− x∗∥+ c,

as desired.

Theorem 1 states that the existence of an R-CLF implies
that x∗ can be made practically exponentially stable. At the
core of its proof is the fact that one can find a function V that
satisfies the recurrent condition (5). A key observation of [23],
is that condition (5) can be met by a norm, provided τ and α
are properly chosen (c.f. [23, Theorem 6]). The the caveat is,
however, that in order to make R-CLFs practically useful, on
would need to store, for each x ∈ S, a suitable u : [0, τ) → U
that ensures (5). In the next section we surprisingly show that
when δ > 0, only a finite number of such signals are needed.

IV. NON-PARAMETRIC CHAIN POLICIES

In the previous section, we introduced Recurrent Control
Lyapunov Functions (R-CLFs) to characterize exponential
stabilizability via carefully selected control signals. In this sec-
tion, we propose nonparametric chain policies, a systematic,
data-driven approach for generating these stabilizing signals.
The proposed method aligns closely with recent developments
in topological entropy—a notion quantifying the minimal
complexity required to accomplish various control tasks (see,
e.g., [24], [26], [29]). A distinctive feature of our method is
that we do not assume the control signals can be generated
online; instead, we explicitly store them in a finite set, called
a control alphabet [28].

Definition 7 (Control Alphabet). A control alphabet is a finite
collection of control signals

A := {vi : (0, τi] → U}Mi=0,

where each vi is piecewise continuous and defined over a
duration τi > 0.

The control alphabet provides a library of candidate signals.
To deploy them, we assign specific controls to regions of
influence within the state space. To aid this task we define
an assignment set.

Definition 8 (Assignment Set). An assignment set is a finite
collection of verification triples

K := {(xi, ri, vi)}Ni=1 ⊆ Rn × R>0 ×A,

where xi ∈ Rn is a center point, ri > 0 is its radius, and vi ∈
A is the control signal assigned to that region. The support of
K is

Supp(K) :=

N⋃
i=1

Bri(xi).

We denote N := |K| as the size of the assignment set.

While an assignment set specifies regions of influence, it
does not by itself resolve which control to apply when balls
overlap, nor what to do when a state lies outside Supp(K).
To address this, we introduce a normalized nearest-neighbor
rule with a fall-back option:

ιK(x) :=

argmini:(xi,ri,vi)∈K
∥x− xi∥

ri
, rK(x) ≤ 1,

0, otherwise,



where
rK(x) := min

(xi,ri,vi)∈K

∥x− xi∥
ri

,

and ιK(x) = 0 corresponds to selecting the default control v0.

Remark 1. We designate v0 ∈ A as the default control. Unless
otherwise stated, we take v0(t) = u∗ ∈ U , ∀t ∈ [0, τ0), where
u∗ is the equilibrium control of Definition 1.

The index map ιK specifies, for any state x, which control
from the assignment set (or the default control) should be
applied. Building on this rule, we can now formalize the
induced feedback policy.

Definition 9 (Nonparametric Chain Policy). Given an assign-
ment set K and default control v0, the nonparametric chain
policy is given by the map πK : Rn → A:

πK(x) := vιK(x).

Remark 2. The policy πK induces an infinite-horizon control
signal uK,x ∈ U through concatenation. Starting with x0 = x
and the empty signal u[0] = ∅, for each n ≥ 0 define

u[n+1] = u[n] vιK(xn), xn+1 = ϕ
(
τιK(xn), xn, vιK(xn)

)
.
(9)

The resulting control is then

uK,x := lim
n→∞

u[n].

A. Convergence Guarantees of NCPs
With the nonparametric chain policy in place, we now turn

to its stability properties. The following theorem establishes
conditions under which such a policy renders the equilibrium
x∗ practically exponentially stable on a prescribed region.

