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Summary
The policy improvement theorem is a fundamental building block of classical reinforce-

ment learning for discrete action spaces. Unfortunately, the lack of an analogous result for
continuous action spaces with function approximation has historically limited the ability of
policy optimization algorithms to make large step updates, undermining their convergence
speed. Here we introduce a novel nonparametric policy that relies purely on data to take actions
and that admits a policy improvement theorem for deterministic Markov Decision Processes
(MDPs). By imposing mild regularity assumptions on the optimal policy, we show that, when
data come from expert demonstrations, one can construct a nonparametric lower bound on the
value of the policy, thus enabling its robust evaluation. The constructed lower bound naturally
leads to a simple improvement mechanism, based on adding more demonstrations. We also
provide conditions to identify regions of the state space where additional demonstrations are
needed to meet specific performance goals. Finally, we propose a policy optimization algo-
rithm that ensures a monotonic improvement of the lower bound and leads to high probability
performance guarantees. These contributions provide a foundational step toward establishing
a rigorous framework for policy improvement in continuous action spaces.

Contribution(s)
i) We present a novel framework for nonparametric policies on continuous state and action

spaces that only requires data coming from expert trajectories.
Context: Modern RL algorithms usually learn a parametrized policy (Schulman et al.,
2017), a model of the environment, or both (Hafner et al., 2019; Janner et al., 2019).

ii) Robust policy evaluation: Under mild assumptions on the MDP, we can readily construct
a lower bound on the optimal Q-function. Our policy is greedy with respect to this bound
and surprisingly improves upon it.
Context: The expression for this lower bound ensures that greedy actions can be carried
out in closed form, making our policy easy to implement and evaluate. In contrast, stan-
dard policy iteration (Sutton & Barto, 2018) relies on computing an (approximate) value
function estimate of a policy.

iii) Policy improvement: Our framework leads to a policy improvement mechanism, in which
more data yields ever tighter lower bounds. As a result, our policy sequentially improves
on the new data.
Context: We provide sufficient conditions for our policy to be strictly improving on the
new data points. Notably, this method allows for large policy updates, in contrast to policy
gradient (Sutton et al., 1999) or trust region methods (Schulman et al., 2015), which take
small enough steps to ensure improvement on average.

iv) Policy optimization with guarantees: We present a novel algorithm, inspired by minoriza-
tion maximization, that monotonically improves our lower value estimate, leading to high
probability performance guarantees.
Context: We derive easy-to-check conditions (based on the value function bounds and
sampled states) that either guarantee a certain suboptimality or suggest a location where
new demonstrations are necessary to meet the performance requirements.
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Abstract

The policy improvement theorem is a fundamental building block of classical reinforce-1
ment learning for discrete action spaces. Unfortunately, the lack of an analogous result2
for continuous action spaces with function approximation has historically limited the3
ability of policy optimization algorithms to take large update steps, undermining their4
convergence speed. Here we introduce a novel nonparametric policy that relies purely5
on data to take actions and that admits a policy improvement theorem for determin-6
istic Markov Decision Processes (MDPs). By imposing mild regularity assumptions7
on the optimal policy, we show that, when data come from expert demonstrations, one8
can construct a nonparametric lower bound on the value of the policy, thus enabling its9
robust evaluation. The constructed lower bound naturally leads to a simple improve-10
ment mechanism, based on adding more demonstrations. We also provide conditions11
to identify regions of the state space where additional demonstrations are needed to12
meet specific performance goals. Finally, we propose a policy optimization algorithm13
that ensures a monotonic improvement of the lower bound and leads to high proba-14
bility performance guarantees. These contributions provide a foundational step toward15
establishing a rigorous framework for policy improvement in continuous action spaces.16

1 Introduction17

The policy improvement theorem is a fundamental result in classical dynamic programming18
(DP) (Puterman, 1994) and reinforcement learning (RL) (Sutton & Barto, 2018) for discrete action19
spaces. It guarantees that iterative policy updates lead to performance improvements, underpinning20
the convergence and optimality of classical algorithms such as policy and value iteration. However,21
when function approximation is introduced—particularly in continuous action spaces—the intricate22
relationship between policy parameters and performance outcomes makes it virtually impossible to23
ensure uniform improvement across all states (Sutton & Barto, 2018).24

To address this challenge, research has increasingly focused on policy gradient methods (Williams,25
1992), which are particularly well-suited for continuous action spaces (see, e.g., Todorov et al.26
(2012); Tassa et al. (2018)). Unlike classical approaches that guarantee uniform improvement across27
all states, policy gradient methods optimize performance in expectation. A rich body of work has28
explored enhancements to these methods, including “natural” policy gradient techniques (Peters &29
Schaal, 2008), methods that aim for monotonic improvement (in expectation) through constrained30
approximate policy iteration (Schulman et al., 2015), and approaches that take multiple small steps31
per data batch toward better performance (Schulman et al., 2017). Despite their advantages, these32
approaches often suffer from slow convergence, sensitivity to hyperparameter tuning, and instability.33

This paper presents a novel nonparametric policy improvement mechanism as a viable alternative34
to policy optimization in problems with continuous state and action spaces. Establishing a policy35
improvement theorem in this setting would enable large policy updates while maintaining a guar-36
antee of strict improvement. Naturally, achieving such a result requires overcoming the challenges37
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Figure 1: Overview of the proposed method. From left to right: i) a dataset containing expert triplets
(si, ai, Qi) is used to ii) build a lower bound on the optimal value function; iii) acting greedily with
respect to it gives our policy; iv) if high-probability suboptimality conditions are not met, we collect
more expert trajectories and repeat the process.

posed by the intricate dependence between policy parameters and MDP performance. We address38
this by carefully designing the policy representation and leveraging a minorization-maximization39
(MM) approach, similar to MM algorithms (Ortega & Rheinboldt, 2000; Sun et al., 2016), to ensure40
strict improvement over a lower bound of the policy value.41

Contributions: The contributions of this work are listed next. For a more detailed discussion on the42
placement of our work in the literature, we refer the reader to Section 6.43

• Nonparametric Policy Evaluation: We introduce a novel policy representation for continuous44
state-action spaces that relies purely on data, i.e., it is nonparametric. We show that under minor45
regularity assumptions on the optimal policy π⋆, the proposed policy π admits nonparametric46
lower estimates Vlb(s) and Qlb(s, a) of the policy value V π(s) and action value Qπ(s, a).47

