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A B S T R A C T

In this paper, we introduce the notion of recurrence entropy in the context of nonlinear control
systems. A set is said to be (𝜏-)recurrent if every trajectory that starts in the set returns to it (within
at most 𝜏 units of time). The recurrence entropy of a control system quantifies the complexity
of making a set 𝜏-recurrent measured by the average rate of growth, as time increases, of the
number of control signals required to achieve this goal. Our analysis reveals that, compared to
invariance, recurrence is quantitatively less complex, meaning that the recurrence entropy of a
set is no larger than, and often strictly smaller than, the invariance entropy. We provide upper and
lower bounds on recurrence entropy and show that they converge to the bounds on invariance
entropy as 𝜏 decreases to zero. Further, our results show that recurrence entropy lower bounds
the minimum data rate between the sensor and controller required for achieving recurrence. We
present an algorithm according to which the sensor can send state estimates to the controller
over a limited-bandwidth channel to achieve recurrence asymptotically at an exponential rate.
Finally, we show that, under mild stricter conditions on the set and dynamics, the control signals
that enforce the 𝜏-recurrence of a set can be generated by a finite alphabet of control signals of
durations of at most 𝜏 units of time, which allows us to store them for quick online execution.

1. Introduction
The topological entropy of a dynamical system is a fundamental property, an invariant (Katok and Hasselblatt,

1995), that describes the rate of the exponential growth of the number of trajectories that are distinguishable with
arbitrarily small but finite accuracy. Originally proposed by Adler, Konheim, and McAndrew (Adler, Konheim and
McAndrew, 1965), and shortly after reformulated in the form described above by Bowen (Bowen, 1971a,b), it provides a
quantitative measure of complexity by capturing how the uncertainty around the system state grows as time evolves. As
a result, topological entropy is closely related to information-theoretic notions, such as the average rate of information
gathering about the system state above which one can distinguish its trajectories with arbitrary accuracy (Liberzon and
Mitra, 2016).

In control theory, wherein one uses the system’s state information to perform a task, several notions of entropy
have been proposed in the literature, characterizing the complexity of and the minimal data rates necessary for
performing a certain control task. Examples of this include estimation entropy (Savkin, 2006; Liberzon and Mitra, 2016;
Sibai and Mitra, 2017, 2018, 2023; Kawan and Yüksel, 2018), restoration entropy (Matveev and Pogromsky, 2016,
2019), stabilization entropy (Delchamps, 1990; Nair, Evans, Mareels and Moran, 2004; Colonius, 2012), reachability
entropy (Tomar and Zamani, 2022), among others. One notion of entropy particularly instrumental in control is the
invariance entropy (Colonius and Kawan, 2009, 2011; Colonius, Kawan and Nair, 2013; Kawan and Delvenne, 2016;
Rungger and Zamani, 2017; Tomar, Rungger and Zamani, 2021; Tomar, Kawan and Zamani, 2022), which aims to
capture the growth rate of the number of distinct control signals necessary to render a certain set invariant for a period
of time, as that period increases to infinity.

Invariance holds a prominent role in control theory. It is, for instance, a core notion in the development of the
Lyapunov theory (Khalil, 2002). By trapping trajectories on sub-level sets of a Lyapunov function, one can guarantee
boundedness and completeness of trajectories, stability, and even asymptotic or exponential stability via a gradual
reduction of the value of the function. Invariant sets can also be used to estimate regions of attractions of an asymptotically
stable equilibrium (Genesio, Tartaglia and Vicino, 1985). However, due to intrinsic coupling between the dynamics of
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the system and the geometry of the set, finding invariant sets and, by extension, Lyapunov functions is often difficult.
Furthermore, in the context of controlled systems, it is not always possible to make a given set (controlled) invariant.

We are motivated by recent literature aimed at using the notion of recurrent sets as functional substitutes for invariant
sets in control theory (Shen, Bichuch and Mallada, 2022; Siegelmann, Shen, Paganini and Mallada, 2023). While this
literature has shown how recurrence can be useful in stability analysis, it can be a useful concept for control which
achieve safety and stability. However, in this work, we study recurrence in a more abstract manner without tailoring to
specific applications, whether safety or stability. We introduce the notion of recurrence entropy for nonlinear control
systems. A set is said to be (𝜏-)recurrent if every trajectory that starts in the set returns to it (within at most 𝜏 units of
time). Our analysis shows that recurrence, as a control task, is quantitatively less complex than invariance from the
point of view that for a given set and dynamical system, the recurrence entropy is no larger than the invariance entropy.
Furthermore, we provide upper and lower bounds for the recurrence entropy in terms of the upper box dimension of the
set to be made recurrent and a local Lipschitz constant and divergence of the vector field. We also show that recurrence
entropy is a lower bound on the minimum bit rate at which the sensor should send state estimates to the controller to
render the set recurrent. We further present an algorithm according to which the sensor can choose the information it
sends to the controller to achieve this recurrence task asymptotically. Notably, this algorithm results in a bit rate equal to
the recurrence entropy upper bound that we derive, plus a linear term equal to the product of the system dimension and
the desired rate of exponential convergence toward a recurrent trajectory. We finalize the paper by showing a striking
result. By imposing slightly stricter assumptions on the properties of the set and the system capabilities, we show that
the control signals necessary to make a set control 𝜏-recurrent can be generated by a finite alphabet of control signals of
length at most 𝜏. When such a finite alphabet exists, one can compute it offline and then retrieve its signals at runtime
without the need of any further computation, minimizing inference time and power consumption.

Related Work: Our work is closely related to the literature of invariance entropy (Colonius and Kawan, 2009, 2011;
Colonius et al., 2013; Kawan and Delvenne, 2016; Rungger and Zamani, 2017; Tomar et al., 2021, 2022). Naturally,
since every invariant set is (trivially) 𝜏-recurrent, for all 𝜏 ≥ 0, the results presented therein apply for 𝜏 = 0. Our
work also relates to that of Tomar et al. (Tomar and Zamani, 2023). That work relates the minimal bit rates needed
to enforce a regular safety property for a discrete-time dynamical system to the invariance entropy of a new system
that combines the automaton defining the property and the original system. Particularly, 𝜏-recurrence can be thought
of as regular safety property, but as we define it here, it is for continuous-time dynamical systems. Relating our
results with (Tomar and Zamani, 2023) would be an interesting future direction. It would also be interesting to design
numerical methods such as those proposed in (Tomar et al., 2022) for invariance entropy to estimate recurrence entropy.
On the other hand, many works from the formal methods community use discrete abstractions of continuous-time
systems to design zero-order-hold controllers to achieve various tasks, mainly reach-avoid ones, that naturally have
finite alphabets (Tabuada, 2009; Meyer, Yin, Brodtkorb, Arcak and Sørensen, 2020; Sibai, Huriot, Martin and Arcak,
2024; Rungger and Zamani, 2016). However, these works usually present algorithms that adjust the set being kept
invariant when needed while synthesizing the controller. Moreover, they usually predefine the alphabet at the time of the
abstraction, mainly by considering constant signals that are equal to the centers of a grid over the control set for a fixed
time horizon. In contrast, we fix the set of states of concern while allowing arbitrary control alphabets. We then define
fundamental metrics to quantify the minimal size of an alphabet needed to achieve invariance and recurrence as a mean
to compare their complexities. We also relate these metrics with the notions of entropy of the system for the same tasks.

Organization of the Paper: The rest of the paper is organized as follows. In Section 2, we provide preliminary
definitions regarding the system to be considered, as well as the notion of invariance entropy. In Section 3, we formally
introduce the notion of recurrence to be studied in the paper, i.e., 𝜏-recurrence (c.f. Definition 5), as well as the associated
notion of entropy. We then introduce a fundamental result that allows us to bound the distance from a set that recurrent
trajectories can travel if they are required to come back to the set within 𝜏 units of time. After that, a comparison
between recurrence and invariance entropy is performed. Upper and lower bounds for recurrence entropy are provided
in Section 4. In Section 5, a relationship between entropy and data rates is formally established. Then, we present an
algorithm that runs at the sensor and communicates with the controller over a limited-bandwidth channel to make the
trajectories of the system (asymptotically) 𝜏-recurrent and compute its data rate. Finally, Section 6 introduces the notion
of finite alphabet controllers and relates its cardinality with entropy notions. Concluding remarks are given in Section 7.
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2. Preliminaries
Notation: We denote by ‖ ⋅ ‖ the supremum norm over ℝ𝑛, unless otherwise specified. If 𝑁 ∈ ℕ, we denote

by [𝑁] the set of all non-negative integers less than 𝑁 . Fix an 𝜀 > 0 and a compact set 𝑄 ⊂ ℝ𝑛. We define
𝐵𝜀(𝑄) ∶= {𝑦 ∈ ℝ𝑛

|∃𝑥 ∈ 𝑄, ‖𝑥 − 𝑦‖ ≤ 𝜀}. We also define 𝜆(𝑄) to be the Lebesgue measure of 𝑄. If 𝑄 is a
singleton set {𝑥}, we abuse notation and denote 𝐵𝜀(𝑄) by 𝐵𝜀(𝑥). We call it a ball, or a hyperrectangle, centered at 𝑥
with radius 𝜀. Given a set 𝑆, cl(𝑆) denotes its closure. If 𝑆 is finite, |𝑆| denotes its cardinality. If 𝑆 is compact subset
of ℝ𝑛, a 𝛿-cover of 𝑆 is a set of balls of radius 𝛿 whose union contains 𝑆. We abuse notation and call the set containing
the centers of the balls the cover instead of the balls themselves. We denote by 𝑔𝑟𝑖𝑑(𝑆, 𝛿) the 𝛿-cover of 𝑆 that is
constructed with the centers of the balls 2𝛿 apart and on axis-parallel lines. We also call it a 𝛿-grid of 𝑆. We assume
that the logarithm function is of base 2 throughout the paper. Consider a function with 𝑁 arguments. If we replace
its 𝑖𝑡ℎ argument with “⋅” (i.e., dot) and its other arguments with constants, we mean the projection of that function to
the one-dimensional domain of the 𝑖𝑡ℎ argument with the other ones fixed to the specified constants. If we replace an
argument with a set in its domain, we mean the function defined only over that set in the domain.

2.1. System description
In this paper, we consider control systems that are defined as follows.

Definition 1. Consider a nonlinear control system of the form:

𝑥̇(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)), (1)

where 𝑥(𝑡) ∈ ℝ𝑛, 𝑢 ∈  , with  being a set of piece-wise continuous functions mapping ℝ≥0 to a compact set 𝑈 ⊂ ℝ𝑚,
and the map 𝑓 is locally Lipschitz in 𝑥 uniformly in 𝑢. We often abuse notation and interchangeably refer to a function
in  as well as an input vector in 𝑈 by 𝑢. Finally, we denote by 𝜉 ∶ ℝ𝑛 × ×ℝ≥0 → ℝ𝑛 the flow of the system.

2.2. Invariance entropy
In this section, we recall the definition of invariance entropy of system (1) from (Colonius and Kawan, 2009). It

requires the definitions of controlled invariant sets, invariant trajectories, and invariance spanning sets.

Definition 2 (Controlled invariant sets (Colonius and Kawan, 2009)). A set 𝑄 ⊆ ℝ𝑚 is controlled invariant for system (1)
if ∀𝑥 ∈ 𝑄, ∃𝑢 ∈  such that for any 𝑡 ≥ 0, 𝜉(𝑥, 𝑢, 𝑡) ∈ 𝑄.

We call controlled invariant sets invariant from hereafter for brevity.

Definition 3 ((𝑇 , 𝜀,𝑄)-invariant trajectories (Colonius and Kawan, 2009)). Fix any 𝜀 ≥ 0, 𝑇 ≥ 0, compact set 𝑄 ⊂ ℝ𝑛,
𝑥 ∈ 𝑄, and 𝑢 ∈  . The trajectory 𝜉(𝑥, 𝑢, ⋅) of system (1) is (𝑇 , 𝜀,𝑄)-invariant, if for every 𝑡 ∈ [0, 𝑇 ], 𝜉(𝑥, 𝑢, 𝑡) ∈ 𝐵𝜀(𝑄).
If the condition is 𝜉(𝑥, 𝑢, 𝑡) ∈ 𝑄 instead, we say that 𝜉 is (𝑇 ,𝑄)-invariant.

