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Abstract—Grid-forming (GFM) inverters can sustain a large
envelope of grid dynamics and provide resilience to outages and
contingencies. Sophisticated control algorithms and the expanded
functional use cases of GFM inverters do not have standardized
testing protocols, which make their power hardware-in-the-loop
(PHIL) validation particularly valuable. But, ensuring stable
GFM PHIL tests is challenging as various experimental artifacts
can be sources of destabilizing excitations for a GFM control loop.
In this paper, we present methodologies to address challenges in
performing GFM PHIL tests, and provide numerical analyses and
experimental results that validate our approach. We first discuss
the choice of empirical parameters, and tuning of closed-loop
controllers that improve the stability and tracking performance
of GFM PHIL experiments. We then provide analytical and
numerical calculations evaluating the robustness of the closed-
loop setup to experimental artifacts; particularly to delays, while
accounting for destabilizing dynamic modes of the physical PHIL
interconnection. Our experimental results validate closed-loop
stability and tracking performance for PHIL tests of various
operational modes of GFMs.

Index Terms—power system test bed, hardware-in-the-loop,
test and validation, grid forming.

I. INTRODUCTION

Electrical power networks are estimated to host an in-
creasing proportion of inverter-based resources (IBRs) in the
coming decade, connecting solar photovoltaics (PV), wind,
battery, fuel cell, and other hybrid generation sources. As
an example, the North American Electric Reliability Corpo-
ration’s long-term reliability assessment in 2021 notes that
504 GW of PV projects are in development to come online
in the next 10 years [1], which is more than five times the
approximately 97.2 GW of PV in operation as of 2022. Unlike
synchronous generators, where the mechanical design strongly
affects the closed-loop dynamics, the dynamic response of
an IBR is predominantly a function of its software-defined
control system and therefore can be continually modified or
refined [2]. Practically all IBRs connected to the AC power
system today operate in grid-following (GFL) mode [3], in
which the angle, magnitude, and frequency of the grid-side
AC voltage are tracked and current is generated to obtain
the desired power output [4]. When constraints are violated,
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GFL inverters can disconnect from the grid, which may result
in large-scale cascade tripping events, as documented in the
analysis of a fault-induced cascade detachment of 1,200 MW
of generating capacity in 2016 [5]. Alternately, the AC grid
voltage can be established in a distributed fashion using
grid-forming (GFM) inverters, which regulate their terminal
voltage to balance generation and demand while sharing load
between IBRs. Wide-scale deployment of GFM IBRs requires
effective functional specifications for closed-loop control as
well as for their integration with circuit protection, fault ride-
through, and restoration systems. Further development of tools
for modeling, simulation, and testing of GFM IBRs is also
required to inform system designers and to standardize GFM
capabilities and operations [6].

Power-hardware-in-the-loop (PHIL) tests—where real in-
verters interact with digitally simulated grid conditions in
real time—are currently the industry benchmark for evaluating
GFL inverters [7], [8], and they enable the rapid iteration of
test scenarios that is needed to keep pace with innovation in
inverter technology [9]. Also, reliable and repeatable PHIL
tests are noted to lead to better technical standards for GFM
inverters [10], [11], and repeatability of these tests are con-
tingent upon the assessment of stability constraints imposed
by experimental tools and the hardware under test (HUT).
Stability constraints for dynamic testing of GFL inverters
have been studied extensively [12]; however, best practices
for that of GFM inverters with droop regulators are still being
developed. Ensuring the stability of GFM inverter PHIL tests
is challenging because the dynamic modes associated with
various components of the PHIL setup (e.g., pulse width
modulation (PWM) switching mechanism, controlled voltage
source-GFM inverter interconnection line) may be a source of
destabilizing excitations for the dynamic AC voltage control
loop of a GFM inverter. Furthermore, measurement and com-
putation delays inherent to the experimental setup can further
degrade stability margins of the GFM inverter control loop.

In this paper, we present our experimental approaches to
mitigate these challenges; and numerical analyses and ex-
perimental results that validate these approaches for PHIL
testing of GFM inverters. Particularly, we first discuss the
empirical choice of line parameters that yields a stable hard-
ware interconnection for PHIL experiments. Then, we outline
our implementation of closed-loop controllers for improving
tracking accuracy and mitigating inherent experimental delays.
We validate our approach by first deriving the overall closed-



2

loop dynamics including the GFM inverter droop response,
the tracking controller, a reduced-order model of the intercon-
nection line, and measurement and computation delays; and
then using this model to perform a numerical stability analysis
utilizing a frequency domain method for neutral time-delayed
systems (NTDS). Our results provide insights into the role of
delays in tracking performance and stability of GFM PHIL
experiments and qualitatively demonstrate the impact of the
line inductance on delay robustness. Finally, we present results
from our experiments in various GFM and GFL operational
modes that demonstrate the efficacy of the implementation of
our PHIL test setup.

In Section II, we outline the differences and challenges in
performing PHIL tests on GFM inverters compared to GFL
inverters. In Section III, we describe the key components of
our PHIL setup that will be analyzed in the sequel for tracking
performance and stability. In sections IV and V, we provide
derivations of our analytical model and present our numerical
results. In Section VI, we present experimental results that
validate our approach. Section VII concludes the paper.

II. BACKGROUND

In this section, we outline some of the practical challenges
in implementing a PHIL test setup and some of the modi-
fications that are commonly employed to improve accuracy
and stability. This background is intended to motivate our
analysis to evaluate modifications and compensation schemes
to improve the performance of dynamic PHIL experiments.

A. Admissibility of Inverter Parameters in Steady State

First, we consider a PHIL test for a GFL inverter in steady
state. As a reminder, a GFL inverter acts as a current source,
injecting the desired magnitude of the active and reactive
power into a point of interconnection with an already extant
grid. The steady-state test for a GFL inverter is reduced to
verifying that the inverter under test accurately delivers the
requested levels of active (P ) and reactive power (Q) while
tracking (or following) the voltage at the point of interconnec-
tion and abiding by the grid interconnection constraints. This
test can be conducted using the simplified PHIL setup shown
in Figure 1, where independent measurements of the inverter
interconnection bus variables (V1, I, ϕ) taken at different set
points for the inverter output (P , Q) and at different values for
the grid state (V2) serve to verify the inverter operation via the
AC power flow relations: P = V1I cosϕ and Q = V1I sinϕ.

The steady-state solution for the inverter terminal voltage
(V1∠δ) must satisfy not only the relationship between the
injected powers and the bus voltages but also the nonlinear
impact of the impedance Zh = R+ jX . The complex valued
Zh is an artifact of the test hardware used for the experiment,
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Fig. 1: Ideal setup

and it is determined by the electrical connections between the
controlled voltage source and the point of interconnection to
the inverter under test. This line impedance, once character-
ized, can be compensated for in the measurements obtained
from the experiment; however, this impedance is a significant
contributor to the conditions for voltage stability of the abstract
two-bus power system represented in Figure 1 [13].

