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Stability Analysis and Data-driven Verification via
Recurrent Lyapunov Functions

Roy Siegelmann, Yue Shen, Fernando Paganini, and Enrique Mallada

Abstract—Lyapunov’s direct method is an instrumental tool
that provides a rigorous framework for stability analysis and
control design for dynamical systems. A critical step that enables
the application of the method is the availability of a Lyapunov
function V —a function whose value monotonically decreases
along the trajectories of the dynamical system. Unfortunately,
finding a Lyapunov function is often tricky and requires inge-
nuity, domain knowledge, or significant computational power. At
the core of this challenge is the fact that the method requires
every sub-level set of V (V≤c) to be forward invariant, thus
implicitly coupling the geometry of V≤c and the trajectories of
the system. In this paper, we seek to disentangle this dependence
by developing a direct method that substitutes the concept of
invariance with the more flexible notion of recurrence. A set is
(τ -)recurrent if every trajectory that starts in the set returns
to it (within τ seconds). We show that, under mild conditions,
the recurrence of sub-level sets V≤c is sufficient to guarantee
stability and introduce the appropriate stronger notions to obtain
asymptotic stability and exponential stability. Most notably, we
provide norm-agnostic converse theorems showing that, under
mild conditions, any norm satisfies our relaxed stability condi-
tions, provided one is willing to certify a slightly weaker stability
condition. We further develop GPU-based algorithms that can
verify (practical) stability notions using purely trajectory data,
and without the need of computing a Lyapunov function. Our
analysis and methods further highlight an intrinsic trade-off
between the sample/computational complexity and the certified
performance that our algorithms navigate.

I. INTRODUCTION

Lyapunov stability theory plays a central role in the study
of dynamical systems. It provides a rigorous mathematical
framework for qualitatively analyzing system solutions and
has heavily influenced systems theory and engineering over the
past century. A fundamental tool derived from this theory is the
so-called Lyapunov direct method, a.k.a. Lyapunov’s second
method [1], which states mild conditions on a function V (x)
(non-increasing along trajectories and proper) that can certify
stability of an equilibrium point. Since first proposed in 1892,
Lyapunov’s direct method has found ubiquitous applications
across multiple branches of engineering, including aerospace,
electrical, mechanical, and chemical, among others [2]–[5].
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A critical step in the application of Lyapunov’s direct
method is finding the function V that indeed satisfies all the
conditions stated by the theory. Unfortunately, while such a
function is known to exist via converse theorems, e.g., [6],
manually finding a Lyapunov function is often tricky and relies
on ingenuity and deep domain knowledge. To circumvent
this step, a variety of computational methods have been
proposed for finding Lyapunov functions [7], e.g., via the use
of partial differential equation (PDE) solvers to solve Zubov’s
Equation [8], [9], linear programs (LPs) to find piece-wise
linear Lyapunov functions [10], and semidefinite programs
(SDPs) to solve linear matrix inequalities (LMIs) [11] or sum
of square (SoSs) problems [12]. However, the computational
complexity is known to exponentially increase with not only
the dimension of the state space but also the parameterization
of the Lyapunov function [7], [13].

This has led to multiple investigations into relaxing the
conditions required for V , and in particular, its time derivative
V̇ . Such relaxations can be broadly divided into three groups.
The first group seeks LaSalle-Krasovskii type of conditions
by relaxing the negative definiteness of V̇ , i.e., only requiring
V̇ ≤ 0; see [5], [14] and its generalization [15], [16]. The sec-
ond group further relaxes the strict negative definite condition
Lyapunov method by allowing V̇ > 0 on some regions of the
state space. This is implicitly done by using generalizations
of the comparison lemma [17] to impose conditions on higher
order time derivatives of V that still ensure convergence of
V → 0 while allowing V̇ > 0 for some regions of the
state space. The third group uses the so called discretization
method, which considers a fixed parameter T > 0 and
leverages the net decrement of V across any trajectory x(t),
i.e., V (x(t+T ))−V (x(t)), to reason about stability [18], [19].
Unfortunately, despite such efforts, the basic principle can still
be traced back to the (indirect) construction of a Lyapunov
function whose sub-level sets are invariant [20], [21], which
still needs to be verified either analytically or via the solution
of a convex program, rendering similar verification challenges
as before.

The challenge of finding such functions lies in the fact
that Lyapunov’s direct method implicitly constrains its shape
by requiring every sub-level set to be an invariant set. The
goal of this paper is to relax this condition by replacing the
invariance of sub-level sets with a weaker notion known as
recurrence. We say that a set is (τ -)recurrent if every trajectory
that starts in the set returns to it (within τ seconds). Such
relaxation has been recently shown to provide a versatile
mechanism for estimating regions of attractions of stable
equilibrium points [22] as well as verifying the safety of



2

a dynamical system [23]. Moreover, from an information
theoretical standpoint, (control) recurrence can be achieved at
lower data rates than invariance [24] and can often be enforced
using a finite number of trajectory data [25].

In this paper, we seek to explore the role of recurrence in
certifying different notions of stability of an equilibrium point.
The contributions of our work are several:

• Recurrent Lyapunov Functions: We introduce the concept
of Recurrent Lyapunov Functions (RLFs), which generalize
classical Lyapunov functions by replacing the invariance
condition on sub-level sets with a more flexible recurrence
condition. This relaxation decouples the geometry of the
trajectories from the geometry of the level sets.

• Stability Guarantees: We establish rigorous stability the-
orems demonstrating that τ -recurrence of a sequence of
compact sub-level sets is sufficient to guarantee stabil-
ity, asymptotic stability, exponential stability, and ultimate
boundedness. These results provide an alternative frame-
work for proving stability without requiring strict invariance
conditions.

• Norm-agnostic Converse Theorems: We show that, under
mild assumptions, any norm is guaranteed to satisfy our
RLF conditions, provided one is willing to look for a
slightly weaker stability property. This generality highlights
the fundamental role of recurrence in stability analysis, and
opens the door for the development of stability verification
methods that do not require the computation of a Lyapunov
function.

• Data-Driven Verification: We develop a computationally
efficient, GPU-parallelized method to verify whether a given
function, e.g., a norm, satisfies the proposed RLF conditions
on a compact domain. Our approach enables scalable data-
driven verification of dynamical systems, making stability
analysis feasible even when an explicit Lyapunov function
is difficult to construct.

A preliminary version of this paper has been presented in
[26]. The present manuscript extends this work in multiple
ways. First, we extend our stability analysis from local condi-
tions to conditions over arbitrary sets containing the equilib-
rium. Second, beyond stability, we further provide conditions
for ultimate boundedness. Third, we introduce novel converse
theorems that show that any norm can satisfy our Recurrent
Lyapunov Function conditions, and provide estimates on the
sample complexity of verifying exponential stability on some
bounded region of the state space. Finally, we provide a novel
streamlined verification algorithm and thorough numerical
validations that illustrate the merits of our framework.

Closely related work: The derived conditions are similar
in spirit to the ones considered by Karafyllis in [21], which
studies robust stability analogs (c.f. Proposition 2.3 and 2.5).
Particularly, our asymptotic stability condition is closely re-
lated to [21, Prop. 2.5]. Our stability, exponential stability,
and ultimate boundedness conditions are, however, new and
not present in prior work. More importantly, the focus of our
paper is on exploring the connection of such conditions with
the recurrence of level sets of V and developing paralleliz-
able algorithms that can be implemented on GPUs, whereas

[21], focuses on robust stability and provides Matrosov-type
conditions.

The rest of this paper is organized as follows. In Section II,
we introduce preliminary definitions for dynamical systems
and stability. Section III introduces the concept of recurrent
sets and how they can be used to bound trajectories. Section
IV characterizes properties of a function V that render its
sub-level sets τ -recurrent, setting the stage for introduction of
Recurrent Lyapunov Functions, and a novel proof of stability
on an equilibrium. We further derive RLF conditions that
guarantee asymptotic stability in Section V, and exponential
stability and ultimate boundedness in Section VI. SectionVII
is dedicated to demonstrating that the RLF can be widely sat-
isfied using just norms, paving the way to stability verification
algorithms that do not require the computation of a Lyapunov
function VIII. Numerical experiements are presented in Sec-
tion IX, and conclusions and future work are presented in
Section X.

Notation: Throughout the text, we let ∥·∥ denote an arbitrary
norm on Rn, and define Br(x) as the closed ball of radius r
centered at x ∈ Rn. Given a set S ⊂ Rn, the distance from a
point y ∈ Rn to S is defined as

d(y, S) := inf
x∈S
∥y − x∥.

The signed distance from a point x ∈ Rn to S is then given
by

sd(x, S) :=

{
d(x, ∂S), if x /∈ S,

−d(x, ∂S), if x ∈ S.

We also use R≥0 := {x ∈ R | x ≥ 0}, R>0 := {x ∈ R | x >
0}, and [n] := {1, . . . , n}.

II. PRELIMINARIES

We consider a continuous-time dynamical system

ẋ = f(x) , (1)

where x ∈ D ⊂ Rn is the state, and the map f : D → Rn

is a continuous function defined over an invariant and closed
domain D. Given an initial state x, we use ϕ(t, x) to denote the
solution of (1). Throughout the paper, we make the following
assumption about the vector field and its solutions.

Assumption 1. The vector field f(x) in (1) is locally Lipschitz.
That is, for any compact set S ⊂ D, there exists a constant
LS ∈ R≥0 such that

∥f(y)− f(x)∥ ≤ LS∥y − x∥, ∀x, y ∈ S.

The local Lipchitz nature of the vector field implies that
solutions must exist for some amount of time, which we will
denote by the following:

Definition 1 (Interval of Existence). For x ∈ D, the interval
of existence I(x) ⊂ R is the largest open interval such that
ϕ(t, x) exists for all t ∈ I(x).

Whenever the initial condition is understood from the
context, we will use x(t) := ϕ(t, x). Whenever the set S
is understood from context, we will use L instead of LS .
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For simplicity, we refer to the dynamical system (1) as the
dynamical system f .

We next introduce the core building blocks of Lyapunov
Stability Theory.