Fix two non-empty sets 𝐾 ⊆ 𝑄 ⊂ ℝ𝑛, an 𝜀 ≥ 0, and a 𝑇 ≥ 0. A set 𝑆 ⊆  is called an invariance (𝑇 , 𝜀,𝐾,𝑄)-
spanning set if for any 𝑥 ∈ 𝐾 , there exists a 𝑢 ∈ 𝑆, such that 𝜉(𝑥, 𝑢, [0, 𝑇 ]) is (𝑇 , 𝜀,𝑄)-invariant. Let 𝑟inv(𝑇 , 𝜀,𝐾,𝑄) be
the minimal cardinality of such a set if it exists, and be equal to infinity otherwise. The invariance entropy of system (1)
is defined in (Colonius and Kawan, 2009) as follows:

ℎinv(𝐾,𝑄) ∶= lim
𝜀↘0

lim sup
𝑇→∞

1
𝑇
log 𝑟inv(𝑇 , 𝜀,𝐾,𝑄). (2)

If the trajectories are required to be (𝑇 ,𝑄)-invariant in (2), then the minimal cardinality of the corresponding
invariance spanning set is denoted in (Colonius and Kawan, 2009) by 𝑟∗inv(𝑇 ,𝐾,𝑄). If substituted in (2), the resulting
entropy notion ℎ∗inv(𝐾,𝑄) is called the strict invariance entropy of system (1). When 𝐾 is equal to 𝑄, we drop the 𝐾
argument in the definitions above. Finally, observe that if there exists a finite 𝑇 > 0 such that 𝑟𝑖𝑛𝑣(𝑇 , 𝜀,𝐾,𝑄) is infinite,
then ℎinv(𝐾,𝑄) is infinite. The same argument holds for strict invariance entropy.

3. 𝜏-Recurrence Entropy
In this section, we define the main concept that we introduce in this paper: 𝜏-recurrence entropy. Before being able

to define it, we need to define controlled 𝜏-recurrent sets, recurrent trajectories, and recurrence spanning sets, in parallel
with the definitions preceding the definition of invariance entropy in the previous section.
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(a) Illustration of recurrent trajectories and sets (b) Bound of the Containment Lemma

Figure 1: Illustration of recurrence and the Containment Lemma (Lemma 1).

3.1. Recurrence spanning sets and entropy
In the following definition, we introduce controlled 𝜏-recurrent sets as compact subsets of the state space of system (1)

which satisfy the following condition: for each state in such a set, there exists a control signal that drives the system
to have a trajectory that visits the set at least once within each time interval of size 𝜏. This concept generalizes the
notion of 𝜏-recurrent sets, first introduced in (Shen et al., 2022), to control systems. We then define the concept of
(𝑇 , 𝜀, 𝜏, 𝑄)-recurrent trajectories, which are ones that return to 𝐵𝜀(𝑄) at least once within each time interval of size 𝜏
in the interval [0, 𝑇 ].

Definition 4 (Controlled 𝜏-recurrent sets). A set 𝑄 ⊆ ℝ𝑚 is controlled 𝜏-recurrent for system (1), for some finite
𝜏 ∈ ℝ≥0, if for every 𝑥 ∈ 𝑄, there exists a 𝑢 ∈  such that for any 𝑡 ∈ ℝ≥0, there exists a 𝑡′ ∈ [𝑡, 𝑡 + 𝜏] such that
𝜉(𝑥, 𝑢, 𝑡′) ∈ 𝑄.

We call controlled 𝜏-recurrent sets 𝜏-recurrent from hereafter for brevity. We refer the reader to Figure 1a for an
illustration of recurrent sets and trajectories.

Definition 5 ((𝑇 , 𝜀, 𝜏, 𝑄)-recurrent trajectories). Fix any 𝜏 ≥ 0, 𝜀 ≥ 0, 𝑇 ≥ 𝜏, compact set 𝑄 ⊂ ℝ𝑛, 𝑥 ∈ 𝑄, and 𝑢 ∈  .
The trajectory 𝜉(𝑥, 𝑢, ⋅) of system (1) is (𝑇 , 𝜀, 𝜏, 𝑄)-recurrent, if for every 𝑡 ∈ [0, 𝑇 − 𝜏], there exists a 𝑡′ ∈ [𝑡, 𝑡 + 𝜏]
such that 𝜉(𝑥, 𝑢, 𝑡′) ∈ 𝐵𝜀(𝑄).

For simplicity of notation, if 𝜀 = 0, we drop the 𝜀 argument. Similarly, if 𝑇 = ∞, we drop the 𝑇 argument. We will
also use Definition 5 for piece-wise continuous functions of time that are not necessarily trajectories of system (1).

The final definition before that of 𝜏-recurrence entropy is that of spanning sets. They are sets of control signals
which are sufficient to make any trajectory starting from a 𝜏-recurrent set 𝜏-recurrent.

Fix a 𝜏 ∈ ℝ≥0, a compact 𝜏-recurrent set 𝑄 ⊂ ℝ𝑛, an 𝜀 ≥ 0, and a 𝑇 ≥ 0. A set 𝑆 ⊆  is called a recurrence
(𝑇 , 𝜀, 𝜏, 𝑄)-spanning set if for any 𝑥 ∈ 𝑄, there exists a 𝑢 ∈ 𝑆 such that 𝜉(𝑥, 𝑢, [0, 𝑇 ]) is (𝑇 , 𝜀, 𝜏, 𝑄)-recurrent. Let
𝑟rec(𝑇 , 𝜀, 𝜏, 𝑄) be the minimal cardinality of such a set if it exists, and be equal to infinity otherwise. We define the
𝜏-recurrence entropy of system (1) as follows:

ℎrec(𝜏,𝑄) ∶= lim
𝜀↘0

lim sup
𝑇→∞

1
𝑇
log 𝑟rec(𝑇 , 𝜀, 𝜏, 𝑄). (3)

If we require the trajectories to be (𝑇 , 𝜏,𝑄)-recurrent in (3), then we denote the minimal cardinality of the
corresponding spanning set 𝑟∗rec(𝑇 , 𝜏,𝑄). If substituted in (3), we call the resulting entropy notion ℎ∗rec(𝜏,𝑄) the
strict 𝜏-recurrence entropy of system (1). Finally, as in the invariance entropy case, if there exists a finite 𝑇 > 0 such
that 𝑟rec(𝑇 , 𝜀, 𝜏, 𝑄) is infinite, then ℎrec(𝜏,𝑄) is infinite. The same argument holds for strict 𝜏-recurrence entropy.

Remark 1 (Computability of 𝜏-Recurrent Control Signals). A common consideration in the entropy literature is that
control signals of finite duration can be computationally obtained in many practical scenarios. For linear control
systems, standard computational tools such as Model Predictive Control (MPC) can readily provide suitable control
signals. More broadly, nonlinear control signals can be computed using existing nonlinear MPC methods, or through

H. Sibai and E. Mallada: Preprint submitted to Elsevier Page 4 of 18



Recurrence of Nonlinear Control Systems

sampling-based techniques such as Model Predictive Path Integral (MPPI) control, which efficiently leverages GPU
parallelization to compute approximately optimal controls. Such methods are not guaranteed to find a solution even if
one exists, but guaranteeing feasibility is not in the scope of this paper.

3.2. Containment Lemma
In this section, we show how trajectories that are (𝜏,𝑄)-recurrent cannot depart arbitrarily from 𝑄. The following

assumption is instrumental in achieving this goal.

Assumption 1 (𝜏-completeness). For any 𝑥 ∈ 𝑄 and 𝑢 ∈  , the trajectory 𝜉(𝑥, 𝑢, ⋅) of system (1) is defined for all
𝑡 ∈ [0, 𝜏] and is continuous in its first argument.

An immediate consequence of Assumption 1 is that for any 𝑢 ∈  , the closure reachable set 𝑅(𝑄, 𝑢, 𝜏) ∶=
∪𝑡∈[0,𝜏],𝑥∈𝑄𝜉(𝑥, 𝑢, 𝑡) of system (1), i.e., cl(𝑅(𝑄, 𝑢, 𝜏)), is compact. Moreover, it follows from Proposition 5.2 (Lin,
Sontag and Wang, 1996), that under Assumption 1, the set

𝑅(𝑄, 𝜏) ∶=
⋃

𝑢∈
𝑅(𝑄, 𝑢, 𝜏)

is bounded. The set 𝑅(𝑄, 𝜏) contains all states visited by trajectories starting from some initial state 𝑥 ∈ 𝑄 and following
some control 𝑢 ∈  for 𝜏 seconds. While such a set is, indeed, bounded, it may be quite big, as not all control inputs
are meant to make trajectories recurrent. We will therefore consider the subset 𝑟 ⊆  containing all control inputs
𝑢 ∈  such that for some 𝑥 ∈ 𝑄, the trajectory 𝜉(𝑥, 𝑢, ⋅) is (𝜏,𝑄)-recurrent.

A similar reasoning as before, using the fact that 𝑟 ⊆  , leads to fact that

𝑅𝑟(𝑄, 𝜏) ∶=
⋃

𝑢∈𝑟

𝑅(𝑄, 𝑢, 𝜏) ⊆ 𝑅(𝑄, 𝜏) , (4)

is bounded. For the purpose of estimating how far out (𝜏,𝑄)-recurrent trajectories can reach starting from a compact
set 𝑄, we define

𝐿𝜏 = max
𝑥1,𝑥2∈cl(𝑅𝑟(𝑄,𝜏)),𝑢∈𝑈

‖𝑓 (𝑥1, 𝑢) − 𝑓 (𝑥2, 𝑢)‖
‖𝑥1 − 𝑥2‖

< ∞. (5)

Note that 𝐿𝜏 is an upper bound of the Lipschitz constant of the vector field along any (𝜏,𝑄)-recurrent trajectory.
The following lemma, which is a generalization of Lemma 2 in (Siegelmann et al., 2023), allows us to obtain an

upper bound on how far trajectories can go outside 𝑄. The result is qualitatively illustrated in Figure 1b.

Lemma 1 (Containment Lemma). Consider a compact set 𝑄 ⊂ ℝ𝑛. Then, given any 𝑥 ∈ 𝑄, and 𝑢 ∈ 𝑟 such that the
trajectory 𝜉(𝑥, 𝑢, ⋅) of system (1) is (𝑇 , 𝜏,𝑄)-recurrent, the following holds:

sup
𝑡∈[0,𝑇 ]

𝑑(𝜉(𝑥, 𝑢, 𝑡), 𝑄) ≤ 𝐹𝑄𝜏𝑒
𝐿𝜏𝜏 , (6)

where 𝑑(𝑦,𝑄) ∶= min𝑥∈𝑄 ‖𝑦 − 𝑥‖, 𝐿𝜏 is given in (5), and

𝐹𝑄 ∶= sup
𝑥∈𝑄, 𝑢∈𝑈

‖𝑓 (𝑥, 𝑢)‖ < ∞.

Proof. As mentioned before, the proof of this lemma is akin to (Siegelmann et al., 2023), Lemma 2. Given 𝑥 ∈ 𝑄
and the corresponding 𝑢 ∈ 𝑟 that makes 𝜉(𝑥, 𝑢, ⋅) (𝑇 , 𝜏,𝑄)-recurrent, let 𝑡1 > 0 be the first time the trajectory leaves
𝑄, i.e., such that 𝜉(𝑥, 𝑢, 𝑡) ∈ 𝑄, for 𝑡 ≤ 𝑡1, and for all sufficiently small 𝛿 > 0, 𝜉(𝑥, 𝑢, 𝑡1 + 𝛿) ∉ 𝑄. Without loss
of generality, we assume 𝑡1 < 𝑇 . It then follows from the assumption that the trajectory is (𝑇 , 𝜏,𝑄)-recurrent that
for all 𝑡 ∈ [0,min{𝑡1 + 𝜏, 𝑇 }], 𝜉(𝑥, 𝑢, 𝑡) can only be outside 𝑄 for at most 𝜏 seconds. Using now the short notation
𝑥(𝑡) = 𝜉(𝑥, 𝑢, 𝑡) we have

𝑎(𝑡) ∶= 𝑑(𝑥(𝑡), 𝑄) ≤ ‖𝑥(𝑡) − 𝑥‖ =
‖

‖

‖

‖

‖

∫

𝑡

0
𝑓 (𝑥(𝑠), 𝑢(𝑠))𝑑𝑠

‖

‖

‖

‖

‖

≤ ∫

𝑡

0

(

‖𝑓 (𝑥(𝑠), 𝑢(𝑠)) − 𝑓 (Π𝑄[𝑥(𝑠)], 𝑢(𝑠))‖

H. Sibai and E. Mallada: Preprint submitted to Elsevier Page 5 of 18



Recurrence of Nonlinear Control Systems

+ ‖𝑓 (Π𝑄[𝑥(𝑠)], 𝑢(𝑠))‖
)

𝑑𝑠 ≤
(

∫

𝑡

𝑡1
𝑎(𝑠)𝐿𝜏𝑑𝑠

)

+
+ 𝐹𝑄(𝑡 − 𝑡1)+,

where Π𝑄[𝑦] ∈ argmin𝑥∈𝑄 ‖𝑦 − 𝑥‖ and (𝑎)+ ∶= max{0, 𝑎}. It follows then from Grönwall’s inequality (c.f Lemma 2.1
in (Khalil, 2002)), with 𝜆 = 𝐹𝑄(𝑡 − 𝑡1)+, 𝜇 = 𝐿𝜏 , 𝑦(𝑡) = 𝑎(𝑡)) that ∀𝑡 ∈ [0,min{𝑡1 + 𝜏, 𝑇 }],

𝑎(𝑡) = 𝑑(𝜉(𝑥, 𝑢, 𝑡), 𝑄) ≤ 𝐹𝑄(𝑡 − 𝑡1)+𝑒𝐿𝜏 (𝑡−𝑡1)+ ≤ 𝐹𝑄𝜏𝑒
𝐿𝜏𝜏 .