Rewriting the AC power relations to include the parameters
of the test setup (Zh) and the emulated grid state (V2), we get:

P =
V1

Z2
h

[V1R− V2(R cos δ −X sin δ)]

Q =
V1

Z2
h

[V1X − V2(X cos δ +R sin δ)] (1)

Note that (1) comports with the intuition that both the
active and reactive power injections from the inverter increase
in proportion to the difference between the inverter terminal
voltage, V1, and the emulated grid voltage, V2 (for small
angles); therefore, the controlled voltage source can be used
to emulate different grid impedance conditions by changing
V2. But a lower limit to the effective grid load impedance is
reached at the maximum power point for the circuit where
the voltage drop across Zh would counterintuitively result in
reducing the active power with a decrease in the emulated
load impedance. We can demonstrate this by combining the
equations in (1) and reordering the terms to get an algebraic
relation for the inverter terminal voltage, V1, shown in (2):

V 4
1 −

(
2(RP +XQ) + V 2

2

)
V 2
1 +

(
P 2 +Q2

)
Z2
h = 0 (2)

Equation (2) only yields distinct real roots for V1 (indicating
admissible voltage solutions) when the discriminant satisfies
the condition in (3):

V 4
2 + 4(PR+QX)V 2

2 − 4(PX −QR)2 > 0 (3)

Although (3) is not an explicit solution for voltage stability,
note that this condition expresses voltage stability in terms of
variables that are under the control of the PHIL test setup,
i.e., the active and reactive power set points (P,Q), the line
impedance (R,X), and the voltage of the controlled voltage
source (V2). We can see that the discriminant is positive only
when the emulated grid voltage V2 > 0 and that the practical
lower bound on V2 is determined by the primary destabilizing
term −4(PX − QR)2. This stability condition is similar in
principle to the line loadability constraints associated with
transmission lines with high X/R ratios, and it highlights
the practical limits on the power capacity of a given test
setup. The stability condition also demonstrates the interesting
dependencies associated with the AC power flow, such as the
stability improvement awarded by reactive power injections
over resistive lines. Although the condition in (3) applies to
the steady-state admissibility of PHIL experiments on GFM in-
verters as well, a GFM inverter is expected to maintain/balance
the grid frequency and its voltage V1 while the constraints on
the controlled voltage source are relaxed to emulate a desired
grid load impedance (V

2
2

Sg
) where Sg =

√
(P 2 +Q2) is the

complex grid load. We can refactor (2) to observe that the
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Fig. 2: PHIL setup showing a closed-loop experiment

admissibility conditions on V1 are easier to achieve because a
real solution for V2 exists when the conditions in (4) are met.

V 4
1 + (SgZh)

2 − 2(PR+QX)V 2
1 > 0 (4)

The latter observation comports with anecdotal observations
in our PHIL testing where we observed that the stability of
PHIL experiments appears to become marginal when operating
at relatively high values for P and small values for Q.

B. Considerations in Testing Dynamic Response of Inverters

Developing stability conditions for a PHIL test setup under
dynamic conditions is challenging because the dynamic modes
that affect the stability of the PHIL setup cannot be ranked
in significance based on timescale or bandwidth, i.e., there
are cases where fast transients that are considered outside the
bandwidth of interest for the experiment can compromise the
stability of the setup [14]. A common example of such a case
is the role of electromagnetic transients associated with pulse
width modulation (PWM) on PHIL stability. These aliased
artifacts are relevant to PHIL experiments as both the inverter
under test and the controlled voltage source modulate the
DC power to synthesize the AC waveforms. The interactions
between these two switching power converters have been
observed to interact with line dynamics as well as the tracking
and sensing loops within the inverters under test [15].

As shown in Figure 1, we can inspect the stability conditions
for the two-bus system comprising a GFM inverter; the cou-
pling impedance, Zh; and an infinite bus at frequency ω0 with
voltage (V2∠0). The stability of the two-bus system following
a connection event, i.e., closure of breakers a and b, is de-
termined by the GFM inverter droop response—the volt-VAR
(V1 − Q) and the frequency-watt (ω − P ) dynamic response
of the inverter. The authors in [14] show that stability margins
for droop dynamics strongly depend on the interconnection
line dynamics if the inductance-resistance ratio L/R is on the
same order as the time constant of the nominal AC response.
Three-phase resistance and inductance measurements of the
PHIL interconnection line are given in Figure 3. Based on
these measurements, R/L ≈ 73 Hz, which is on the same
order as the nominal frequency f0 = 60 Hz. We incorporated
this factor into our PHIL setup, as discussed later in this paper.

Consider the actuation of the switches labeled a and
b in Figure 1. These two switches represent an in-feed
breaker/contactor and a grid/off-grid transfer switch, respec-
tively. Although breakers/contactors are often external to an
inverter, they represent an important dynamic interaction for
an inverter in the field and are therefore often included in
the PHIL setup to evaluate the transient response and steady-
state convergence properties of the inverter to disconnection

and reconnection events. Even in this simple case, it is impor-
tant to establish, mitigate, and compensate for the response
of the PHIL test equipment, complete with interconnection
impedances to switching excitation, before collecting data on
the response of the inverter control system.

The closed-loop operation in a PHIL experiment is illus-
trated in Figure 2, where measurements from the inverter under
test are fed back as inputs to a model of a power system
(shown by the gray dashed lines), which, in turn, is simulated
in real time so that the output to the controlled voltage source
reflects the grid dynamics of interest. Clearly, delays in the
feedback path directly affect the accuracy and stability of
this closed-loop system. Common sources of delays include
measurement delays associated with the analog to digital
conversion and latency caused by the nontrivial computation
time needed to simulate the response of a power system; and
these sources are abstracted as an aggregate delay mapping in
Figure 2.

Under steady-state conditions, a common strategy used to
compensate for feedback delays is to assume that the delay
introduces a corresponding retardation of the voltage angle
reference produced by the voltage source, V2∠ϵ. Assuming
the experiment runs at close-to-nominal grid frequency and
experiences near-constant feedback delays, the voltage ref-
erence angle, ϵ, can be corrected in the software. When
performing the dynamic testing of GFL inverters, these delays
are characterized as introducing a phase lag in the closed-
loop model, and compensation can be applied by inserting an
appropriately tuned phase lead [16], [17].
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Fig. 3: Resistance and inductance measurements

III. POWER-HARDWARE-IN-THE-LOOP SETUP

In this section, we present the building blocks of our PHIL
test setup and elaborate on how they address the considerations
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in dynamic testing of GFM inverters, which we outlined
in Section II-B. As shown in Figure 4, which provides a
complete schematic of our closed-loop PHIL experiments,
hardware components are mirrored in the digital real-time
simulation domain so as to emulate PHIL testing conditions.
The constituents of these two domains are described first. Note
that labels a and b in Figure 2 also refer to the same actuation
switches in Figure 4 wherein signal measurement channels are
numbered for reference. Then, we overview the compensation
scheme implemented in order to sustain closed-loop stability
and tracking accuracy.