Definition 2 (Stability). An equilibrium x∗ is stable if for any
ε > 0, ∃δ > 0, such that if ∥x−x∗∥ ≤ δ then ∥ϕ(t, x)−x∗∥ ≤
ε ∀t ≥ 0.

Definition 3 (Attractivity). An equilibrium x∗ is attractive on
the set S if every x ∈ S, ∥ϕ(t, x)− x∗∥ → 0 as t→∞.

Definition 4 (Asymptotic Stability). An equilibrium x∗ is
asymptotically stable on the set S, if it is stable, and attractive
on S.

Definition 5 (Exponential Stability). An equilibrium x∗ is
exponentially stable on the set S if there exists constants
K > 0, λ > 0 such that if x ∈ S, then

∥ϕ(t, x)− x∗∥ ≤ Ke−λt∥x− x∗∥, ∀t ≥ 0. (2)

It will also be useful throughout our presentation to define
sets that are of general use to characterize transient, as well
as asymptotic behavior.

We start by characterizing the set of points that can be
reached within a finite interval of time.

Definition 6 (Reachable Tube). For the dynamical system f ,
a time τ > 0, and a set S ⊂ D, we denote the τ -reachable
tube from S within τ units of time by

Rτ (S) =
⋃

x∈S,t∈[0,τ ]

{ϕ(t, x)}.

Next, we formally define positive invariant sets.

Definition 7 (Positively Invariant Sets). A set S ⊆ Rn is
positively invariant w.r.t. (1) if and only if:

x ∈ S =⇒ ϕ(t, x) ∈ S, ∀ t ∈ R≥0.

Since we only consider here positive invariant sets, as
opposed to negative invariant sets, we will often refer to them
as plainly invariant sets. As mentioned before, the notion
of positive invariance is a fundamental building block of
Lyapunov Theory. By trapping trajectories on compact sub-
level sets of a function one can guarantee boundedness of
trajectories, stability, and asymptotic stability via a gradual
reduction of the Lyapunov function value.

III. RECURRENCE

To relax the notion of invariance, one must allow trajectories
to temporarily leave a set. However, in order to still be able
make statements about asymptotic behavior, our first condition
requires trajectories to return infinitely often.

Definition 8 (Recurrent Set). A set S ⊆ Rn is recurrent w.r.t.
(1), if for any x ∈ S , and t ≥ 0,

∃ t′ > t, s.t. ϕ(t′, x) ∈ S.

Since trajectories are allowed to leave S, in our develop-
ment, it will be useful to keep track of the time intervals where

a trajectory ϕ(t, x) lies within a given set S for a given initial
point x ∈ D.

Definition 9 (Containment Times). Given a set S ⊂ D and a
point x ∈ D, we define the set of containment times, TS(x),
as the set of times t for which the trajectory ϕ(t, x) ∈ S, i.e.,

TS(x) := {t ∈ R>0 | ϕ(t, x) ∈ S}.

Given constants a, b, we write

TS(x; a, b) := TS(x) ∩ (a, a+ b].

For convenience we also write TS(x; b) := TS(x; 0, b). Finally,
when the set S is clear from context, we may omit the subscript
entirely.

The notion of recurrent sets introduced here is related
to the classical notion of Poincare recurrence [27], and in
particular, Poincare recurrent sets [28, Def. 2.4.1], which
constitutes the union of Poincare recurrent points; a point x
is Poincare recurrent if its backward and forward flows, i.e.,
{ϕ(−t, x)}t≥0 and {ϕ(t, x)}t≥0, get arbitrarily close to x,
infinitely often. In fact, one can show that any open subset
S of a Poincare Recurrent Set is a Recurrent Set according to
Definition 8.

As we will soon see, Definition 8 will ensure that part of
the ω-limit set of f must be contained within the recurrent
set S. While this property suggests some notion of conver-
gence (attractivity) to some set that intersects S, for stability
analysis purposes, we further require control on how far the
trajectory may depart from S. The following stronger notion
of recurrence achieves this.

Definition 10 (τ -Recurrent Set). A set S ⊆ D is τ -recurrent
w.r.t. (1), if there exists a locally bounded function τ : D →
R>0 s.t. for any x ∈ S ,

∃ t′ > t, with t′ − t ∈ (0, τ(x)] and ϕ(t′, x) ∈ S.

We further say that S is strictly τ -recurrent, if for any x ∈ S ,
and t ≥ 0,

∃ t′ > t, with t′− t ∈ (0, τ(x)] s.t. ϕ(t′, x) ∈ S\∂S.

One of the key properties of recurrent sets is that trajec-
tories that start within the set S will visit it infinitely often
(again and again), and forever (there is always a future time
when it is visited again). This condition, implicitly assumes
that trajectories that start in S are forward complete, i.e.,
I(x) = [0,∞). Moreover, while the recurrent property of
definition 8 is sufficient for most of the development of our
work, it is hard to verify or use. The next lemma shows that
when the set S is compact, these complications become less
relevant.

Lemma 1 (Characterization of τ -Recurrent Compact Sets).
Let S ⊂ D be a compact set, and consider the system (1) under
Assumption 1. Then, the following conditions are equivalent:

(i) S is τ -recurrent,
(ii) there exists locally bounded τ : D → R>0, such that for

any x ∈ S, ∃ t′ ∈ (0, τ(x)] ⊆ I(x) with ϕ(t′, x) ∈ S,
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(iii) there exists τ > 0 such that for any x ∈ S there is a
sequence {tn}n∈N satisfying,

lim
n→∞

tn =∞ , with tn+1 − tn ∈ (0, τ ] , (3)

and ϕ(tn, x) ∈ S ∀n. Thus, I(x) = [0,∞) ∀x ∈ S.

Proof.
(i)=⇒(ii): Follows from Definition 10 and choosing t = 0.
(ii) =⇒ (iii): Let τ := supx∈S τ(x), which, since S is
compact and τ(·) is locally bounded, is finite. Given x ∈ S, we
build the sequence {tn}n∈N satisfying (3) and ϕ(tn, x) ∈ S by
induction. For the base case, let t0 = 0 so that ϕ(t0, x) = x,
and choose

t1 = max{t ∈ (0, τ ] | ϕ(t, x) ∈ S};

note that the at least one time t with ϕ(t, x) ∈ S must exist,
since property (ii) holds. By construction, t1 − t0 ∈ (0, τ ],
and since τ(x) ∈ I(x), we have t1 ∈ I(x). The inductive
construction proceeds in a similar manner: given t1 < t2 <
· · · tn, with xn := ϕ(tn, x) ∈ S and tn ∈ I(x), define

tn+1 = max{t ∈ (0, τ ] | ϕ(tn + t, x) ∈ S}; (4)

Note that tn+1 always exists by (ii), and satisfies tn+1− tn ∈
(0, τ ] as required. Further, since xn ∈ S, tn+1 − tn ∈
I(ϕ(tn, x)), which implies that tn+1 ∈ I(x) It remains
to show that tn → ∞, which we argue by contradiction.
If, instead, the strictly increasing sequence of times was
bounded, we would have tn ↑ t∗. Consider now the sequence
xn := ϕ(tn, x), which satisfies xn ∈ S for all n ∈ N. By
continuity of ϕ(·, x), it follows that limn→∞ xn = ϕ(t∗, x).
Moreover, since S is compact, we must have ϕ(t∗, x) ∈ S.
This implies, first, that the limit t∗ must be achieved for finite
n, say n∗. However, since S is τ -recurrent, we know that
∃t′ ∈ (0, τ ] such that ϕ(t∗ + t′, x) ∈ S, implying that t∗

cannot be an upper bound on the sequence {tn}n∈N, since by
definition of the sequence (4), tn∗+1 ≥ t∗ + t′ > t∗. Thus,
tn →∞, as desired, and thus I(x) = [0,∞).
(iii) =⇒ (i): Finally, given x ∈ S and t ≥ 0, let n∗ be the
largest n s.t. tn ≤ t, then, it follows that tn∗+1 − t ∈ (0, τ ],
ϕ(tn∗+1, x) ∈ S. The result follows by defining τ(x) = τ , for
all x ∈ S.

As Lemma1 shows, for compact τ -recurrent set, excursions
outside the set last at most τ = supx∈S τ(x) < +∞. We will
use this property to bound the distance a trajectory can travel
away from a τ -recurrent set. To that end, we recall here that
the vector field (1) is assumed locally Lipschitz (Assumption
1). While such property suffices, it will prove convenient to
obtain tighter bounds via locally one-sided Lipschitz constants.

Definition 11 (One-sided Lipschitz). We say f is locally one-
sided Lipschitz if for any compact set S ⊂ D there exists a
constant LS ≤ L ∈ R such that

(y − x)T (f(y)− f(x)) ≤ LS ||y − x||2, ∀x, y ∈ S

Finally, we will also need to estimate the maximum value of
the norm of the vector field on a (compact) set Sr, i.e., FS :=
maxS ∥f(x)∥. Using these definitions, we now introduce a

Containment Lemma, which bounds how far trajectories can
go from a compact set in which they start.

Lemma 2 (Containment Lemma). Let Assumption 1 hold.
Consider a compact set S ⊂ D and a constant τ > 0. Then,
for any x ∈ S the following holds:

max
t∈[0,τ ]

d(ϕ(t, x), S) ≤ FS h(τ ;L)

where L := LRτ (S) <∞, and

h(τ ;L) :=

{
eLτ−1

L , L ̸= 0,

τ, L = 0.

Proof. Since S is compact and Assumption 1 holds, it follows
from Proposition 5.1 of [29] that the set Rτ (S) is compact.
Thus, L is finite. Let x ∈ S and let u(t) := ∥ϕ(t, x) − x∥.
Observe that since x ∈ S, d(ϕ(t, x), S) ≤ u(t). Thus,
bounding u(t) will be sufficient. Differentiating u(t)2 w.r.t to
time gives

d

dt
u(t)2 =

d

dt
∥ϕ(t, x)− x∥2 =

d

dt
⟨ϕ(t, x)− x, ϕ(t, x)− x⟩

= 2⟨ϕ(t, x)− x, f(ϕ(t, x))⟩
= 2⟨ϕ(t, x)− x, f(ϕ(t, x))− f(x)⟩

+ 2⟨ϕ(t, x)− x, f(x)⟩
≤ 2Lu(t)2 + 2FSu(t)

where the first step uses d
dtϕ(t, x) = f(ϕ(t, x)), the second

adds and subtracts f(x), and the last inequality follows from
the definition of L, FS and u(t).