Finally, by repeating the same argument every additional time 𝜉(𝑥, 𝑢, 𝑡) leaves 𝑄, the result follows.

For the rest of the paper, we define 𝛿𝜏 ∶= 𝐹𝑄𝜏𝑒𝐿𝜏𝜏 , which is the right-hand-side of the inequality Lemma 1.

3.3. Relation between recurrence, 𝜏-recurrence, and invariance entropy
In this section, we show different relations between recurrence and invariance entropy of system (1). In Theorem 1,

we show that 𝜏-recurrence entropy is both lower and upper bounded by invariance entropy with different initial and
invariant sets. That results in a corollary showing that as 𝜏 approaches zero, 𝜏-recurrence entropy approaches invariance
entropy, which is in agreement with the intuition that 𝜏-recurrence with 𝜏 = 0 is invariance. In Lemma 2, we show that
𝜏′-recurrence entropy is less than 𝜏-recurrence entropy if 𝜏′ ≥ 𝜏. That is in agreement with the intuition that faster
recurrence to 𝑄 requires more information about the state.

Theorem 1. For any 𝜏 ≥ 0 and compact 𝜏-recurrent set 𝑄 ⊂ ℝ𝑛 for system (1), ℎinv(𝑄,𝐵𝛿𝜏 (𝑄)) ≤ ℎrec(𝜏,𝑄) ≤ ℎinv(𝑄)
and ℎ∗inv(𝑄,𝐵𝛿𝜏 (𝑄)) ≤ ℎ∗rec(𝜏,𝑄) ≤ ℎ∗inv(𝑄), where 𝛿𝜏 is as defined at the end of the last section (Section 3.2).

Proof. The first inequality follows from the containment lemma that shows that for any 𝜀 ≥ 0 and 𝑇 ≥ 0, any
recurrence (𝑇 , 𝜀, 𝜏, 𝑄)-spanning (resp. (𝑇 , 𝜏,𝑄)-spanning) set is an invariance (𝑇 , 𝜀,𝑄, 𝐵𝛿𝜏 (𝑄))-spanning (resp. (𝑇 ,𝑄,
𝐵𝛿𝜏 (𝑄))-spanning) set. The second inequality follows from the observation that any invariance (𝑇 , 𝜀,𝑄)-spanning (resp.
(𝑇 ,𝑄)-spanning) set is a recurrence (𝑇 , 𝜀, 𝜏, 𝑄)-spanning (resp. (𝑇 , 𝜏,𝑄)-spanning) set as well, ∀𝜏 ≥ 0 and 𝜀 ≥ 0.

Corollary 1. For any compact set 𝑄 ⊂ ℝ𝑛 for system (1), as 𝜏 → 0, 𝜏-recurrence entropy of system (1) becomes equal
to its invariance entropy, i.e., lim𝜏↘0 ℎrec(𝜏,𝑄) = ℎinv(𝑄).

Lemma 2. For any compact set 𝑄 ⊂ ℝ𝑛 that is 𝜏-recurrent for system (1) for some 𝜏 > 0, and for any 𝜏′ ≥ 𝜏,
ℎrec(𝜏′, 𝑄) ≤ ℎrec(𝜏,𝑄) and ℎ∗rec(𝜏

′, 𝑄) ≤ ℎ∗rec(𝜏,𝑄).

Proof. The result follows from the observation that for any 𝜀 ≥ 0 and 𝑇 ≥ 0, any (𝑇 , 𝜀, 𝜏, 𝑄)-spanning set (resp.
(𝑇 , 𝜏,𝑄)-spanning set) is a (𝑇 , 𝜀, 𝜏′, 𝑄)-spanning one (resp. (𝑇 , 𝜏′, 𝑄)-spanning) as well.

Though Theorem 1 only provides a non-strict statement, it is important to notice that it only requires 𝑄 to be
controlled 𝜏-recurrent. As a result, it is certainly possible to have scenarios wherein

ℎrec(𝑄, 𝜏) < ℎinv(𝑄) = ∞ (7)

which further emphasizes the fact that achieving 𝜏-recurrence is less demanding than achieving invariance. We will
show such an example in the next section.

4. Recurrence entropy bounds
In this section, we present an upper and a lower bound on 𝜏-recurrence entropy. We show that when 𝜏 = 0, we

recover the upper bound on invariance entropy presented in (Colonius and Kawan, 2009).

Theorem 2 (Upper bound). For any compact 𝜏-recurrent set 𝑄 ⊂ ℝ𝑛 for system (1) for some 𝜏 ≥ 0 and any 𝜏′ ≥ 𝜏,
ℎrec(𝜏′, 𝑄) ≤ 𝐿𝜏 dim𝐹 (𝑄)∕ ln 2 ≤ 𝐿𝜏𝑛∕ ln 2, where dim𝐹 (𝑄) ∶= lim sup𝛿↘0

ln 𝑏(𝛿,𝑄)
ln(1∕𝛿) is the upper box dimension of 𝑄,

𝑏(𝛿,𝑄) is the minimal cardinality of a 𝛿-cover of 𝑄, and 𝐿𝜏 is as defined in (5).

Proof. The proof follows that of Theorem 4.2 in (Colonius and Kawan, 2009). Fix any 𝑇 , 𝜀, and 𝜏′ ≥ 𝜏. We define

𝐿𝜏,𝜀 = max
𝑥1,𝑥2∈𝐵𝜀(cl(𝑅𝑟(𝑄,𝜏))),𝑢∈𝑈

‖𝑓 (𝑥1, 𝑢) − 𝑓 (𝑥2, 𝑢)‖
‖𝑥1 − 𝑥2‖

< ∞ . (8)
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Let 𝐶 be a minimal 𝜀𝑒−𝐿𝜏,𝜀𝑇 -cover of 𝑄. Since 𝑄 is 𝜏-recurrent, then there exists a set 𝑆 = {𝑢𝑖}𝑖∈[|𝐶|] such that
𝜉(𝑥𝑖, 𝑢𝑖, [0, 𝑇 ]) is a (𝑇 , 𝜏,𝑄)-recurrent trajectory, where 𝑥𝑖 is the 𝑖𝑡ℎ center in the cover.

Using Grönwall’s inequality, ∀𝑡 ∈ [0, 𝑇 ] and ∀𝑥 ∈ 𝐵𝜀𝑒−𝐿𝜏,𝜀𝑇 (𝑥𝑖) ∩𝑄, ‖𝜉(𝑥𝑖, 𝑢𝑖, 𝑡) − 𝜉(𝑥, 𝑢𝑖, 𝑡)‖ ≤ 𝑒𝐿𝜏,𝜀𝑡
‖𝑥𝑖 − 𝑥‖ ≤

𝑒𝐿𝜏,𝜀𝑡(𝜀𝑒−𝐿𝜏,𝜀𝑇 ) ≤ 𝜀. Consequently, 𝜉(𝑥, 𝑢𝑖, 𝑡) is a (𝑇 , 𝜀, 𝜏, 𝑄)-recurrent trajectory and 𝑆 is a recurrence (𝑇 , 𝜀, 𝜏′, 𝑄)-
spanning set, for any 𝜏′ ≥ 𝜏. Thus, 𝑟rec(𝑇 , 𝜀, 𝜏′, 𝑄) ≤ 𝑏(𝜀𝑒−𝐿𝜏,𝜀𝑇 , 𝑄) = |𝑆|. Now that we have an upper bound on the
minimal cardinality of a (𝑇 , 𝜀, 𝜏′, 𝑄)-spanning set, we can get the upper bound on recurrence entropy by substituting it
in equation (3). Formally,

ℎrec(𝜏′, 𝑄) = lim
𝜀↘0

lim sup
𝑇→∞

1
𝑇
log 𝑟rec(𝑇 , 𝜀, 𝜏′, 𝑄)

≤ lim
𝜀↘0

lim sup
𝑇→∞

1
𝑇
log 𝑟rec(𝑇 , 𝜀, 𝜏, 𝑄)

≤ lim
𝜀↘0

lim sup
𝑇→∞

1
𝑇
log 𝑏(𝜀𝑒−𝐿𝜏,𝜀𝑇 , 𝑄)

≤ lim
𝜀↘0

lim sup
𝑇→∞

𝐿𝜏,𝜀

ln(𝑒𝐿𝜏,𝜀𝑇 ∕𝜀) + ln 𝜀
log 𝑏(𝜀𝑒−𝐿𝜏,𝜀𝑇 , 𝑄)

= lim
𝜀↘0

𝐿𝜏,𝜀 lim sup
𝑇→∞

1
ln(𝑒𝐿𝜏,𝜀𝑇 ∕𝜀)

log 𝑏(𝜀𝑒−𝐿𝜏,𝜀𝑇 , 𝑄)

= lim
𝜀↘0

𝐿𝜏,𝜀 lim sup
𝛿↘0

ln 𝑏(𝛿,𝑄)
ln 2 ln(1∕𝛿)

= 𝐿𝜏dim𝐹 (𝑄)∕ ln 2. (9)

The first inequality follows from the fact that any (𝑇 , 𝜀, 𝜏, 𝑄)-spanning set is a (𝑇 , 𝜀, 𝜏′, 𝑄)-spanning one when
𝜏 ≤ 𝜏′. The second inequality follows from the set 𝑆 we constructed earlier being a (𝑇 , 𝜀, 𝜏, 𝑄)-spanning set with
cardinality 𝑏(𝜀𝑒−𝐿𝜏,𝜀𝑇 , 𝑄). The third inequality follows from multiplying the numerator and denominator with 𝐿𝜏,𝜀 and
using the fact that ln(𝑒𝐿𝜏,𝜀𝑇 ∕𝜀) + ln 𝜀 = 𝐿𝜏,𝜀𝑇 . The equality after that follows from the lim sup being unaffected by ln 𝜀
in the denominator and 𝐿𝜏,𝜀 being independent of 𝑇 . The one before the last equality follows from replacing 𝜀𝑒−𝐿𝜏,𝜀𝑇

with 𝛿, which transform lim sup𝑇→∞ to lim sup𝛿↘0 as well as the fact that log 𝑐 = ln 𝑐∕ ln 2. The last equality follows
from substituting the definition of dim𝐹 (𝑄) and lim𝜀↘0 𝐿𝜏,𝜀 by its value 𝐿𝜏 .

Remark 2. Setting 𝜏 to zero makes 𝑅𝑟(𝑄, 𝜏) as defined in (4) equal to 𝑄 and in the definition of 𝐿𝜏 in (5), the domain
of the maximum would be cl(𝑄). Substituting 𝐿𝜏 in the bound in Theorem 2 results in the same upper-bound as that
on invariance entropy in Theorem 4.2 in (Colonius and Kawan, 2009). Note that they use the natural logarithm in
their invariance entropy definition instead of the base-2 logarithm we use in our definitions which results in ln 2 factor
difference between the two bounds.

Remark 3. Theorem 2 shows that if the system is capable of achieving faster recurrence to 𝑄 than required, i.e.,
achieving 𝜏-recurrence, for some 𝜏 ≥ 0, while the requirement is 𝜏′-recurrence for some 𝜏′ > 𝜏, then we can obtain a
tighter upper bound on recurrence entropy since 𝐿𝜏 ≤ 𝐿𝜏′ .

Example 1 (Illustrative Example). Consider the case following two-dimensional linear system
[

𝑥̇1
𝑥̇2

]

=
[

0 1
0 0

] [

𝑥1
𝑥2

]

+
[

0
1

]

𝑢 (10)

We assume 𝑢 ∈ 𝑈 = [−1, 1], and consider the set 𝑄 = [−1, 1]2.
Observe that with simple integration, we can get the closed form solution as follows:

𝜉(𝑥, 𝑢, 𝑡) =
[

𝑥1(𝑡)
𝑥2(𝑡)

]

=

[

∫ 𝑡
𝑠2=0

∫ 𝑡
𝑠1=0

𝑢(𝑠1)𝑑𝑠1𝑑𝑠2 + 𝑥2(0)𝑡 + 𝑥1(0)
∫ 𝑡
𝑠=0 𝑢(𝑠)𝑑𝑠 + 𝑥2(0)

]

.