A. Hardware Setup

Power-Hardware-Under-Test: Our work targets a commer-
cially available, off-the shelf GFM inverter designed to inter-
face fuel cells as the power-hardware-under-test, the output
of which is taken from node 1 in Figure 4. The intellectual
property of the lower-level control structure is not available
for modeling the inverter in a digital real-time simulation;
therefore, a PHIL setup needs to be used to evaluate the
inverter performance under different modes of operation. A
controllable DC supply energizes the inverter under test.

Controllable DC supply: We use a DC battery emulator, the
Aerovironment AV 900, operating in constant voltage mode to
supply DC power to the fuel cell inverter. Key settings include
a voltage set point of 450 V DC (with trip settings at 500 V
DC), a DC current limit of 250 A DC, and a power limit of
112.5 kW. These configurations ensure efficient testing and
adherence to the fuel cell inverter and laboratory AC and DC
bus specifications.

Grid Emulator - Controllable AC supply: A controllable AC
supply rated at 270 kVA AC is used as the grid emulator and
interfaces the inverter at node 7 in Figure 4. The grid emulator
receives an analog input that is filtered by the compensation
and real-time simulation domains (node 6) and amplifies it to
represent the bus voltage of the power system model at node 7.
Notably, the grid emulator magnifies a 7 V root-mean-square
(RMS) AC voltage to a 300 V RMS AC voltage. We set the
protection limit of the grid emulator at 300 V maximum and
150 A for bidirectional current.

At the outset, sound engineering design practices are called
for when selecting the controllable voltage source and the
corresponding amplifier with regard to their saturation limits,
frequency bandwidths, response times, and harmonic distor-
tions. Calibration is often required to address bias in the am-
plifier gain and to compensate for the input/output impedance
of the interface hardware. These experimental considerations
are shared among a wide range of PHIL testing applications
and are enumerated in standards aimed at improving PHIL
testing practices across the industry. A summary of these
standardization efforts is presented in [18].

Series inductor: The series inductor is a commercial off-
the-shelf device with an inductance of 1 millihenry (mH) in
each phase (see Figure 3). The series inductor is rated for
operation of 120 A of current in each phase with a rated line-
to-neutral voltage of 277 V (480 V line-to-line RMS). As we
will show in the sequel, this inductance value provides a stable
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Fig. 4: PHIL laboratory hardware setup

interconnection between the inverter and the controllable AC
supply and robustness to loop delays during PHIL tests.

B. Digital Real-Time Simulation (DRTS)

We use a commercial Real-Time Digital Simulator (RTDS)
for computations in the simulation domain, which were per-
formed at 50 microseconds (µs) and at 100 µs. These two time
steps were taken as examples to demonstrate that the proposed
approach works in multiple time step configurations.

Software model of the power system: Node 10 in Figure 4
refers to the output of the power system model used in
the DRTS platform. This model is a simplified version of a
microgrid. We use resistive, inductive, and capacitive loads
to represent typical loads in a microgrid system. The series
resistance-inductance pair (Rs, Ls) used here replicates that of
the hardware setup. Further details of DRTS implementation
are presented in [17].

C. Compensation Scheme

As shown in Figure 4, closed-loop operation is sustained by
a digital compensation scheme that interconnects the hardware
setup to the DRTS domain. The purpose of compensation is
two-fold; it is to improve the tracking performance of the grid-
emulator and to compensate for loop delays that may degrade
stability margins and tracking accuracy.

Lead Compensator: A standard lead compensator is used
to compensate for loop delays incurred in the simulated grid
signal, which is taken at node 4 in Figure 4. This loop delay
consists of the delay between nodes 1 and 3 in Figure 4 and
computation time due to real-time simulation. Compensator
parameters are tuned according to this aggregate delay value.

Tracking Controller: Tracking performance is improved
using a properly tuned resonant controller [19]. A resonant
controller’s action on sinusoidal inputs can be interpreted as
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an analogous integral controller’s action on a step input. The
goal is to reduce the error between signals 5 and 7 in Figure 4.
In addition to reducing tracking error, the resonant controller
provides some degree of delay robustness around the nominal
operation frequency as we will demonstrate in the sequel.

IV. DELAY-INDEPENDENT STABILITY OF THE TRACKING
LOOP

In this section, we investigate the stability of the tracking
(resonant controller) loop, which we analyze independently for
simplicity, proving delay-independent stability for a frequency
interval that contains the nominal operation frequency. The
tracking loop is given in Figure 4 between points 5 and 7.
The transfer function of the resonant controller is given by
[19]:

TR(s) =
kRs

s2 + bRs+ ω2
0

,

where kR > 0 is the controller gain, and setting bR to a
positive value renders a finite bandwidth around the operating
frequency, ω0, as T (jω0) = kR

bR
. For our application, we set

approximately kR

bR
≈ 2f0 = 120 Hz.

The grid emulator is characterized as a first-order filter with
delay [17]:

TGE(s) = e−sτf
ωg

s+ ωg
,

where ωg is the cutoff frequency, and τf is an aggregated
delay in the forward path that includes the grid emulator and
real-time simulation delays. The closed-loop transfer function
is:

Ttracking(s) =
TR(s)TGE(s)

1 + TR(s)TGE(s)e−sτb

=
ωgkRse

−sτf

(s2 + bRs+ ω2
0)(s+ ωg) + kRsωge−s(τf+τb)

,

(5)

where τb denotes the delay in the feedback. The delay term
e−sτf can be interpreted as an input delay, so it will be lumped
into the delay in the simulation, which is addressed by a lead
compensator. We evaluate the stability of the tracking loop by
computing the roots of the characteristic polynomial of (5).
First, we certify the stability as if there was no delay, and
then we look for possible imaginary axis crossings of poles
due to a delay. Using a standard approach [20], for a practical
interval of frequencies, we show that the tracking loop is
delay-independent stable. For τf = τb = 0, the characteristic
equation is given by:

s3 + a2s
2 + a1s+ a0 = 0,

where a2 = bR + ωg , a1 = ω2
0 + (bR + kR)ωg and a0 =

ω2
0ωg . The roots are on the open left-half plane if and only if

ai > 0 for i = 0, 1, 2 and a2a1 > a0 by the Routh-Hurwitz
stability criterion. All ai coefficients are positive, and the latter
condition holds true because

(bR + ωg)(ω
2
0 + (bR + kR)ωg) > ω2

0ωg, i.e.,

bRω
2
0 + (bR + kR)(bRωg + ω2

g) > 0.