It follows then that,

d

dt
u(t)2 = 2u(t)u̇(t) ≤ 2Lu(t)2 + 2FSu(t).

Since for u(t) = 0 our result holds trivially, we may assume
u(t) > 0 for t ∈ (0, τ ], which implies

u̇(t) ≤ Lu(t) + FS .

Applying Grönwall’s inequality (c.f [5], Lemma A.1) yields

u(t) ≤ eLtu(0) +
FS

L
(eLt − 1) and u(t) ≤ u(0) + FSt,

for L ̸= 0 and L = 0, respectively. Finally, taking u(0) = 0
and maximizing the above values over the domain t ∈ (0, τ ]
yields precisely the claimed bounds.

The Containment Lemma, which only provides containment
guarantees for a finite time, can be combined with the re-
currence property of Definition 8 and Lemma 1 to provide
trajectory bounds for all positive times.

Corollary 1 (Boundedness of Trajectories). Let S be a com-
pact τ -recurrent set. Then it follows that for any x ∈ S,

d(ϕ(t, x), S) ≤ FSh(τ ;L), ∀t ≥ 0,

where τ = supx∈S τ(x) and L = LRτ (S). Moreover, the τ -
reachable tube Rτ (S) is invariant.

Proof. Applying Lemma 2, we have d(ϕ(t, x), S) ≤
FSh(τ ;L) for t ∈ (0, τ ]. Now, construct a sequence as in
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Lemma 1. Since t1 ∈ (0, τ ] with ϕ(t1, x) ∈ S, d(ϕ(t, x), S) ≤
FSh(τ ;L) for t ∈ (0, t1 + τ ]. Continuing this inductively, we
have this condition holding for t ∈ limn→∞(0, tn], which is
equivalent to (0,∞) since tn →∞.

For the second claim, let us assume for the sake of contra-
diction that Rτ (S) is not invariant. Then, there must be an
x ∈ S and t ≥ 0 such that ϕ(t, x) ̸∈ Rτ (S). Observe that by
construction of the sequence {tn}, there must exist an n such
that tn < t < tn+1 with tn+1− tn < τ wherein ϕ(tn, x) ∈ S.
Therefore, ϕ(t− tn, ϕ(tn, x)) ∈ Rτ (S), which yields contra-
diction to our assumption of non-invariance. Thus, Rτ (S) is
invariant, as desired

We finalize this section, noting that Corollary 1 imbues
compact τ -recurrent sets with the same functional property
of compact invariant sets, i.e., bounding trajectories. This
provides the cornerstone to the development of a recurrence-
based stability theory.

IV. RECURRENT LYAPUNOV FUNCTIONS

Having established the ability to bound trajectories using
τ -recurrent sets, we now introduce the modified conditions on
a function V : D → R≥0, that relax the standard Lyapunov
conditions for stability. In contrast to the classical counterpart,
we do not require V to be monotonically non-increasing along
trajectories. Rather, for any given initial x ∈ D, we allow
τ(x) units of time to elapse before requiring the function to
meet any requirements on its value. This leads to the proposed
definition of Recurrent Lyapunov Functions.

Definition 12 (Recurrent Lyapunov Function (RLF)). Given
an equilibrium point x∗ ∈ D of (1) and a set S ⊆ D satisfying
x∗ ∈ int(S). We say that a continuous function V : D →
R≥0 is a Recurrent Lyapunov Function over the set S if the
following properties hold:

(i) V is positive definite around x∗, that is,

V (x) > 0, ∀x ̸= x∗, and V (x∗) = 0. (5)

(ii) V is τ -recurrent over S, that is, there is a locally
bounded τ : S → R>0 such that

min
s∈TS(x; τ(x))

V (ϕ(s, x)) ≤ V (x), ∀x ∈ S. (6)

We make the following remarks about Definition 12. First,
the minimum in (6) is taken over the non-necessarily closed
set TS(x; τ(x)) = TS(x) ∩ (0, τ(x)]. As a result, for the min
to be finite, one is required find t ∈ (0, τ(x)] with ϕ(t, x) ∈ S.
Second, we only require V to be continuous; while classical
Lyapunov theory can be developed for non-differentiable func-
tions, it usually requires increased complexity in the analysis.
Our results can be readily stated for only continuous V .
Finally, the τ -recurrent property (6) acts as a substitute to
the standard differential inequality: V̇ = ∇V (x)T f(x) ≤ 0.
As we will see next, this condition allows us to substitute the
standard invariance property with the more relaxed notion of
recurrence.

Lemma 3. Given any c ≥ 0 and a compact set S ⊆ D. If
V : D → R≥0 is continuous and τ -recurrent over S (c.f. (ii)
in Definition 12), then, the following holds:

(i) The set S is τ -recurrent.
(ii) The set V≤c ∩ S = {x ∈ S | V (x) ≤ c} is τ -recurrent.

Proof. We start by noting that since S is compact and con-
tained in the domain of V , then there exists c large enough
such that S ∩ V≤c = S. As a result, property (i) follows
directly from (ii). The proof of (ii) uses the property (ii) of
Lemma 1. Precisely, by Definition 12, it follows from (6) that
for any x ∈ S ∩ V≤c, one can find t′ ∈ (0, τ(x)] such that
ϕ(t′, x) ∈ S ∩V≤c. Since S ∩V≤c is compact and τ(·) locally
bounded, Lemma 1 (ii) holds for the set S ∩ V≤c. Thus, by
Lemma 1 (i), the set S ∩ V≤c is τ -recurrent.

We are now ready to present the main result of this section,
which states that the existence of an RLF is sufficient to
guarantee the stability of the associated equilibrium point.

Theorem 1 (Stability). Let Assumption 1 hold. Consider an
equilibrium point x∗ ∈ D of (1) and a set S ⊆ D satisfying
x∗ ∈ int(S). Then, if V : D → R≥0 is an RLF over S, the
equilibrium x∗ is stable.

Proof. The proof is aligned with classical results. For any ε,
we will aim to find a compact invariant set I ⊂ Bε(x

∗) with
x∗ ∈ int(I). Precisely, let τ := supx∈S τ(x). Given any ε > 0,
choose 0 < r ≤ ε s.t. Br(x

∗) ⊂ S, let L = LBr(x∗), and find
ε′ > 0 small enough such that

ε′ + Fε′h(τ ;L)< r ≤ ε.

Now let α = minε′≤∥x−x∗∥≤r V (x). Note that by construction
α > 0. Select β such that 0 < β < α and introduce the
compact set

Ωβ := {x ∈ Bε′(x
∗) : V (x) ≤ β}.

Now, consider any initial condition x ∈ Ωβ . Since Ωβ ⊂ S, it
follows from τ -recurrence of V over S (Definition 12, (ii))),
that there must exist a time t ∈ (0, τ ] with V (ϕ(t, x)) ≤
V (x) ≤ β < α. Moreover, since by the Containment Lemma
(Lemma 2) , Rτ (Ωβ) ⊂ Br(x

∗), it must be the case that
ϕ(t, x) ∈ Ωβ since otherwise one would necessarily have
V (ϕ(t, x)) > β (contradiction). Thus, by the implication
(ii) =⇒ (i) of Lemma 1, Ωβ is τ -recurrent. It follows then
from Corollary 1 (since Ωβ) is compact) Rτ (Ωβ) is a compact
invariant satisfying

Rτ (Ωβ) ⊂ Br(x
∗) ⊆ Bε(x

∗).

Finally, by choosing δ > 0 small enough such that Bδ(x
∗) ⊂

Ωβ , stability (Definition 2) follows.

V. ASYMPTOTIC STABILITY

Now that we have proven stability with RLFs, we wish to
expand the theory to encapsulate asymptotic stability. Simi-
larly to Lyapunov’s Direct Method, the extension essentially
consists of strengthening the condition from a non-strict in-
equality to a strict one.
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Definition 13 (Strict Recurrent Lyapunov Function (S-RLF)).
Given an equilibrium x∗ ∈ D and a set S ⊆ D satisfying
x∗ ∈ int(S). We say that a continuous function V : D → R≥0

is a Strict Recurrent Lyapunov Function over the set S, if
the following holds:

(i) V is an RLF, i.e., Definition 12.
(ii) V is strictly τ -recurrent over S, that is, there is a locally

bounded τ : S → R>0 such that

min
s∈TS(x;τ(x))

V (ϕ(s, x)) < V (x), ∀x ∈ S\{x∗}. (7)

Since a Strict RLF is also an RLF, all the properties from
our previous section hold for S-RLFs, particularly, Lemma 3
(S-restricted sub-level sets, V≤c ∩ S, are τ -recurrent), which
is the building block of Theorem 1. The key difference here
is that the strict inequality in (7), acts as a substitute of the
typical Lyapunov condition V̇ (x) < 0, ∀x ∈ S\{x∗}, which
leads to the strict decrease of V (ϕ(t, x)) as a function of time.
The next lemma shows that our new condition only requires
decrements every so often.

Lemma 4. Let x∗ ∈ D be an equilibrium and S ⊆ D a
compact set satisfying x∗ ∈ int(S). Then, if V : D → R≥0 is
a Strict RLF, the following holds:

(i) The solution ϕ(t, x) is bounded and forward complete for
all x ∈ S.