• Policy Improvement Theorem: Combining the proposed policy representation and lower bound48
estimation naturally leads to a policy improvement mechanism that requires only a properly cho-49
sen expert trajectory. We provide further conditions on the dataset and the new trajectory that50
guarantee strict improvement over a region of the state space.51

• Suboptimality Gap and Active Sampling: While in principle, any expert demonstration would lead52
to better performance, our analysis derives suboptimality conditions (based on the initial states53
and bounds on the optimal value function) that either guarantee a certain level of performance54
or suggest a new location where new expert trajectories are necessary to meet the performance55
requirements.56

• Nonparametric Policy Optimization: The aforementioned results lead to a novel algorithm, in-57
spired by minorization-maximization, that monotonically improves our performance lower esti-58
mate Vlb(s), leading to high probability performance guarantees, while limiting the amount of59
data that needs to be stored.60

2 Problem setup61

We consider a Markov Decision Process ⟨S,A,R, T, ρ, γ⟩ with state space S, action space A, re-62
ward set R, initial state distribution ρ, discount factor γ ∈ (0, 1) and transition density T (s, a, s′)63
(Van Hasselt & Wiering, 2007). As usual, policies π : S → P(A) map states to probability distri-64
butions over the action space.1 Given a policy π, its value function and action-value function can be65
defined at any state as:66

V π(s) ≜ Eπ

[ ∞∑
t=0

γtr(st, at) | s0 = s

]

1For deterministic policies, we abuse notation and let π : S → A, that is to say: π(st) = at.
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Qπ(s, a) ≜ Eπ

[ ∞∑
t=0

γtr(st, at) | s0 = s, a0 = a

]
,

where r(s, a) = E [rt+1 | st = s, at = a] and Eπ[ · ] denotes expectation with respect to trajectories67
induced by the MDP and policy π (Sutton & Barto, 2018). The optimal value- and action-value68
functions are defined for all s ∈ S, a ∈ A:69

V ⋆(s) = max
π

V π(s); Q⋆(s, a) = max
π

Qπ(s, a).

We let π⋆ stand for the optimal policy, i.e., the maximizer of the two expressions above. A usual
goal in RL is to find said policy. A related but usually simpler one is to find:

max
π

Es∼ρ [V
π(s)] ,

that is to say, a policy that is optimal with respect to the initial state distribution ρ. For further70
discussions on optimality with respect to an initial state distribution, see, e.g., Puterman (1994).71

Additional assumptions We make the following assumptions on the MDP and the optimal value72
function.73

Assumption 2.1 (Deterministic MDP). The transition map is deterministic: i.e. there exists f :74
S ×A → S such that st+1 = f(st, at).75

Assumption 2.2 (Q⋆ is Lipschitz). The optimal action-value function Q⋆ is L-Lipschitz, that is:

|Q⋆(s, a)−Q⋆(s′, a′)| ≤ L (∥s− s′∥+ ∥a− a′∥)

∀s, s′ ∈ S and ∀a, a′ ∈ A.76

As we will see shortly, having a Lipschitz optimal value function will allow us to readily compute77
lower bounds (provided L is known). As it turns out, if Q⋆ is Lipschitz so is V ⋆.78

Proposition 2.3. If Q⋆ is L-Lipschitz then V ⋆ is L-Lipschitz:

|V ⋆(s)− V ⋆(s′)| ≤ L∥s− s′∥ ∀s, s′ ∈ S.

Proof. The proof is in Supplementary Material A.1.79

Assumption 2.2 is not overly restrictive and has been made before (Buşoniu et al., 2018; Shen &80
Yang, 2021). We present conditions on the MDP that are sufficient to guarantee it.81

Proposition 2.4 (Sufficient conditions for Lipschitz value functions (Buşoniu et al., 2018)). If the82
transition map f and rewards r are Lipschitz, i.e.:83

∥f(s, a)− f(s′, a′)∥ ≤ Lf (∥s− s′∥+ ∥a− a′∥)
|r(s, a)− r(s′, a′)| ≤ Lr (∥s− s′∥+ ∥a− a′∥)

for positive scalars Lf , Lr, and the discount factor satisfies γLf < 1, then Q⋆ and V ⋆ are L-84
lipschitz with L ≤ Lr

1−γLf
.85

Proof. The proof is presented in Supplementary Material A.2 for completeness.86

Our last assumption is related to the data available to the agent, which must come from expert87
demonstrations.88

Assumption 2.5 (Expert data). Our agent has access to a collection of triplets2 D =89
{(si, ai, Qi)}|D|

i=1 where the state-action pairs are induced by π⋆ and Qi ≡ Q⋆(si, ai).90

This last assumption on expert data will allow us to state suboptimality results with respect to the91
optimal policy. It, however, can be relaxed to data collected by any other policy, as long as its value92
function is Lipschitz. We postpone further comments on this relaxation until the end of Section 3.93

2We use D to denote dataset: this will be the data that our policy leverages.
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Bounds on the optimal value functions We use the fact that Q⋆ is Lipschitz (Assumption 2.2) to94
construct lower bounds on both V ⋆ and Q⋆. These bounds are defined with respect to the information95
provided in the dataset D.96

Vlb(s) ≜ max
1≤i≤|D|

{Qi − L∥s− si∥} , (1)

Qlb(s, a) ≜ max
1≤i≤|D|

{
Qi − L

(
∥s− si∥+ ∥a− ai∥

)}
. (2)

We can, in a similar way, define upper bounds:97

Vub(s) ≜ min
1≤j≤|D|

{Qj + L∥s− sj∥} , (3)

Qub(s, a) ≜ min
1≤j≤|D|

{
Qj + L

(
∥s− sj∥+ ∥a− aj∥

)}
. (4)

We omit the dependence of these bounds on D to avoid clutter. Since both value functions are98
Lipschitz, the quantities defined above indeed serve as lower and upper bounds (hence the subscripts99
lb and ub) to the optimal state- and action-value function, respectively:100

Vlb(s) ≤ V ⋆(s) ≤ Vub(s) Qlb(s, a) ≤ Q⋆(s, a) ≤ Qub(s, a).

