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Two-Stage Electricity Market Mechanism with
Supply Function Bidding and Storage Degradation

Rajni Kant Bansal, Enrique Mallada, and Patricia Hidalgo-Gonzalez

Abstract—We propose novel market mechanisms for a two-
stage, multi-interval electricity market that includes storage,
generators, and uncertain net demand (defined as demand minus
variable renewable generation). Drawing ideas from the supply
function equilibrium, we introduce novel market mechanisms,
where storage bids cycle depths in the day-ahead and charge-
discharge power bids in the real-time market for last-minute
adjustments. In the first mechanism, storage submits independent
bids in each stage. The system operator clears the market
sequentially based on these bids; however, the cumulative dis-
patch cost temporally couples the storage operator’s decisions
as they seek to maximize profit across both stages. Although
these market mechanisms, under additional model assumptions,
result in a unique competitive equilibrium, it may not be feasible
for real-time market operations. As an alternative, we propose
a decision-aware market mechanism, i.e., an independent bid in
the day-ahead market and a day-ahead decision-aware bid in
the real-time market. We demonstrate that incorporating day-
ahead decisions - i.e., a decision-aware market mechanism -
into the bidding function offers several advantages. Numerical
experiments using New York ISO data show that the proposed
mechanism can achieve savings of up to 68% compared to current
market practices.

Index Terms—Electricity market, equilibrium analysis, supply
function bidding, two-stage settlement, storage degradation.

I. INTRODUCTION

ENERGY storage systems, such as grid-scale lithium-
ion batteries, are being considered across the grid for

essential services. Recent regulation that allows market par-
ticipation of emerging technologies, including energy storage,
have further increased their adoption in electricity markets [1]–
[3]. In particular, several works have investigated the benefits
of energy storage for system reliability and power quality,
e.g., complementing renewable energy resources, supporting
transmission and distribution networks, etc. [4]–[6]. However,
determining energy storage’s marginal operation costs remains
a key challenge in resource schedule and efficient market clear-
ing. Unlike existing fuel-based generators, where marginal
costs depend on energy supply, or variable renewable energy
resources, with nearly zero operating costs, the degradation
incurred due to charge-discharge cycles constitutes the bulk
of the operation cost for energy storage [7]–[9].

Recent efforts to develop participation bids while account-
ing for the operation cost of storage can be broadly clas-
sified into two categories. The first approach relies on cre-
ating an optimal sequence of charge-discharge energy bids,
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i.e., price-quantity pairs [10]–[15]. For instance, the work
in [10], [11] focuses on maximizing social welfare from a
market perspective and propose bidding the fraction of charge-
discharge power while revealing its true operating cost to
the system operator. Meanwhile, [12] and [13] consider the
perspective of individual resource owners to maximize their
profit while either assuming or estimating unknown prices in
markets. Alternatively, references [14] and [15] use a Bilevel
optimization framework, with the energy storage owner as
the leader maximizing its profit and the market operator as
the follower maximizing social welfare, assuming truthful
participation from other market players. However, the resulting
market mechanisms based on energy bids require stringent
conditions to align with the social optimum, do not consider
the impact of decisions of other market players, and may result
in incentive-misaligned market outcomes [16].

The second approach relies on developing a charge-
discharge cycle depth or state of charge (SoC) based charge-
discharge bids to account for SoC-dependent physical charac-
teristics, e.g., storage degradation [17]–[19]. For instance, [17]
proposes a SoC segment market model that allows storage to
submit bids by SoC segments, while the market operator mon-
itors SoC to update the bids during market clearing. As SoC-
dependent bids may lead to non-convex formulations, [18],
[19] introduce an alternative strategy using monotonic bids
within a joint energy-reserve market clearing. However, these
studies offer limited insight into how storage decisions affect
the overall market equilibrium. To the best of our knowledge,
our earlier work [16] is the first to propose an energy-cycling
supply function based on charge-discharge cycle depths and to
model the resulting market equilibrium due to the competition
between market players. These formulations typically focus
on a single stage and ignore how decisions made at one stage
impact subsequent stages.

This paper explores mixed market mechanisms for energy
storage participation alongside generators and uncertain net
demand in a two-stage multi-interval market consisting of a
day-ahead market and a real-time market. In this novel mech-
anism, each storage first submits an energy-cycling function
to bid charge-discharge cycle depths as a function of per-cycle
prices. Simultaneously, generators bid supply functions to
dispatch power as a function of prices in the day-ahead market.
The day-ahead market then clears based on the forecast for
the next day. In contrast to the day-ahead market, in the
real-time market both storage and generators bid power as
a function of prices to adjust their day-ahead commitments.
The real-time market clears sequentially and optimizes the
dispatch decision with an updated forecast for the demand
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in a rolling time horizon window fashion that includes one
binding and multiple advisory intervals. This two-stage market
mechanism is implemented via a convex optimization problem
that utilizes a quadratic cost for dispatching generators and
a convex degradation cost function as a combination of the
Rainflow cycle counting algorithm with a cycle stress function
for storage operation [16], [20], [21].

We consider two participation strategies for storage. The
first involves participants submitting independent supply func-
tions in two stages. The system operator clears the market
sequentially based on these bids; however, the cumulative
dispatch cost temporally couples the storage operator’s de-
cisions as they seek to maximize profit across both stages.
While this mechanism is guaranteed to have a competitive
equilibrium, storage dispatch in the real-time market is locally
constrained, requiring a customized iterative algorithm, which
may not be feasible for real-time operations. To address this,
we propose an alternative where storage incorporates its day-
ahead decision in the bid function. Storage first bids an energy-
cycling function for the day-ahead dispatch and then submits a
real-time supply function that maps dispatch power to prices.

Contributions: The main contributions include:
1) Uniform price market mechanism: First, drawing ideas

from the supply function equilibrium for generators in
the existing market design, we propose a time-varying
uniform price market mechanism for storage participa-
tion in the day-ahead market, i.e., a uniform per-cycle
price for heterogeneous storage units. We then show
that the resulting competitive equilibrium in the day-
ahead market aligns with the underlying social planner
problem, signaling an efficient market design.