Consider the case when 𝑥 = [1, 1]. Then, for the trajectory starting at 𝑥 to not leave 𝑄, the control signal should be
chosen so that neither of the two coordinates increase. Both coordinates are monotonically increasing in 𝑢. If we choose
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the control signal to have the minimum value −1 for some interval [0, 𝑇 ] in the effort of preventing the state coordinates
from increasing and escaping 𝑄, then 𝜉(𝑥, 𝑢, 𝑡′) = [1 + 𝑡 − 1

2 𝑡
2,−𝑡 + 1]. Thus, for all 𝑡 ≤ 2, 𝜉(𝑥, 𝑢, 𝑡′) ∉ 𝑄. Therefore,

there is no piece-wise continuous control signal that can make the trajectory starting from 𝑥 invariant to 𝑄 or even
𝜏-recurrent with 𝜏 < 2, and 𝑄 is not controlled invariant or 𝜏-recurrent with any 𝜏 < 2. Thus, the invariance entropy
ℎinv(𝑄) and 𝜏-recurrence entropy ℎrec(𝑄, 𝜏) of system (10) are infinite for 𝜏 < 2.

In contrast, observe that any trajectory with an initial state in 𝑄 can be driven back to 𝑄 within 2 time units using a
control signal in  , the set of piecewise-continuous control signals mapping time to 𝑈 . Thus, 𝑄 is controlled 2-recurrent
and we can use Theorem 2 to compute a finite upper bound on ℎrec(𝑄, 𝜏). Observe that 𝐿𝜏 ≤ ‖

𝜕𝑓
𝜕𝑥 ‖ = ‖𝐴‖ = 1, where

‖ ⋅ ‖ is the induced supremum matrix norm. It therefore follows that

ℎinv(𝑄) = +∞ and ℎrec(𝑄, 𝜏) =

{

+∞ 𝜏 < 2
≤ 2∕ ln 2 𝜏 ≥ 2

.

In the following theorem, we present a lower bound on 𝜏-recurrence entropy of system (1). To that end, we will
require a stronger version of Assumption 1.

Assumption 2 ((𝜀, 𝜏)-completeness). There is some 𝜀 > 0, such that, for any 𝑥 ∈ 𝐵𝜀(𝑄) and 𝑢 ∈  , the trajectory
𝜉(𝑥, 𝑢, ⋅) is defined for all 𝑡 ∈ [0, 𝜏] and is continuous in its first argument.

Theorem 3 (Lower bound). Under Assumption 2, for any compact 𝜏-recurrent set 𝑄 ⊂ ℝ𝑛 for some 𝜏 ≥ 0 for system (1),

ℎrec(𝜏,𝑄) ≥ 1
ln 2

max
{

0, min
(𝑥,𝑢)∈cl(𝐵𝛿𝜏 (𝑄))×𝑈

div𝑥𝑓 (𝑥, 𝑢)
}

,

where div𝑥𝑓 (𝑥, 𝑢) =
∑𝑛

𝑖=1
𝜕𝑓𝑖
𝜕𝑥𝑖

(𝑥, 𝑢) = tr 𝜕𝑓𝜕𝑥 (𝑥, 𝑢).

Proof. A small modification of the proof of Theorem 4.1 in (Colonius and Kawan, 2009) would result in the theorem.
The modified proof is as follows: first, fix 𝑇 ≥ 0, 𝜀 that satisfies Assumption 2, and let 𝑆 = {𝑢𝑗}𝑗∈[𝑀] be a minimal
recurrence (𝑇 , 𝜀, 𝜏, 𝑄)-spanning set, where 𝑀 is the cardinality of 𝑆. Let us define the following sets: for any 𝑗 ∈ [𝑀],

𝑄𝑗 = {𝑥 ∈ 𝑄 | 𝜉(𝑥, 𝑢𝑗 , [0, 𝑇 ]) is (𝑇 , 𝜀, 𝜏, 𝑄)-recurrent}. (11)

For simplicity of notation, we define 𝜉(𝑄𝑗 , 𝑢𝑗 , 𝑇 ) ∶= ∪𝑥∈𝑄𝑗
{𝜉(𝑥, 𝑢𝑗 , 𝑇 )}. Note further that the statement 𝜉(𝑥, 𝑢𝑗 , [0, 𝑇 ])

is (𝑇 , 𝜀, 𝜏, 𝑄)-recurrent is equivalent to the statement that 𝜉(𝑥, 𝑢𝑗 , [0, 𝑇 ]) is (𝑇 , 𝜏, 𝐵𝜀(𝑄))-recurrent. Then, by Lemma 1
(applied to 𝐵𝜀(𝑄)), we have that 𝜆(𝜉(𝑄𝑗 , 𝑢𝑗 , 𝑇 )) ≤ 𝜆(𝐵𝛿𝜏,𝜀 (𝑄)), where 𝛿𝜏,𝜀 = 𝐹𝑄,𝜀𝜏𝑒

𝐿′
𝜏,𝜀𝜏 , which is the right-hand-side

of Lemma 1 when 𝑄 is replaced by 𝐵𝜀(𝑄) as we define 𝐹𝑄,𝜀 = 𝐹𝐵𝜀(𝑄) and 𝐿′
𝜏,𝜀 is defined as follows:

𝐿′
𝜏,𝜀 = max

𝑥1,𝑥2∈cl(𝑅𝑟(𝐵𝜀(𝑄),𝜏)),𝑢∈𝑈

‖𝑓 (𝑥1, 𝑢) − 𝑓 (𝑥2, 𝑢)‖
‖𝑥1 − 𝑥2‖

< ∞. (12)

Note that in the case of invariance (as when 𝜏 = 0), we instead have 𝜆(𝜉(𝑄𝑗 , 𝑢𝑗 , 𝑇 )) ≤ 𝜆(𝐵𝜀(𝑄)), as shown in
(Colonius and Kawan, 2009).

Now, we can use the transformation theorem and Liouville’s trace formula to get:

𝜆(𝜉(𝑄𝑗 , 𝑢𝑗 , 𝑇 )) = ∫𝑄𝑗

|det 𝜕𝜉
𝜕𝑥

(𝑥, 𝑢𝑗 , 𝑇 )|𝑑𝑥 ≥ 𝜆(𝑄𝑗) inf
(𝑥,𝑢)∈𝑄×𝑟,

𝜉(𝑥,𝑢,[0,𝑇 ])⊆𝐵𝛿𝜏,𝜀 (𝑄)

|det 𝜕𝜉
𝜕𝑥

(𝑥, 𝑢, 𝑇 )|

= 𝜆(𝑄𝑗) inf
(𝑥,𝑢)∈𝑄×𝑟,

𝜉(𝑥,𝑢,[0,𝑇 ])⊆𝐵𝛿𝜏,𝜀 (𝑄)

exp
(

∫

𝑇

0
div𝑥𝑓 (𝜉(𝑥, 𝑢, 𝑠), 𝑢(𝑠))𝑑𝑠

)

≥ 𝜆(𝑄𝑗) min
(𝑥,𝑢)∈cl(𝐵𝛿𝜏,𝜀 (𝑄))×𝑈

exp
(

𝑇 div𝑥𝑓 (𝑥, 𝑢)
)

.
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Now since 𝜆(𝑄) ≤ 𝑀 max𝑗∈[𝑀] 𝜆(𝑄𝑗),

𝜆(𝑄) ≤ 𝑀
max𝑗∈[𝑀] 𝜆(𝜉(𝑄𝑗 , 𝑢𝑗 , 𝑇 ))

min(𝑥,𝑢)∈cl(𝐵𝛿𝜏,𝜀 (𝑄))×𝑈 exp
(

𝑇 div𝑥𝑓 (𝑥, 𝑢)
)

≤ 𝑀
𝜆(𝐵𝛿𝜏,𝜀 (𝑄))

min(𝑥,𝑢)∈cl(𝐵𝛿𝜏,𝜀 (𝑄))×𝑈 exp
(

𝑇 div𝑥𝑓 (𝑥, 𝑢)
) .

Consequently,

𝑀 ≥ 𝜆(𝑄)
𝜆(𝐵𝛿𝜏,𝜀 (𝑄))

min
(𝑥,𝑢)∈cl(𝐵𝛿𝜏,𝜀 (𝑄))×𝑈

exp
(

𝑇 div𝑥𝑓 (𝑥, 𝑢)
)

.

Recall that 𝑀 here is equal to 𝑟rec(𝑇 , 𝜀, 𝜏, 𝑄). Thus, since 𝜏 is finite, 𝛿𝜏 is finite and ℎrec(𝜏,𝑄)

≥ lim
𝜀↘0

lim sup
𝑇→∞

1
𝑇

min
(𝑥,𝑢)∈cl(𝐵𝛿𝜏,𝜀 (𝑄))×𝑈

log exp
(

𝑇 div𝑥𝑓 (𝑥, 𝑢)
)

= lim
𝜀↘0

1
ln 2

min
(𝑥,𝑢)∈cl(𝐵𝛿𝜏,𝜀 (𝑄))×𝑈

div𝑥𝑓 (𝑥, 𝑢)

= 1
ln 2

min
(𝑥,𝑢)∈cl(𝐵𝛿𝜏 (𝑄))×𝑈

div𝑥𝑓 (𝑥, 𝑢).

Note that 𝛿𝜏 strictly increases with 𝜏. Thus, with a larger 𝜏, the domain over which the minimum is taken in the lower
bound becomes larger, and the minimum itself becomes smaller. This is expected since ℎ(𝜏′, 𝑄) ≤ ℎ(𝜏,𝑄) if 𝜏′ ≥ 𝜏,
according to Lemma 2. Also, as 𝜏 → 0, we get the same lower bound as invariance entropy presented in (Colonius and
Kawan, 2009).

Remark 4. Theorem 3 does not follow directly from Theorem 4.1 in (Colonius and Kawan, 2009), i.e., from the result
that ℎinv(𝑄) is greater than or equal to max{0,min(𝑥,𝑢)∈𝑄×𝑈 div𝑥𝑓 (𝑥, 𝑢)}, since ℎrec(𝜏,𝑄) ≤ ℎinv(𝑄), for any 𝜏 ≥ 0.

5. Entropy and 𝜏-Recurrence data rates: bounds and algorithm
In this section, we describe the relation between 𝜏-recurrence entropy and control under bandwidth constraints,

particularly on the communication channel between the sensor and controller. We first prove that 𝜏-recurrence entropy
lower bounds the bit rate needed between the sensor and controller for any control algorithm that enforces the 𝜏-recurrence
of a 𝜏-recurrent set. We then present an example of such a control algorithm and prove that it can asymptotically achieve
𝜏-recurrence with a bit rate equal to the upper bound on entropy derived in Theorem 2 plus 𝛼𝑛∕ ln 2, where 𝛼 is the
exponential rate of convergence to 𝜏-recurrence.

5.1. Recurrence entropy lower bounds the data rate between the sensor and controller
We assume the setup where there is a sensor that can measure the state of system (1) at any time instant with

an arbitrary accuracy. It also has computation capabilities that allows it to simulate the system starting from any
initial state and following any control, as long as that trajectory exists. The sensor is connected to a controller over
a limited-bandwidth channel. The controller does not have information about the state of the system besides what it
receives from the sensor. It does however know the 𝜏-recurrent set 𝑄 ⊂ ℝ𝑛 and the control signals that drive the system
when starting from any state in 𝑄 to have an (𝜀, 𝜏,𝑄)-recurrent trajectory.

An (𝜀, 𝜏,𝑄)-recurrence enforcing algorithm is a pair of procedures, one for the sensor and the other for the controller.
The sensor’s procedure determines the bits it sends over the channel to the controller. Based on these bits, the controller’s
procedure determines how to map these bits to a control signal to drive the system to have an (𝜀, 𝜏,𝑄)-recurrent
trajectory. The average bit rate of an (𝜀, 𝜏,𝑄)-recurrence enforcing algorithm is defined as follows: lim𝑇→∞

#bits(𝑇 )
𝑇 ,

where #bits(𝑇 ) is the total number of bits sent by the sensor until time 𝑇 .