(ii) Given x ∈ S, there exists a sequence of time instances
{tn}n∈N, such that for all n ∈ N,

lim
n→∞

tn =∞ and tn+1 − tn ∈ (0, τ ] , (8)

with ϕ(tn, x) ∈ S, and whenever x ∈ S\{x∗},

V (ϕ(tn+1, x)) < V (ϕ(tn, x)) < V (x). (9)

Proof. Since S is compact and V is an S-RLF ⇒ RLF, by
Lemma 3, we conclude that for any c ≥ 0 the set V≤c ∩ S
is τ -recurrent. It follows then, by Corollary 1, that ϕ(t, x) is
bounded and forward complete ∀x ∈ S, i.e., claim (i). Further,
since ϕ(t, x∗) = x∗ ∈ S ∀t, (ii) trivially holds. Thus, we
assume from now on that x ∈ S\{x∗}, and by uniqueness of
solutions that ϕ(t, x) ̸= x∗ forall t ≥ 0.

The inductive construction of the time sequence for the
remaining cases is analogous to the proof of Lemma 1. Let
τ = supx∈S τ(x), and consider x ∈ S\{x∗}. For the base
case, let t0 = 0 so that ϕ(t0, x) = x and V (ϕ(t0, x)) = V (x),
and choose

t1 = max{argmint∈TS(x;τ)V (ϕ(t, x))};

note that the minimum exists by hypothesis (7); if there are
multiple minimizing times, t1 is defined as the largest. By
construction then, t1 − t0 ∈ TS(x; τ) ⊆ (0, τ ], ϕ(t1, x) ∈ S,
and V (ϕ(t1, x)) < V (x) as desired.

The inductive construction proceeds in a similar manner:
given t1 < t2 < · · · tn, with xn := ϕ(tn, x) ∈ S, define

tn+1 − tn = max{argmins∈TS(xn;τ)V (ϕ(s, xn))}. (10)

Note that tn+1 − tn ∈ TS(xn; τ) ⊆ (0, τ ] as required. Also,

xn+1 := ϕ(tn+1, x) = ϕ(tn+1 − tn, xn) ∈ S\{x∗} ,

and satisfies V (xn+1) < V (xn) by (7), so we verify (9).
It remains to show that tn → ∞, which we argue by

contradiction. If, instead, the strictly increasing sequence of
times was bounded, we would have tn ↑ t∗. Note that by
continuity of ϕ(·, x) and compactness of S, xn = ϕ(tn, x)→
ϕ(t∗, x) ∈ S. Further, since ϕ(t, x) ̸= x∗ for all t ≥ 0,
ϕ(t∗, x) ∈ S\{x∗}. Finally, continuity of V we have:

vn := V (ϕ(tn, x))
n→∞−→ V (ϕ(t∗, x)) =: v∗.

Since {vn} is strictly decreasing we conclude that v∗ < vn
for all n ∈ N. Now pick n such that tn ≥ t∗ − τ . Since
ϕ(t∗, x) ∈ S, it follows that s∗ := t∗ − tn ∈ (0, τ ] is in the
feasible set for the minimization in (10), which by definition
gives as minimum vn+1, achieved at tn+1 − tn. Now, since
v∗ = V (ϕ((s∗, xn)) < vn+1, this means s∗ achieves a smaller
solution in (10) than tn+1 − tn, which contradicts with the
definition of tn+1− tn. Thus the sequence must be divergent,
establishing claim (ii).

By utilizing Lemma 4 and Theorem 1 we are able to
demonstrate asymptotic stability.

Theorem 2 (Asymptotic Stability). Let Assumption 1 hold.
Consider an equilibrium point x∗ ∈ D of (1) and a compact
set S ⊆ D satisfying x∗ ∈ int(S). Then, if V : D → R≥0 is
an S-RLF over S, the equilibrium x∗ is asymptotically stable
on the set S.

Proof. The stability requirement is already established by
Theorem 1 and the fact that an S-RLF is also an RLF. Thus,
we are only left to show the attractivity of x∗ on the set S.

Following Lemma 4, for any x ∈ S, ϕ(t, x) is forward
complete. Moreover, for any x ∈ S\{x∗}, we can construct
a sequence of times tn and points xn = ϕ(tn, x) ∈ S\{x∗}
satisfying (8) and (9). Now, let vn := V (xn) be the strictly
decreasing sequence that follows from (9), and v̄ be its limit,
which exists since vn > 0 for all n. It follows then that,
vn > v̄ ≥ 0 for all n. Since {xn} is bounded in Rn, we
may take a convergent subsequence xnk

k→∞−→ x̄. Since S is
compact and x∗ ∈ int(S), x̄ ∈ S. By continuity, v̄ = V (x̄).

Suppose v̄ > 0, so x̄ ̸= x∗. Let τ = supx∈S τ(x). Then, by
the strict τ -recurrence of V (c.f. (7)), there exists s̄ ∈ (0, τ ]
satisfying V (ϕ(s̄, x̄)) < v̄ and ϕ(s̄, x̄) ∈ S. In fact, we must
have ϕ(s̄, x̄) ∈ S\{x∗} by uniqueness and the assumption
x̄ ̸= x∗. Note that by continuity

V (ϕ(s̄, xnk
))

k→∞−→ V (ϕ(s̄, x̄)) < v̄. (11)

However, by construction of the sequence according to Lemma
4, we have that

vnk+1 = min
s∈TS(x;0,τ)

V (ϕ(s, xnk
)) ≤ V (ϕ(s̄, xnk

)). (12)

Combining (11) and (12) for k large enough we have

vnk+1 ≤ V (ϕ(s̄, xnk
)) < v̄

which leads to a contradiction since by construction of the
sequence vn we must have vnk+1 > v̄. Therefore we have
shown that vn = V (ϕ(tn, x))

n→∞−→ 0.
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An immediate consequence of (5) is that xn =
ϕ(tn, x)

n→∞−→ x∗. As such, rn := ∥xn − x∗∥ a decreasing
sequence with limn→∞ rn = 0. To prove attractivity, let ε > 0
be given. Since limn→∞ rn = 0, we can select an N > 0 be
such that rN + FrNh(τ ;L) < ε. For any t > tN , by applying
the Containment Lemma to BrN (x∗), we have

∥ϕ(t, x)− x∗∥ ≤ rN + FrNh(τ ;L) < ε.

Since this argument holds for any ε > 0, we have that
limt→∞ ϕ(t, x) = x∗, proving attractivity.

Theorem 2 demonstrates, how by enforcing the required
property (strict decrement the values of V (ϕ(t, x))) on an
infinite sequence of times with bounded difference (tn, tn+1−
tn ∈ (0, τ ]), it is possible to conclude properties of the entire
trajectory. This principle seems to be rather general, and will
be further exploited in the next section to prove exponential
stability. Finally, we further point out that while we require S
to be compact in Theorem 2 the results can easily extend to
a global setting.

Corollary 2 (Global Asymptotic Stability). Let Assumption
1 hold. Consider an equilibrium point x∗ ∈ D of (1). Then,
if V : D → R≥0 is an S-RLF over D, and has compact
sub-level sets V≤c ⊂ D, ∀c ≥ 0, then the equilibrium x∗ is
globally asymptotically stable.

Proof. Pick any x ∈ D and let c := V (x). Since V is S-
RLF over D, property (7) implies there exists t′ ∈ (0, τ(x)]
satisfying

V (ϕ(t′, x)) < V (x) = c.

In fact, the same property holds for all x ∈ V≤c ⊂ D. It
therefore follows that V is an S-RLF over S := V≤c, and since
V≤c is compact we can apply Theorem 2 to claim stability
of x∗ ∈ V≤c and attractivity of ϕ(t, x). Finally, since x was
chosen arbitrarily within D, results follows.

VI. EXPONENTIAL STABILITY

In the previous section, we showed that strictly τ -recurrent
functions sequentially constrain trajectories, enforcing the
desired condition (attractivity) at discrete times. We further
showed that this was sufficient to ensure the same condition
along the entire trajectory (for all subsequences). We now
move towards exponential stability. As before, we seek condi-
tions on the function V that enable us to enforce exponential
convergence at discrete, recurrent times.

Typically, exponential stability in classical Lyapunov analy-
sis is verified by ensuring an exponential decrease in the Lya-
punov function along trajectories. More precisely, a common
integral form condition is given by:

V (ϕ(t, x)) ≤ e−αtV (x), ∀t ≥ 0,

for some positive constant α. Such a condition tightly couples
the geometry of V to trajectories, significantly complicating
its verification and limiting practical applicability. To alleviate
this, we now introduce a relaxed definition—Exponential

Recurrent Lyapunov Functions (E-RLFs)—which relaxes ex-
ponential Lyapunov functions.

Definition 14 (Exponential Recurrent Lyapunov Function
(E-RLF)). Given an equilibrium point x∗ ∈ D of (1) and
a set S ⊆ D satisfying x∗ ∈ int(S). We say that a continuous
function V : D → R≥0 is an Exponential Recurrent
Lyapunov Function over the set S if the following properties
hold:
(i) V is positive definite and linearly contained around x∗,

that is, there exist constants a1, a2 > 0 such that

a1∥x− x∗∥ ≤ V (x) ≤ a2∥x− x∗∥, ∀x ∈ S. (13)

(ii) V is α-exponentially τ -recurrent over S, that is, there
exist a locally bounded function τ : S → R>0 and a
positive constant α such that

min
s∈TS(x; τ(x))

eαsV (ϕ(s, x)) ≤ V (x), ∀x ∈ S. (14)

Note that an α-exponentially τ -recurrent function is always
strictly τ -recurrent, but not the other way around. We will
use (14) to control (exponentially decreasing) upper and lower
bounds of V (ϕ(t, x)) as t→∞.

Theorem 3 (Exponential Stability). Consider an equilibrium
point x∗ ∈ D of (1), and a compact set S ⊆ D satisfying x∗ ∈
int(S). Suppose Assumption 1 holds, and let V : D → R≥0

be an Exponential Recurrent Lyapunov Function over the set
S. Then, the equilibrium x∗ is exponentially stable with rate
α on the set S. In particular, for every x ∈ S and every t ≥ 0,
it holds that

∥ϕ(t, x)− x∗∥ ≤ C e−αt∥x− x∗∥, (15)

with C := a2

a1
eατ (1 + L̄h(τ ;L)), τ = supx∈S τ(x), L :=

LRτ (S), and L̄ := L̄Rτ (S).