2) Day-Ahead unaware bidding: Second, under the as-
sumption of uniform prices in the market, we propose an
independent participation strategy in two-stage markets,
i.e., day-ahead commitment (decision) unaware bidding
at the real-time stage. We then characterize the closed-
form solution of the competitive equilibrium.

3) Day-Ahead aware bidding: Since the closed-form equi-
librium analysis in the previous market design requires
additional market model assumptions, we then pro-
pose an alternative market mechanism, i.e., a day-ahead
decision-aware market participation. In this mechanism,
each storage unit submits a supply function that reflects
its day-ahead commitment in the real-time stage. Our
equilibrium analysis shows that competitive equilibrium
always exists, and it can be solved using off-the-shelf
convex optimization solvers.

4) Numerical study: Lastly, we provide a case study for
the proposed market mechanism and compare it with
the social planner problem as we vary the physical
characteristics of energy storage. Our analysis shows that
the proposed mechanism operates within the bounds of
the benchmark social planner solution and achieves up
to 68% savings in the cycling costs.

Organization: The rest of the paper is organized as follows:
Section II describes the market model and social planner
problem, Section III introduces the market mechanisms for
day-ahead and real-time markets, Section IV discusses the day-

ahead-unaware market model and uniform price mechanism
for the day-ahead market, Section V covers the alternative day-
ahead-aware market model and a case study, and Section VI
concludes the paper.

Notation: We use || · ||22 to denote the Euclidean norm
and ⟨·, ·⟩ to denote the inner product. Also, f(a; b) denotes a
function of independent variable a with b as a parameter.

II. MARKET MODEL

A. Model Preliminaries

Consider a two-stage market consisting of a day-ahead and
a real-time market, where a set G of generators and a set
S of storage units participate to meet uncertain net demand
(demand minus renewable generation) over a time horizon t ∈
T := {1, ..., T}.

1) Day-Ahead market: The day-ahead market is cleared
based on the forecast for the following day. Specifically, we
formulate a two-day optimization horizon, as illustrated in
Figure 1. Day 1 consists of T periods as the binding period,
with the demand forecast denoted by dd,bin ∈ RT . Day 2
also comprises of T periods as the advisory period, with the
associated demand forecast denoted by dd,adv ∈ RT .

The optimal decisions made during the binding period are
implemented in the market, whereas the optimal solutions
for the advisory period may be revised later. We denote the
generator dispatch for j ∈ G by (gd,binj , gd,advj ) ∈ RT for
the binding and advisory periods, respectively. The dispatch
of generator j is subject to capacity constraints,

gd
j,t

≤ gd,binj,t ≤ gdj,t, gd
j,t

≤ gd,advj,t ≤ gdj,t, t ∈ {1, .., T} (1)

where gd
j,t
, gdj,t denote the minimum and maximum generation

limits, respectively. Similarly, the storage dispatch for s ∈ S –
i.e., discharge (positive) or charge (negative) rate – is denoted
by (ud,bin

s , ud,adv
s ) ∈ RT , and is bounded as:

ud
s,t ≤ ud,bin

s,t ≤ ud
s,t, u

d
s,t ≤ ud,adv

s,t ≤ ud
s,t, t ∈ {1, .., T}.

(2)

Here ud
s,t, u

d
s,t denote the minimum and maximum storage

rate limits, respectively. Furthermore, the stored energy in
storage unit s, represented by a normalized state-of-charge
(SoC) profile, is given by (xd,bin

s , xd,adv
s ) ∈ RT+1, and evolves

over time horizon T as,

xd,bin
s,t − xd,bin

s,t−1=
1

Es
ud,bin
s,t , xd,adv

s,t −xd,adv
s,t−1=

1

Es
ud,bin
s,t . (3)

Here xd,bin
s,0 , xd,adv

s,0 denotes the initial SoC. The SoC evolution
can be compactly expressed as

Axd,bin
s = − 1

Es
ud,bin
s , Axd,adv

s = − 1

Es
ud,adv
s (4)

where

A =


−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . . . . . . . . 0
0 . . . 0 −1 1

 ∈ RT×(T+1).
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Fig. 1. Sequential decision making using rolling horizon framework.

Moreover, the normalized SoC of storage s is bounded as,

0 ≤ xd,bin
s,t ≤ 1, 0 ≤ xd,adv

s,t ≤ 1, t ∈ {1, .., T}. (5)

Lastly, we assume periodicity constraints on storage to account
for its cyclic nature in current markets, i.e.,

xd,bin
s,0 = xd,bin

s,T = xd,adv
s,0 = xd,adv

s,T . (6)

Substituting (3) in (6), we get∑
t∈T

ud,bin
s,t = 0,

∑
t∈T

ud,adv
s,t = 0. (7)

For simplicity, we define the combined demand forecast
vector as dd := [dd,bin; dd,adv] ∈ R2T . Similarly, we
define the combined generator dispatch vector as gdj :=

[gd,binj ; gd,advj ] ∈ R2T , the combined storage dispatch vector
as ud

s := [ud,bin
s ;ud,adv

s ] ∈ R2T , and the combined SoC profile
vector as xd

s := [xd,bin
s ;xd,adv

s ] ∈ R2T+2

2) Real-Time market: The real-time market operates using
a rolling T-period time horizon, with the real-time demand
for the rolling window denoted as dr ∈ RT . Specifically, the
market clears sequentially based on the realized demand for
the immediate period, denoted as t̂+1, and an updated forecast
for the remaining horizon, i.e., τ ∈ {t̂ + 2, ..., t̂ + T}, as
illustrated in Figure 1. Without loss of generality, we assume
that both markets operate on the same hourly timescale,
although the analysis can be extended to other timescales. As
the time window rolls forward, the operator receives a perfect
forecast for the immediate period and updated forecasts for
future advisory periods. The operator minimizes the dispatch
cost, subject to operational constraints.