Then, we consider τf + τb > 0 and substitute s = jω in the
characteristic equation of (5) to evaluate possible imaginary
axis crossings of roots:

c(jω) :=
ω2 − (ω2

0 + (bR + kR)ωg)

kRωg
+ j

ω2
0ωg − ω2(bR + ωg)

kRωgω

= e−jω(τf+τb). (6)

Note that setting ℜ(c(jω)) < −1 guarantees that the equality
in (6) does not hold because the right-hand side has a mag-
nitude of 1, and therefore no poles cross the imaginary axis.
To find an upper bound on ω that satisfies this condition, set
ℜ(c(jω)) = −1, which leads to:

ω2 − ω2
0

ωg
− bR = 0 ⇒ ω =

√
ω2
0 + bRωg.

Because ℜ(c(jω)) is monotonically increasing in ω,
ℜ(c(jω)) < −1 holds if:

ω <
√
ω2
0 + bRωg,

which is sufficient for the delay-independent stability of the
tracking loop. Note that increasing bR trades off tracking
accuracy (a smaller open-loop gain at the nominal frequency,
ω0) for delay robustness because the delay-independent stable
region can be expanded as bR is increased.

V. IMPACT OF LINE DYNAMICS AND INTERFACE DELAY

In this section, first, we construct a simple two-voltage
source model that includes transient dynamics of the hardware
interconnection line and data transfer delays that arise in the
closed-loop hardware simulation interface. Under simplifying
assumptions, we evaluate how closed-loop stability is impacted
by line dynamics and delays.

A. Power Flow due to a First-Order Approximation of Line
Dynamics With Delay

vαβ2 (t− τ)

R L

vαβ1 (t)

vαβ1 (t)

LsRs

vαβ2 (t)

LlRl

delay

Fig. 5: Hardware simulation interconnection with delay

We define the balanced three-phase voltage signals in the
stationary αβ coordinates as:

vαβi (t) := Vi(t)e
jΦi(t) =: vi(t)e

jω0t, (7)

where Φi(t) = ϕi(t)+ω0t. Note that the definition in (7) also
implies a phasor form given in terms of the phase angle ϕi(t)
and RMS voltage magnitude, Vi(t), as vi(t) = Vi(t)e

jϕi(t).
We assume that the system has a sinusoidal equilibrium
expressed as Φi(t) → ω0t + ϕ∗

i and Vi(t) → V ∗
i as t → ∞
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with constant ϕ∗
i and V ∗

i . We use this set of definitions for
voltage source 1 (the device under test—GFM inverter) and
voltage source 2 (grid emulator), which are interconnected
with a line with resistance, R, and inductance, L, as given
in Figure 5. The line dynamics are given by:

L
diαβ12
dt

= −Riαβ12 (t) + vαβ1 (t)− vαβ2 (t− τ),

where the induced current would be of the form iαβ12 (t) :=
i12(t)e

jω0t, and we introduce an input delay, τ , to voltage
source 2. Then, using the definitions in (7), the line dynamics
can be written in a coordinate frame that rotates as ejω0t:

L
di12
dt

+ (R+ jω0L)i12(t) = v1(t)− v2(t− τ)e−jω0τ

=: ∆v12(t, τ)
(8)

Taking the Laplace transform of (8) gives:

i12(s, τ) =
∆v12(s, τ)

Ls+R+ jω0L
=: i012(s, τ)

1
Ls

R+jω0L
+ 1

,

where i012(s, τ) = ∆v12(s,τ)
R+jω0L

is the zeroth-order (quasi-static)
phasor current. Using an argument similar to the one in [14],
we assume a sufficiently small | Ls

R+jω0L
| that allows a first-

order Taylor approximation:

i12(s, τ) ≈ i012(s, τ)

(
1− L

R+ jω0L
s

)
,

which can be expressed in the time domain as:

i12(t, τ) ≈
∆v12(t, τ)

R+ jω0L
− L

(R+ jω0L)2
d

dt
∆v12(t, τ)

=
v1(t)− v2(t− τ)e−jω0τ

R+ jω0L

− L

(R+ jω0L)2
(
v̇1(t)− v̇2(t− τ)e−jω0τ

)
The instantaneous complex power can then be computed as:

p12(t) = v1(t)i12(t)
H

≈ v1(t)

[
(G− jB)(v1(t)

H − v2(t− τ)Hejω0τ )

− (G′ + jB′)
(
v̇1(t)

H − v̇2(t− τ)
H
ejω0τ

)]
= V1(t)

[
(G− jB)(V1(t)− V2(t− τ)ejθ12(t,τ))

− (G′ + jB′)

(
V̇1(t)− V̇2(t− τ)ejθ12(t,τ)

− jV1(t)ϕ̇1(t) + jV2(t− τ)ϕ̇2(t− τ)ejθ12(t,τ)
)]

(9)

where θ12(t, τ) := ϕ1(t) − ϕ2(t − τ) + ω0τ , the complex
conjugation is denoted by superscript ‘H ,’ and we use the
definitions:

G :=
R

R2 + ω2
0L

2
, B := − Lω0

R2 + ω2
0L

2
,

G′ :=
L(R2 − ω2

0L
2)

(R2 + ω2
0L

2)2
, B′ :=

2RL2ω0

(R2 + ω2
0L

2)2
.

We then linearize (9) with respect to the variable
x(t, τ) =

[
x1(t) x2(t− τ)

]T
with xi(t) :=[

ϕi(t) ϕ̇i(t) Vi(t) V̇i(t)
]
, and around an equilibrium

point x∗ =
[
x∗
1 x∗

2

]T
with xi =

[
ϕ∗
i 0 V ∗

i 0
]
:

δp12(t, τ, x
∗) =: δP12(t, τ, x

∗) + jδQ12(t, τ, x
∗)

≈ (∇x p12(t, τ)|x=x∗)
T
δx(t, τ)

=



−j(G− jB)V ∗
1 V

∗
2 e

j(ϕ∗
12+ω0τ)

j(G′ + jB′)V ∗2
1

(G− jB)(2V ∗
1 − V ∗

2 e
j(ϕ∗

12+ω0τ))
−(G′ + jB′)V ∗

1

j(G− jB)V ∗
1 V

∗
2 e

j(ϕ∗
12+ω0τ)

−j(G′ + jB′)V ∗
1 V

∗
2 e

j(ϕ∗
12+ω0τ)

−(G− jB)V ∗
1 e

j(ϕ∗
12+ω0τ)

(G′ + jB′)V ∗
1 e

j(ϕ∗
12+ω0τ)



T

[
δx1(t)

T

δx2(t− τ)T

]
,

(10)

where ϕ∗
12 := ϕ∗

1 −ϕ∗
2, P12, and Q12, respectively, denote the

real and reactive power; and ‘δ’ in front of a variable indicates
its difference from the equilibrium. Next, we provide the droop
dynamics of the device under test, the GFM inverter, due to
the first-order approximation of the power flow with a delay
in (10).