Theorem 4. For any controlled 𝜏-recurrent set 𝑄 ⊂ ℝ𝑛 for some 𝜏 ≥ 0 for system (1), and for any 𝜀 ≥ 0, there exists
no (𝜀, 𝜏,𝑄)-recurrence enforcing algorithm with an average bit rate smaller than ℎrec(𝜏,𝑄).
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Proof. Fix 𝑄, 𝜏, and 𝜀 that satisfy the assumption of the theorem. The proof is by contradiction. If there is such an
algorithm with an average data rate smaller than entropy, then there exists a 𝑇 > 0 such that

#bits(𝑇 )
𝑇

< 1
𝑇
log 𝑟rec(𝑇 , 𝜀, 𝜏, 𝑄). (13)

That implies that 2#bits(𝑇 ) < 𝑟rec(𝑇 , 𝜀, 𝜏, 𝑄). Observe that 2#bits(𝑇 ) is the number of control signals that the controller
can possibly generate over the interval [0, 𝑇 ]. By the assumption that the controller enforces the system to have an
(𝑇 , 𝜀, 𝜏, 𝑄)-recurrent trajectory, then for every 𝑥 ∈ 𝑄, it can generate a control signal that results in a (𝑇 , 𝜀, 𝜏, 𝑄)-
recurrent trajectory. Therefore, the set of control signals that the controller can generate is a (𝑇 , 𝜀, 𝜏, 𝑄)-spanning one
that has a smaller cardinality than 𝑟rec(𝑇 , 𝜀, 𝜏, 𝑄), which contradicts the latter’s definition being the minimal cardinality
of a (𝑇 , 𝜀, 𝜏, 𝑄)-spanning set.

5.2. Algorithm for enforcing 𝜏-recurrence over limited-bandwidth channels
In this section, we present Algorithm 1, which when the sensor follows and the controller follows a corresponding

symmetric procedure, the resulting control signal drives system (1) to have an exponentially converging trajectory to a
(𝜏,𝑄)-recurrent one at a user-specified rate 𝛼 ≥ 0. When 𝛼 = 0, the trajectory would be an (𝜀, 𝜏,𝑄)-recurrent trajectory
with a user-specified 𝜀. We define this more formally in Theorem 5 and Corollary 2. After that, we show that the bit rate
at which the sensor sends information to the controller when following Algorithm 1 is equal to the upper bound on
𝜏-recurrence entropy presented in Theorem 2 when 𝛼 = 0, and grows linearly with 𝛼, otherwise.

In our algorithm, we assume that there exists a constant 𝜀∗ > 0 such that starting from any state in 𝐵𝛿𝜏+𝜀∗ (𝑄), there
exists a control signal that drives system (1) to 𝑄 within 𝜏 time units. Moreover, we assume that the function that
maps the initial states 𝐵𝛿𝜏+𝜀(𝑄) to the shortest time such a control signal takes to drive system (1) to 𝑄 to be Lipschitz
continuous. While this latter part of the assumption is not necessary for the correctness of the algorithm, it results in
better guarantees when satisfied, as we describe in Theorem 5 and Corollary 2. The assumption is formulated as follows.

Assumption 3. There exists an 𝜀∗ > 0, a control function ℎ ∶ 𝐵𝛿𝜏+𝜀∗ (𝑄)∖𝑄×ℝ≥0 → 𝑈 , and a corresponding function
𝑡rec,𝑄 ∶ 𝐵𝛿𝜏+𝜀∗ (𝑄) → [0, 𝜏], such that ∀𝑥 ∈ 𝐵𝛿𝜏+𝜀∗ (𝑄)∖𝑄, the trajectory of system (1) 𝜉(𝑥, ℎ(𝑥, ⋅), 𝑡rec,𝑄(𝑥)) ∈ 𝑄.
Moreover, there exists some constant 𝑐∗ ≥ 0 such that for any 𝑥1, 𝑥2 ∈ 𝐵𝛿𝜏+𝜀∗ (𝑄)∖𝑄, |𝑡rec,𝑄(𝑥1) − 𝑡rec,𝑄(𝑥2)| ≤
𝑐∗‖𝑥1 − 𝑥2‖.

Next, for any 𝜏 > 0 and 𝜀 ∈ (0, 𝜀∗], where 𝜀∗ is the one assumed to exist in Assumption 3, we define a new control
function 𝑔 ∶ 𝐵𝛿𝜏+𝜀(𝑄) ×ℝ≥0 → 𝑈 , where 𝛿𝜏 is as defined at the end of Section 3.2, to be used in the algorithm. If the
initial state 𝑥 is in 𝑄, 𝑔(𝑥, ⋅) is equal to a control signal that ensures (𝜏,𝑄)-recurrence, which exists by the assumption
that 𝑄 is 𝜏-recurrent. Otherwise, it is equal to the control function ℎ defined in Assumption 3 up until reaching 𝑄, i.e.,
until 𝑡rec,𝑄(𝑥). After that, it is equal to the control function that ensures the trajectory is 𝜏-recurrent starting from the
new initial state in 𝑄. In practice, 𝑔 and ℎ can be synthesized using MPC or MPPI approaches, as we mentioned in
Remark 1.

Formally, let 𝑔′ ∶ 𝑄 × ℝ≥0 → 𝑈 be such that for any 𝑥 ∈ 𝑄, the trajectory 𝜉(𝑥, 𝑔′(𝑥, ⋅), ⋅) is a (𝜏,𝑄)-
recurrent one. Such a function exists because of the assumption that 𝑄 is a 𝜏-recurrent set. We define 𝑔 as follows:
∀𝑡 ≥ 0, 𝑔(𝑥, 𝑡) ∶= 𝑔′(𝑥, 𝑡) if 𝑥 ∈ 𝑄. If 𝑥 ∈ 𝐵𝛿𝜏+𝜀∗ (𝑄)\𝑄, ∀𝑡 ≤ 𝑡rec,𝑄(𝑥), 𝑔(𝑥, 𝑡) ∶= ℎ(𝑥, 𝑡) and ∀𝑡 > 𝑡rec,𝑄(𝑥), 𝑔(𝑥, 𝑡) ∶=
𝑔′(𝜉(𝑥, ℎ(𝑥, ⋅), 𝑡rec,𝑄(𝑥)), 𝑡 − 𝑡rec,𝑄(𝑥)).

5.2.1. Algorithm description
Algorithm 1 takes as input a 𝜏-recurrent set 𝑄 for some 𝜏 > 0, an 𝜀 ∈ (0, 𝜀∗] (where 𝜀∗ is as defined in Assumption 3),

and the control function 𝑔 defined earlier. It also assumes to be given several functions: 𝑠𝑒𝑛𝑠𝑒, 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒, 𝑒𝑛𝑐𝑜𝑑𝑒, 𝑠𝑒𝑛𝑑,
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒, and 𝑠𝑙𝑒𝑒𝑝. The function 𝑠𝑒𝑛𝑠𝑒 returns the current state of the system. The function 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒 returns the
closest point in the set given in its second argument to the point given in its first argument. The function 𝑒𝑛𝑐𝑜𝑑𝑒 maps
the first argument to a bit vector that uniquely identifies it out of the set of states given in the second argument. The
function 𝑠𝑒𝑛𝑑 sends the given bit vector over the limited-bandwidth channel to the controller. The function 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒
simulates the system starting from the state in its first argument following the control signal in its second argument until
the time bound specified in its third argument. It returns the last state in the simulated trajectory. If the third argument is
an interval, it returns the trajectory segment within that interval. Finally, the function 𝑠𝑙𝑒𝑒𝑝 makes the sensor wait for
the amount of real time passed as argument before continuing the execution of the algorithm. The time of the algorithm
execution is assumed to be negligible with respect to 𝜏.
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The algorithm starts by initializing 𝑆0 to 𝑄 and constructing an 𝜀𝑒−(𝐿𝜏+𝛼)𝜏 -grid for it, which we denote by 𝐶0. The
algorithm then proceeds with an infinite loop. In each iteration, it sends a bit vector that encodes a state estimate to
the controller, according to which it can identify the control function 𝑢𝑖 the system should follow in the time interval
[𝑖𝜏, (𝑖 + 1)𝜏). To produce the bit vector, the sensor measures the current state of the system 𝑥𝑖, i.e., 𝜉(𝑥0, 𝑢̂, 𝑖𝜏), where 𝑢̂
is the control signal have been followed so far. Then, it quantizes 𝑥𝑖 to one of the centers 𝑞𝑖 in the grid 𝐶𝑖. The encoding
of 𝑞𝑖 with respect of 𝐶𝑖 is the bit vector that the sensor sends. The controller, which is running a similar algorithm to
Algorithm 1, but without the sensing, can recover 𝑞𝑖 as it knows 𝐶𝑖. Using 𝑞𝑖, it can choose the same control function 𝑢𝑖
that the sensor intends to use to construct 𝐶𝑖+1.

After that, Algorithm 1 computes 𝑢𝑖 to be equal to 𝑔(𝑞𝑖, [0, 𝜏)). Then, it simulates the system for 𝜏 time units starting
from 𝑞𝑖 and following 𝑢𝑖. It uses the last state in the simulated trajectory as the center of the ball 𝑆𝑖+1 which bounds the
region where the next sensed state 𝑥𝑖+1 might be. The radius 𝑟𝑖+1 of 𝑆𝑖+1 is an 𝑒𝛼𝜏 factor smaller than that of 𝑆𝑖. After
that, it constructs the grid 𝐶𝑖+1 to be the 𝑟𝑖+1𝑒−(𝐿𝜏+𝛼)𝜏 -grid over 𝑆𝑖+1, according to which the next state, 𝑥𝑖+1, would be
quantized. Finally, the sensor waits for the system to evolve for 𝜏 time units before sensing it again in the next iteration.

Algorithm 1 Sensor algorithm for achieving recurrence

1: input: 𝑄, 𝜀 ∈ (0, 𝜀∗], 𝜏 > 0, 𝑔 ∶ 𝐵𝛿𝜏+𝜀(𝑄) ×ℝ≥0 → 𝑈
2: 𝑆0 ← 𝑄
3: 𝑟0 ← 𝜀
4: 𝐶0 ← 𝑔𝑟𝑖𝑑(𝑆0, 𝑟0𝑒−(𝐿𝜏+𝛼)𝜏 )
5: 𝑖 = 0
6: while true do
7: 𝑥𝑖 ← 𝑠𝑒𝑛𝑠𝑒()
8: 𝑞𝑖 ← 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒(𝑥𝑖, 𝐶𝑖)
9: 𝑠𝑒𝑛𝑑(𝑒𝑛𝑐𝑜𝑑𝑒(𝑞𝑖, 𝐶𝑖))

10: 𝑢𝑖 ← 𝑔(𝑞𝑖, [0, 𝜏))
11: 𝑟𝑖+1 ← 𝑟𝑖𝑒−𝛼𝜏
12: 𝑆𝑖+1 ← 𝐵𝑟𝑖+1 (𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒(𝑞𝑖, 𝑢𝑖, 𝜏))
13: 𝐶𝑖+1 ← 𝑔𝑟𝑖𝑑(𝑆𝑖+1, 𝑟𝑖+1𝑒−(𝐿𝜏+𝛼)𝜏 )
14: 𝑖 ← 𝑖 + 1
15: 𝑠𝑙𝑒𝑒𝑝(𝜏)

5.2.2. Algorithm guarantees
Fix the inputs to Algorithm 1, i.e., a controlled 𝜏-recurrent set 𝑄 and a corresponding 𝜏-recurrence achieving

controller 𝑔. Moreover, fix any initial state 𝑥0 ∈ 𝑄. Let 𝑢̂ ∶ ℝ≥0 → ℝ𝑚 be the concatenation of the 𝑢𝑖s produced by
Algorithm 1, i.e., for any 𝑡 ≥ 0, 𝑢̂(𝑡) = 𝑢𝑖(𝑡 − 𝑖𝜏), where 𝑖 = ⌊𝑡∕𝜏⌋. Also, let 𝜉 ∶ ℝ≥0 → ℝ𝑚 be the concatenation of
the 𝜏-sized fragments of trajectories 𝜉(𝑞𝑖, 𝑢𝑖, [0, 𝜏)) produced by the algorithm, i.e., ∀𝑡 ≥ 0 and 𝑡 ≠ 𝑖𝜏 for some 𝑖 ∈ ℕ,
𝜉(𝑡) = 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒(𝑞𝑖, 𝑢𝑖, 𝑡 − 𝑖𝜏) and 𝜉(𝑖𝜏) = 𝑞𝑖, where 𝑖 = ⌊𝑡∕𝜏⌋. Thus, 𝜉 would be right-piece-wise-continuous. Finally,
the trajectory that the system would have starting from 𝑥0 following 𝑢̂ is denoted as usual by 𝜉(𝑥0, 𝑢̂, ⋅).