The dispatch of generator j ∈ G in rolling real-time window
is denoted as grj ∈ RT , subject to capacity constraints,

gr
j,τ

≤ grj,τ ≤ grj,τ , τ ∈ {t̂+ 1, ..., t̂+ T} (8)

where gr
j,τ

, grj,τ denote the minimum and maximum generation
limits, respectively. Similarly, the dispatch of storage s ∈ S
in the real-time market is denoted as ur

s ∈ RT , bounded as,

ur
s,τ ≤ ur

s,τ ≤ ur
s,τ , τ ∈ {t̂+ 1, ..., t̂+ T}. (9)

Here ur
s,τ , u

r
s,τ denote the minimum and maximum storage

rate limits, respectively.

We define the net two-stage demand d ∈ RT over the rolling
horizon τ ∈ {t̂+ 1, ..., t̂+ T} as:

dτ := ddτ + drτ . (10)

Similarly, the net output gj of generator j and us of storage
s over the rolling horizon τ ∈ {t̂+ 1, ..., t̂+ T}, is:

gj,τ := gdj,τ + grj,τ (11a)

us,τ := ud
s,τ + ur

s,τ (11b)

and are subject to capacity constraints as,

g
j,τ

≤ gj,τ ≤ gj,τ , τ ∈ {t̂+ 1, ..., t̂+ T} (12a)

us,τ ≤ us,τ ≤ us,τ , τ ∈ {t̂+ 1, ..., t̂+ T}. (12b)

Here the pairs (gj,τ , gj,τ ), (us,τ , us,τ ) represents the max-
imum and minimum capacity limits for generation j and
storage s, respectively. The net SoC profile over the rolling
horizon τ ∈ {t̂+1, ..., t̂+T}, as denoted by xs ∈ RT+1 with
initial SoC xs,τ−1 corresponding to the net storage dispatch
us, follows:

Axs = − 1

Es
us, (13)

and is bounded as

0 ≤ xs,τ ≤ 1, τ ∈ {t̂+ 1, ..., t̂+ T}. (14)

Lastly, the SoC profile is subject to periodicity constraints as,∑t̂+T

τ=t̂+1
us,τ = 0, (15)

Since the real-time market is dispatched sequentially to accom-
modate for last-minute adjustments owing to forecast errors,
we relax the periodicity constraint (15) to allow storage for
any such immediate adjustments.

B. Social Planner

The social planner’s problem that aims to minimize the cost
of net supply-demand balance, assuming perfect foresight for
net demand dτ , τ ∈ {1, .., T}, is given by

min
gj ,j∈G,us,s∈S,xs,s∈S

∑
j∈G

Cj(gj) +
∑
s∈G

Cs(us) (16a)

s.t.
T∑

τ=1

∑
j∈G

gj,τ+

T∑
τ=1

∑
s∈S

us,τ=dτ (16b)

(12a), (12b), (13), (14), (15)

where (16b) denotes the power balance constraint over two
stages. In this paper, we assume a quadratic cost function for
the generators, given by

Cj(gj) =
cj
2
||gj ||22 + aj⟨1, gj⟩ (17)

where 1 represents a vector of all ones, i.e., each element as
1, and cj , aj are the cost coefficients1. For storage s, we adopt
the convex cycle-based degradation cost as its operational
cost. It combines the Rainflow cycle counting algorithm with
a cycle stress function to identify and penalize the cost of

1For ease of analysis, we assume that aj = 0. However, the analysis is
generalizable for the case aj ̸= 0.
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Fig. 2. An example storage (a.1) dispatch and associated (a.2) SoC profile.
ϵ−perturbed storage (b.1) dispatch and associated (b.2) SoC profile.

charge-discharge cycles [16]. In particular, the Rainflow cycle
algorithm first identifies the vector of temporally coupled
charge-discharge cycles νs ∈ RT associated with the net SoC
profile us of storage s, i.e.,

νs := Rainflow(us) = N(us)us. (18)

Here the matrix N(us) is a function of the storage dispatch
us and represents the non-smooth piece-wise linear map
between the storage dispatch profile and half-cycle depths.
More specifically, the matrix N(us) is defined as [16]

N(us) = − 1

E
M(xs)

TA† (19)

where the matrix M(xs) ∈ RT×T is the incidence matrix as-
sociated with a directed graph for the SoC profile xs [20]. Here
A† represents the Moore–Penrose generalized inverse [22] of
the matrix A, defined in the equation (4). We next illustrate
this N -matrix and the underlying non-smooth map with a toy
example SoC profile, see, e.g., [16] for more details.

Example 1. The Rainflow counting algorithm iteratively
compares the consecutive SoC points to extract the charge-
discharge half-cycles [20]. For the example storage dispatch
and SoC profile, as shown in the panels (a.1) and (a.2) in
Figure 2, respectively, there is only one half-cycle of depth
(xs,0 − xs,3) and no full cycle exists. The associated matrix
N(us) is given by,

N(us)=
1

Es

1 1 1
0 0 0
0 0 0

, s.t. νs=N(us)us=

∑3
t=1 us,t

Es
.

The cycle stress function Φ(·) : [0, 1]T 7→ [0, 1], often
approximated as a quadratic penalty function [21], quantifies
the normalized degradation associated with cycle depths νs:

Φ(νs) :=
ρs
2
||νs||22 (20)

where ρs is the quadratic cost coefficient. Therefore, the cost
function is given by

Cs(us) =
ρsBsEs

2
||νs||22 =

bs
2
||N(us)us||22 (21)

where bs := ρsBsEs is the cost coefficient. Here Bs denotes
the storage capital cost such that BsEs represents the replace-
ment cost of storage. Furthermore, the piece-wise linear map

results in a non-differentiable cost function, as illustrated for
the example in Figure 2 below.

Remark 1. The piecewise linear map between the storage dis-
patch and half-cycles results in a piecewise differentiable cost
function, i.e., at points of non-differentiability, ∃ m possible
matrices Nk(us), k ∈ {1, ...,m}, associated with a storage
profile us, such that the following relation holds:

νs = Nk(us)us = N(us)us,∀k ∈ {1, ...,m}.

We illustrate non-differentiability with a toy example below.