B. Droop Dynamics With Line Dynamics and Input Delay

Then, the linearized droop dynamics of the first voltage
source (inverter) interconnected with the second voltage source
(grid simulator) are given by:

δϕ̇(t) ≈ δω(t)

σδω̇(t) ≈ −δω(t)− dpδP (t, τ)

σδV̇ (t) ≈ −δV (t)− dqδQ(t, τ)

Here, we use a first-order approximation of the line dynam-
ics. We drop the subscript enumeration from the variables
in the closed-loop expressions because these variables will
only pertain to the inverter once we perform the subsequent
closed-loop substitutions. We make the following assumption
pertaining to the parameters of the simulated line and load.

Assumption 1. The difference between the respective
inductance-to-resistance ratios of the simulated line and the
simulated load is small, i.e.:∣∣∣∣Ls

Rs
− Ll

Rl

∣∣∣∣ < ρ

where ρ is a small nonnegative number. This implies that:

|v2 − γv1| → 0

as ρ → 0, where γ = Rl

Rs+Rl
(See Appendix A for derivation).

This assumption, though it restricts our analysis to a fixed
real-to-reactive load ratio, provides a reduction in the model
order and thereby facilitates gaining useful insight into the
stability properties of the GFM inverter testing. We highlight
that test cases involving arbitrary values of apparent power are
covered by this assumption as long as real and reactive loads
scale according to the fixed ratio. For simplicity, we choose
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the phase angle equilibrium points as ϕ∗
12 = 0, which, together

with Assumption 1, leads to V ∗
2 = γV ∗

1 , δV2 ≈ γδV1 and
δϕ2 ≈ δϕ1 (see Appendix B for derivation). After substituting
for these variables (and dropping the subscript index for the
inverter parameters), we obtain the following power flow
expressions:

δP (t, τ) ≈

−γV ∗2(B cos(ω0τ)−G sin(ω0τ))

−V ∗2B′

GV ∗(2− γ cos(ω0τ))−BγV ∗ sin(ω0τ)
−V ∗G′

γV ∗2(B cos(ω0τ)−G sin(ω0τ))

γV ∗2(B′ cos(ω0τ) +G′ sin(ω0τ))
−γV ∗(G cos(ω0τ) +B sin(ω0τ))
γV ∗(G′ cos(ω0τ)−B′ sin(ω0τ))



T 

δϕ(t)

δϕ̇(t)
δV (t)

δV̇ (t)
δϕ(t− τ)

δϕ̇(t− τ)
δV (t− τ)

δV̇ (t− τ)


δQ(t, τ) ≈

−γV ∗2(G cos(ω0τ) +B sin(ω0τ))

V ∗2G′

−BV ∗(2− γ cos(ω0τ))−GγV ∗ sin(ω0τ)
−V ∗B′

γV ∗2(G cos(ω0τ) +B sin(ω0τ))

−γV ∗2(G′ cos(ω0τ)−B′ sin(ω0τ))
γV ∗(B cos(ω0τ)−G sin(ω0τ))
γV ∗(B′ cos(ω0τ) +G′ sin(ω0τ))



T 

δϕ(t)

δϕ̇(t)
δV (t)

δV̇ (t)
δϕ(t− τ)

δϕ̇(t− τ)
δV (t− τ)

δV̇ (t− τ)


(11)

Taking V ∗ = Vb (1 per unit (pu)) and normalizing the voltage
magnitude as δU = δV

Vb
, where Vb denotes the base voltage

magnitude, we state the per-unit power expressions as:

δPpu(t, τ) ≈

−γ(B cos(ω0τ)−G sin(ω0τ))
−B′

G(2− γ cos(ω0τ))−Bγ sin(ω0τ)
−G′

γ(B cos(ω0τ)−G sin(ω0τ))
γ(B′ cos(ω0τ) +G′ sin(ω0τ))
−γ(G cos(ω0τ) +B sin(ω0τ))
γ(G′ cos(ω0τ)−B′ sin(ω0τ))



T 

δϕ(t)

δϕ̇(t)
δU(t)

δU̇(t)
δϕ(t− τ)

δϕ̇(t− τ)
δU(t− τ)

δU̇(t− τ)


δQpu(t, τ) ≈

−γ(G cos(ω0τ) +B sin(ω0τ))
G′

−B(2− γ cos(ω0τ))−Gγ sin(ω0τ)
−B′

γ(G cos(ω0τ) +B sin(ω0τ))
−γ(G′ cos(ω0τ)−B′ sin(ω0τ))
γ(B cos(ω0τ)−G sin(ω0τ))
γ(B′ cos(ω0τ) +G′ sin(ω0τ))



T 

δϕ(t)

δϕ̇(t)
δU(t)

δU̇(t)
δϕ(t− τ)

δϕ̇(t− τ)
δU(t− τ)

δU̇(t− τ)


(12)

By an abuse of notation, line parameters B, G, B′, and G′

are given as per-unit quantities in the equation above. Next,
we introduce dp =

kpω0

Sb
, dq =

kqVb

Sb
, where kp and kq denote

the per-unit droop gains, and Sb denotes the base apparent
power. Then, the closed-loop expressions for the inverter droop
dynamics can be restated as:

δϕ̇(t) ≈ δω(t)

σδω̇(t) ≈ −δω(t)− kpω0δPpu(t, τ)

σδU̇(t) ≈ −δU(t)− kqδQpu(t, τ)

Rearranging the closed-loop expressions in a matrix form, we
obtain:

N0ż(t) ≈ N1(τ)ż(t− τ) +M0(τ)z(t) +M1(τ)z(t− τ)

where: z(t) :=
[
δϕ(t) δω(t) δU(t)

]T
and:

N0 =

1 0 0
0 σ −kpω0G

′

0 0 σ − kqB
′


N1(τ) =

0 0 0
0 0 −kpω0γ(G

′ cos (ω0τ)−B′ sin (ω0τ))
0 0 −kqγ(B

′ cos (ω0τ) +G′ sin (ω0τ))


M0(τ) =

 0 1
kpω0γ(B cos (ω0τ)−G sin (ω0τ)) kpω0B

′ − 1
kqγ(G cos (ω0τ) +B sin (ω0τ)) −kqG

′

0
−kpω0[G(2− γ cos (ω0τ))−Bγ sin (ω0τ)]
−1 + kq[B(2− γ cos (ω0τ)) +Gγ sin (ω0τ)]


M1(τ) =

 0
−kpω0γ(B cos (ω0τ)−G sin (ω0τ))
−kqγ(G cos (ω0τ) +B sin (ω0τ))

0
−kpω0γ(B

′ cos (ω0τ) +G′ sin (ω0τ))
kqγ(G

′ cos (ω0τ)−B′ sin (ω0τ))

0
kpω0γ(G cos (ω0τ) +B sin (ω0τ))
−kqγ(B cos (ω0τ)−G sin (ω0τ))

 .