Theorem 2 (Practical Exponential Stabilization via Chain
Policies). Consider an equilibrium point x∗ ∈ Rn of (1), and
let S ⊆ Rn be a set with x∗ ∈ int(S). Let πK denote a
nonparametric chain policy associated with the assignment set
K = {(xi, ri, vi)}Ni=1 and a default control v0 ∈ A, and define
τ := max{τ0, τ1, . . . , τN}, and let L := LRτ (S). Suppose the
following hold:

(i) Covering. There exists ε > 0 such that

Bε(x
∗) ⊂ Bε(1+LτeLτ )(x

∗) ⊂ int(S), (10a)
cl(S \Bε(x

∗)) ⊆ Supp(K). (10b)

(ii) Verification. For each (xi, ri, vi) ∈ K with τi > 0,

eατi
(
∥ϕ(τi, xi, vi)−x∗∥+rie

Lτi
)
≤ ∥xi−x∗∥−ri, (11a)

sd(ϕ(τi, xi, vi), S) + rie
Lτi ≤ 0, (11b)

(iii) Equilibrium. For all t ∈ [0, τ0), ϕ(t, x∗, v0) = x∗.
Then the equilibrium x∗ is practically exponentially stable

on S under the policy πK, with constants

λ = α, K = eατ (1 + LτeLτ ), c = ε(1 + LτeLτ ).

Proof. We will show that the control uK,x induced by the
nonparametric chain policy πK admits a sequence of times
{tn}n∈N that satisfies the conditions of Lemma 1 for the
function V (x) = ∥x − x∗∥ over the set S. This establishes

two points: (1) V = ∥ · −x∗∥ is an R-CLF with rate α, and
(2) the control uK,x practically stabilizes x∗ with exponential
rate α over S.

Let x0 = x ∈ S, t0 = 0, and u[0] = ∅. Define the sequences
{xn}, {tn}, and u[n] according to (9), i.e.,

xn+1 = ϕ
(
τιK(xn), xn, vιK(xn)

)
, u[n+1] = u[n]vιK(xn),

uK,x = lim
n→∞

u[n], tn+1 := tn + τιK(xn), ∀n ≥ 0.

By construction, for all n ≥ 0,

0 < min
i∈{0,...,N}

τi ≤ tn+1 − tn ≤ max
i∈{0,...,N}

τi =: τ,

so condition (6a) holds. Moreover, by induction one shows
that for all n ≥ 1,

ϕ(tn, x, uK,x) = xn = ϕ
(
τιK(xn−1), xn−1, vιK(xn−1)

)
.

We claim that if xn ∈ S then xn+1 ∈ S. Suppose first that
xn ∈ S\Bε(x

∗). By the covering condition (10b), there exists
(xi, ri, vi) ∈ K such that xn ∈ Bri(xi) and the verification
condition (11) holds. In particular, by (11b),

sd(xn+1, S) = sd(ϕ(τi, xn, vi), S)

≤ sd(ϕ(τi, xi, vi), S) + rie
Lτi

≤ 0,

which implies xn+1 ∈ S.
If instead xn ∈ Bε(x

∗), then either ιK(xn) ̸= 0 and the
above argument applies, or ιK(xn) = 0, in which case we
apply v0 for time τ0. By the containment lemma applied to
the ball Bε(x

∗),

∥xn+1 − x∗∥ = ∥ϕ(τ0, xn, v0)− x∗∥
≤ ε+ d(ϕ(τ0, xn, v0), Bε(x

∗))

≤ ε+ FBε(x∗)τe
Lτ0

≤ ε(1 + Lτ0e
Lτ0), (12)

so by (10a) and τ0 ≤ τ we conclude xn+1 ∈ S. Thus, xn ∈ S
implies xn+1 ∈ S, i.e., condition (6b) holds.

Verification of (6c). Let δ := ε(1+LτeLτ ) and n̄ := inf{n :
∥xn − x∗∥ ≤ δ}. If ιK(xn) = 0 and ∥xn − x∗∥ ≤ ε ≤ δ, then
by (12) we have ∥xn+1 − x∗∥ ≤ δ.