Proof. Let τ , L, and L̄ be as defined in the theorem statement,
and pick any x ∈ S. Since E-RLF⇒S-RLF⇒RLF, it follows
from Lemma 4, that ϕ(t, x) is bounded and forward complete.
Moreover, a similar construction to that of Lemma 4 also
defines a sequence {tn}n∈N, with t0 = 0, limn→∞ tn = ∞
and tn+1 − tn ∈ (0, τ ], ∀n, such that

eαtn+1V (ϕ(tn+1, x)) ≤ eαtnV (ϕ(tn, x)) ≤ V (x), n ≥ 1.
(16)

Using (13) and (16) we deduce that, for n ≥ 1 we

∥ϕ(tn, x)− x∗∥ ≤ V (ϕ(tn, x))

a1
≤ e−αtn

a1
V (x).

Let now rn := e−αtn

a1
V (x) and Bn := Brn(x

∗) ∩ S. It
follows from applying Lemma 2 on the compact set Bn ⊂ S
that

∥ϕ(t, x)− x∗∥ ≤ rn + Frnh(τ ;L), ∀t ∈ (tn, tn+1].

Furthermore, since by Assumption 1, f is L̄-Lipschitz on
Bn ⊂ S, and f(x∗) = 0 we have Frn ≤ L̄rn, leading to

∥ϕ(t, x)− x∗∥ ≤ rn(1 + L̄h(τ ;L))

≤ e−αtn

a1
(1 + L̄h(τ ;L))V (x)
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for all t ∈ (tn, tn+1] Note, further, that t ≤ tn+1 ≤ tn + τ ,
therefore −tn ≤ τ − t so e−αtn ≤ eατe−αt, leading to

∥ϕ(t, x)− x∗∥ ≤ eατ
e−αt

a1
(1 + L̄h(τ ;L))V (x).

Moreover, since the last bound is independent of n, and n was
chosen arbitrarily, it must hold for all t ≥ 0. Finally, applying
the upper bound V (x) ≤ a2∥x − x∗∥ we establish (15) for
any x ∈ S.

The above theorem demonstrates the exponential stability of
an equilibrium point x∗ on a compact set S. Note though, that
while the constant C is independent of x, as usually required,
it does depend on the compact set S through τ , L and L̄. This
make the extension for global exponential stability slightly
more involved. We provide here a restricted extension under
additional assumptions.

Corollary 3 (Global Exponential Stability). Consider the
system (1), and suppose the following hold:

(i) The domain D ⊆ Rn is forward invariant, and the vector
field f is globally Lipschitz on D with Lipschitz constant
L̄.

(ii) The function V : D → R≥0 is an Exponential Recurrent
Lyapunov Function over D with compact sublevel sets.

(iii) The recurrence time function τ : D → R>0 is globally
bounded: supx∈D τ(x) ≤ τ̄ <∞.

Then the equilibrium point x∗ is globally exponentially
stable. In particular, for all x ∈ D and t ≥ 0,

∥ϕ(t, x)− x∗∥ ≤ C e−αt∥x− x∗∥,

where the constant C := a2

a1
e(L̄+α)τ̄ > 0.

Proof. Let x ∈ D be arbitrary, and define the compact sublevel
set S := V≤V (x) ⊂ D. Since V is an Exponential Recurrent
Lyapunov Function over D, it satisfies the ERLF conditions
over its sublevel set S as well.

By Theorem 3, the exponential stability bound holds on S
with:

∥ϕ(t, x)− x∗∥ ≤ CSe
−αt∥x− x∗∥,

where the constants CS := a2

a1
eατS (1 + L̄Sh(τS ;LS)) and

τS := supx∈S τ(x) ≤ supx∈D τ(x) ≤ τ̄ .
By assumption, since f is globally Lipschitz on D with con-

stant L̄, both the standard and one-sided Lipschitz constants
over RτS (S) ⊆ D satisfy LS ≤ L̄ and L̄S ≤ L̄.

Moreover, the function h(τ, L) := eLτ−1
L is strictly increas-

ing in both τ and L for τ > 0. Therefore, we conclude that

CS ≤
a2
a1

eατ̄ (1 + L̄h(τ̄ ; L̄)) = C.

Since this bound is independent of the particular choice of
x ∈ D, we obtain:

∥ϕ(t, x)− x∗∥ ≤ Ce−αt∥x− x∗∥, ∀x ∈ D, ∀t ≥ 0.

We conclude this section by relaxing the requirement in
Theorem 3 that x∗ ∈ int(S), which leads to an ultimate
boundedness condition that we now formally define.

Definition 15 (Exponential Ultimate Boundedness). The so-
lutions of system (1) are said to be exponentially ultimately
bounded over a set S ⊂ D with rate α > 0 and bound ε′ > 0
if there exists C > 0 such that for every x ∈ S and all t ≥ 0,

∥ϕ(t, x)− x∗∥ ≤ Ce−αt∥x− x∗∥+ ε′. (17)

To show this new result we are required to define a slight
variation for the exponential τ -recurrent condition in (14).

Definition 16 (α-Exponential τ -Recurrence over S relative to
S′). Let S, S′ ⊆ D, with S ⊆ S′. We say that a function
V : D → R≥0 is α-exponentially τ -recurrent over S relative
to S′ if there exists a locally bounded function τ : D → R>0

and a constant α > 0 such that:

min
s∈TS′ (x;τ(x))

eαsV (ϕ(s, x)) ≤ V (x), ∀x ∈ S.

Definition 17 (Relative Exponential Recurrent Lyapunov
Function). Let S ⊆ S′ ⊆ D. We say that a continuous
function V : D → R≥0 is an Exponential Recurrent Lyapunov
Function over S relative to S′ if:

(i) V is linearly contained, i.e., (13), for all x ∈ S′,

(ii) V is α-exponentially τ -recurrent over S relative to S′.

Theorem 4 (Ultimate Boundedness). Consider an equilibrium
point x∗ ∈ D of (1). Suppose Assumption 1 holds, and let
V : D → R≥0 be an E-RLF over a compact set S ⊆ D
relative to S ∪Bε(x

∗), for some ε > 0 such that

x∗ ∈ int(S ∪Bε(x
∗)), and ∂Bε(x

∗) ⊆ S.

Then, the solutions of (1) are exponentially ultimately
bounded over S ∪Bε(x

∗), i.e., (17), with rate α and bound

ε′ := ε+ Fεh(τ̄ ;L), (18)

where τ̄ := 1
α log(C), C := a2

a1
eατ (1 + L̄h(τ ;L)), τ =

supx∈S τ(x), L := LRτ (S), and L̄ := L̄Rτ (S).

Proof. Let x ∈ S ∪ Bε(x
∗). Assume first x ∈ S. Since V

is an E-RLF over S relative to S ∪ Bε(x
∗), it follows from

Theorem 3 that the trajectory satisfies

∥ϕ(t, x)− x∗∥ ≤ Ce−αt∥x− x∗∥, ∀t ∈ [0, t′] (19)

where t′ is the first time instance when ϕ(t′, x) ∈ Bε(x
∗).

Now, given any x′ ∈ Bε(x
∗) since ∂Bε(x

∗) ⊂ S, if ϕ(t, x′)
leaves Bε(x

∗), it must come back to it. In fact, using again
(19), at most, it will take τ̄ = 1

α log(C) to get back to Bε(x
∗).

It follows then from Lemma 1 that Bε(x
∗) is τ̄ -recurrent. By

Lemma 2, any excursion from Bε(x
∗) remains within distance

ε′ of x∗, where ε′ is given in (18).

Thus, any trajectory starting from S either decays exponen-
tially while in S, or remains within the uniform bound ε′ once
it enters Bε(x

∗). Hence, for all t ≥ 0,

∥ϕ(t, x)− x∗∥ ≤ Ce−αt∥x− x∗∥+ ε′,

establishing exponential ultimate boundedness over S ∪
Bε(x

∗).
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VII. NORM-BASED CONVERSE THEOREMS

We are now ready to show that the recurrence conditions
developed in the previous sections are naturally satisfied
by standard norms under classical stability assumptions. In
particular, we demonstrate that if a system is asymptotically or
exponentially stable, then any norm satisfies the corresponding
recurrence inequality over compact subsets of the domain. We
begin by showing that any norm satisfies the τ -recurrence
condition over compact subsets of the domain of attraction
when the system is asymptotically stable.

Theorem 5 (Asymptotic Stability Implies Norm is S-RLF).
Given system (1). Let x∗ ∈ D be an asymptotically stable
equilibrium on a compact set S ⊆ D (Definition 4) satisfying
x∗ ∈ int(S). Let ∥ · ∥ be any norm on Rn. Then, the function
V (x) := ∥x − x∗∥ is a Strict Recurrent Lyapunov Function
(S-RLF) over S.

Proof. The proof follows closely the results in Remark 2/4 of
[21]. Let V (x) := ∥x−x∗∥. Since x∗ is asymptotically stable
on S, standard converse Lyapunov arguments (e.g., Lemma 4.5
in [5]) guarantee the existence of a class KL function β such
that for all x ∈ S:

V (ϕ(t, x)) ≤ β(V (x), t), ∀t ≥ 0.

Now pick an arbitrary constant µ ∈ (0, 1) and x ∈ S. Since
x∗ ∈ int(S) and is asymptotically stable on S, there exist
δ > 0 satisfying Bδ(x

∗) ⊆ S, and a finite time t0(x) > 0,
such that

ϕ(t, x) ∈ Bδ(x
∗), ∀t ≥ t0(x).

Now, for each x ∈ S \ {x∗}, define explicitly:

τ(x) := min{t ≥ t0(x) : β(V (x), t) ≤ µV (x)}.

Since t0(x) > 0, the function β(s, t) is continuous, strictly
decreasing in t, and satisfies limt→∞ β(s, t) = 0, it follows
that this minimum exists, is unique, and strictly positive.
Furthermore, continuity of β combined with compactness of
S ensures τ(x) is locally bounded on S.