(13)

This differential equation represents a neutral time-delayed
system (NTDS) because a delayed argument appears for
derivative terms in addition to non-derivative terms, i.e.,
N1(τ) ̸≡ 0 and M1(τ) ̸≡ 0. Time-delayed systems have
transcendental characteristic equations and therefore infinitely
many characteristic roots, and, in general, an analytical sta-
bility assessment is difficult. But numerical techniques are
available for stability assessment of NTDS.

C. Delay-Dependent Stability Assessment

One numerical technique for the stability assessment of
NTDS is a frequency-domain method called the direct method
[21]. This method relies on Rekasius substitution:

e−sτ =
1− sT

1 + sT
, s = jω, ω ∈ R, τ > 0, T ∈ R

which maps the transcendental characteristic polynomial with
infinitely many roots:

det
(
sI −A0(τ)− [A1(τ) + sA2(τ)] e

−sτ
)
= 0 (14)

where A0(τ) = N−1
0 M0(τ), A1(τ) = N−1

0 M1(τ) and
A2(τ) = N−1

0 N1(τ), to a rational polynomial with a finite
number of roots:

det

(
sI −A0(T )− [A1(T ) + sA2(T )]

1− sT

1 + sT

)
= 0. (15)



8

By an abuse of notation we use matrices Ai but express them
as a function of T instead of τ in (15). This change in variables
in Ai, which is also due to the Rekasius substitution, will be
made explicit in the sequel. Note that the Rekasius substitution
is performed only for roots on the imaginary axis, and it is
an exact substitution, not an approximation. The goal is not to
calculate a complete set of roots (as there are infinitely many)
but to calculate imaginary axis roots from which stability-
instability transitions can be inferred. Rekasius substitution
reparametrizes the complex exponential (unit circle) that has
angle −ωτ so that it is expressed as a rational polynomial in
s = jω of degree 1 with coefficients in T . The direct method
was originally applied to a class of systems for which matrices
Ai are constant. Nevertheless, the method can be extended in a
straightforward way by performing the following substitutions
in matrices Ai(τ) because dependence on τ in (13) is only
through trigonometric functions:

cos (ω0τ) =
1− ω2

0T
2

1 + ω2
0T

2
and sin (ω0τ) =

2ω0T

1 + ω2
0T

2

which are obtained by taking the real and the imaginary parts
of the Rekasius substitution and evaluating at ω = ω0. This
way, the polynomial coefficients in (15) can be obtained as
functions of T only.

Then, the imaginary axis roots of (15), which are ex-
pressed in terms of T , are precisely those of (14), which
are expressed in terms of τ . Because roots are continuous
functions of the polynomial coefficients and thus delay τ ,
we are only interested in detecting the imaginary axis roots
as their existence indicates a crossing between the left-hand
plane and the right-hand plane, i.e., a transition between the
stable and the unstable regions. For any imaginary axis root
(frequency ω), the following relationship holds due to the
Rekasius substitution:

τ =
2

ω

[
tan−1(ωT ) + lπ

]
(16)

where l is any integer such that τ > 0. Using (16), the
critical delay value for which the system undergoes a stability
transition can be recovered; therefore, critical frequencies and
positive delay values for all stability transitions for a given
system, whether the system is delay-free stable or not, can
be computed using the direct method. For HIL purposes,
we are only interested in the system being delay-free stable
and computing the smallest positive delay value that would
destabilize the system; therefore, we seek the smallest l value
such that τ > 0 in (16) for any candidate pair of ω and T .

We implement direct method based on the procedural steps
given in [21], to which the reader should refer for further de-
tails. Evaluating (15) leads to a 6th-order polynomial equation
in s where the real coefficients are polynomials in T . The
polynomial equation is then immediately reduced to a 5th-
order by eliminating the trivial root at s = 0 (a marginally
stable pole due to the phase angle drift). Then, the first
column of a Routh array is constructed using coefficients of
the polynomial in s, which yields rational polynomials in T
as array entries. Because the number of sign changes on the
first column of a Routh array equals the number of right-
hand plane poles, any real zero of array entries (as rational

polynomials reduced to the lowest terms) is a candidate value
for T for which there is an imaginary axis crossing (recall that
T ∈ R). For each candidate T value, the imaginary axis roots
of (15) are computed, resulting in pairs (ω, T ) that lead to a
critical positive-delay value computed via (16). Noting again
that we assume delay-free stability, we then take the minimum
over all (ω, T ) pairs of the critical positive-delay values for
which system undergoes a stability transition. This value is
the smallest destabilizing positive-delay value.

D. Numerical Results

Parameter values used in numerical calculations, which are
typical values drawn from the literature, are given in Table I.
We choose a value of the feedback parameter γ based on the
equilibrium values of power (see Appendix C for details).
For four scenarios in which inductance values are an order
of magnitude apart; and for a scenario with no inductance, we
numerically calculate the smallest critical positive-delay value
that destabilizes a delay-free-stable system for various values
of per-unit droop gain pair (kp, kq). Each scenario is given as
a color map in figs. 6b to 6f. The particular region of (kp, kq)
is defined in each scenario based on the delay-free stability
regions given for various inductance values in Figure 6a.

Some notable observations from Figure 6a are as follows.
For L ∈ {2 × 10−5, 10−4, 10−3, 10−2} mH, the delay-free
stability regions monotonically shrink as the inductance value
increases. The boundary of these regions allows for an arbitrar-
ily large value for one droop gain for a sufficiently small value
of (at the expense of) the other droop gain. This behavior is
more pronounced for larger inductance values in this set. These
relatively small values of inductance result in unbounded
delay-free stability regions, whereas at L = 10−1 mH,
the stability region is the smallest relative to that of all other
scenarios in Figure 6a and is a bounded one. Beyond this
inductance value, specifically for L ∈ {1, 1.1} mH, bounded
stability regions monotonically grow. The smallest stability
region is induced by a value of L, which is in the neighborhood
of 10−1 mH. Typical values of per-unit droop gains kp and
kq are on the order of 10−3 and 10−2, respectively [22];
therefore, stability margins for the scenario of L = 10−1 mH
(or smaller) could be limiting for HIL experiments. It could
be argued that L < 10−2 mH suffices in the absence of
a delay, but as will be shown in the sequel, a sufficiently
large inductance is needed to improve the stability margins of
delayed operation. A line inductance of L = 1 mH, which is
only one order of magnitude larger than the value that gives
the smallest stability region, is chosen for the experimental
setup, which, per the numerical calculations, can provide a
sufficient stability margin for delay-free operation.