Example 2. The example profile in Figure 2 is an interesting
boundary case. If perturbed, i.e., xs±ϵ for any ϵ → 0+ shown
in the panels (b.1) and (b.2) in Figure 2, respectively, leads to
different associated N matrices. The storage profile with +ϵ
perturbation is characteristically different from the profile in
panel (a.2) in Figure 2, i.e., the Rainflow algorithm extracts
one full cycle. However, the profile with −ϵ perturbation is
characteristically same with no full cycles. In particular, the
N matrices are:

N(us+ϵ)=
1

Es

1 1 1
0 −1 0
0 −1 0

, N(us−ϵ)=
1

Es

1 1 1
0 0 0
0 0 0


but the depth vector is the same, i.e.,

νs = N(us)us = N(us+ϵ)us = N(us−ϵ)us.

III. TWO-STAGE MARKET MECHANISM

In this section, we describe the two-stage market clearing.
We assume participants bid supply functions that map dispatch
to marginal price, reflecting their willingness to participate. In
practice, a resource submits a set of prices and generation
quantities as a step function, which may result in a non-
convex formulation. Therefore, smooth supply functions are
often used in the literature for equilibrium analysis and so-
lution tractability [23]–[25]. The resulting formulation, albeit
optimistic, provides meaningful insights into the competition
and behavior of the participants.

A. Day-Ahead Market
For ease of exposition, we focus on the binding interval

of the day-ahead market. The advisory interval on Day 2 is
cleared similarly in the day-ahead market. Each generator j
submits a supply function parameterized by αd

j ∈ R in day-
ahead market as,

gdj = αd
jλ

d (22)

where λd ∈ RT denotes the clearing prices in the day
ahead. Analogously, each storage s submits an energy cycling
function parameterized by βd

s ∈ R that maps cycle depths
νds ∈ RT to per cycle prices θds ∈ RT , as

νds = βd
s θ

d
s . (23)

The market operator collects all the bids and associates a cost
function with generator j as,∑

t∈T

∫ gd
j,t

0

λd
t ∂g

d
j,t =

∑
t∈T

∫ gd
j,t

0

1

αd
j

gdj,t∂g
d
j,t =

(
gdj,t
)2

2αd
j

(24)
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and with storage s as,

∑
t∈T

∫ νd
s,t

0

θds,t∂ν
d
s,t =

∑
t∈T

∫ νd
s,t

0

1

βd
s

νds,t∂ν
d
s,t =

(
νds,t
)2

2βd
s

.

(25)

Given the bids (αd
j , j ∈ G, βd

s , s ∈ S), the operator solves the
day-ahead market clearing problem that minimizes the cost of
supply-demand balance in the day-ahead market, given by:

min
gd
j ,j∈G,(ud

s ,ν
d
s ),s∈S

∑
j∈G

∑
t∈T

(gdj,t)
2

2αd
j

+
∑
s∈S

∑
t∈T

(νds,t)
2

2βd
s

(26a)

s.t.
∑
j∈G

gdj +
∑
s∈S

ud
s = dd (26b)

νds = N(ud
s)u

d
s (26c)

(1), (2), (5), (7)

where (26c) denotes the constraint associated with the Rain-
flow algorithm. The market clearing gives the optimal dispatch
and prices, such that generator j dispatches gj and gets paid
⟨λd, gdj ⟩ while storage s produces a cycle depth schedule νds
and gets paid ⟨θds , νds ⟩. Here the prices λd, θds are given by
the dual variables corresponding to the constraints (26b) and
(26c), respectively.

In the day-ahead market, participants are competing against
each other to maximize their profit. We assume participants as
price-takers and the individual problems of generator j, is

max
gd
j

⟨λd, gdj ⟩ − Cj(g
d
j ), s.t. (1), (22). (27)

Similarly, the individual problem of storage s, is

max
(ud

s ,ν
d
s )

⟨θds , νds ⟩ − Cs(u
d
s) s.t. (2), (23). (28)

Since the participants are price-takers, we assume that they
do not anticipate their decisions in the real-time market.

B. Real-Time Market

In the real-time market, as the window rolls forward, we
have the participants’ decision (gdj,τ , u

d
s,τ ), τ ∈ {t̂+ 1, ..., t̂+

T} from the day-ahead market. Analogous to the day-ahead
stage, each generator j submits a supply function f :R×RT→
RT, parameterized with αr

j ∈ R,

grj = f(λr;αr
j) (29)

where λr ∈ RT denotes the clearing prices in the real-time.
However, unlike storage in day-ahead markets, in the real-time
market storage s bids a supply function h : R × RT → RT ,
parameterized by βr

s ∈ R, as

ur
s = h(λr;βr

s ). (30)

Similarly, in the real-time, the market operator associates a
cost function with generator j as,

Cf (g
r
j ;α

r
j) :=

∑
t∈T

∫ gr
j,t

0

λr
t∂g

r
j,t=

∑
t∈T

∫ gr
j,t

0

f−1(grj ;α
r
j)∂g

r
j,t (31)

and with storage s as,

Ch(u
r
s;β

r
j ) :=

∑
t∈T

∫ ur
s,t

0

λr
s,t∂u

r
s,t=

∑
t∈T

∫ ur
s,t

0

h−1(ur
s,t;β

r
s )∂u

r
s,t (32)

Here f−1(·) and h−1(·) represents the unique inverse func-
tions, respectively. Given the bids (αr

j , j ∈ G, βr
s , s ∈ S),

the operator clears the real-time market and meets the supply-
demand balance for each time period t ∈ T , as given by:

min
gr
j ,j∈G,ur

s,s∈S

∑
j∈G

Cf (g
r
j ;α

r
j)+
∑
s∈S

Ch(u
r
s;β

r
s ) (33a)

s.t.
∑
j∈G

grj +
∑
s∈S

ur
s = dr (33b)

(8), (9), (12), (14), (15).