If ιK(xn) = i ̸= 0, then from (11a) and xn ∈ Bri(xi),

eα(tn+1−tn)∥xn+1 − x∗∥ ≤ eατi
(
∥ϕ(τi, xi, vi)− x∗∥+ rie

Lτi
)

≤ ∥xi − x∗∥ − ri ≤ ∥xn − x∗∥,

which implies

eα(tn+1−tn)(∥xn+1 − x∗∥ − δ) ≤ ∥xn − x∗∥ − δ.

If ∥xn−x∗∥ ≤ δ (n ≥ n̄), then this inequality ensures ∥xn+1−
x∗∥ ≤ δ. If ∥xn − x∗∥ > δ (n < n̄), iterating yields

∥xn − x∗∥ − δ ≤ e−αtn
(
∥x− x∗∥ − δ

)
.

Hence for n ≥ n̄, ∥xn − x∗∥ ≤ δ, while for n < n̄ the excess
above δ decays exponentially. This verifies condition (6c).



By Lemma 1, V (x) = ∥x − x∗∥ is an R-CLF with rate α
over S and parameter δ = ε(1+LτeLτ ). Therefore, Theorem 1
implies that x∗ is practically exponentially stable on S under
πK, with constants

λ = α, K = eατ (1 + LτeLτ ), c = ε(1 + LτeLτ ).

B. Existence and Sample Complexity of NCPs

Theorem 2 establishes that nonparametric chain policies can
guarantee practical exponential stability of a region around an
equilibrium point that is appropriately covered by data points
from K. However, it is a priori not clear how many data points
are needed to construct such policy, or even whether such a
policy exists. The next result provides conditions for existence
of Chain Policies as well as a bound on the sample complexity
of such policies, i.e., the sizes of the assignment set K and
alphabet A required to construct such policy.

Theorem 3 (Existence and Sample Complexity of Chain
Policies). Consider the control system (1) with equilibrium
x∗ ∈ Rn, and assume x∗ is λ-exponentially stabilizable on
Rn with gain K > 0. Let S = BR(x

∗) with R > 0, and
choose ε s.t. R > ε > 0. Fix any α ∈ (0, λ) and choose

τ >
lnK

λ− α
, L := LRτ (S), ρ :=

1−Ke−(λ−α)τ

1 + e(L+α)τ
. (13)

Then there exists a nonparametric chain policy πK
built from a finite assignment set of verification points
{(xi, ri)}Ni=1 ⊂ S and associated controls {vi}Ni=1 such that:

(i) Practical exponential stability. For every x ∈ S, the
induced closed loop satisfies

∥ϕ(t, x, uK,x)− x∗∥ ≤ C e−αt∥x− x∗∥+ c, ∀t ≥ 0,

with C = eατ
(
1 + LτeLτ

)
and c = ε

(
1 + LτeLτ

)
.

(ii) Sample complexity. The number N of covering centers
and controls satisfies

N = O

((
3

ρ

)d
log

R

c

)
.

Remark 3 (Performance–Complexity Trade-off). The defi-
nition of ρ in (13) reveals two contrasting regimes. When
λ − α is close to the lower bound lnK/τ , the numerator
1−Ke−(λ−α)τ approaches zero, so ρ ≈ 0. In this regime the
guaranteed rate α is nearly as fast as the best attainable λ, but
the sample complexity bound O((3/ρ)d) becomes extremely
large. At the other extreme, when α ≪ λ, the term Ke−(λ−α)τ

vanishes, and ρ approaches 1/(1 + eLτ ). In this regime, far
fewer samples are needed, but the realized performance α is
much slower than the system’s intrinsic rate λ.

Thus, ρ quantifies the fundamental trade-off: choosing α
close to λ yields strong performance at the cost of high sample
complexity, while smaller α reduces sample requirements but
sacrifices convergence speed.