Each color map in figs. 6b to 6f contains empty regions for
sufficiently small values of droop gains. These regions contain
points (kp, kq) for which the system is delay-independent
stable, i.e., a delay-free stable system (stable for τ = 0) is
stable for any τ > 0. For the inductance value L = 1 mH
that is used in the experiments, this delay-independent stable
region in Figure 6b, which is upper bounded approximately at
voltage droop gain kq = 0.6 pu (an order of magnitude larger
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than typical values) and frequency droop gain kp = 0.3 pu
(two orders of magnitude larger than typical values), provides a
practically more useful operating region than that of other sce-
narios. Particularly, for L = 10−1 mH, the delay-independent
stable region upper bound is around kq = 0.2 pu, as shown in
Figure 6c with kp < 0.02 pu. Figures 6d to 6f indicate for the
respective values of L ∈ {10−2, 10−3, 0} mH that this upper
bound is around kq = 0.04 pu (an order of magnitude smaller
than that of the case L = 1 mH) for kp on the order of 0.01 pu,
unless the frequency droop gain is reduced to kp < 0.01 pu.
These observations suggest that a larger inductance value
provides delay robustness from the perspective of achieving a
larger delay-independent stable region. Particularly for droop
gains kp < 0.3 pu and kq < 0.6 pu, the upper bounds of
which are at least an order of magnitude larger than the typical
values, L = 1 mH provides delay-independent stability. This
is the primary benefit of using this inductance value in the
experiments.

In fact, the delay-independent stable region for L = 1 mH
in Figure 6b covers the entire region in Figure 6c for
L = 10−1 mH and the regions defined by kq < 0.6 pu
in figs. 6d to 6f for the respective inductance values of
L ∈ {10−2, 10−3, 0} mH. In other words, L = 1 mH ensures
delay-independent stability for the practical gain values for
which smaller inductance values lead to a critical destabilizing
value of delay. Outside this region, Figure 6b shows that for
0.6 pu < kq < 1 pu, L = 1 mH produces critical delay
values satisfying approximately 0.031 ms < τ < 2.5 ms. In
the same kq interval, for kp > 0.01 pu, inductance values
L ∈ {10−2, 10−3, 0} mH lead to respective critical delay val-
ues of τ ∈ {0.2, 0.067, 0.054} ms, and for kp < 0.01 pu, these
inductance values lead to delay-independent stability, as shown
in figs. 6d to 6f. The most restrictive range of critical delay
values that L = 1 mH produces is at the boundary of the delay-
independent and delay-dependent stability regions in Figure 6b
(counterintuitively for relatively smaller droop gains), which
is 0.031 ms < τ < 0.5 ms. The smallest critical delay value
in this range is inferior to τ = 0.2 ms, which L = 10−2 mH
produces (for 0.6 pu < kq < 1 pu and kp > 0.01 pu) by an
order of magnitude, but it is comparable to the values induced
by L ∈ {10−3, 0} mH. Further, in Figure 6b (L = 1 mH),
the critical delay on the delay-independent/delay-dependent
stability region boundary mostly attains values on the order
of hundreds of µs, which is comparable to or better than the
critical delay values of τ ∈ {0.2, 0.067, 0.054} ms produced
by L ∈ {10−2, 10−3, 0} mH (for 0.6 pu < kq < 1 pu, and
kp > 0.01 pu), as shown in figs. 6d to 6f; therefore, for
relatively large droop gains kp > 0.01 pu and kq > 0.6 pu
(at least one order of magnitude larger than typical values),
L = 1 mH still performs comparably to the smaller inductance
values L ∈ {10−2, 10−3, 0} mH. L = 1 mH underperforms
only if kp < 0.01 pu and kq > 0.6 pu, which leads to
delay-independent stability for smaller inductance values of
L ∈ {10−2, 10−3, 0} mH. Yet, this operating region would
be less common because it requires the voltage droop gain
to attain values that are an order of magnitude larger than
typical; whereas the frequency droop gain is limited to typical
values, which would imply larger reactive power deviations

Parameter Description Value
Vb Base RMS dq-voltage magnitude 270 V
Sb Base apparent power 10 kVA
ω0 Nominal frequency 120π rad/s
σ−1 Power measurement filter frequency 12π rad/s
R Line resistance 0.073 Ω
L Line inductance {0, 10−3, 10−2, 10−1, 1} mH
γ Feedback constant 0.5

TABLE I: Parameter values for numerical calculations

with respect to nominal compared to those of real power.
The ranges of critical destabilizing delay values are com-

parable in all scenarios. For larger values of inductance L ∈
{1, 10−1} mH, the most restrictive critical delay value emerges
for relatively smaller values of voltage droop gain kq , as shown
in figs. 6b and 6c. This critical delay value then improves
for larger kq before it degrades again, as the boundary of
delay-free stability regions are approached (see Figure 6a).
In contrast, critical delay values induced by smaller values of
inductance L ∈ {10−2, 10−3, 0} mH are most restrictive for
larger values of voltage droop gain kq , and they improve for
smaller values of this gain, as shown in figs. 6d to 6f. We
note that critical delay values are relatively more sensitive to
voltage droop gain, kq , than to frequency droop gain, kp, for all
scenarios, which could be due to our simplifying assumption
of using a real feedback constant, e.g., stronger dependence
on voltage magnitude dynamics; however, delay-independent
stability regions are still sensitive to frequency droop gain, kp,
for smaller values of inductance L ∈ {10−2, 10−3, 0} mH, as
shown in figs. 6d to 6f.

Although L = 1 mH provides the highest degree of robust-
ness via a large delay-independent stability region, smaller
inductance values can also be sufficient, depending on the
application and keeping in mind the associated stability margin
deficit. For example, kq < 0.2 pu and kp < 0.02 pu, which
allows droop gains of one order of magnitude larger than
typical, is a delay-independent stability region in Figure 6c
for L = 10−1 mH; however, upper bounds of the delay-free
stability region in this scenario are also on the same order
(see Figure 6a), which is more restrictive than that of L ∈
{1, 10−2, 10−3, 0} mH. An almost full range of critical desta-
bilizing delay values in scenarios of L ∈ {10−2, 10−3, 0} mH
is contained in the region kq < 0.2 pu and for kp on the order
of 0.01 pu. For these smaller inductance values, for example,
critical delay values of 1 ms or better can be achieved for
voltage droop gain kq < 0.06 pu (allows up to typical values),
or 0.6 ms or better can be achieved for kq < 0.1 pu (allows
up to one order of magnitude larger than typical), whereas the
frequency droop gain can be chosen as large as on the order of
0.01 pu (one order of magnitude larger than typical). Noting
that the simulation delay is approximately 0.05−0.1 ms, well-
tuned lag compensation can manage delays.