Given the prices in the real-time market and the participant’s
decision gdj,τ , τ ∈ {t̂+1, ..., t̂+ T} in the day-ahead market,
the individual problem of generator j is given by,

max
gr
j

⟨λd, gdj ⟩+ ⟨λr, grj ⟩− Cj(g
d
j + grj ) s.t. (12a), (29). (34)

Similarly, given the prices in the real-time market and the
participant’s decision ud

s,τ , τ ∈ {t̂+ 1, ..., t̂+ T} in the day-
ahead market, the individual problem of storage s is

max
ur
s

⟨θds , νds ⟩+ ⟨λr, ur
s⟩−Cs(u

d
s + ur

s) s.t. (12b), (30). (35)

We refer to this market mechanism as a mixed market
mechanism (MM), where storage submits cycle depth in the
day-ahead market and is paid based on per-cycle prices. In
the real-time market, storage submits conventional charge-
discharge power bids and is paid according to energy prices.

C. Market Equilibrium

In this subsection, we characterize the properties of compet-
itive equilibrium in a two-stage market, such that the market
clears and participants do not deviate from their bid.

Definition 1. Each stage of a two-stage market is at the
competitive equilibrium if the participant bids and the clearing
prices, i.e., (λd, θds , α

d
j , β

d
s ) and (λr, αr

j , β
r
s ), in day-ahead and

real-time markets, respectively, satisfy:
1) The bid αd

j (α
r
j) of generator j in the day-ahead

(real-time) market maximizes its profit, given by equa-
tions (28) and (35), respectively.

2) The bid βd
s (β

r
s ) of storage s in the day-ahead (real-time)

market maximizes its profit, given by equations (27) and
(34), respectively.

3) The inelastic demand dd, dr in the day-ahead and the
real-time market is met, resulting in clearing prices
λd, θds and λr, respectively.

IV. DAY-AHEAD DECISION UNAWARE MARKET MODEL

In this section, we investigate whether the mixed market
mechanism, where storage submits a cycle-depth bid in the
day ahead and a day-ahead-unaware bid in real-time, leads to
a competitive equilibrium. For ease of exposition, we consider
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a simplified setting in this section where we only consider con-
straints (7), (15), (26b), (26c), and (33b) in the market clearing.
However, our results generalize beyond this assumption, at the
cost of a more involved analysis. We first provide a proposition
that will enable us to define a time-varying uniform price
market mechanism in the day-ahead market, which generates
uniform prices for the participating heterogeneous storage
units. It will also allow us to characterize the competitive
equilibrium of the mixed market mechanism.

Proposition 1. For any participants’ bids (αd
j , β

d
s ), where∑

j∈G
αd
j ̸= 0,

∑
s∈S

βd
s ̸= 0, there exists a unique set of propor-

tionality coefficients

ϵs =
βd
s∑

i∈S βd
i

, s ∈ S

such that day-ahead market clearing (26) results in a unique
set of uniform per-cycle prices, i.e., θd∗s := θd∗,∀s ∈ S and the
optimal storage dispatch is proportional to the energy surplus
(defined as net demand minus total generation).

Proof. We begin by deriving the KKT conditions for the
economic dispatch problem (26). Next, we introduce a new
set of primal-dual variables that satisfy these conditions. To
demonstrate that such a primal-dual solution exists uniquely,
we formulate an underlying convex optimization problem.
Finally, we prove that the proposed mechanism results in
uniform prices.

Step 1: For the dispatch problem (26), denote the the dual
variables associated with constraints (7), (26b), and (26c) as
δds , s ∈ S, λd, and θds , s ∈ S, respectively. The KKT conditions
are given by,

dd =
∑
j∈G

gd∗j +
∑
s∈S

ud∗
s , gd∗j = αd

jλ
d∗ (36a)

νd∗s = N(ud∗
s )ud∗

s , νd∗s = βd
s θ

d∗
s (36b)

λd∗ =
∑
k

γkNk(u
d∗
s )TNk(u

d∗
s )ud∗

s + δd∗s 1 (36c)

1Tud∗
s = 0. (36d)

where γk are convex coefficients associated with k ∈ K
possible subgradients of the piecewise linear convex cost of
storage cycling (21), see, e.g., Remark 1, for more details.
However, the per-cycle prices θd∗s are not uniform.

Step 2: Now, we assume a proportional energy storage
dispatch of the form

ûd
s = ϵs(d

d −
∑

j∈G
ĝdj ), where

∑
s∈S

ϵs = 1. (37)

Let’s denote ûd := (dd −
∑

j∈G ĝdj ) such that ûd
s = ϵsû

d.
Further, the dual variables can then be defined in terms of
primal variables, as

λ̂d = αd
j

−1
ĝdj (38a)

ν̂ds = N(ûd
s)û

d
s =⇒ θ̂ds = βd

s

−1
ν̂ds . (38b)

Then, for any participants’ bid (αd
j , β

d
s ), ∃ solution

(ûd, ĝdj , j ∈ G, λ̂d, θ̂ds , s ∈ S) that satisfies the KKT con-
ditions (36) where δ̂ds ∈ R. Therefore, it is locally optimal

solution of the dispatch problem (26). Also, using the [16,
Lemma 1] we can write

N(ûd
s) = N(ϵsû

d) = N(ûd).

Step 3: We next show that such a solution is globally optimal.
Rewriting the KKT conditions (36), we get

d− ûd∗∑
j∈G αd

j

=
∑
k

γk
ϵs
βd∗
s

Nk(u
d∗)TNk(u

d∗)ud∗ + δd∗1 (39a)

1Tud∗ = 0 (39b)

where δd∗s := δd∗ ∀s ∈ S. We next claim that the necessary
conditions (39) is basically the KKT conditions of the convex
optimization below, given by

min
ud

||ud||22
2
∑

j∈G αd
j

− ⟨dd, ud⟩∑
j∈G αd

j

+
||N(ud)ud||22∑

s∈S βd
s

(40a)

s.t. 1Tud = 0 (40b)

where ud∗ is the optimal primal variable and δd∗ is the optimal
dual variable associated with the constraint (40b). Using the
fact that the storage cost function (21) is convex, we can
observe that the piece-wise quadratic objective (40a) is convex.
Further, the constraint (40b) is affine and linear constraint
qualifications are satisfied.