Combining upper and lower bounds (in particular for V ⋆) will come in handy to derive suboptimality101
guarantees of our policy. We pay special attention to the lower bounds, which will be used to define102
our nonparametric policy and which we adress in the following section.103

3 Nonparametric policies104

In this section, we build on the lower bounds introduced in the prequel and propose our nonpara-105
metric policy. There are three main ingredients to this construction (highlighted in Figure 1). First,106
given a dataset D, we construct the lower bounds (1) and (2). We then define a policy that acts107
greedily with respect to this lower bound. Remarkably, we show that the value function of this108
policy improves upon the lower bound. Let us first start by defining the policy.109

Definition 3.1 (Nonparametric policy). For every state s ∈ S we define:

π(s) ≜ argmax
a∈A

Qlb(s, a)

As we highlighted before, π acts greedily with respect to the lower bound. Notably, this maximiza-110
tion is simple to carry out and always gives actions in the dataset.111

Remark 3.2. π(·) always chooses an action from the dataset, ie:

∀s ∈ S : π(s) = ai for some i ∈ {1, . . . , |D|} .

If multiple maximizers exist for a given s, we choose the ai with the smallest index i, rendering our112
policy deterministic. If we let i⋆ be the maximizer for a given (s, a) pair, notice that we have:113

Qlb(s, a) ≤ Qlb(s, ai⋆) = Vlb(s) = Qi⋆ − L∥s− si⋆∥.

Policy interpretation Our policy acts in two steps. First, it selects the index i⋆ that maximizes114
Vlb(s) in (1), which amounts to performing a biased projection onto states in the dataset, with bias115
terms given by Qi/L. Then, it selects the action ai⋆ , corresponding to the projected state. Because116
of the first step, our method bears resemblance to nearest neighbor approaches in RL (Santamaria117
et al., 1997; Shah & Xie, 2018).118
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Figure 2: Illustrations of Theorems 3.4 and 3.5. Left: Robust policy evaluation. V π lies between
Vlb and V ⋆; all three functions interpolate the data points (si, Qi). Right: Policy improvement.
adding the transition (s′, a′, Q′) yields a better lower bound Vlb ≤ V ′

lb. Furthermore, strict policy
improvement holds in the neighborhood N(s′).

Greedy policies are ubiquitous in the RL literature (Sutton & Barto, 2018; Williams & Baird,119
1993). Since they enable policy improvement, they serve as one of the fundamental building blocks120
for policy iteration methods (Sutton & Barto, 2018; Pirotta et al., 2013). We will soon show that121
our policy satisfies a policy evaluation inequality, and that—sequentially—adding more data to the122
dataset D yields a form of policy improvement.123

Our result will hinge on the fact that the expert data comes from trajectories. To that end, we make124
the last definition before our main results.125

Definition 3.3 (Consistent dataset). D is a consistent dataset if for all (si, ai, Qi) ∈ D the following126
two conditions hold:127

i) ai = π⋆(si); Qi = V ⋆(si).128

ii) ∃(sj , aj , Qj) ∈ D such that sj = f(si, ai).129

A dataset made up of expert trajectories3 of the form τk = (sk0 , a
k
0 , Q

k
0 , s

k
1 , a

k
1 , Q

k
1 , . . .) satisfies the130

consistency definition above.131

Policy evaluation and improvement One of our key finding is that the greedy policy defined132
above has a value function that improves upon the lower bound of the optimal one. We state this133
result next.134

Theorem 3.4 (Policy evaluation). Let D be a consistent dataset (Definition 3.3) and π as in Defini-135
tion 3.1. Then, for all s ∈ S the following two inequalities hold:136

Vlb(s) ≤ r(s, π(s)) + γVlb(f(s, π(s))

Vlb(s) ≤ V π(s) ≤ V ⋆(s) .

Proof. The proof is in Supplementary Material A.3.137

We want to stress the relevance of the second inequality above, which is depicted in Figure 2 (to138
the left). In standard policy iteration algorithms (Sutton & Barto, 2018), one first evaluates a given139
policy, resulting in a value function, and then acts greedily upon it. Notably, we act greedily with140
respect to Qlb, which may not correspond to the value of any policy, and still improve upon it. Next,141
if our greedy policy surpasses this lower bound, the natural thing to do is to increase the size of D142
to get a better lower bound. This leads to the policy improvement mechanism highlighted next.143

Theorem 3.5 (Policy improvement). Let D, D′ be consistent datasets with D ⊂ D′. Let Vlb and V ′
lb144

be the lower bounds constructed with D and D′ respectively. Then the following non-deterioration145
conditions hold:146

Vlb(s) ≤ V ′
lb(s) ∀s ∈ S, and

3Although the RL objective pertains infinite-length trajectories, in practice we will truncate them after a horizon H ≥
(1− γ)−1.

5



Under review for RLC 2025, to be published in RLJ 2025

V π(s) ≤ V π′
(s) ∀s ∈ ΠS [D′\D],

where ΠS [D] ≜ {si : ∃ai, Qi such that (si, ai, Qi) ∈ D} and “\” denotes set difference.147
Furthermore, if there exists s′ ∈ ΠS [D′\D] and an open ball B(s′) such that sups∈B(s′) V

π(s) <148
V ⋆(s′), then strict improvement exists in a subset N(s′) ⊂ B(s′):149

Vlb(s) < V ′
lb(s) ∀s ∈ N(s′), and

V π(s) < V π′
(s) ∀s ∈ N(s′)

Proof. The proof is in Supplementary Material A.4150

By refining the lower bounds on V ⋆, we can improve the value of our policy, specifically on new151
transitions. However, in general we cannot claim (like in classical policy iteration) V π(s) ≤ V π′

(s)152
uniformly over s ∈ S, nor even uniformly over the initial state distribution, that is to say:153
Es∼ρ [V

π(s)] ≤ Es∼ρ[V
π′
(s)]. This is typical of majorization-minimization methods (like ours)154

that perform sequential optimization with respect to an improved lower bound (Ortega & Rhein-155
boldt, 2000; Sun et al., 2016).156

Notwithstanding, the hope is that refinements of the lower bounds—attained by adding new trajec-157
tories to the dataset D—will improve the performance of our resulting policy π. Notably, we derive158
easy-to-check, sufficient conditions to achieve an ε-suboptimality that we address next. After defin-159
ing these suboptimality notions and the conditions that will attain them, we will be ready to present160
our algorithm.161

On suboptimality and guarantees We measure the suboptimality of our policy with the gap162
between V π and V ⋆.163

Definition 3.6 (Suboptimality). Let ε ≥ 0. We say π is ε-suboptimal whenever, for all s ∈ S:164

V ⋆(s)− V π(s) ≤ ε.