Clearly, by construction, we have for all x ∈ S \ {x∗}:

V (ϕ(τ(x), x)) ≤ β(V (x), τ(x)) ≤ µV (x) < V (x),

thus satisfying the strictly decreasing recurrence condition (7).
Therefore, the function V (x) = ||x−x∗|| is strictly τ -recurrent
over the compact set S. Finally, since by definition a norm
is always proper, it follows from Definition 13 that V (x) =
||x− x∗|| is an S-RLF.

Having established that asymptotic stability implies strict
τ -recurrence of standard norms, we now turn our attention
to exponential stability. As mention, exponential stability will
lead to norms satisfying an E-RLF condition, providing one
gives some slack on the exponential rate that can be verified.

Theorem 6 (Exponential Stability Implies Norm is E-RLF).
Consider system (1), and let x∗ ∈ D be a λ-exponentially
stable equilibrium on a compact set S, i.e., Definition 5,
satisfying x∗ ∈ int(S). Then for any 0 < α < λ, the function

V (x) := ∥x − x∗∥ is an Exponential Recurrent Lyapunov
Function (E-RLF) on S for any l.b. function τ(x) satisfying

τ(x) ≥ τ :=
1

λ− α
ln

(
K

a2
a1

)
, ∀x ∈ S, (20)

where K,λ are given in (2) and a1, a2 are positive constants
satisfying: Ba1

(x∗) ⊆ S ⊆ Ba2
(x∗).

Proof. Let V (x) := ∥x − x∗∥, where ∥ · ∥ is the norm
of Definition 5. By hypothesis, the equilibrium x∗ is λ-
exponentially stable over the compact set S, implying that
for all x ∈ S and all t ≥ 0, ∥ϕ(t, x)−x∗∥ ≤ Ke−λt∥x−x∗∥.

Therefore it follows that for all t ≥ τ

∥ϕ(t, x)− x∗∥ ≤ Ke−λt∥x− x∗∥

= Ke
−λ 1

λ−α ln
(
K

a2
a1

)
||x− x∗||

≤ Ke
−λ 1

λ ln
(
K

a2
a1

)
||x− x∗|| ≤ a1

a2
||x− x∗|| ≤ a1

implying that ϕ(τ, x) ∈ Ba1(x
∗) ⊂ S.

Analogously, for all x ∈ S and τ as in (20) we have:

eατ∥ϕ(τ, x)− x∗∥ ≤ Ke(α−λ)τ∥x− x∗∥

≤ a1
a2
∥x− x∗∥ ≤ ∥x− x∗∥

It therefore follows that for any locally bounded function
τ(x) satisfying (20) we must have

min
t∈TS(x;τ(x))

eαt∥ϕ(t, x)− x∗∥ ≤ eατ∥ϕ(τ, x)− x∗∥

≤ ∥x− x∗∥,

which means that V (x) = ∥x − x∗∥ is an E-RLF over S, as
desired.

VIII. VERIFICATION OF EXPONENTIAL RLFS

So far, we have defined E-RLFs and provided theoretical
guarantees of exponential stability, under the assumption that
the exponential τ -recurrence condition (14) is satisfied. Fur-
thermore, we established that standard norms themselves are
E-RLFs. We now leverage these insights to provide a practical
mechanism to verify condition (14) explicitly using trajectory
data. Our development in this section is closely related to the
work on topological entropy of dynamical systems [] as well
as its extensions to control [].

In particular, in order to certify a specific behavior (α-
exponential τ -recurrence) over a set S, we will first focus
on using a trajectory ϕ(t, x) of fixed duration [0, τ ] to certify
such behavior over a neighborhood Bε(x) (Section VIII-A).
We will then extend our method to verify said behavior on a
set S. For reasons that will become clear later, our focus will
be on sets S satisfying the E-RLF conditions for exponential
ultimate boundedness of trajectories around an equilibrium x∗.

A. Trajectory-based Verification of a Neighborhood

We start by deriving conditions to verify condition (14)
around a neighborhood of a trajectory.

Theorem 7 (Trajectory-based Verification of E-RLF). Con-
sider the system (1), an equilibrium point x∗ ∈ D, a compact
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set S′ ⊆ D, and constants ε > 0, α > 0, and τ > 0. Assume
that L = LRτ (S′) and that for some x ∈ S′, with Bε(x) ⊆ S′,
there exists t ∈ (0, τ ] satisfying simultaneously:

eαt
(
∥ϕ(t, x)− x∗∥+ εeLt

)
≤ ∥x− x∗∥ − ε, (21a)

sd(ϕ(t, x), S′) + εeLt ≤ 0, (21b)

where sd(·, S′) is the signed distance w.r.t S′ based on the
same norm ∥ · ∥. Then, the function V (x) = ∥x − x∗∥ is an
E-RLF over Bε(x) relative to S′.

Proof. Let x ∈ S′ be such that Bε(x) ⊆ S′, and define
V (·) := ∥ · −x∗∥. Let τ > 0 and L := LRτ (S′), as in the
statement.

Since system (1) is L-one-sided-Lipschitz on Rτ (S′), for
all y ∈ Bε(x) and all t ∈ [0, τ ], we have:

∥ϕ(t, x)− ϕ(t, y)∥ ≤ eLt∥x− y∥ ≤ εeLt

=⇒ ∥ϕ(t, y)− x∗∥ ≤ ∥ϕ(t, x)− x∗∥+ εeLt.

Let t∗ ∈ (0, τ ] be a time that satisfies the verification
condition (21a)–(21b) at point x. In particular,

eαt
∗
(
∥ϕ(t∗, x)− x∗∥+ εeLt∗

)
≤ ∥x− x∗∥ − ε.

Now, fix any y ∈ Bε(x). Then:

eαt
∗
∥ϕ(t∗, y)− x∗∥ ≤ eαt

∗
(
∥ϕ(t∗, x)− x∗∥+ εeLt∗

)
≤ ∥x− x∗∥ − ε ≤ ∥y − x∗∥,

where the last inequality holds since y ∈ Bε(x). This shows
that ||·−x∗|| would satisfies the exponential decrease condition
(14) at every point y ∈ Bε(x) provided that ϕ(t∗, y) ∈ S′.

To complete the argument, assume that ϕ(t∗, y) ̸∈ S′

for some y ∈ Bε(x). By the assumptions of the theorem,
sd(ϕ(t∗, x), S′) ≤ 0 which implies ϕ(t∗, x) ∈ S′. Now let
yp ∈ ∂S′ be such that yp = λϕ(t∗, x) + (1 − λ)ϕ(t∗, y) for
λ ∈ [0, 1]. It follows then by Grönwall’s inequality (c.f [5],
Lemma A.1), that

εeLt ≥ ∥ϕ(t∗, y)− ϕ(t∗, x)∥
= ||ϕ(t∗, y)− yp||+ ||ϕ(t∗, x)− yp||
≥ inf

z∈∂S′
||ϕ(t∗, y)− z||+ inf

z∈∂S′
||ϕ(t∗, x)− z||

= sd(ϕ(t∗, y), S′)− sd(ϕ(t∗, x), S′)

Therefore we conclude that

sd(ϕ(t∗, y), S′) ≤ sd(ϕ(t∗, x), S′) + εeLt∗ ≤ 0,

contradicting the assumption that ϕ(t∗, y) ̸∈ S′, since by
compactness of S′ implies sd(ϕ(t∗, y), S′) > 0.

Thus, ϕ(t∗, y) ∈ S′ for all y ∈ Bε(x), and therefore
V (y) := ∥y − x∗∥ is an Exponential Recurrent Lyapunov
Function (E-RLF) over Bε(x) relative to S′.

Theorem 7 provides a mechanism to verify that every point
y ∈ Bε(x) will satisfy condition (14). We aim to leverage this
conditions to verify the Relative E-RLF property of a norm
∥ · ∥ over S relative to S′, S ⊆ S′. It is therefore natural
to consider an ε-cover1 of such set. However, this approach

1An ε-cover of a set S is a collections of balls Bε(xi) s.t. S ⊆ ∪iBε(xi)

poses two main challenges. First, condition (21a) cannot be
satisfied for any point within Bε(x

∗), which requires ε to be
small as one gets closer to x∗ and is aligned with he well
known fact that exponential stability cannot be verify using a
finite number of trajectories [30, Example 2.1]. Second, any
ε-cover of S will necessarily require O((R/ε)

d
) number of

trajectories, making its verification a computationally difficult
problem.

B. Trajectory-based Verification of a Region

In this section we overcome the above mentioned prob-
lems by focusing on the verification of sets of the form
S = cl(BR(x

∗)\Bε(x
∗)) and S′ = BR(x

∗), which satisfy
the conditions of Theorem 4 for exponential ultimate bound-
edness. This allows us to limit the radius ε of the balls needed
to cover S. Moreover, we will allow the radius of such cover to
gradually increase as the center of the balls move away from
x∗. The result is a strategy that allows to verify the region
S = cl(BR(x

∗)\Bε(x
∗)) using significantly less number of

trajectories.

Theorem 8 (Sample Complexity for Verifying E-RLF). Con-
sider system (1), an equilibrium point x∗ ∈ D ⊆ Rd, and con-
stants R > 0, ε ∈ (0, R), and τ > 0. Let L := LRτ (BR(x∗))

denote the one-sided Lipschitz constant of (1) over the τ -
reachable set from BR(x

∗). Suppose that x∗ is λ-exponentially
stable over BR(x

∗) with constant K ≥ 1, choose any rate
α ∈ (0, λ), and define β := λ−α

λ+L , Kβ := K
1−β
β , and assume

β ∈ (0, 1).
Then, the function V (x) := ∥x− x∗∥ can be verified to be

an Exponential Recurrent Lyapunov Function (E-RLF) over
the set S = BR(x

∗) \Bε(x
∗), relative to S′ = BR(x

∗), using
at most

N(ε) = d ln

(
R

ε

)
e

β

(
2 (2 +Kβ)

)d
= O

(
log

(
R

ε

))
.

trajectory evaluations of duration

τ =
1

λ− α
ln
(
K(2 +Kβ)e

β/d
)
.