Step 4: Therefore, the market clearing generates the uniform
per-cycle prices, given by:

θ̂d∗s =
1

βd
s

N(ûd∗
s )ûd∗

s =
ϵs
βd∗
s

N(ûd∗)ûd∗ =
1∑

s∈S
βd∗
s

N(ûd∗)ûd∗

Hence, for the bids (αd
j , β

d
s ), ∃ a unique primal-dual solution

(ud)∗, δ∗ to the convex optimization problem (40) which sat-
isfies the KKT conditions (39). This completes the proof.

Similar to generators in the existing market, the proposition
provides a mechanism for market operators to assign a uniform
price to storage units, accounting for their operational costs,
such as degradation costs. Additionally, in the uniform price
market mechanism, participants reveal their true cost func-
tions, enabling the day-ahead market to clear efficiently. The
proof relies on the fact that, under the price-taking assumption,
storage units treat market prices as given and are incentivized
to disclose their true costs at the competitive equilibrium. For
a similar result in a non-uniform price market mechanism,
please refer to the work in [16].

A. Day-Ahead Decision Unaware Real-Time Model

In this subsection, we discuss the day-ahead decision un-
aware participation strategy in the real-time market and char-
acterize the competitive equilibrium. Each generator j bids

grj = αr
jλ

r (41)

and storage s bids

ur
s = βr

sλ
r (42)

in the real-time market. Substituting (41) in (34), we get

max
αr

j

⟨λd, gdj ⟩+ αr
j ||λr||22 −

cj
2
||gdj + αr

jλ
r||22. (43)
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Fig. 3. An example storage (a) day-ahead SoC (DA-SoC) profile and actual
two-stage SoC (day-ahead (DA) + real-time (RT)) profile in (b.1) scenarios 1
- (xd

s , x̂s) and (b.2) scenario 2 - (xd
s , x̃s).

Similarly, substituting (42) in (35), we get

max
βr
s

⟨θds, νds ⟩+βr
s ||λr||22−

bs
2
||N(ud

s+βr
sλ

r)(ud
s+βr

sλ
r)||22. (44)

To account for the temporally coupled cost of storage
degradation while making decisions sequentially in the real-
time market, we assume that storage deviations are constrained
in the neighborhood of its day-ahead decision such that

N(ud
s + ur

s) = N(ud
s). (45)

We next illustrate the constraint in equation (45) with a toy
example SoC profile.

Example 3. For the example day-ahead SoC profile, as shown
in panel (a) in Figure 3, the associated N -matrix is given by,

N(ud
s)=

1

Es


−1 −1 −1 0
0 0 0 0
0 0 0 0
0 0 0 1

, s.t. νds =


xd
s,3 − xd

s,0

xd
s,3 − xd

s,4

0
0

.
Now, the net SoC profile x̂s := (xd

s + x̂r
s), with adjustments

in the day-ahead commitments, in panel (b.1) is characteris-
tically similar to the day-ahead profile xd

s , i.e., the N -matrix
remains the same. However, the SoC profile x̃s := (xd

s + x̃r
s)

in panel (b.2) leads to a different N -matrix, as

N(ũs)=
1

Es


−1 −1 −1 0
0 1 0 0
0 1 0 0
0 0 0 1

̸= N(ud
s)

where ûs, ũs denotes the storage dispatch profile associated
with the SoC profile x̂s, x̃s, respectively.

The assumption in equation (45) allows storage to partici-
pate in the market within a simplified setting, e.g., existing
supply function, with the flexibility to change the optimal
bid to account for the degradation cost. However, real-time
market dispatch must constrain the storage to maintain the
piece-wise linear map between cycle depths and SoC profile.
Without such an assumption, the closed-form solution of
the competitive equilibrium cannot be obtained analytically.
Under a uniform price market mechanism, we characterize
the competitive equilibrium in the following Theorem.

Theorem 1. Suppose (45) holds. The competitive equilibrium
in the real-time market, given the participants’ decision in
the day-ahead market, exists uniquely. Precisely, there exists
a unique coefficient ω such that the equilibrium is given by:

λr = ωdr (46a)

αr
j = c−1

j −
< gdj , λ

r >

||λr||22
(46b)

βr
s = b−1

s

||λr||22 − ⟨θds , N(ud
s)λ

r⟩
||N(ud

s)λ
r||22

(46c)

ω=
<λd,dr>

||dr||22
+

∑
j∈G

c−1
j +
∑
s∈S

b−1
s

||dr||22
||
∑

kγkNk(ud
s)d

r||22

−1

(46d)

where γk ≥ 0,
∑

k γk = 1 are the convex coefficients
associated with the subgradients of the piecewise linear convex
cost function (21), see e.g., Remark 1 for more details.

Proof. Given the day-ahead decisions and prices in the real-
time market, we can solve for the optimal bid by taking the
derivative of the convex optimization problem (43), as

||λr||22 −cj(g
d
j +αr

jλ
r)Tλr=0 =⇒ αr

j =c−1
j −

⟨gdj , λr⟩
||λr||22

. (47a)

Similarly, taking the derivative of (44), we get:

||λr||22 −bs

(∑
k

γkNk(u
d
s)(u

d
s+βr

sλ
r)

)T(∑
k

γkNk(u
d
s)

)
λr=0

(48)

where we use N(ud
s + ur

s) = N(ud
s). Here γk are the convex

coefficients associated with the piecewise linear cost of storage
dispatch, see e.g., Remark 1. Solving (27) and (28) for optimal
bids in the day-ahead market, we have

αd∗
s = c−1

j , βd∗
s = b−1

s .