If the dataset covers the state space S in a sense to be made explicit, then our resulting policy will165
have the desired suboptimality.166

Proposition 3.7 (Suboptimality guarantee). Let Vlb(s) and Vub(s) be the D-dependent lower and167
upper bounds of V ⋆ defined in (1), (3). If for every s ∈ S we have:168

SurrogateGap(s) ≜ Vub(s)− Vlb(s) ≤ ε, (5)

Then π is ε-suboptimal.169

Proof. The proof is in Supplementary Material A.5170

Notice that computing (5) for a fixed s is simple, since both the upper and lower bounds can be171
computed by maximizing over states in D. This gap—which overestimates the gap of the policy—172
decreases as more data is added to D. In the next section, we present an algorithm that checks this173
condition at the start of each episode. This will inform our agent when it needs to collect more174
expert data from the environment. Since it is infeasible to check the condition of Theorem 3.7 for175
the whole state space, we will come up with high probability guarantees (with respect to the initial176
state distribution ρ) to achieve a desired threshold.177
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Algorithm 1: NPP: NonParametric Policy

Input: L > 0. ; /* Lipschitz constant */
1 ε > 0 ; /* Suboptimality gap */
2 Function TrajectoryOptimizer(·) ; /* Call to gather expert data */
3 Suboptimality condition: i) or ii) in Theorem 4.1.

Output: A policy π satisfying Thm 4.1 .
4 Initialize: D = ∅
5 for each episode e=1,. . . do
6 s ∼ ρ ; // Reset environment
7 ∆e = SurrogateGap(s) ; // Over-estimator of gap (5)
8 if ∆e ≤ ε then

// Policy is good enough
9 continue

10 else
// Need more data

11 τ = (s0, a0, V
⋆
0 , . . . , SH−1) = TrajectoryOptimizer(s)

12 for i = 0, . . . ,H − 1 do
13 D.append

(
(si, ai, Qi)

)
; // Add transitions to dataset

14 end
15 if Condition in Thm. 4.1 holds for [∆e, ∆e−1, . . .∆e−n+1] then

// Policy is approximately optimal w.h.p.
16 break
17 end

What if the data is suboptimal? Our main results in the preceeding sections relied on data coming178
from an expert or optimal policy. In practical applications of behavioral cloning (Torabi et al., 2018;179
Florence et al., 2022) or imitation learning (Hussein et al., 2017a; Osa et al., 2018b) this is seldom180
the case. We can relax this assumption. As long as the data comes from a policy with a Lipschitz181
value function, we can construct the lower bounds and still improve upon them. Further discussion182
on these evaluation/improvement results are in Supplementary Material B, along with experiments183
to support it.184

4 Algorithm185

Theorems 3.4 and 3.5 presented in Section 3 pave the way to Algorithm 1. Given a dataset D,186
our policy constructs Vlb and then acts greedily with respect to that lower bound. If more data is187
required, we call a TrajectoryOptimizer, generate a new trajectory and use it to build a new188
dataset D′ ⊃ D. The algorithm terminates whenever it can guarantee (with high probability) that189
a suboptimality condition is met. In Theorem 3.7 we state sufficient conditions—required on the190
whole state space—to achieve said suboptimality. We now present a finite-sample analysis based191
on episodic metrics that will enable us to state that the suboptimality has been achieved with high-192
probability.193

Guarantees We want to analyze the performance of policy π coming out of Algorithm 1 af-194
ter running it for E rounds. Since it is infeasible to check the condition of Theorem 3.7 on the195
whole initial state distributions, we will derive sample complexity bounds that guarantee either196
Es∼ρ [V

⋆(s)− V π(s)] ≤ ε or Ps∼ρ [V
⋆(s)− V π(s) ≤ ε] with high probability.197

Theorem 4.1 (Probabilistic Guarantees). Assume Algorithm 1 ran for E episodes; let ∆e be defined198
as in line 7 of the algorithm. Let S0 denote the support of the initial state distribution ρ.199
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lqr_2_1 (side) lqr_2_1 (top) lqr_6_2 (side) lqr_6_2 (top)

Figure 3: The lqr environments from DeepMind Control suite.

i) If for the last n episodes no new data has been collected, then with probability at least 1 − δ,
we have:

Ps∼ρ [V
⋆(s)− V π(s) ≤ ε] ≥ p,

provided:

n ≥ 1

1− p
log

1

δ
.

ii) Let ∆̄n ≜ 1
n

∑n−1
i=0 ∆E−i. Then with probability at least 1− δ we have:

Es∼ρ [V
⋆(s)− V π(s)] ≤ ε,

provided:

∆̄n < ε and n ≥ 2L2 diam2(S0)

(ε− ∆̄n)2
log

1

δ
.

Proof. The proof is in Supplementary Material A.6200

The algorithm takes as input one of these suboptimality notions—either having low probability of201
exceeding the gap, or satisfying the gap in expected value—and terminates whenever the conditions202
of the preceeding theorem are satisfied.203

5 Experiments204

In this section, we show the performance of Algorithm 1 on two LQR environments. In these205
settings, the optimal policy and the optimal value function exist in closed form, yielding a convenient206
way of computing expert trajectories.207

Environments We test our algorithm on environments from the DeepMind Control suite208
(Tassa et al., 2018; Tunyasuvunakool et al., 2020), which are based on the MuJoCo engine (Todorov209
et al., 2012). The lqr_n_m environments are shown in Figure 3. They constitute a well-studied210
problem in control theory with a closed form solution for the optimal policy and value function211
(Bertsekas, 2012). This available optimal policy serves as the trajectory optimizer of Algorithm 1.212

The environments are made up of a body of n balls in series attached by strings, the first m of which213
are actuated, i.e. dim(A) = m. The balls move along one axis, positions and velocities yield a state214
vector of dim(S) = 2n. The goal in lqr is to bring the system close to the origin, with stage reward215
r(s, a) = 1−0.5(∥s∥2+0.1·∥a∥2). Originally, an episode terminates whenever ∥s∥ ≤ 10−6. Initial216
states have zero velocity and the n positions are sampled uniformly from a sphere of radius