Proof. Since x∗ is λ-exponentially stabilizable on S with
constant K > 0, for each grid center xi ∈ S we can select a

constant control vi such that

∥ϕ(t, xi, vi)− x∗∥ ≤ Ke−λt∥xi − x∗∥, ∀t ≥ 0. (14)

We construct the nonparametric chain policy πD by covering
S with finitely many balls Bri(xi) and assigning to each xi

the control vi above. In our construction, we will assume ∥ · ∥
is the infinity norm, i.e., ∥x∥ = maxj=1,...,n |xj |.
Step 1: Choice of radii. Fix α ∈ (0, λ) and τ > lnK

λ−α . Let
L := LRτ (S) and set

ρ :=
1−Ke−(λ−α)τ

1 + e(L+α)τ
> 0, ri := ρ ∥xi − x∗∥.

By construction ri > 0. From (14), for t = τ we have

Ke−(λ−α)τ∥xi − x∗∥+ rie
(L+α)τ = ∥xi − x∗∥ − ri,

which implies the verification condition

min
t∈(0,τ ]

eαt
(
∥ϕ(t, xi, vi)− x∗∥+ rie

Lt
)
≤

≤ eατ
(
∥ϕ(τ, xi, vi)− x∗∥+ rie

Lτ
)

≤ ∥xi − x∗∥ − ri.

Hence each (xi, ri) satisfies (11a).
Step 2: Covering number bound. We cover the annular
region BR(x

∗) \ Bε(x
∗) by n concentric annuli A1, . . . , An

of thickness Ri = 3i−1ε. Since the total radial width is R−ε,

R− ε ≤
n∑

i=1

3i−1ε = ε
3n − 1

2
⇒

n =

⌈
log3

(
2R

ε
− 1

)⌉
= O

(
log

R

ε

)
.

Each Ai is initially partitioned into 3d−1 hypercubes of side
Ri. For any x ∈ Ai, ∥x− x∗∥ ≥ 3i−1ε and ri ≤ ρ∥x− x∗∥.
We refine each hypercube by successive splits into 3d subcubes
until the side length is at most ρ∥x− x∗∥. This requires

3m ≥ 1

ρ
⇒ m = ⌈log3(1/ρ)⌉

splits, producing at most

Nannulus = (3d − 1) 3dm = O

((
3

ρ

)d
)

points per annulus.
Step 3: Total number of points. Multiplying by the number
of annuli,

N = n ·Nannulus = O

((
3

ρ

)d

log
R

ε

)
.

Finally, since c = ε(1+LτeLτ ), this yields the claimed sample
complexity bound.

C. Incremental Learning of NCPs
The performance–complexity trade-off discussed in Re-

mark 3, together with the existence and sample complexity
result of Theorem 3, suggests a practical methodology for
progressively improving performance. By actively sampling
trajectories more finely and refining the covering set K, one



can construct NCPs that certify larger rates α (by reducing the
effective radius r), thereby reducing the gap between realized
performance and the best attainable rate λ. In other words,
performance can be systematically enhanced by enriching the
assignment set with additional verified points, which readily
enables incremental learning.

Beyond improving rates, another key feature of NCPs is
their ability to incrementally expand the certified region. The
next result formalizes this incremental learning property: pre-
viously verified assignments can be reused together with new
ones to grow the domain over which stability is guaranteed.

Theorem 4 (Incremental Learning of K). Consider an equi-
librium point x∗ ∈ Rn of (1) and a set S ⊆ Rn satisfying
x∗ ∈ int(S). Let πK be a nonparametric policy with assign-
ment set K = {(xi, ri, vi)}Ni=1 and default control v0 ∈ A
satisfying properties (i)–(iii) of Theorem 2 with parameters
α, δ, τ, L, ε. Take xj ∈ Rn \ S, rj > 0, and vj ∈ U [0,τj) s.t.
Brj (xj) ∪ S = ∅. Define the enlarged set S′ := S ∪Brj (xj),
and let Lj = LRτj (Brj

(xj)), and L′ = max{Lj , L}.
Whenever the following conditions are satisfied:

(1) Feasibility of (xj , rj , vj): The 3-tuple (xj , rj , vj) with
vj : [0, τj) → U satisfy

sd(ϕ(τj , xj , vj), S) + rje
Ljτj ≤ 0.