Substituting (18) and (23) in (48), we get

=⇒ ||λr||22−bs

(
νds+βr

sÑ(ud
s)λ

r
)T(

Ñ(ud
s)
)
λr=0 (49a)

=⇒ ||λr||22−
(
θds + bsβ

r
sÑ(ud

s)λ
r
)T(

Ñ(ud
s)
)
λr=0 (49b)

=⇒ βr
s = b−1

s

||λr||22 − ⟨θds , Ñ(ud
s)λ

r⟩
||Ñ(ud

s)λ
r||22

(49c)

where Ñ(ud
s) :=

∑
k γkNk(u

d
s). At the equilibrium, (33b),

(47a), and (49c) must hold simultaneously. Since λr is pro-
portional to dr, let’s assume that ∃ ω ∈ R such that λr = ωdr.
Substituting (22) in (47a), as

αr
j =c−1

j

(
1−< λd, λr >

||λr||22

)
=c−1

j

(
1− 1

ω

< λd, dr >

||dr||22

)
(50a)

=⇒
∑
j∈G

αr
j =

∑
j∈G

c−1
j

(
1− 1

ω

< λd, dr >

||dr||22

)
. (50b)

Similarly, substituting (36c) in (49c) and simplifying as

βr
s =b−1

s

||λr||22 −⟨λd, λr⟩
||
∑

kγkNk(ud
s)λ

r||22
=b−1

s

||dr||22−ω−1⟨λd,dr⟩
||
∑

kγkNk(ud
s)d

r||22
.

(51)
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Substituting (50b) in (51), as

=⇒ βr
s = b−1

s

∑
j∈G αj∑
j∈G c−1

j

||dr||22
||
∑

k γkNk(ud
s)d

r||22
(52a)

=⇒
∑
s∈S

βr
s =

∑
s∈S

b−1
s

∑
j∈G

αj∑
j∈G

c−1
j

||dr||22
||
∑

k γkNk(ud
s)d

r||22
(52b)

where we use the fact that energy dispatch is proportional and
N(ud

s) = N(ud) in the uniform price market mechanism in
equation (52b). Substituting (50b) and (52b) in (33), we get

ω=
<λd, dr>

||dr||22
+

∑
j∈G

c−1
j +
∑
s∈S

b−1
s

||dr||22
||
∑

k γkNk(ud
s)d

r||22

−1

.

Hence, under the price-taking assumption the optimal bid and
clearing prices (αr

j , j ∈ G, βr
s , s ∈ S, λr) exist uniquely.

Although a unique competitive equilibrium exists, solv-
ing it requires a customized iterative algorithm, where bids
and clearing prices are repeatedly updated until conver-
gence.Additionally, the algorithm involves a subroutine to
update the constraint set to ensure that the assumption in
equation (45) holds, see an example SoC profile in Figure 3.
To address these challenges, we propose a modified bidding
approach in the following subsection that accounts for the day-
ahead decisions into the bidding function.

V. DAY-AHEAD DECISION AWARE MARKET MODEL

In this section, we propose an alternative mixed market
mechanism, characterize the competitive equilibrium, and con-
duct a numerical study.

A. Day-Ahead Decision Aware Real-Time Model

In the day-ahead-aware mechanism, participants account
for their day-ahead decisions or commitments in the bidding
function itself. In particular, given the day-ahead decisions,
each generator j bids

grj = αr
jλ

r − gdj (53)

and storage s bids

ur
s = βr

sλ
r − ud

s (54)

in the real-time market. Substituting (53) in (34), the individual
profit maximization problem of generator j, is:

max
αr

j

αr
j ||λr||22 + ⟨λr, gdj ⟩ −

cj
2
||αr

jλ
r||22 (55)

and substituting (54) in (35), we get the individual profit
maximization problem of storage s, as:

max
βr
s

βr
s ||λr||22 + ⟨λr, ud

s⟩ −
bs
2
||N(βr

sλ
r)(βr

sλ
r)||22. (56)

Note that we drop the terms associated with the day-ahead
revenue in (55) and (56), as it does not affect the objective
in the individual problem. Once all the bids (αr

j , β
r
s ) are

collected, the market operator clears the real-time market to
achieve supply-demand balance, given by

dr =
∑

j∈G

(
αr
jλ

r − gdj
)
+
∑

s∈S

(
βr
sλ

r − ud
s

)
. (57)

Theorem 2. The competitive equilibrium of the mixed market
mechanism with day-ahead decision-aware bids in the real-
time market exists uniquely, as

λr = ϕd, (58a)

αr
j = c−1

j , (58b)

βr
s = b−1

s

||λr||22
||N(λr)λ||22

, (58c)

ϕ−1 =

∑
s∈S

b−1
s

||d||22
||N(d)d||22

+
∑
j∈G

c−1
j

 . (58d)

Proof. Writing the derivative of (55) for the optimal bid of
each generator j, we get

||λr||22(1− αr
jcj) = 0 =⇒ αr

j = c−1
j , ∀j ∈ G. (59)

Similarly, we take the derivative of (56) for storage, as

||λr||22−bsβ
r
s ||N(λr)λr||22=0=⇒βr

s=b−1
s

||λr||22
||N(λr)λr||22

(60)

where we use [16, Lemma 1] in (60). At the equilibrium
(57), (59), and (60) must hold simultaneously. Since λr is
proportional to d, let’s assume ∃ ϕ ∈ R such that λr = ϕd.
Substituting (26b), (59), (60) in (57), we can solve for ϕ as

ϕ−1 =

∑
s∈S

b−1
s

||d||22
||N(d)d||22

+
∑
j∈G

cj
−1

 . (61)

Hence the competitive equilibrium exists uniquely.

We note that the competitive equilibrium in Theorem 2
always exists, unlike the mixed market mechanism in subsec-
tion IV-A. Additionally, the resulting market equilibrium with
constant optimal participant bids can be solved fast enough for
the needs of the real-time market using convex optimization.

B. Case Study

In this subsection, we provide a numerical case study that
analyses the mixed market mechanism based on a day-ahead-
aware bidding model with one generator and one storage unit.
For the day-ahead market, we formulate a two-day optimiza-
tion horizon consisting of Day 1 with 24 time periods as the
binding period and Day 2 with 24 periods as the advisory
period. In the real-time market, we use a rolling time horizon
window of 24 h that has the 1st hour as the binding period and
the rest as advisory periods. As the window rolls forward, the
operator realizes the perfect forecast for the immediate period
and an updated forecast for the advisory periods, as illustrated
in Figure 1. We use forecast and real aggregate demand
data for Aug 25-26, 2023, from the Millwood Zone in the
New York ISO [26]. Furthermore, we assume one generator
with aggregate cost coefficients c = 0.28$/(MW )2 [27] and
capacity limits g = 0, g = maxt{dt}. Also, we assume one
energy storage asset with fixed capacity cost B and energy
capacity E. The empirical cost coefficient given by bs := ρBE
where ρ = 5.24×10−4 [20], [21]. We assume a 4-hour Li-ion
battery such that the dispatch is bounded by u = −E

4 and
u = E

4 .