Theorem 5. Fix any compact controlled 𝜏-recurrent set 𝑄 ⊂ ℝ𝑛 and any initial state 𝑥0 ∈ 𝑄. If Assumption 3 holds,
then Algorithm 1 ensures that:

1. ∀𝑖 ≥ 0, 𝑥𝑖 ∈ 𝑆𝑖, and ∀𝑡 ≥ 0, ‖𝜉(𝑡) − 𝜉(𝑥0, 𝑢̂, 𝑡)‖ ≤ 𝜀𝑒−𝛼𝑡,
2. ∀𝑖 ∈ ℕ, 𝜉[𝑖𝜏,∞) is an (𝜀𝑒−𝑖𝛼𝜏 , 𝜏 + 𝑐∗𝜀𝑒−(𝑖𝛼+𝐿𝜏 )𝜏 , 𝑄)-recurrent function, and
3. ∀𝑖 ∈ ℕ, 𝜉(𝑥0, 𝑢̂, [𝑖𝜏,∞)) is a (2𝜀𝑒−𝑖𝛼𝜏 , 𝜏 + 𝑐∗𝜀𝑒−(𝑖𝛼+𝐿𝜏 )𝜏 , 𝑄)-recurrent trajectory.

If the Lipschitz continuity assumption on 𝑡rec,𝑄 in Assumption 3 does not hold, then ∀𝑖 ∈ ℕ, 𝜉[𝑖𝜏,∞) is an (𝜀𝑒−𝑖𝛼𝜏 , 2𝜏,𝑄)-
recurrent function and ∀𝑖 ∈ ℕ, 𝜉(𝑥0, 𝑢̂, [𝑖𝜏,∞)) is a (2𝜀𝑒−𝑖𝛼𝜏 , 2𝜏,𝑄)-recurrent trajectory.

Proof. First, we will prove part 1) by induction. For the base case: 𝑥0 ∈ 𝑆0 and ‖𝜉(0) − 𝑥0‖ ≤ 𝜀𝑒−(𝐿𝜏+𝛼)𝜏 ≤ 𝜀, which
hold by the fact that 𝐶0 is a grid over 𝑄 with cells of radii 𝑟0 = 𝜀𝑒−(𝐿𝜏+𝛼)𝜏 and 𝜉(0) = 𝑞0.

Inductive case: fix an 𝑖 ∈ ℕ and assume that 𝑥𝑖 ∈ 𝑆𝑖 and ∀𝑡 ∈ [0, 𝑖𝜏], ‖𝜉(𝑡) − 𝜉(𝑥0, 𝑢̂, 𝑡)‖ ≤ 𝜀𝑒−𝛼𝑡. By Grönwall’s
inequality, ∀𝑡 ∈ [𝑖𝜏, (𝑖 + 1)𝜏], ‖𝜉(𝑥𝑖, 𝑢𝑖, 𝑡) − 𝜉(𝑞𝑖, 𝑢𝑖, 𝑡)‖ ≤ 𝑒𝐿𝜏 (𝑡−𝑖𝜏)

‖𝑥𝑖 − 𝑞𝑖‖ ≤ 𝜀𝑒−((𝑖+1)𝛼+𝐿𝜏 )𝜏𝑒𝐿𝜏 (𝑡−𝑖𝜏) ≤ 𝜀𝑒−(𝑖+1)𝛼𝜏 ≤
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𝜀𝑒−𝛼𝑡. Recall that 𝑥𝑖+1 = 𝜉(𝑥𝑖, 𝑢𝑖, 𝜏) and 𝑟𝑖+1 = 𝜀𝑒−(𝑖+1)𝛼𝜏 . Thus, 𝑥𝑖+1 ∈ 𝐵𝑟𝑖+1 (𝜉(𝑞𝑖, 𝑢𝑖, 𝜏)), and the latter is 𝑆𝑖+1.
Then, since 𝐶𝑖+1 is a grid over 𝑆𝑖+1 with granularity 𝑟𝑖+1𝑒−(𝐿𝜏+𝛼)𝜏 and 𝜉((𝑖 + 1)𝜏) = 𝑞𝑖+1, ‖𝑥𝑖+1 − 𝜉((𝑖 + 1)𝜏)‖ =
‖𝑥𝑖+1 − 𝑞𝑖+1‖ ≤ 𝑟𝑖+1𝑒−(𝐿𝜏+𝛼)𝜏 , and thus ‖𝜉(𝑥0, 𝑢̂, (𝑖 + 1)𝜏) − 𝜉((𝑖 + 1)𝜏)‖ ≤ 𝜀𝑒−((𝑖+2)𝛼+𝐿𝜏 )𝜏 ≤ 𝜀𝑒−(𝑖+1)𝛼𝜏 . That proves
the inductive argument for part 1).

We prove part 2) also by induction. We will prove the stronger claim that for any 𝑖 ∈ ℕ, either 𝜉(𝑡) ∈ 𝑄 for some
𝑡 ∈ [𝑖𝜏, (𝑖+1)𝜏) or lim𝑡→((𝑖+1)𝜏)− 𝜉(𝑡) ∈ 𝑄, and |𝑡𝑖+1− 𝑡𝑖| ≤ 𝜏+ 𝑐∗𝜀𝑒−𝑖𝛼𝜏 , where 𝑡𝑖 is the last time instant in [𝑖𝜏, (𝑖+1)𝜏)
such that 𝜉(𝑡𝑖) ∈ 𝑄 or equal to (𝑖 + 1)𝜏, otherwise, and 𝑡𝑖+1 is the first time instant in [(𝑖 + 1)𝜏, (𝑖 + 2)𝜏) such that
𝜉(𝑡𝑖+1) ∈ 𝑄, or 𝑡∗𝑖+1 = (𝑖 + 2)𝜏, otherwise. When it is the case that lim𝑡→((𝑖+1)𝜏)− 𝜉(𝑡) ∈ 𝑄, we know from part 1) that
𝑞𝑖+1 ∈ 𝑆𝑖+1, which is centered at the value of that limit and has a radius of 𝑟𝑖+1. Thus, 𝜉((𝑖 + 1)𝜏), which is equal to
𝑞𝑖+1, would be at most 𝑟𝑖+1 (i.e., 𝜀𝑒−(𝑖+1)𝛼𝜏 ) from 𝑄.

Base case: by assumption, 𝑥0 ∈ 𝑄, 𝜉(0) = 𝑞0, and 𝑞0 ∈ 𝑄 as it is the quantization of 𝑥0 with respect to 𝐶0, which
is a grid over 𝑄. By part 1), ‖𝜉(0) − 𝑥0‖ ≤ 𝜀𝑒−(𝐿𝜏+𝛼)𝜏 and thus 𝜉(0) ∈ 𝐵𝜀𝑒−(𝐿𝜏+𝛼)𝜏 (𝑄) ⊆ 𝐵𝛿𝜏+𝜀𝑒−(𝐿𝜏+𝛼)𝜏 (𝑄). Then, 𝑢0 is
equal to 𝑔(𝑞0, [0, 𝜏)). That would result in 𝜉([0, 𝜏)) being a prefix of a (𝜏,𝑄)-recurrent trajectory starting from 𝑞0, by
the definition of 𝑔. Thus, either 𝜉(𝑡) ∈ 𝑄 for some 𝑡 ∈ (0, 𝜏) or lim𝑡→𝜏− 𝜉(𝑡) ∈ 𝑄. Moreover, by the containment lemma
(Lemma 1), ∀𝑡 ∈ [0, 𝜏), 𝜉(𝑡) ∈ 𝐵𝛿𝜏 (𝑄). Thus, lim𝑡→𝜏− 𝜉(𝑡), which is the center of 𝑆1, would be in 𝐵𝛿𝜏 (𝑄). Thus, 𝜉(𝜏),
which is equal to 𝑞1 and belongs to 𝑆1, would be in 𝐵𝛿𝜏+𝜀𝑒−𝛼𝜏 (𝑄).

Inductive case: fix an 𝑖 ≥ 1 and assume that that part 2) is true until time 𝑖𝜏. Thus, there exists a time instant 𝑡 ∈ [0, 𝜏)
such that 𝜉((𝑖 − 1)𝜏 + 𝑡) ∈ 𝑄 or lim𝑡→(𝑖𝜏)− 𝜉(𝑡) ∈ 𝑄. Let 𝑡𝑖−1 be the largest such instant. If 𝑡𝑖−1 < 𝑖𝜏 and we simulate
system (1) when following 𝑔(𝜉(𝑞𝑖−1, 𝑢𝑖−1, 𝑖𝜏 + 𝑡𝑖−1), ⋅) starting from 𝜉(𝑞𝑖−1, 𝑢𝑖−1, 𝑖𝜏 + 𝑡𝑖−1), the resulting trajectory will
be (𝜏,𝑄)-recurrent. Thus, there exists 𝑡′ ∈ (0, 𝜏] such that that trajectory belongs to 𝑄 at time 𝑖𝜏+ 𝑡′. However, 𝜉 is equal
to that trajectory only in the interval [(𝑖−1)𝜏 + 𝑡𝑖−1, 𝑖𝜏). In the interval [𝑖𝜏, (𝑖+1)𝜏), 𝜉 will be equal to the trajectory that
starts from 𝑞𝑖 and follows 𝑔(𝑞𝑖, ⋅). If 𝑞𝑖 ∈ 𝑄, then 𝜉 would have visited 𝑄 within 𝜏 − 𝑡∗𝑖−1 time units, which is less than 𝜏.
If 𝑞𝑖 ∉ 𝑄, then from part 1), we know that 𝑞𝑖 ∈ 𝑆𝑖 and thus ‖𝑞𝑖 − lim𝑡→𝑖𝜏− 𝜉(𝑡)‖ ≤ 𝑟𝑖 = 𝜀𝑒−𝑖𝛼𝜏 . Then, by Assumption 3,
we know that 𝜉 would reach or be arbitrarily close to 𝑄 at or before min{(𝑖 + 1)𝜏, 𝑡𝑖−1 + 𝜏 + 𝑐∗‖𝑞𝑖 − lim𝑡→𝑖𝜏− 𝜉(𝑡)‖},
which is upper bounded by min{(𝑖+1)𝜏, 𝑡𝑖−1 + 𝜏 + 𝑐∗𝜀𝑒−𝑖𝛼𝜏}. Note that if 𝑡rec,𝑄 is not Lipschitz continuous as assumed
in Assumption 3, we can still guarantee that 𝜉 will be arbitrarily close to 𝑄 at or before (𝑖 + 1)𝜏 since the first argument
of the minimum in the previous sentence is independent of that assumption. We can conclude that the time between two
time instants at which 𝜉 belongs or is arbitrarily close to 𝑄 in the intervals [(𝑖 − 1)𝜏, 𝑖𝜏) and [𝑖𝜏, (𝑖 + 1)𝜏) is less than
or equal to 𝜏 + 𝑐∗𝜀𝑒−𝑖𝛼𝜏 , if Assumption 3 is satisfied. If 𝑡rec,𝑄 is not Lipschitz continuous, then we can still guarantee
that the time between two time instants at which 𝜉 belongs or is arbitrarily close to 𝑄 in the intervals [(𝑖 − 1)𝜏, 𝑖𝜏) and
[𝑖𝜏, (𝑖 + 1)𝜏) is less than or equal to 2𝜏.

Finally, part 3) follows from combining parts 1) and part 2) and using the triangular inequality 𝑑(𝜉(𝑥0, 𝑢̂, 𝑡), 𝑄) ≤
‖𝜉(𝑥0, 𝑢̂, 𝑡) − 𝜉(𝑡)‖ + 𝑑(𝜉(𝑡), 𝑄) at the time instants where 𝜉(𝑡) is visiting 𝐵𝛿𝜏+𝜀𝑒−𝑖𝛼𝜏 (𝑄). We obtain that 𝜉(𝑥0, 𝑢̂, ⋅) visits
𝐵𝛿𝜏+2𝜀𝑒−𝑖𝛼𝜏 (𝑄) in the [𝑖𝜏, (𝑖+ 1)𝜏) interval. Thus, 𝜉(𝑥0, 𝑢̂, [𝑖𝜏,∞)) is a (2𝜀𝑒−𝑖𝛼𝜏 , 𝜏 + 𝑐∗𝜀𝑒−𝑖𝛼𝜏 , 𝑄)-recurrent trajectory. If
𝑡rec,𝑄 is not Lipschitz continuous, then 𝜉(𝑥0, 𝑢̂, ⋅) visits 𝐵𝛿𝜏+2𝜀𝑒−𝑖𝛼𝜏 (𝑄) in the [𝑖𝜏, (𝑖 + 2)𝜏) interval and 𝜉(𝑥0, 𝑢̂, [𝑖𝜏,∞))
is a (2𝜀𝑒−𝑖𝛼𝜏 , 2𝜏,𝑄)-recurrent trajectory.