(2) Either of the following holds:
(a) Direct verification at (xj , rj , vj): The tuple satisfies

decrease condition:

eατj
(
∥ϕ(τj , xj , vj)−x∗∥+rje

Lτj
)
≤∥xj−x∗∥−rj .(15)

Set α′ = α, τ ′ = max{τ, τj}, δ′ = δ.
(b) Bootstrapping: There is K̂ ⊆ K, such that

(i) Brje
Ljτj (ϕ(τj , xj , vj)) ⊆ Supp(K̂)

(ii) There is α′ < α such that

max
(xi,ri,vi)∈K̂

e−(α−α′)τi

e−ατj

∥xi − x∗∥+ ri
∥xj − x∗∥ − rj

≤ 1.

Set τ ′ = τ + τj , δ′ = δ.
Then the augmented assignment set K′ := K ∪ {(xj , rj , vj)}
and the default control v0 induce a policy πK′ that practically
exponentially stabilizes x∗ over S′ = S ∪Brj (xj) with

λ′ = α′, K ′ = eα
′τ ′

(1 + L′τeL
′τ ′

), c′ = ε(1 + LτeLτ ).

Proof. We first note that since K and v0 satisfy Theorem 1
(i)–(iii) on S, and S ∩ Brj (xj) = ∅, any initial state x ∈ S
under πK′ will only trigger assignments from K or the default
control v0. By Theorem 2, this ensures that for every x ∈ S
there exists a sequence of times {tn} satisfying the conditions
of Lemma 1, along which (6) is satisfied for V (x) = ∥x−x∗∥.
Hence, whenever x ∈ S ⊂ S′, the trajectory ϕ(t, x, uK′,x)
is practically exponentially stable with parameters λ = α,
K = eατ (1 + LτeLτ ), and c = ε(1 + LτeLτ ). Moreover,
since α ≤ α′, τ ′ ≥ τ , and L′ ≥ L, the same trajectory
also satisfies the practical exponential stability bound with the
updated constants λ′, K ′, and c′ as stated in the theorem.

We next consider the case x ∈ S′\S. Since S∩Brj (xj) = ∅,
it follows that ιK′(x) = j, so the first control applied by πK′

is vj . We will use the sequence (9) induced by πK′ to build a
sequence of times {tn}n∈N satisfying the properties in (6) of
Lemma 1 for the control signal uK′,x. The result then follows
from Theorem 1. We will choose δ′ and α′ in (6) later on.
Recall that πK satisfies (6) for some α and δ = ε(1+LτeLτ ).
To simplify notation, we use u to refer to uK′,x.

We choose x0 = x and t0 = 0. We will select t1 differently,
depending on which clause of condition (2) in the theorem’s
hypothesis hold.
Case (2a). We choose t1 = τj , and accordingly x1 =
ϕ(τj , x, vj) = ϕ(t1, x, u). By condition (1) of the theorem,
we have

sd(ϕ(τj , x, vj), S) ≤ sd(ϕ(τj , xj , vj), S) + rje
Ljτj ≤ 0,

which implies ϕ(τj , x, vj) ∈ S. This ensures ϕ(t1, x, u) =
ϕ(τj , x, vj) ∈ S ⊂ S′, i.e., (6b) for the set S′. It further
follows from (15) by a similar argument to Theorem 2, that

∥ϕ(t1, x, vj)− x∗∥ ≤ e−αt1 ∥x− x∗∥,

so (6c) holds for α and any value of δ.
Case (2b). As in case (2a) after choosing vj , ϕ(τj , x, vj) ∈
S. In fact, by (2b.i), ϕ(τj , x, vj) ∈ Supp(K̂) ⊆ S. Let
(xi, ri, vi) ∈ K̂ s.t. i = ιK(ϕ(τj , x, vj)). We choose

t1 := τj + τi,

x1 := ϕ(τj + τi, x, vjvi) = ϕ(τi, ϕ(τj , x, vj), vi).