√
2.217

We perform systematic evaluation of these two environments under the optimal policy to come up218
with upper bounds on the Lipschitz constant of the optimal value functions, and to fix the horizon219
for each environment. We ended using L = 50 for lqr_2_1 and L = 200 for lqr_6_2. The220
horizon for both environments is set to H = 1000. See Figures 8 and 9 in Supplementary Material221
C for further details. If the Lipschitz constant is not known beforehand, it can be estimated based on222
the dataset, either globally (using the whole data) or locally, by using k-nearest neighbors of a query223
point s.224
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Figure 4: Training curves for lqr_2_1 with target suboptimality ε = 50, with results averaged
over 4 seeds. Left: Episodic return of policy π (in blue) and expert (in orange) at different stages of
training. N = 100 rollouts are performed at each point; solid line corresponds to the median and
shaded area to a 95% confidence interval. Middle-left: size of the dataset. Middle-right: calls to the
TrajectoryOptimizer oracle (notice calls are made on approximately 30% of the episodes).
Right: surrogate gap Vub − Vlb for the initial states. Purple dashed lines correspond to the hitting
times (one per seed) for reaching the target suboptimality gap.

Results on lqr_2_1 We set a target a suboptimality gap ε = 50 (which corresponds to being225
6% away from the optimal policy) and choose the probabilistic guarantee given by condition (i) of226
Theorem 4.1 with p = 0.9, δ = 0.1. Training curves are in Figure 4, showing the (evaluation) return227
of our policy against the optimal one, the size of the dataset, the number of calls to the oracle (the228
trajectory optimizer) and the SurrogateGap defined in (5). As seen in the rightmost plot, prior to229
the 200th episode, the surrogate gap is below ε for consecutive episodes so as to satisfy condition230
(i) in Thm. 4.1. Judging by the leftmost plot, this suboptimality is reached much sooner. These231
results are supported by Figure 5, where we show (minus) the empirical suboptimality distribution232
V π − V ⋆ from random initial states s0 ∼ ρ, with N = 100 rollouts per episode. One can see that,233
when the algorithm terminates, the gap is bounded by ε as desired. The densities were constructed234
using KDE (Rosenblatt, 1956; Chen, 2017). Additional plots showing the distribution of states in235
the dataset, see Supplementary Material D.236
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Figure 5: Distribution of the suboptimality gap V π(s0) − V ⋆(s0), s0 ∼ ρ at different stages of
training on lqr_2_1. See the caption in Figure 4 for experiment details. The gap shrinks as
training progresses, and at the last episode our algorithm certifies with high probability the desired
gap of ε = 50.

Results on lqr_6_2 For this environment we set a gap of ε = 300, and, like before, the proba-237
bilistic requirements of condition (i) in Thm. 4.1, with δ = 0.1 and p = 0.9. Training curves and238
suboptimality distribution estimates are in Figure 6. As can be seen in the leftmost and rightmost239
plot, that show the “true” gap in value, we reach the desired suboptimality in less than 1000 steps.240
The certification based on the surrogate gap (third plot) was not achieved at this mark, but the trend241
suggests it would happen with longer runtime. Our guarantees are conservative, but the algorithm242
reaches the desired results suprisingly much faster.243
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Figure 6: Training curves and suboptimality distribution for lqr_6_2. See the caption in Figure 4
for details on how to read the plots.

6 Related Work244

Policy Improvement and Related Classical Algorithms. The Policy Improvement Theorem is at-245
tributed to Richard Bellman in the 1950s and first appeared in Bellman (1957). Policy Iteration (PI),246
which leverages the Policy Improvement Theorem to iteratively obtain uniformly better policies,247
is due to Howard (1960). PI requires that at each iteration, a policy is (approximately) evaluated,248
which sometimes is construed as computationally costly, even in discrete spaces. Value Iteration249
(VI) was introduced by MacQueen (1966) and later extended by Van Nunen (1976) as an alternative250
method that does not require policy evaluation. Notably, the majority of these algorithms have clas-251
sical extensions for function approximation; see, e.g., Bertsekas (1996) for a thorough discussion252
of all these methods. However, such methods are either limited to discrete action spaces or lack253
convergence guarantees and often fail to converge (Bertsekas, 2011). Our framework, which is nat-254
urally applicable to settings with continuous action spaces, shares commonalities with both VI and255
PI. As in the case of VI, Algorithm 1, VI iteration constructs a sequence of monotonically increasing256
functions (Vlb) that lead to increasingly better lower estimates for V ⋆. However, our algorithm also257
guarantees that Vlb is a lower bound for V π (Theorem 3.4). Similarly, akin to PI, our results provide258
guarantees for non-deterioration (of the lower bound Vlb) and strict improvement of V π on some259
region of the state space.260

Nonparametric Methods in Reinforcement Learning. Nonparametric methods have been ex-261
tensively studied in reinforcement learning (RL), with applications ranging from value function262
approximation to policy optimization. Traditional approaches often rely on nearest neighbor regres-263
sion (Santamaria et al., 1997; Shah & Xie, 2018; McCallum, 1994), and kernel-based techniques264
(Ormoneit & Sen, 2002; Domingues et al., 2021), for nonparametric policy evaluation, where func-265
tion approximation is used to estimate value some policy. These methods typically fit a value func-266
tion (Q or V) and derive a policy through greedy optimization over the estimated function. However,267
a key limitation of these approaches is their reliance on value function estimation, which can be sen-268
sitive to approximation errors and data sparsity. In contrast, our method does not attempt to estimate269
the value function but instead constructs a global lower bound on the policy value. Nonparamet-270
ric policies, akin to the ones proposed in this paper, has been proposed in the past. In particular,271
several works have consider the use of nearest neighbor policies, (Mansimov & Cho, 2018; Alton272
& van de Panne, 2005; Sharon & van de Panne, 2005). However, such methods do not consider a273
lower estimate on the value of the function when selecting the action. As a result, such methods lack274
theoretical guarantees on the achievable performance, a key feature of the proposed work. A recent275
work by Shen & Yang (2021) is most similar to ours, although authors here use nearest neighbors276
to construct an optimistic overapproximation of the Q function. Their method, in contrast, does not277
have an easy closed form solution for greedy actions with respect to that bound, instead they use this278
approximation in an actor-critic framework.279