9

Fig. 4. Day-Ahead, Rolling Window, and Two-Stage: (a) demand and generator dispatch, (b) storage dispatch, and (c) state of charge with respect to storage
capacity (E) of 200 MWh and capital cost (B) of 150 $/kWh.

It is important to note that in real-time markets, the absence
of a periodicity constraint may lead to periodicity constraint
violations in cases of total two-stage dispatch. We use SoC
targets from the day-ahead market, i.e., xs,τ ≥ xd

s,τ for the
advisory intervals to mimic the periodicity constraint. The
operator only considers the optimal real-time dispatch for the
first interval of the horizon as binding as the horizon window
moves forward. Therefore, we use the underlying social plan-
ner problem (16) with and without periodicity constraints as a
benchmark to compare the performance of the proposed mixed
market mechanism from different perspectives.

1) Market Dispatch and Degradation Cost of Storage:
We first consider the individual resource perspective. Figure 4
illustrates the day-ahead, rolling window, and two-stage dis-
patch for the fixed storage capacity of E = 200MWh and
storage capital cost of B = 150$/kWh. We plot the demand
and generator dispatch, storage dispatch, and state of charge
in panels (a)-(c), respectively. In this case study, the generator
accounts for the majority of positive error in the demand
forecast while storage participates in the intra-day arbitrage,
as shown in the panel (a) in Figure 4. Although the sequential
decision making framework leads to varying optimal bids for
each time period, a quadratic cost as a function of dispatch
power in real-time resulting in short-term strategy to meet the
positive error in demand forecast, as shown in the panels (b)
and (c) in Figure 4, respectively.

2) Comparison with Underlying Social Planner: In this
subsection, we benchmark the performance of the proposed
mixed market mechanism w.r.t the underlying social planner
problem. Since the proposed mechanism may not satisfy
the periodicity constraints due to deviation in the real-time
markets, we relax the periodicity constraint in the underlying
social planner problem, i.e.,

∑
t∈T us,t = ±ϵ, where ϵ is

obtained from the simulation of the mixed market mechanism
to ensure that the comparison is calibrated. Figure 5 illustrates
the actual social cost (top panels) and storage profit (bottom
panels) for the proposed mixed market mechanism and the
underlying social planner problem, as we vary the storage
capital cost and storage capacity. As expected, the social
cost for both mechanisms increases with the storage capital
cost, as shown in panel (a) for a fixed storage capacity of
E = 200MWh, due to the expensive storage units. However,
the social cost decreases for both mechanisms with an increase

Fig. 5. Comparison of social planner and proposed mixed market mechanism
- social cost for (a) fixed capacity (top-left panel) and (b) fixed capital cost
(top-right panel), storage profit for (c) fixed capacity (bottom-left panel), and
(b) storage profit for fixed capital cost (bottom-right panel)

in storage capacity, as shown in panel (b) for fixed storage
capital cost of B = 150$/kWh. This is because storage
can dispatch the required power with shallower cycle depths,
leading to reduced capacity degradation. A similar trend can be
observed for the storage profit, as shown in panels (c) and (d),
respectively. The rolling horizon framework and a quadratic
cost of operation in real-time that emphasizes on immediate
revenue potential results in a reduction of net storage profit in
the proposed market mechanism as compared to the underlying
social planner problem with perfect foresight. Interestingly,
the performance of the proposed mechanism remains within
a narrow gap of 0.1%, as illustrated by the gap between the
black and blue solid lines in Figure 5. However, this gap tends
to widen as storage capacity increases, as shown in panel (b)
of Figure 5.

3) Comparison with Existing Market Approach: We next
compare the proposed mixed market mechanism with tra-
ditional generation-centric dispatch (GCD) strategies, which
only consider generation dispatch costs and ignore any costs
related to storage. This approach leads to frequent and deeper
charge and discharge cycles, resulting in significant degrada-
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Fig. 6. Net two-stage (day-ahead + real-time) storage cycling cost and storage
profit in the proposed mixed market mechanism (MM) and existing generation
centric dispatch (GCD) w.r.t storage capacity.

tion losses for resource owners. We then assess these losses,
i.e., we compute the resulting cycling cost for the optimal
dispatch for the storage capital cost of B = 150$/kWh, and
adjust the storage profits to account for losses not included
in the market. Figure 6 illustrates the net two-stage storage
cycling costs and profits for the proposed market mechanism
compared to the existing generation-centric strategy. As ex-
pected, cycling costs are much higher for the generation-
centric strategy and increase significantly with increase in its
capacity. The mixed market mechanism results in approxi-
mately 68% savings in cycling costs relative to the generation-
centric strategy. Furthermore, the net two-stage profit for the
proposed mechanism is significantly higher than the adjusted
profits in the existing approach. The existing approach leads
to substantial and increasing losses as storage capacity grows.
Such losses result in out-of-market settlements that, in turn,
distort market signals and may cause further efficiency losses.

VI. CONCLUSIONS

We propose a mixed market mechanism that accounts for
storage degradation in the participation of energy storage.
Specifically, each storage unit submits charge-discharge cycle
bids in the day-ahead market, followed by charge-discharge
power bids in the real-time market. Under the first approach,
participants submit independent bids in both stages, while
the second approach involves reflecting on their day-ahead
decisions in the bidding functions themselves. Although both
market mechanisms result in a unique competitive equilibrium,
the first approach requires an iterative best response algorithm,
which may not be desirable in real-time markets due to fre-
quent market clearing. On the other hand, the second approach
can be implemented using convex programming. Numerical
simulations with real-world NYISO data show up to 68%
cycling cost savings versus existing market designs that ignore
storage operation costs.
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