Since (11) holds for (xi, ri, vi) ∈ K, x1 ∈ S, and therefore
we have ϕ(t1, x, u) = x1 ∈ S ⊂ S′; hence (6b) holds for t1
and S′.

It remains to ensure the decrease in (6c) at t1 with some
α′ < α and δ′ = δ. We thus consider

eα
′t1∥ϕ(t1, x, u)− x∗∥ =

= eα
′(τj+τi)∥ϕ(τj + τi, x, vjvi)− x∗∥

= eα
′(τj+τi)∥ϕ(τi, ϕ(τj , x, vj), vi)− x∗∥

≤ eα
′(τj+τi)e−ατi∥ϕ(τj , x, vj)− x∗∥

=
e−(α−α′)τi

e−α′τj

(
∥ϕ(τj , x, vj)− x∗∥

∥x− x∗∥

)
∥x− x∗∥

≤ e−(α−α′)τi

e−α′τj

(
∥xi − x∗∥+ ri
∥xj − x∗∥ − rj

)
∥x− x∗∥

≤ ∥x− x∗∥ ,

where step one follows from definition of t1 and u, two from
the group property of ϕ, three from (11a) on (xi, ri, vi), and
the final step from the bootstrapping condition (2b.ii).

In both cases, after t1 the subsequent points are generated
by K, so the sequence {tn} continues to satisfy (6b)–(6c) by
Theorem 2. Thus V (x) = ∥x − x∗∥ is an R-CLF on S′, and
by Theorem 1, πK′ renders x∗ practically exponentially stable
on S′ with the claimed constants.

V. NUMERICAL EXPERIMENTS

Using the sufficiency of NCPs derived in Theorem 2 along
with the grid construction of Theorem 3, we next introduce an
algorithmic methodology to design NCPs to stabilize a given
region. The algorithmic flow is as follows:



i. Given a region S ⊂ Rn, select a desired convergence rate
α > 0, select a τmax to upper-bound τi, and determine
the one-sided Lipschitz constant L for the underlying
dynamics across Rτmax(S)1.

ii. Create a grid of points and radii G = {(xi, ri)} covering
the region S with increasingly large radii per annulus
according to Theorem 3.

iii. For each xi, derive controls vi for τmax time (for example,
using sampling methods akin to Model-Predictive Path
Integrals (MPPI) [30], [31]).

iv. For each (xi, ri, vi), if condition (11a) is satisfied for
some τi ≤ τmax, store the largest τi that achieves equality.

v. Otherwise, split the ball Bri(gi) into 3d smaller balls.
vi. Repeat until a control is found for α-exponential decrease

with slack of at least each ball’s radius, or until a pre-
defined maximum number of splits is achieved.

vii. For balls which still fail the conditions, apply condition
2b of Theorem 4 to leverage previously derived controls.

viii. Trim down the verified region only to those trajectories
which satisfy (11b), save verified αi ≥ α for each cell.

With this algorithmic method, we present a number of
case studies in different classic control stabilization problems,
which will demonstrate useful features of NCPs.

A. Unicycle

Consider the unicycle model moving in the plane,
parametrized by its x position, y position, and angle of vehicle
θ with respect to the x-axis, with two control inputs - velocity
v and angular velocity ω. The dynamics are given byẋẏ

θ̇

 =

v cos(θ)v sin(θ)
ω

 .

We bound u ∈ [0, 2] and ω ∈ [−1, 1], and run the
method to derive NCPs for two different norms, being V1 =
max{|x|, |y|, |θ|} and V2 =

√
x2 + y2 + 0.01θ2. For either

choice of norm (simpler or tied to the classic reward function),
the method quickly stabilized the entire region of (x, y) ∈
[−20, 20]2, θ ∈ (−π, π], see Figure 1.