It follows that the trajectory of system (1) when following the controller 𝑢̂ produced by Algorithm 1 asymptotically
approaches a (𝜏,𝑄)-recurrent trajectory.
Corollary 2. Fix any initial state 𝑥0 ∈ 𝑄 and define the corresponding control signal 𝑢̂ as we did at the beginning of this
section. If Assumption 3 holds, then as 𝑡 → ∞, 𝜉(𝑥0, 𝑢̂, [𝑡,∞)) is a (𝜏,𝑄)-recurrent trajectory. Otherwise, if the Lipschitz
continuity assumption on 𝑡rec,𝑄 in Assumption 3 does not hold, then as 𝑡 → ∞, 𝜉(𝑥0, 𝑢̂, [𝑡,∞)) is a (2𝜏,𝑄)-recurrent
trajectory.

In the following theorem, we show that the bit rate at which a sensor running Algorithm 1 sends information t the
controller matches the upper bound on 𝜏-recurrence entropy in Section 4.
Theorem 6. The average bit rate at which a sensor running Algorithm 1 will send to the controller is equal to
𝑛(𝐿𝜏 + 𝛼)∕ ln 2.

Proof. Fix any 𝑖 ∈ ℕ. The number of bits that the sensor running Algorithm 1 sends at the time instant 𝑡 = 𝑖𝜏 is log |𝐶𝑖|.
Given any time bound 𝑇 ≥ 0, the total number of bits sent by the sensor over [0, 𝑇 ] is equal to

∑

⌊𝑇 ∕𝜏⌋
𝑖=0 log |𝐶𝑖|. Thus,

the average bit rate is lim𝑇→∞
∑

⌊𝑇 ∕𝜏⌋
𝑖=0

log |𝐶𝑖|

𝑇 .
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We can observe that ∀𝑖 ≥ 0, 𝐶𝑖 = ⌈

diam(𝑆𝑖)
2𝑟𝑖𝑒−(𝐿𝜏+𝛼)𝜏

⌉

𝑛. Then, 𝐶0 = ⌈

diam(𝑄)
2𝜀𝑒−(𝐿𝜏+𝛼)𝜏

⌉

𝑛 and for any 𝑖 ≥ 1, 𝐶𝑖 = ⌈

2𝑟𝑖
2𝑟𝑖𝑒−(𝐿𝜏+𝛼)𝜏

⌉

𝑛 =

⌈𝑒(𝐿𝜏+𝛼)𝜏
⌉

𝑛.
Thus, the average bit rate is equal to:

lim
𝑇→∞

1
𝑇

⌊𝑇 ∕𝜏⌋
∑

𝑖=0

log |𝐶𝑖|

𝑇

= lim
𝑇→∞

1
𝑇
(

⌈

diam(𝑄)
2𝜀𝑒−(𝐿𝜏+𝛼)𝜏

⌉

𝑛 +
⌊𝑇 ∕𝜏⌋
∑

𝑖=1
log⌈𝑒(𝐿𝜏+𝛼)𝜏

⌉

𝑛)

= 𝑛(𝐿𝜏 + 𝛼)∕ ln 2. (14)

6. Finite alphabet controllers and memory bounds
Having established how recurrence, as a control task, is less complex (entropy) and requires less information (bit

rates) than the invariance counterpart, we now center our attention on a striking phenomenon associated with recurrence
that is generally unattainable by invariance tasks. That is, though the number of control signals required to enforce
recurrence grows exponentially with time, such controls can be generated by a finite alphabet of control signals that can
be strategically combined to achieve the desire goal. This allows control signals to be precomputed and stored, thus
circumventing one of the key shortcomings of the entropy-based algorithms, which assumes the ability to efficiently
compute controls online. We start by introducing the building blocks of our controllers, i.e., the control alphabet.

Definition 6 (Control alphabet). Fix a 𝜏 ≥ 0. We call a set 𝑆𝜏 ∶= {𝑣1,… , 𝑣𝑛} consisting of piecewise continuous
control signals of the form 𝑣𝑖 ∶ [0, 𝑡𝑖) → 𝑈 , for some 𝑡𝑖 ∈ (0, 𝜏], a control alphabet.

Sequentially concatenating signals from the alphabet generate signals over longer time horizons. For example,
the signal 𝑢 ∶ [0, 𝑡𝑖 + 𝑡𝑗) → 𝑈 such that 𝑢(𝑡) = 𝑣𝑖(𝑡) for all 𝑡 ∈ [0, 𝑡𝑖) and 𝑢(𝑡𝑖 + 𝑡) = 𝑣𝑗(𝑡) for all 𝑡 ∈ [0, 𝑡𝑗), results
from concatenating 𝑣𝑖 and 𝑣𝑗 , and is denoted by 𝑢 = 𝑣𝑖𝑣𝑗 . This construction allows the generation of control signals
of arbitrary duration, by subsequent concatenation of alphabet elements, e.g., concatenating 𝑣𝑖𝑣𝑗 with 𝑣𝑘 leads to
(𝑣𝑖𝑣𝑗)𝑣𝑘 = 𝑣𝑖𝑣𝑗𝑣𝑘 which has a total duration 𝑡𝑖 + 𝑡𝑗 + 𝑡𝑘. Our goal is then to understand under what condition such
alphabets can induce trajectories with the required properties, as in Definition 3 and Definition 5.

More precisely, we call a control alphabet 𝑆𝜏 a (𝑇 , 𝜀, 𝜏, 𝑄)-invariance alphabet for system (1) if its members can
be sequentially concatenated to generate signals over the interval [0, 𝑇 ] that form an invariance (𝑇 , 𝜀,𝑄)-spanning set.
Similarly, we call 𝑆𝜏 a (𝑇 , 𝜀, 𝜏, 𝑄)-recurrence alphabet for system (1) if its members can be sequentially concatenated
to generate signals that form a recurrence (𝑇 , 𝜀, 𝜏, 𝑄)-spanning set. As before, we drop 𝑇 from the arguments if equals
to infinity and drop 𝜀 if equals to zero.

Definition 7 (Nonparametric control). Given a control alphabet 𝑆𝜏 , a non-parametric controller is defined by a map
𝜋 ∶ ℝ𝑛 → 𝑆𝜏 . It induces a controller 𝑔 ∶ ℝ𝑛 × ℝ≥0 → 𝑈 for system (1). The controller 𝑔 samples the state 𝑥0 of
system (1) at time zero, outputs 𝜋(𝑥0) for the latter’s duration, i.e., if 𝜋(𝑥0) = 𝑣𝑖, 𝑔(𝑥0, 𝑡) = 𝑣𝑖(𝑡) for all 𝑡 ∈ [0, 𝑡𝑖),
before sampling the state again and repeating the process.

Our goal is to use non-parametric controllers of the form of Definition 7 as a substitute for having to compute
the control signals online via MPC or a similar method. To that end, we define entropy-like metrics that quantify the
minimal number of bits necessary to differentiate across elements of an alphabet that achieves invariance and recurrence.
We call such metrics invariance memory and recurrence memory, respectively, as follows:

𝑚inv(𝜏,𝑄) ∶= lim
𝜀↘0

lim sup
𝑇→∞

log 𝑟inv,mem(𝑇 , 𝜀, 𝜏, 𝑄) and 𝑚rec(𝜏,𝑄) ∶= lim
𝜀↘0

lim sup
𝑇→∞

log 𝑟rec,mem(𝑇 , 𝜀, 𝜏, 𝑄), (15)

where 𝑟inv,mem(𝑇 , 𝜀, 𝜏, 𝑄) and 𝑟rec,mem(𝑇 , 𝜀, 𝜏, 𝑄) are the minimum cardinalities of (𝑇 , 𝜀, 𝜏, 𝑄)-invariance and recurrence
alphabets, respectively. Note that one could consider having the recurrence time and the upper bound on the durations
of the signals in the alphabet represented using separate parameters for the recurrence memory definition, instead of
considering them both to be equal to 𝜏 as in the definition above, but we avoid that here to keep the presentation simple.
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Remark 5. Fix a 𝜏 ≥ 0 and a compact set 𝑄 ⊂ ℝ𝑛. Then, 𝑚inv(𝜏,𝑄) is finite if and only if there exists a finite (𝜏,𝑄)-
invariance alphabet, i.e., a finite set of signals such that for any 𝑇 > 0, they can be concatenated to define signals over
[0, 𝑇 ] that keep the trajectories (𝑇 ,𝑄)-invariant. This follows from the observation that 𝑟inv,mem(𝑇 , 𝜀, 𝜏, 𝑄) is monoton-
ically increasing as 𝑇 increases and 𝜀 decreases. Consequently, 𝑚inv(𝜏,𝑄) = log 𝑟inv,mem(𝜏,𝑄), where 𝑟inv,mem(𝜏,𝑄) is
the cardinality of the minimal (𝜏,𝑄)-invariance alphabet, since 𝑟inv,mem(𝜏,𝑄) = lim𝜀↘0 lim sup𝑇→∞ 𝑟inv,mem(𝑇 , 𝜀, 𝜏, 𝑄).
Thus, in contrast with invariance entropy, a strict version of 𝑚inv, where the alphabets should be able to generate strict
invariance spanning sets, would not result in a different value. A similar argument can be made for recurrence memory to
show that it is finite if and only if there exists a finite (𝜏,𝑄)-recurrence alphabet and that 𝑚rec(𝜏,𝑄) = log 𝑟rec,mem(𝜏,𝑄),
where 𝑟rec,mem(𝜏,𝑄) is the cardinality of the minimal such alphabet.

In the following example, we show that if a system has a zero invariance entropy, that does not imply that it has
a finite invariance memory. Moreover, it is possible for a system to have an infinite invariance memory and a zero
recurrence memory corresponding to the same controlled invariant set, providing further insight about the complexity
difference between recurrence and invariance. Our example follows Example 5.1 in (Colonius and Kawan, 2009).

Example 2. Consider the system 𝑥̇ = −𝑥 + 𝑢, where 𝑥 ∈ ℝ and let 𝑄 ⊂ [−1, 1] be an infinite set that is totally
disconnected and such that for any 𝛿 > 0, [−𝛿, 𝛿] ∩𝑄 is an infinite set. It follows from (Colonius and Kawan, 2009)
that ℎinv(𝑄) = 0 and ℎ∗inv(𝑄) = ∞. However, observe that 𝑢 = 0 is sufficient to make any trajectory starting from 𝑄 to
be (𝜏,𝑄)-recurrent, for any 𝜏 > 0, as the system is exponentially stable. Thus, 𝑚rec(𝜏,𝑄) = log 1 = 0. On the other
hand, by the same argument in (Colonius and Kawan, 2009), there is no finite set of control signals that can keep 𝑄
invariant, since starting from any state 𝑥0 ∈ 𝑄, only the signal 𝑢, where 𝑢(𝑡) = 𝑥0 for all 𝑡 ≥ 0, results in 𝜉(𝑥0, 𝑢, 𝑡) ∈ 𝑄
for all 𝑡 ≥ 0. An infinite alphabet is thus needed to construct an invariance spanning set. Consequently, the limit of
𝑟inv,mem(𝜏, 𝑇 , 𝜀,𝑄), as 𝑇 goes to infinity and as 𝜀 goes to zero, is infinity, and 𝑚inv(𝜏,𝑄) = ∞, for any 𝜏 > 0.

Remark 6. Fix 𝜏 > 0, a 𝑄 ⊂ ℝ𝑛 that is controlled invariant, and a set 𝐾 ⊆ 𝑄. Let 𝑚inv(𝜏, 𝐾,𝑄) and 𝑚rec(𝜏, 𝐾,𝑄) be
the invariance memories when 𝐾 is the initial set of states and 𝑄 is the set to keep invariant or recurrent. Then, with
similar arguments to those in the proof of Theorem 1, we can show that 𝑚inv(𝜏,𝑄, 𝐵𝛿𝜏 (𝑄)) ≤ 𝑚rec(𝜏,𝑄) ≤ 𝑚inv(𝜏,𝑄),
where 𝛿𝜏 = 𝐹𝑄𝜏𝑒𝐿𝜏𝜏 , which is the right-hand-side of the containment lemma.

We now show that our notions of memory can be lower-bounded using the strict entropy of the control task.

Theorem 7. Fix any 𝜏 > 0 and a compact set 𝑄 ⊂ ℝ𝑛. Then, ℎ∗inv(𝑄) ≤ 1
𝜏𝑚
𝑚inv(𝜏,𝑄), where 𝜏𝑚 = min𝑖∈[|𝑆𝜏 |] 𝑡𝑖, and

𝑆𝜏 is the minimal (𝜏,𝑄)-invariance alphabet. Similarly, Then, ℎ∗rec(𝜏,𝑄) ≤ 1
𝜏𝑚
𝑚rec(𝜏,𝑄), where 𝜏𝑚 = min𝑖∈[|𝑆𝜏 |] 𝑡𝑖

and 𝑆𝜏 is the minimal (𝜏,𝑄)-recurrence alphabet. The same bounds hold for the non-strict versions of entropy, i.e.,
ℎinv(𝑄) ≤ 1

𝜏𝑚
𝑚inv(𝜏,𝑄) and ℎrec(𝜏,𝑄) ≤ 1

𝜏𝑚
𝑚rec(𝜏,𝑄).