Proof. We construct a layered covering of the region BR(x
∗)\

Bε(x
∗) using concentric annuli Ai centered at x∗, i.e., Ai :=

{x ∈ BR(x
∗) : Ri ≥ ∥x−x∗∥ ≥ Ri+1}, with i ∈ {0, . . . , N−

1}, with R0 = R, Ri = ρRi−1 = ρiR, and ρ, µ ∈ (0, 1).
We aim to cover each layer with verification balls of radius
also given by εi := µRi. The key idea is to progressively
chose different radii εi so as to limit the total number of balls,
while still guaranteeing that V (x) := ∥x − x∗∥ satisfies the
exponential recurrence condition.

We aim to find values of ρ and µ such that for any given
i ∈ {0, . . . , n}, the function V is an E-RLF over Bεi(x), for
all x ∈ Ai, relative to BR(x

∗). By Theorem 7, it is sufficient
to show that:

min
t∈TBR(x∗)(x;τ)

eαt
(
∥ϕ(t, x)−x∗∥+εie

Lt
)
≤ ∥x−x∗∥− εi. (23)

Since x∗ is λ-exponentially stable over BR(x
∗), the left hand
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side of (23) can be upper-bounded for all x ∈ Ai by:

Ke(α−λ)τ∥x−x∗∥+µRie
(α+L)τ ≤Ri(Ke(α−λ)τ+µe(α+L)τ ).

Now, using the fact that ∥x − x∗∥ ≥ Ri+1 = ρRi and εi =
µRi, it follows that inequality (23) is satisfied whenever:

f(τ, µ) := Ke(α−λ)τ + µe(α+L)τ ≤ ρ− µ. (24)

Choosing τ large enough, i.e.,

τ(µ) =
1

λ− α
ln

(
K

µβ

)
>

1

λ− α
ln (K) , (25)

ensures the existence of some µ small enough s.t. (24) hold.
In particular, since

f(τ(µ), µ) = µβ + µ

(
K

µβ

) 1−β
β

= (1 +Kβ)µ
β

and β ∈ (0, 1), it is sufficient

µ(ρ) :=
ρ1/β

β
√
2 +Kβ

(26)

for (24) to hold, thus ensuring that (23) is satisfied for all i.
Next, we compute the number of annuli required to cover

the region BR(x
∗)\Bε(x

∗). Since the radii follow a geometric
progression Ri = ρiR, we stop when Rn ≤ ε, which implies

ρnR ≤ ε ⇒ n = ln

(
R

ε

)
1

ln(ρ−1)
. (27)

To estimate the number of balls of radius εi = µRi required
to cover the annular region Ai, we leverage properties of
covering and packing numbers of a set K, i.e., N (K, ε) and
P(K, ε), respectively. In particular, for a given set, it is easy
to show [31]:

N (K, 2ε) ≤ P(K, ε) ≤ N (K, ε) ≤ P(K, ε
2 )

as well as
P(K, ε) ≤ vol(K)

vol(Bε)
≤ N (K, ε)

It follows then that

N (Ai, εi) ≤ N (BRi
, εi)− P(BRi+1

, εi)

≤ P(BRi ,
εi
2 )−N (BRi+1 , 2εi) ≤

vol(BRi)

vol(B εi
2
)
−
vol(BRi+1

)

vol(B2εi)

=
4dvol(BRi

)−ρdvol(BRi
)

2dvol(Bεi)
≤ 2d

µ(ρ)d
, (28)

where in the last step we kept track of constants that depend
on d. Summing over all annuli, the total number of trajectories
required is

n·N (Ai, εi)≤
2d

µ(ρ)d
ln
(
R
ε

)
ln(ρ−1)

=
ln
(
R
ε

)
2d(2 +Kβ)

d

ρ
d
β ln(ρ−1)

.(29)

where the first step follows from (27) and (28), and the last
from (26). Optimizing for the maximum ρ ∈ (0, 1) in g(ρ) =

ρ
d
β ln(ρ−1) leads to ρ∗ = e−

β
d and g(ρ∗) = β

d
1
e . Substituting

ρ∗ in (29) and µ(ρ∗) = ( e−
1
d

Cβ+1 )
1
β in (25) finishes the proof.

Remark 1 (Performance vs Complexity Trade-off). Theorem

8 highlight the intrinsic trade-off between the performance gap
λ − α and the sample complexity of the verification process.
Notably, when λ−α→ 0+, β → 0+, and Kβ →∞. However,
a constant gap enables us to get sample complexity that is
exponentially better thant he naive O

((
R
ε

)d)
.

Remark 2 (Highly Performing Systems). When λ → ∞,
β,Kβ → 1, thus leading to

N(ε) = O

(
d ln

(
R

ε

)
6d
)
.

In this setting, since the trajectories converge very, very fast,
one can use arbitrarily small τ → 0+.

IX. NUMERICAL METHODS

In this section, we build on Theorem 4 to develop paralleliz-
able algorithms for certifying exponential ultimate bounded-
ness around an equilibrium point. Rather than verifying expo-
nential recurrence over a dense set, we use the neighborhood-
based condition from Theorem 7 to efficiently certify local
balls around individual sample points.

We present two complementary algorithms. The first (Sec-
tion IX-B) takes a target region S = BR(x

∗) \ Bε(x
∗) and

computes the largest value of α for which V (x) = ∥x− x∗∥
is an ERLF over S relative to S′ = BR(x

∗). The second
(Section IX-C) takes a fixed decay rate α and incrementally
constructs a certified region S where V (x) := ∥x− x∗∥ is an
ERLF relative to S ∪ Bε(x

∗). We validate both algorithms
in Sections IX-D and IX-E, respectively. In all of our al-
gorithms below, L, τ , are precomputed ahead of time and
globally shared. We further assume here that x∗ = 0, and
V (x) = ∥x∥ := maxi∈[n] |xi|, i.e., the ℓ∞-norm.

A. Supporting Methods and Algorithms

In this section we introduce a set of supporting routines that
are used in our methods.

1) Verifying a Ball at a Fixed Point: Given a grid point
x ∈ Rd and a radius r > 0, we first build a routine that
determines the largest rate α for which the ball Br(x) satisfies
the exponential recurrence condition (21). We formulate this
as a simple one-dimensional optimization over α, based on
Theorem 7. Note that checking (21b) is not necessary when
S′ is a sub-level set of V (x). Also, failure to certify is implied
by αmax(x, r;S

′) < 0, and in particular, when (21b) fails
αmax(x, r;S

′) = −∞. For simplicity, we use αmax(x, r) :=
αmax(x, r;BR(x

∗)).

Algorithm 1: αmax(x, r;S
′) — Maximum α certifying

exponential recurrence for Br(x)

Input: Center x ∈ Rd, radius r > 0
Output: Maximum α such that Br(x) satisfies (21)
Find α∗ = max{α | ∃t ∈ (0, τ ] s.t. (21a) ∧ (21b);
return α∗;
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2) Splitting Failed Points: In cases where Algorithm 1 fails
to certify a ball Br(x) (i.e., αmax(x, r) < 0), the failure may
result from evaluating the recurrence condition over a region
that is too large to satisfy the assumptions of Theorem 7. To
improve local resolution, we subdivide Br(x) into 3d smaller
balls of radius r/3, each centered on a uniformly spaced grid.
This allows us to recursively refine problematic regions while
maintaining full parallelizability. The subdivision procedure is
described in Algorithm 2, and an illustration is provided in
Figure 1 for the 2D case.

Fig. 1: Splitting a Ball according to Algorithm 2

Algorithm 2: Split(x, r) — Splitting a ball Br(x) into
3d sub-balls

Input: Center x = (xi) ∈ Rd, radius r > 0
Output: List of sub-balls of radius r/3
Let S ←

{
− 2

3r, 0,
2
3r
}

;
Y ← {(yi) ∈ Rd | yi ∈ xi + S, i ∈ [d]};
splits← {(y, r/3) | y ∈ Y };
return splits;

3) Initial Grid Setup: Given a center x∗, inner radius ε, and
outer radius R, our goal is to verify exponential recurrence
over the region S := BR(x

∗) \Bε(x
∗). To do this efficiently,

we construct a layered grid of candidate points. Specifically,
we divide the region into m layers, where the radius of the
center point in the ℓ-th layer is given by rℓ := 3ℓ−1ε, for ℓ ∈
{1, . . . ,m}. Each layer contributes 3d−1 points (excluding the
origin), so the total number of initial grid points is O(3dm).

To ensure that the full annular region S is covered, we
choose the number of layers m such that:

R ≤ ε+

m∑
ℓ=1

2rℓ = ε

(
1 + 2

m∑
ℓ=1

3ℓ−1

)
= 3mε.

This construction is exponentially more efficient than a uni-
form ε-grid, which would require O((R/ε)d) points. A two-
layer example is shown in Figure 2.

4) Estimation of L and τ : To apply Theorem 7, we require
a one-sided Lipschitz constant L valid over a set S′ that
contains all trajectories starting from the region S = BR(x

∗)\
Bε(x

∗). To this end, we seek a conservative outer set of
the form S′ := BR′(x∗) for some R′ > R. We begin by
constructing a uniform grid G ⊂ ∂BR(x

∗) with spacing at
most ℓ > 0. From each point x ∈ G, we simulate the trajectory
ϕ(t, x) over the interval t ∈ [0, τ ], and verify that it reenters
BR(x

∗) within time τ . If any trajectory fails to return, τ must
be increased.

Next, we compute the maximum excursion of all trajecto-
ries: Rmax := maxx∈G, t∈[0,τ ] ∥ϕ(t, x) − x∗∥, and set R′ :=

Fig. 2: Illustration of initial grid setup for R = 3mε, with
m = 2 layers. The red dots are the grid points, while the
central black dot is x∗

Rmax + δ, where δ > 0 is a small buffer. Finally, we estimate
the one-sided Lipschitz constant L := maxz∈BR′ (x∗) Lz using
a fine grid. To ensure robustness with respect to perturbations
around grid points, we verify the inequality:

max
t∈(0,τ ]

max
x∈G

(R′ − ∥ϕ(t, x)∥) e−tL ≥ ℓ.