VI. EXPERIMENTAL RESULTS

This section presents the PHIL experimental results. First,
we present the results from controlling the grid emulator volt-
age using the resonant tracking controller. Then, we present
the results from operating the inverter under GFM and GFL
modes of operation depending on the microgrid mode.
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(a) Delay-free (τ = 0) (b) L = 1 mH

(c) L = 10−1 mH (d) L = 10−2 mH

(e) L = 10−3 mH (f) L = 0 mH

Fig. 6: (a) Delay-free stability regions for various inductance values. (b–f) Color map of critical destabilizing positive-delay
values for each scenario with a different inductance value. Empty regions in the color maps indicate delay-independent stability,
i.e., a delay-free stable (stable for τ = 0) system is stable for any τ > 0.
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Fig. 7: Operation of the grid simulator with the error mini-
mized when the proportional resonant controller is activated

Fig. 8: Grid-connected dispatch

A. Voltage Tracking

Figure 7 shows three waveforms. The first waveform is
the voltage feedback, the second shows the voltage set point,
and the third shows the voltage error. Before the resonant
controller is turned on, the grid simulator is not following
the voltage set point. After turning on the resonant controller,
the grid simulator can track the voltage, and the tracking error
is significantly reduced.

B. Power Tracking

Grid-connected dispatch with inverter in GFL mode: Figure
8 shows the results from grid-connected dispatch with the
inverter in GFL mode of operation.

Grid-connected mode to islanded mode with inverter tran-
sitioning from GFL to GFM mode: Figure 9 shows the results
when the microgrid transitions from grid-connected mode to

Fig. 9: Transition of microgrid from grid-connected mode to
islanded mode. The inverter transitions from GFL mode to
GFM mode.

Fig. 10: Islanded dispatch—inverter in GFM mode supporting
loads in the microgrid (microgrid is is islanded mode)

islanded mode. During this transition, the inverter switched
from GFL mode to GFM mode.

Islanded mode of operation with inverter in GFM mode of
operation: Figure 10 shows the results when the microgrid
is in islanded mode of operation. In islanded mode, loads in
the microgrid were increased in steps. The inverter operated
in GFM mode and supported the load steps.

Grid resynchronization transition with inverter transitioning
from GFM mode to GFL mode: Figure 10 shows the results
when the microgrid transitions from islanded mode to grid-
connected mode of operation. During this transition, the in-
verter transitions from GFM mode to GFL mode of operation.

VII. CONCLUSION

This paper addressed challenges of ensuring the stability of
GFM PHIL tests under dynamic conditions; via the use of lead
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Fig. 11: Transition of microgrid from islanded mode to grid-
connected mode. The inverter transitions from GFM mode to
GFL mode.

compensation and resonant tracking control schemes as well
as the appropriate choice of PHIL interconnection parameter
values. These challenges, particularly pertaining to loop delays
and destabilizing dynamic modes of PHIL interconnections,
have been analyzed using analytical models and numerical
simulations. The efficacy of our delay compensation and
tracking control approaches have been demonstrated in PHIL
experiments at high power (100 kVA GFM inverter) and in
various dynamic modes.
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APPENDIX
DERIVATIONS USED IN SECTION V

A. Proof of Claim in Assumption 1

Let us denote the mapping from the GFM inverter voltage
to the simulated load-side voltage by F21. We use the notation
given in Figure 5 to write:

F21(s) =
v2(s)

v1(s)
=

sLl + jω0Ll +Rl

sLa + jω0La +Ra

=

(
Rl

Ra

)
sLl

Rl
+ jω0

Ll

Rl
+ 1

sLa

Ra
+ jω0

La

Ra
+ 1

where Ra = Rs + Rl and La = Ls + Ll, subscript ‘s’
denotes the simulated line impedance, and subscript ‘l’ denotes
the simulated load impedance parameters. F21(s) can be
simplified for specific parameter values. For ϵ > 0, consider:∣∣∣∣La

Ra
− Ll

Rl

∣∣∣∣ = ∣∣∣∣LsRl − LlRs

R2
l +RlRs

∣∣∣∣ < ϵ

⇔
∣∣∣∣Ls

Rs
− Ll

Rl

∣∣∣∣ < ϵ

(
Rl

Rs
+ 1

)
=: ρ(ϵ)

if Rl ̸= 0 and Rs ̸= 0. Then, as ϵ → 0, Ls

Rs
→ Ll

Rl
for a given

Rl

Rs
if and only if La

Ra
→ Ll

Rl
. Put another way, for similar

inductance-to-resistance ratios of load and simulated line, i.e.
Ls

Rs
→ Ll

Rl
, and given Rl

Rs
, one can find ρ(ϵ) → 0 such that∣∣∣F21(s)− Rl

Ra

∣∣∣ → 0; therefore, v2 ≈ γv1 and γ = Rl

Ra
.

B. Linearized Variables

Based on Assumption 1, we consider v2(t) = γv1(t), where
these voltages are dq coordinate phasors as before. We assume
ϕ∗
12 = 0 for a zeroth-order approximation with respect to the

equilibrium angle difference:

V ∗
2 = γV ∗

1 e
jϕ∗

12 = γV ∗
1 .

Linearized dq phasor voltages satisfy δv2 ≈ γδv1, which leads
to:

(δV2 + jV ∗
2 δϕ2) ≈ γejϕ

∗
12(δV1 + jV ∗

1 δϕ1).

Then, using ϕ∗
12 = 0 and V ∗

2 = γV ∗
1 reduces the expression

above to:
δV2 ≈ γδV1 and δϕ2 ≈ δϕ1.

C. Equilibrium Power With Respect to Feedback Parameter

Complex power based on dq phasor parameters can be
expressed as p1 = v1(i12)

H which at equilibrium leads to
(assuming ϕ∗

12 ≈ 0):

p∗1 ≈ ((V ∗
1 )

2 − V ∗
1 V

∗
2 )y

H
12 = (1− γ)(V ∗

1 )
2yH12.

as the power injected by the inverter. Similar calculations give:

p∗2 ≈ ((V ∗
2 )

2 − V ∗
2 V

∗
1 )y

H
12 = −(1− γ)γ(V ∗

1 )
2yH12

Fig. 12: Normalized power at equilibrium with respect to the
feedback parameter

where −p∗2 would be the equilibrium power absorbed by the
grid emulator, and the line loss would be:

p∗12 ≈ (V ∗
1 − V ∗

2 )
2yH12 = (1− γ)2(V ∗

1 )
2yH12.

Recall that 0 < γ < 1. We use γ = 0.5 in numerical
calculations because this value provides an operating point
at which the power injected by the inverter is maximally
absorbed by the grid emulator, as shown Figure 12.