Imitation Learning. Our method is related to, but distinct from, existing approaches to imita-280
tion learning (IL; (Argall et al., 2009; Hussein et al., 2017b; Osa et al., 2018a)). IL, or learning281
from demonstration, seeks to mimic the behavior of an expert in a sequential decision-making prob-282
lem. Early neural-network-based approaches (Pomerleau, 1988; Schaal, 1996; Atkeson & Schaal,283
1997) focused on behavioral cloning for robotics. To address distribution shift between training284
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and deployment, methods were introduced (Ross et al., 2011; Ross & Bagnell, 2014) that query285
the expert on states encountered by the agent throughout training. Adversarial frameworks (Ho &286
Ermon, 2016) were found to improve policy robustness in some circumstances. Recently more ex-287
pressive policy classes, including diffusion models (Chi et al., 2024), have been applied to capture288
multimodal decision-making in the data. Like these methods, our approach seeks to replicate the289
performance of an expert given a static dataset. However, it differs fundamentally from these works290
in being nonparametric.291

7 Conclusion292

In this work we introduced foundations for policy improvement in continuous action spaces via293
a nonparametric policy representation that admits a policy improvement theorem. By leveraging294
expert demonstrations, we provided a principled approach to evaluating and improving policies295
through a lower-bound estimation of their value. Our results highlight conditions under which ad-296
ditional demonstrations are necessary to ensure performance guarantees, leading to a novel policy297
optimization algorithm with monotonic improvement properties.298

Future work includes extending our theoretical framework to stochastic MDPs, exploring practical299
implementations in high-dimensional control tasks, and investigating sample efficiency trade-offs300
in real-world applications. Additionally, refining the proposed algorithm in a setting where the301
Lipschitz constant is unknown could further enhance its applicability in various domains.302
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A Proofs452

A.1 Proof of Proposition 2.3453

Statement: If Q⋆ is L-Lipschitz then V ⋆ is L-Lipschitz:

|V ⋆(s)− V ⋆(s′)| ≤ L∥s− s′∥ ∀s, s′ ∈ S.

Proof.

|V (s)− V (s′)| = |max
a

Q(s, a)−max
a′

Q(s′, a′)|

≤ max
a

|Q(s, a)−Q(s′, a)|

≤ Lq∥s− s′∥

where the first inequality follows from the well-known inequality:

|max
x

f(x)−max
x

g(x)| ≤ max
x

|f(x)− g(x)|,

for functions f, g : X → R454

A.2 Proof of Proposition 2.4455

Statement: If the transition map f and rewards r are Lipschitz, i.e.:456

∥f(s, a)− f(s′, a′)∥ ≤ Lf (∥s− s′∥+ ∥a− a′∥)
|r(s, a)− r(s′, a′)| ≤ Lr (∥s− s′∥+ ∥a− a′∥)

for positive scalars Lf , Lr, and the discount factor satisfies γLf < 1, then Q⋆ and V ⋆ are L-lipschitz457
with L ≤ Lr

1−γLf
.458

Proof. Since the transitions are deterministic, we can define the open-loop q-function:

q(s,a) ≜
∞∑
t=0

γtr(st, at)

where a = [a0, a1, . . .] and st are the states under that action sequence, from s0 = s. We will show459
the following two inequalities:460

|q(s0,a)− q(s′0,a)| ≤ L∥s0 − s′0∥ (6)
|max

a
q(s0,a)−max

a′
q(s′0,a

′)| ≤ L∥s0 − s′0∥ (7)

Again, since transitions are deterministic, for a fixed s0 the optimal action sequence a0 =461
π⋆(s0), a1 = π⋆(f(s0, π

⋆(s0))), . . . is unique and well-defined. In that way, notice showing (7)462
is equivalent to showing V ⋆ is L-Lipschitz.463

Let sk := ϕ(k, s0,a|k) be the solution at time k from s0 under control law a|k = [a0, . . . , ak−1],464
and s′k := ϕ(k, s′0,a

′
|k) be defined similarly. Our bread-and-butter for all the proofs will come from465

the following inequality, which we show by induction:466

∥sk − s′k∥ ≤ Lk
f∥s0 − s′0∥+

k−1∑
ℓ=0

Lk−1−ℓ
f ∥aℓ − a′ℓ∥ ∀k ≥ 0 . (8)
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The base case k = 0 holds trivially. Assume it holds for time k − 1 (IH). We then have:467

∥sk − s′k∥ =
∥∥f(sk−1, ak−1)− f(s′k−1, a

′
k−1)

∥∥ (9)

≤ Lf

(
∥sk−1 − s′k−1∥+ ∥ak−1 − a′k−1∥

)
(10)

(IH)

≤ Lf

(
Lk−1
f ∥s0 − s′0∥+

k−2∑
ℓ=0

Lk−2−ℓ
f ∥aℓ − a′ℓ∥+ ∥ak−1 − a′k−1∥

)
(11)

= Lk
f∥s0 − s′0∥+

k−1∑
ℓ=0

Lk−1−ℓ
f ∥aℓ − a′ℓ∥ . (12)

To show (6), note that under the same control laws we have, by (8):468

∥sk − s′k∥ ≤ Lk
f∥s0 − s′0∥ =⇒ |r(sk, ak)− r(s′k, ak)| ≤ LrL

k
f∥s0 − s′0∥ =⇒ (13)

469

|q(s0,a)− q(s′0,a)| ≤
∞∑
k=0

γkLrL
k
f∥s0 − s′0∥ = L∥s0 − s′0∥. (14)

What remains is to show (7):470

|max
a

q(s0,a)−max
a′

q(s′0,a
′)| ≤ max

a
|q(s0,a)− q(s′0,a)| (15)

≤ max
a

L∥s0 − s′0∥ = L∥s0 − s′0∥ (16)

where the first inequality follows from the following lemma:

|max
x

f(x)−max
x

g(x)| ≤ max
x

|f(x)− g(x)|

471

A.3 Proof of Theorem 3.4472

Statement: Let D be a consistent dataset and π as defined in Definition 3.1. Then:

Vlb(s) ≤ V π(s) ≤ V ⋆(s) ∀s.