This condition guarantees that all trajectories starting within
an ℓ-neighborhood of the grid remain safely inside BR′(x∗)
for the entire interval [0, τ ]. If this fails, we halve the grid
resolution ℓ and repeat the process until the condition is met.

B. Verification of a Region

We now integrate the routines developed in Section IX-A
into a complete algorithm for certifying exponential recurrence
over the annular region S := BR(x

∗) \Bε(x
∗). We begin by

computing a valid recurrence time τ and a one-sided Lipschitz
constant L over a reachable set S′ ⊇ S, as described in
Section IX-A4 (Estimation of L and τ ). Using these constants,
we construct an initial layered grid over S as explained in
Section IX-A3 (Initial Grid Setup). Each grid point x is
associated with a ball Br(x), where the radius r scales with
the distance to the equilibrium.

To evaluate recurrence at each point, we apply the routine
αmax(x, r) from Algorithm 1, which returns the largest value
of α for which the ball satisfies condition (21). For each point
x, we compute both:

• a lower bound α(x) := αmax(x, r), which certifies
condition (21) over the full ball,

• an upper bound α(x) := αmax(x, 0), which certifies
condition (21) only at the center.

If the worst-case relative (α(x) − α(x))/α(x) the lowest
α(x) across the grid exceeds a specified threshold θ, we
iteratively refine the k lowest-scoring points using the SPLIT
routine (Algorithm 2). This process continues for at most m
refinement steps.

The full verification procedure is summarized in Algo-
rithm 3. If successful, it returns a uniform lower bound α
such that V (x) = ∥x∥∞ is an ERLF over S, as guaranteed by
Theorem 4.
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Algorithm 3: Find-αmin(R, ε, θ) — Find best rate α for region BR(0) \Bε(0) via parallel ball certification
Input: Outer radius R > 0, inner radius ε ∈ (0, R), threshold θ ∈ (0, 1), max number of refinements m
Output: Lower bound on the certified value of α
Construct initial grid G← {(xi, ri)} covering BR(x

∗) \Bε(x
∗); set counter← 0;

while counter ≤ m− 1 do
For all (xi, ri) ∈ G, compute αi ← αmax(xi, ri) and αi ← αmax(xi, 0) ; // upper and lower bounds
Let i∗ ← argmini∈[|G|] αi; // lowest estimate of α in region
if (αi∗ − αi∗)/αi∗ > θ then

Replace the k lowest–αi balls (xi, ri) in G with SPLIT((xi, ri)) ;
counter← counter+ 1;

else
break;

return αi∗

Algorithm 4: Find-α-RoA(R, ε, α,G0,Trim) — Find certified region for fixed exponential rate α

Input: Target α > 0, range parameters R > 0, ε ∈ (0, R), initial grid G0 = {(xi, ri)}, boolean Trim, max splits m
Output: Subset of G0 certifying ∥x∥∞ as an ERLF with rate at least α
Set G← G0, Positives← ∅, counter← 0;
while counter ≤ m− 1 and G ̸= ∅ do

Define Region←
⋃

(x,r)∈Positives∪G Br(x) ; // Used if trimming is enabled

foreach (xi, ri) ∈ G do
αi ← Trim αmax(xi, ri;Region) : αmax(xi, ri) ; // Evaluate recurrence
if αi ≥ α then

Positives← Positives ∪ {(xi, ri)} ; // Add to certified set
G← SPLIT(G \ Positives) ; // Refine remaining uncertified balls
counter← counter+ 1;

return Positives ; // Region certified for recurrence at rate α

C. Exponential Region of Attraction Mining

We now consider the complementary task to Section IX-B:
given a fixed decay rate α > 0, identify a maximal subset
of the state space over which V (x) = ∥x∥∞ can be certified
as an Exponential Recurrent Lyapunov Function (ERLF) with
rate at least α.

To that end, we define an initial covering grid G0 :=
{(xi, ri)} over the annular region BR(x

∗) \ Bε(x
∗), where

each pair (xi, ri) represents a candidate ball Bri(xi). The
union of all such balls forms a discrete approximation to the
candidate region of attraction. Using this grid, we iteratively
apply the ball certification routine αmax(xi, ri) (Algorithm 1).
Balls that pass the condition αmax(xi, ri) ≥ α are added to the
certified set. Those that fail are recursively subdivided using
the SPLIT routine, up to a maximum number of refinements.
This growth procedure is encapsulated in Algorithm 4. To
improve efficiency, Algorithm 4 supports a Boolean flag
Trim. When set to False, each ball is verified using only
local information. Once the region has been expanded, the
same algorithm is rerun with Trim set to True, ensuring that
all recurrence trajectories remain entirely within the certified
region (as required by Theorem 4).

The result is a data-driven, self-consistent inner approxima-
tion of the α-region of attraction.

D. Numerical Validation of Algorithm 3

We continue by providing a preliminary validation of the
proposed Algorithm 3. To investigate the efficiency of our
proposed method, we consider the following systems:[

ẋ1

ẋ2

]
=

[
0 2
−1 −1

] [
x1

x2

]
+B1

 x2
1

x1x2

x2
2

 ; (30)

ẋ1

ẋ2

ẋ3

 =

−1 0 0
0.5 −1 0
0.5 0.5 −1

x1

x2

x3

+B2

x2
1

...
x2
3

 , (31)

where B1 ∈ R2×3 and B2 ∈ R3×9 are drawn independently
from a Gaussian distribution, i.e., [B1]ij , [B2]ij ∼ N (0, σ).
We will increase the standard deviation σ as a means to
increase the complexity of the dynamics. In our experiments,
we choose the ℓ∞ norm as our choice of V (x) and as the
norm used to measure distances between trajectories. Thus,
α1 = α2 = 1. Sample trajectories for the system (30) with
σ = 0.3 are shown in Figure 3, where we also illustrate the
ball of radius R (blue) selected, the computed ball of radius R′

(red), and the small region around the origin (x∗) not certified
(black). We also show in Figure 4 the verified region and a
coloring scheme illustrating the different ball sizes used at
different parts of BR(x

∗)\Bε(x
∗).

In these experiments we use R = 0.7 and ε = 0.01. Table
I and Table II summarize the results obtained by running
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Fig. 3: Phase portrait of system (30), wherein the black box
surrounds the region which we do not verify (Bε(x

∗)), the
blue box represents surrounds the region which we verify in
Algorithm 3 (BR(x

∗)), and the red box surrounds the region
which trajectories that begin in the blue box do not leave
(BR′(x∗)).

Fig. 4: Sizes of blocks resulting from applying Algorithm 3
to system (30).

Algorithm 3 together with a comparison with SOSTOOLS.
When running our algorithm, we use the Torchode toolbox
[32] to compute system trajectories in parallel. We also show
the solving times of our algorithm and SOSTOOLS [33]. It
can be seen that as σ grows - i.e., the system becomes more
nonlinear - and the dimension grows, our algorithm begins to
significantly outperform SOSTOOLS.

2D sys. (30) 0.3, 0.6 1

Alg 3 α: 0.470 0.414 0.349
SoS α: 0.360 0.247 0.223

Alg 3 Time: 10.95s 15.01s 15.30s
SoS Time: 0.97s 1.06s 0.94s

TABLE I: Parameter values and performance comparison
between our algorithm and the SOSTOOLS for system (30)

3D sys. (31) σ = 0.1, 0.3 0.4 0.5
Alg 3 α: 0.635 0.449 0.370 0.359
SoS α: 0.309 0.341 0.256 0.213

Alg 3 Time: 140.85s 144.33s 150.07s 154.92s
SoS Time: 54.89s 276.10s 299.77s 632.55s

TABLE II: Parameter values and performance comparison
between our algorithm and the SOSTOOLS for system (31)

Fig. 5: Phase portrait of system (32). The the blue region
composed of distinct cells is the verified region resulting from
Algorithm 4 with a maximum split count of 1.

E. Numerical Validation of Algorithm 4

We end this section by providing preliminary experiments
for Algorithm 4. To do so, we consider the Kuramoto Oscilla-
tor with uniform coupling constants, i.e., for an n-dimensional
system and some constant k, oscillator θi is defined by:

θ̇i =
k

n

n∑
j=1

sin(θj − θi) (32)

To eliminate the rotational symmetry of this system, we con-
sider the change of variables φi = θi − θn, which effectively
reduces the dimensions by one.

We next consider the use of Algorithm 4 to find the α-RoA.
First we consider the two-oscillator system with α = 1 and
k = 10. Figures 5 and 6 are the phase portraits along with
the 1-RoA formed of the verified balls, when usnig maximum
split counts of 1 and 6, respectively.

Finally, we investigate how the size of the certified region
and the computational cost of verification scale with the
ambient dimension. Specifically, we fix the system dynam-
ics and all algorithmic parameters, and vary only the state
dimension. Figure 7 reports the volume of the region certified
by Algorithm 4 and the corresponding computation time, for
dimensions ranging from 2 to 6 and maximum split counts
from 0 to 6 (represented by the dots).

X. CONCLUSIONS

In this paper, we seek to relax the notion of set invariance,
a fundamental tool in the analysis of dynamical systems.
We thus propose and use the notion of set recurrence and
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Fig. 6: Phase portrait of system (32). The the blue region
composed of distinct cells is the verified region resulting from
Algorithm 4 with a maximum split count of 6.

Fig. 7: Area of region verified by Algorithm 4 when applied
to system 32 and associated computational time requirements
for split counts ranging from 0 to 6, with each split count
corresponding to a dot and dimensions 2 through 6. Time is
provided in log-scale.

show that under mild conditions, recurrence can be used
to guarantee stability, asymptotic stability, and exponential
stability of an equilibrium point. On the back of this theory,
we have constructed an algorithm that lets us verify that
a set, other than a ball arbitrarily close to the equilibrium,
is κ-exponentially τ -decreasing. This algorithm is entirely
deterministic and can be run in parallel on GPUs, resulting in
time or accuracy improvements over state-of-the-art methods
based using Sum of Squares.
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