To demonstrate the incremental growth capabilities of NCP,
we do two stages of learning. After learning a control for
the previous region, i.e., (x, y, θ) ∈ [−20, 20]2 × (−π, π],
we expand the state space to include values in the region
(x, y, θ) ∈ [−20, 20] × [20, 25] × (−π, π]. Trajectories frag-
ments starting in the formerly verified region retain the same
behavior, while the new behavior (for initial values in the new
region) are depicted in Figure 2.

B. Inverted Pendulum

We next analyze the utility of the NCPs on the inverted
pendulum. The system consists of a mass m attached at the
end of a rigid pendulum of length l, pivoting freely about
a fixed point. The dynamics are governed by the torque
around the pivot due to both gravity and an external control

1Achieved through estimating the reachable tube by simulating samples
along the boundary and adding precision-correction terms, and then sampling
points in that region for OSL while adding precision-correction terms again.
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(a) NCP trained with V1.
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(b) NCP trained with V2.
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Fig. 1: Trajectories of Unicycle NCP. Phase plots of (x, y)
for eight evenly distributed points. The black icons depict the
initial facing of the unicycle. Plot (a) contains trajectories from
NCP trained to minimize V1, which results in sharp turns,
while (b) is trained to minimize V2, which results in softer
turns and smoother overall behavior. Plots (c) and (d) show
the development of V1 and V2 over time respectively. Both
converge exponentially to the equilibrium, with at leastα =
0.01. We have τmax = 5, ε = 0.01, L = 1 and c = ε(1 +
Lτmaxe

Lτmax) ≃ 0.613, represented by the dotted line.
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(b) After learning.

Fig. 2: Incremental Learning of Unicycle Policy. Extending
the state space from the previously learned region in the y-
direction. Subfigure (a) contains the phase plot before learning,
while subfigure (b) contains the phase plot after. The new
region is learned without forgetting, such that parts of the
trajectory in the old region use previously designed controls.



input. Denoting by θ the angle of the pendulum measured
from the vertical (with θ = 0 corresponding to the inverted
equilibrium), the equation of motion is given by

ml2θ̈(t) = mgl sin(θ(t)) + u(t),

where g is the gravitational acceleration, and u(t) is the
external control torque applied at the pivot.

Figure 3 demonstrates the refinement capabilities of NCPs,
such that by adding data (simulated by splitting all balls once),
the rate of convergence achieved is significantly increased.

(a) Base NCP verification. (b) NCP refinement.
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Fig. 3: Additional Data Refinement Facilitates Improved
NCP Performance. Plot (a) contains the balls used to verify
the region (θ, θ̇) ∈ (−π, π] × [−5π, 5π] for the inverted
pendulum. Plot (b) is a refinement of plot (a), wherein all
balls were split once more and re-verified. The minimum
verified rate of convergence for trajectories α goes from 0.003
to 0.0145, and the average verified α goes from 1.815 to
3.149. Plot (c) demonstrates the average norm over time of 400
sample trajectories under each schema. We have τmax = 1.5,
ε = 0.01, L = 1, and c = ε(1 + Lτmaxe

Lτmax) ≃ 0.072.

VI. CONCLUSIONS

In this work we proposed a method for data-driven (prac-
tical) stabilization of nonlinear systems using nonparametric
Chain Policies. The approach leverages a normalized nearest-
neighbor rule to assign, at each state, a finite-duration con-
trol signal, after which the process repeats. The method is
grounded in the notion of Recurrent Lyapunov Functions
(RLFs) as well as their control extension Control-RLFs, which
enable certification of stability using standard norm function.

Our analysis establishes that:
1) NPC Policies achieve practical exponential convergence

to a c-neighborhood with sample complexity scaling as

O
(
(3/ρ)d log(R/c)

)
in terms of the region radius R and

precision c.
2) The framework supports incremental growth: new assign-

ments can be added to expand the verified region while
preserving previously established guarantees.

3) Controller refinement is monotone: more data only im-
proves convergence rates and enlarges certified region.

These results position Chain Policies as a scalable, data-
driven approach to certified stabilization, offering rigorous
guarantees together with the ability to expand incrementally
as new data becomes available.
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