Proof. To show Vlb(s) ≤ V π(s) we will make use of the following lemma:473

Lemma A.1 ((Bertsekas, 2019)). If there exists V : S → R such that V (s) ≤ r(s, π(s)) +474
γV (f(s, π(s)) ∀s ∈ S, then V (s) ≤ V π .475

We will show Vlb satisfies the inequality in the lemma above. Fix an arbitrary s. Recall:476

Vlb(s) = max
1≤i≤|D|

{Qi − L∥s− si∥} ,

Qlb(s, a) = max
1≤i≤|D|

{Qi − L (∥s− si∥+ ∥a− ai∥)} ,

where for each i we have Qi = Q⋆(si, ai), ai = π⋆(si).477

We want to show:
Vlb(s) ≤ r(s, π(s)) + γVlb

(
f(s, π(s))

)
∀s ∈ S,

or, equivalently,478
T πVlb(s)− Vlb(s) ≥ 0, (17)

where we use the short-hand T πVlb(s) = r(s, π(s)) + γVlb

(
f(s, π(s))

)
for the standard Bellman479

operator (Bertsekas, 2012).480
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Fix a state s. Our policy π acts greedily with respect to Qlb(s, a). With some abuse of notation, let i481
be the corresponding maximizer of Qlb for that given s. This means a tuple (si, ai ≡ π⋆(si)) gives482
the largest value for the left hand side.483

Starting from (17):484

T πVlb(s)− Vlb(s) = r(s, π(s)) + γVlb

(
f(s, π(s))

)
− Vlb(s)

= r(s, ai) + γVlb

(
f(s, ai)

)
− Vlb(s)

= r(s, ai) + γVlb

(
f(s, ai)

)
−Qi + L∥s− si∥

= Q⋆(s, ai)− γV ⋆
(
f(s, ai)

)
+ γVlb(f(s, ai))−Qi + L∥s− si∥

≥ Q⋆(si, ai)︸ ︷︷ ︸
Qi

−L∥s− si∥ − γV ⋆
(
f(s, ai)

)
+ γVlb(f(s, ai))−Qi + L∥s− si∥

= γVlb(f(s, ai))− γV ⋆(f(s, ai)) ≥ 0 ⇐⇒

Vlb

(
f(s, ai)

)
≥ V ⋆

(
f(s, ai)

)
=⇒ Vlb(s

′) = V ⋆(s′).

Ergo the theorem is true as long as Vlb(s
′) = V ⋆(s′) for every successor state s′ = f(si, ai) for485

tuples (si, ai) belonging to the dataset. But this is true, because by Assumption 2.5 our data comes486
from expert trajectories. Therefore Vlb satisfies the condition of the lemma, and then Vlb(s) ≤487
V π(s).488

A.4 Proof of Theorem 3.5489

Statement: Let D, D′ be consistent datasets with D ⊂ D′. Let Vlb and V ′
lb be the lower bounds490

constructed with D and D′ respectively. Then the following non-deterioration condition holds:491

• Vlb(s) ≤ V ′
lb(s), ∀s ∈ S, and492

• V π(s) ≤ V π′
(s), ∀s ∈ ΠS [D′\D],493

where ΠS [D] ≜ {si : ∃ai, Qi such that (si, ai, Qi) ∈ D}. Furthermore, if there exists s′ ∈494
ΠS [D′\D] and a neighborhood N(s′) such that sups∈N(s′) V

π(s) < V ⋆(s′), then strict improve-495
ment exists in N(s′):496

• Vlb(s) < V ′
lb(s), ∀s ∈ N(s′), and497

• V π(s) < V π′
(s), ∀s ∈ N(s′).498

Proof. We start with the non-deterioration conditions. Note D ⊂ D′ =⇒ |D| ≤ |D′| and
therefore:

∀s ∈ S Vlb(s) = max
1≤i≤|D|

{Qi − L∥s− si∥} ≤ max
1≤i≤|D′|

{Qi − L∥s− si∥} ,

proving the first point. For the second one, note that ∀s ∈ ΠS [D′\D] we have V π′
(s) = V ⋆(s) ≥499

V π(s).500

We now show the strict-improvement conditions. Assuming: sups∈B(s′) V
π(s) < V ⋆(s′).501

We will show V ′
lb(s) > V π(s) on some neighborhood N(s′). Note that adding the triplet (s′, a′, Q′)

yields:

V ′
lb(s) ≥ Q′︸︷︷︸

=V ⋆(s′)

−L∥s− s′∥ > V π(s) ⇐⇒ Q′ − V π(s)

L
> ∥s− s′∥

Note Q′ − V π(s) ≥ Q′ − sups∈B(s′) V
π(s) =: ∆V . Then, if |s − s′∥ < ∆V

L and s ∈ B(s′), we
have V ′

lb(s) > V π(s), as desired. Invoking Theorem 3.4, we know V π′ ≥ V ′
lb =⇒

V π′
(s) > V π(s) ∀s ∈ N(s′) ≜

{
s ∈ B(s′) : ∥s− s′∥ ≤ ∆V

L

}
17
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η ≜ V ⋆(s′)− sup
s∈N(s′)

V π(s) > 0.

By the Lipschitz property of V ⋆, we know

V ⋆(s) ≥ V ⋆(s′)− L∥s− s′∥ ∀s ∈ S.

Define B(s′) =
{
s ∈ S : ∥s− s′∥ ≤ 0.9η

L

}
. Then:

∀s ∈ B(s′) V ⋆(s) ≥ V ⋆(s′)− L∥s− s′∥ = V ′
lb(s) > V π(s).

Since the new policy π′ acts greedily with respect to the lower bound, we have

V π′
(s) ≥ V ′

lb(s) > V π(s) ∀s ∈ B(s′)

502

A.5 Proof of Theorem 3.7503

Statement: If for all s ∈ S there exists si ∈ ΠS [D] such that:

∥s− si∥ ≤ ε

2L
,

then π is ε−suboptimal.504

Proof. By the fact that Vlb(s) ≤ V π(s), we have:

Qi − L∥s− si∥ ≤ V π(s).

On the other hand, by the Lipschitz assumption on V ⋆,

V ⋆(s) ≤
≡Qi︷ ︸︸ ︷

V ⋆(si)+L∥s− si∥

We substract these two inequalities and enforce the ε-suboptimality:

V ⋆(s)− V π(s) ≤ Qi + L∥s− si∥ − V π(s) ≤ 2L∥s− si∥ ≤ ε =⇒ ∥s− si∥ ≤ ε

2L

505

A.6 Proof of Theorem 4.1506

Statement: Let ∆e be defineds as in Algorithm 1 for each episode e. Let S0 ≜ supp(ρ).507

i) If for the last n episodes no new data has been collected, then with probability at least 1 − δ,
we have Ps∼ρ [V

⋆(s)− V π(s) ≤ ε] ≥ p, provided:

n ≥ 1

1− p
log

1

δ

ii) Suppose ∆̄n ≜ 1
n

∑n
e=1 ∆e ≤ ε

2L . Then with probability at least 1 − δ we have
Es∼ρ [V

⋆(s)− V π(s)] ≤ ε, provided ∆̄n ≤ ε
2L and

n ≥ 2L2 diam(S0)

(ε− 2L∆̄n)2
log

1

δ
.

18
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Proof. i) This follows from a standard result in PAC learnability (Kearns & Vazirani, 1994). Let508
the random variable W be defined over S0 such that W (s) ≜ 1 {V ⋆(s)− V π(s) > ε} ∼509
Bernoulli(q). Assume q ≥ 1− p.510

Let ∆i be the distance from the initial state in episode i to its “closest” datapoint, in the sense
of (1) (see Algorithm 1). If no new data has been collected for the last n episodes, this means:

∀1 ≤ i ≤ n ∆i ≤
ε

2L
=⇒ V ⋆(si)− V π(si) ≤ ε

Then:

P

[
n⋂

i=1

{
∆i ≤

ε

2L

}]
≤ P

[
n⋂

i=1

{Wi = 0}

]
= (1−q)n ≤ pn ≤ e−(1−p)n ≤ δ =⇒ n ≥ 1

1− p
log

1

δ
.

where in the second inequality we use the approximation (1− x) ≤ e−x for all x ∈ [0, 1].511

ii) We consider the last n rounds of the algorithm, and define:

Ve ≜ V ⋆(se)− V π(se) e = 1 . . . n

where se ∼ ρ was the state sampled at episode e. Clearly

E [Ve] = Es∼ρ [V
⋆(s)− V π(s)]

Notice, by Theorem 3.7 that since:

2L∆e ≤ ε =⇒ Ve ≤ ε,

we have the event inclusion
{2L∆eε} ⊃ {Ve ≤ ε} .

Furthermore, ∆e are bounded almost surely:

0 ≤ ∆e ≤ sup
s,s′∈S

∥s− s′∥ = diam(S0),

where S0 = supp(ρ). Applying Hoeffding’s bound (Thm. 2.2.6 in (Vershynin, 2018)):512

P
[
V̄n − Es∼ρ [V

⋆(s)− V π(s)] ≤ −t
]
≤ P

[
∆̄n − E∆ ≤ −t

]
≤ exp

(
−2t2n

4L2 diam2(S0)

)
≤ δ =⇒

513

n ≥ 2L2 diam2(S0)

t2
log

1

δ

Choosing t = ε− 2L∆̄n (and 0 < t by assumption) gives the desired result.514

515
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B Policy evaluation/improvement with suboptimal data516

What happens if the demonstrations come from a suboptimal policy? We provide theoretical insight517
by extending theorems 3.4–3.5 and with numerical simulations that serve as proof of concept to our518
approach.519

Theorem B.1 (Policy improvement with suboptimal data). Let D = {(si, ai, Qi)}i be a dataset520
containing trajectories collected by a policy π̃, i.e. ai = π̃(si), Qi = Qπ̃(si, ai). Assume Qπ̃ is521
L-Lipschitz. Define the lower bounds Q̃lb and Ṽlb analogously to (1) and (2).522

Let π(s) = argmaxa∈A Q̃lb(s, a). Then:523

i) (Evaluation) Ṽlb ≤ V π ≤ V ⋆(s) ∀s.524

ii) (Improvement) Assume V π(s) ≤ V π̃(s) ∀s. Then, if D′ ⊃ D =⇒ V π(s) ≤ V π′
(s) ∀s ∈525

ΠS [D′\D] .526

Experiments To support the discussion in Section 3, we used the Pendulum Swing-Up en-527
vironment from the DeepMind Control Suite to investigate the case where the dataset is528
generated by a suboptimal policy.529

The environment is a nonlinear control problem where the goal is to swing up and stabilize a freely530
hanging pendulum. The state consists of the pendulum’s angular position and velocity, dim(S) = 2,531
and the action space is a single torque input, dim(A) = 1.532

To generate suboptimal trajectories, we trained an agent using Proximal Policy533
Optimization (PPO) (Schulman et al., 2017) with Stable-Baselines3 (Raffin et al.,534
2021). The expert was trained for 1 million timesteps with a discount factor of γ = 0.99 and a535
batch size of 256.536

For evaluation, we set the suboptimality gap to ε = 130 and ran the environment with different537
seeds of the evaluation space and evaluated N = 50 rollouts per episode. The NPP algorithm used538
a Lipschitz constant of L = 4300 and a horizon of H = 1000. As shown in figure 7, the rightmost539
plot, prior to the 320th episode, the surrogate gap is below ε for consecutive episodes.540

Figure 7: Training curves for Pendulum Swing-Up with target suboptimality ε = 130, with
results averaged over 4 seeds. Left: Episodic return of policy π (in blue) and expert (in orange) at
different stages of training. N = 50 rollouts are performed at each point; solid line corresponds to
the median and shaded area to a 95% confidence interval. Middle-left: size of the dataset. Middle-
right: calls to the TrajectoryOptimizer oracle (notice calls are made on approximately one
third of the episodes). Right: surrogate gap Vub − Vlb for the initial states. Purple dashed lines
correspond to the hitting times (one per seed) for reaching the target suboptimality gap.

C Environment testing541

We ran 1000 episodes of the optimal controller for both lqr environments, in order to come up with542
an estimate of the Lipschitz constant for the value function under the optimal policy. The results are543
on Figures 8 and 9.544
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Figure 8: Statistics for lqr_2_1. The right-most histogram justifies the choice of L ≈ 50.
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D Additional experimental results545
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Figure 10: Dataset collected by the policy at different stages of training on environment lqr_2_1.

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x 2

Episode 0.  size( ) = 309

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x 2

Episode 20.  size( ) = 3145

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x 2

Episode 40.  size( ) = 5467

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x 2

Episode 60.  size( ) = 8375

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x 2

Episode 80.  size( ) = 11531

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x 2

Episode 100.  size( ) = 14737

0

2

4

6

8

10

12

14

0

5

10

15

20

25

30

35

0

10

20

30

40

0
5
10
15
20
25
30
35
40

0

10

20

30

40

0

10

20

30

40

Figure 11: Dataset collected by the policy at different stages of training on environment lqr_6_2.
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