Proof. If 𝑚inv(𝜏,𝑄) is infinite, the bound trivially holds. Assume that 𝑚inv(𝜏,𝑄) is finite. Then, there exists a finite
minimal (𝜏,𝑄)-invariance alphabet 𝑆𝜏 , as discussed in Remark 5. By definition, for any 𝑇 ≥ 0, an invariance (𝑇 ,𝑄)-
spanning set can be generated by concatenating the signals in 𝑆𝜏 . The number of signals over the interval [0, 𝑇 ] that
can be generated this way is at most |𝑆𝜏 |

⌈𝑇 ∕𝜏𝑚⌉, where 𝜏𝑚 = min𝑖∈[|𝑆𝜏 |] 𝑡𝑖. It follows that 𝑟inv(𝑇 ,𝑄), i.e., the cardinality
of the minimal invariance (𝑇 ,𝑄)-spanning set, is upper-bounded by

(

𝑟inv,mem(𝜏,𝑄)
)

⌈𝑇 ∕𝜏𝑚⌉. If we substitute that upper
bound in the definition of ℎ∗inv, we get

ℎ∗inv(𝑄) ≤ lim sup
𝑇→∞

1
𝑇
log

(

𝑟inv,mem(𝜏,𝑄)
)

⌈𝑇 ∕𝜏𝑚⌉ = 1
𝜏𝑚

𝑚inv(𝜏,𝑄).

The last step follows from adapting Proposition 3.4(ii) in (Colonius and Kawan, 2009) to strict invariance entropy,
instead of invariance entropy, to get that

ℎ∗inv(𝑄) = lim sup
𝑁→∞

1
𝑁𝜏

log 𝑟∗inv(𝑁𝜏,𝑄),

which implies that assuming that ⌈𝑇 ∕𝜏𝑚⌉ = 𝑇 ∕𝜏𝑚 in the limit does not change entropy. A similar proof can be followed
to obtain the theorem’s claim for the recurrence case. Finally, the bounds for the non-strict versions of entropy follow
from the fact that ℎinv(𝑄) ≤ ℎ∗inv(𝑄) (Proposition 3.1 of (Colonius and Kawan, 2009)) and ℎrec(𝜏,𝑄) ≤ ℎ∗rec(𝜏,𝑄),
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which can be derived in a similar manner to the invariance case, mainly that every recurrence (𝑇 , 𝜏,𝑄)-spanning set is
also a recurrence (𝑇 , 𝜀, 𝜏, 𝑄)-spanning set for any 𝜀 ≥ 0.

The next theorem shows that, in the case of recurrence, if we allow for slightly stricter assumptions than 𝑄 being
control recurrent, one can get a finite upper bound on the recurrence memory.

Theorem 8. Fix any 𝜏 > 0 and a compact set 𝑄 ⊂ ℝ𝑛. Assume that that there exists an 𝜖 > 0 s.t. 𝐵−𝜖(𝑄) ∶= {𝑥 ∈
𝑄 | ‖𝑥−𝑦‖ ≥ 𝜖, ∀𝑦 ∈ 𝜕𝑄}, where 𝜕𝑄 is the boundary of 𝑄, is non-empty and that for every 𝑥 ∈ 𝑄, there exists a control
signal 𝑢 such that ∃𝑡 ∈ (0, 𝜏], s.t. the trajectory of system (1) 𝜉(𝑥, 𝑢, 𝑡) ∈ 𝐵−𝜖(𝑄). Then, 𝑚rec(𝜏,𝑄) ≤ log 𝑏(𝜖𝑒−𝐿𝜏𝜏 , 𝑄).

Proof. We follow a similar construction to the proof of Theorem 2. Let 𝐶 be a minimal 𝜖𝑒−𝐿𝜏𝜏 -cover of 𝑄1. By the
theorem’s assumption, there exists a set 𝑆𝜏 = {𝑣𝑖}𝑖∈[|𝐶|] ⊂  , where for every center 𝑥𝑖 in the cover, there exists a
𝑣𝑖 ∈ 𝑆𝜏 and 𝑡𝑖 ∈ (0, 𝜏] such that 𝜉(𝑥𝑖, 𝑣𝑖, 𝑡𝑖) ∈ 𝐵−𝜖(𝑄). We assume that the domain of 𝑣𝑖 is [0, 𝑡𝑖]. Using Grönwall’s
inequality, ∀𝑡 ∈ [0, 𝑡𝑖] and ∀𝑥 ∈ 𝐵𝜖𝑒−𝐿𝜏,𝜖𝜏 (𝑥𝑖) ∩𝑄, ‖𝜉(𝑥𝑖, 𝑣𝑖, 𝑡) − 𝜉(𝑥, 𝑣𝑖, 𝑡)‖ ≤ 𝑒𝐿𝜏,𝜖 𝑡

‖𝑥𝑖 − 𝑥‖ ≤ 𝑒𝐿𝜏,𝜖 𝑡(𝜖𝑒−𝐿𝜏,𝜖𝜏 ) ≤ 𝜖.
We will prove by induction that 𝑆𝜏 is a (𝑇 , 𝜏,𝑄)-recurrence alphabet. Fix any 𝑥 ∈ 𝑄 and 𝑇 ≥ 0. If 𝑇 ≤ 𝜏, the

trajectory resulting from starting from 𝑥 and following any signal in 𝑆𝜏 is trivially (𝑇 , 𝜏,𝑄)-recurrent. Hence, we
assume that 𝑇 ≥ 𝜏. We will concatenate some of the signals in 𝑆𝜏 to get a signal 𝑢 that is defined over [0, 𝑇 ] that leads
the trajectory starting from 𝑥 to be a (𝑇 , 𝜏,𝑄)-recurrent one. Let 𝑥𝑖 be the center in 𝐶 such that 𝑥 ∈ 𝐵𝜖𝑒−𝐿𝜏,𝜖𝜏 (𝑥𝑖). Since
‖𝜉(𝑥𝑖, 𝑣𝑖, 𝑡𝑖)−𝜉(𝑥, 𝑣𝑖, 𝑡𝑖)‖ ≤ 𝜖 and 𝜉(𝑥𝑖, 𝑣𝑖, 𝑡𝑖) ∈ 𝐵−𝜖(𝑄), then 𝜉(𝑥, 𝑣𝑖, 𝑡𝑖) ∈ 𝑄. Thus, we let 𝑢(𝑡) = 𝑣𝑖(𝑡) for all 𝑡 ∈ [0, 𝑡𝑖].
Assume that we constructed 𝑢 until some time 𝑠 ≤ 𝑇 as a concatenation of signals in 𝑆𝜏 such that 𝜉(𝑥, 𝑢, 𝑠) ∈ 𝑄 and 𝜉 is
(𝑠, 𝜏, 𝑄)-recurrent. Thus, there exists an 𝑥𝑗 ∈ 𝐶 such that 𝜉(𝑥, 𝑢, 𝑠) ∈ 𝐵𝜖𝑒−𝐿𝜏,𝜖𝜏 (𝑥𝑗). Using the same analysis again, we
get that ‖𝜉(𝑥𝑗 , 𝑣𝑗 , 𝑡𝑗) − 𝜉(𝜉(𝑥, 𝑢, 𝑠), 𝑣𝑗 , 𝑡𝑗)‖ ≤ 𝜖. We set 𝑢(𝑠 + 𝑡) ∶= 𝑣𝑗(𝑡),∀𝑡 ∈ (0,min(𝑡𝑗 , 𝑇 − 𝑠)]. If 𝑡𝑗 ≤ 𝑇 − 𝑠, then
𝜉(𝑥, 𝑢, 𝑠 + 𝑡𝑗) = 𝜉(𝜉(𝑥, 𝑢, 𝑠), 𝑣𝑗 , 𝑡𝑗) ∈ 𝑄. Finally, notice that the resulting trajectory visits 𝑄 every 𝜏 time units at least
once. Hence, 𝑢 drives the trajectory starting from 𝑥 to be (𝑇 , 𝜏,𝑄)-recurrent and 𝑆𝜏 is a (𝑇 , 𝜏,𝑄)-recurrence alphabet.

Consequently, 𝑟rec,mem(𝑇 , 𝜏,𝑄) ≤ |𝑆𝜏 | = |𝐶| = 𝑏(𝜖𝑒−𝐿𝜏,𝜖𝜏 , 𝑄). Substituting this bound in the definition of
𝑚rec(𝜏,𝑄) results in the theorem.

Observe that under the same mild conditions of Theorem 8, when combined with Theorem 7, it results in the upper
bound on strict recurrence entropy: ℎ∗rec(𝜏,𝑄) ≤ 1

𝜏𝑚
log 𝑏(𝜖𝑒−𝐿𝜏𝜏 , 𝑄), where 𝜏𝑚 and 𝜖 are as defined in the theorems.

We end with an application of Theorem 8 to the dynamics and the set of Example 1, which is another example of finite
recurrence memory and an infinite invariance one.

Remark 7. Consider the system in Example 1. Observe that for any state in 𝑄, we can construct a constant
control signal that drives the trajectory to 𝐵−𝜖(𝑄) in 1 +

√

2 time units, where 𝜖 = 0.5. Thus, by Theorem 8,
𝑚rec(𝜏,𝑄) ≤ log 𝑏(𝜖𝑒−𝐿𝜏𝜏 , 𝑄), which when substituting 𝜏 = 1 +

√

2, 𝜖 = 0.5, and 𝐿 = 1, we get 𝑚rec(𝜏,𝑄) ≤
log 𝑏(𝜖𝑒−𝐿𝜏𝜏 , 𝑄) ≤ log⌈ 2

𝑒−1−
√

2
⌉

2 = 9.05. In contrast, by Theorem 7 and the fact that ℎ∗inv(𝑄) ≥ ℎinv(𝑄) (Proposition
3.1 of (Colonius and Kawan, 2009)), 𝑚inv(𝜏,𝑄) ≥ 𝜏ℎ∗inv(𝑄) ≥ 𝜏ℎinv(𝑄) = ∞.

Example 3 (Invariance of Unit Circle Requires Infinite Alphabet). Consider the nonlinear control system

𝑥̇1 = 𝑥1 + 𝑢1, 𝑥̇2 = 𝑥2 + 𝑢2, (16)

with (𝑥1, 𝑥2) ∈ ℝ2 and control inputs 𝑢1, 𝑢2 ∈ ℝ. Let the set of interest be the unit circle

𝑄 = {(𝑥1, 𝑥2) ∈ ℝ2 ∶ 𝑥21 + 𝑥22 = 1}.

To achieve invariance of 𝑄, the derivative of 𝑉 (𝑥1, 𝑥2) = 𝑥21 + 𝑥22 must be zero on the boundary 𝑄. Computing this
derivative yields the algebraic constraint:

𝑉̇ |

|

|𝑄
= 2 + 2(𝑥1𝑢1 + 𝑥2𝑢2) = 0 ⇒ 𝑥1𝑢1 + 𝑥2𝑢2 = −1.

Thus, for a fixed point 𝑥 ∈ 𝑄, any admissible control 𝑢 must satisfy: 𝑥⊤𝑢 = −1.
1Notice that we use 𝜏 to construct the cover, instead of 𝑇 , which we used in the proof of Theorem 2.
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Figure 2: Illustration of control signal used in Example 3. In the first half interval, all center points 𝑥𝑐 are mapped
into the circle of radius 1 − 𝑟∕2. In the second half 𝑢0(𝑡) = 0 is used to let trajectories diverge. The scheme
guarantees that 𝑄 = 𝜕𝐵1 is revisited at most in 𝜏 units of time.

Now, to investigate whether 𝑄 can be made invariant by finitely many control signals, we must find 𝑢 ∈ ℝ2 and
𝑥̄ ∈ ℝ2 simultaneously satisfying the algebraic constraints:

𝑥⊤𝑢 = −1, 𝑥̄⊤𝑢 = −1, ‖𝑥̄‖2 = 1.

Given any 𝑥, we need some 𝑢 satisfying 𝑥⊤𝑢 = −1 to keep such initial state 𝑥 invariant. However, for such 𝑢 Bézout’s
theorem states that the number of 𝑥̄ that satisfies the above equations is at most two, since they correspond to the
intersection of a line and a circle. Since 𝑄 contains infinitely many points, achieving invariance of the entire boundary
𝑄 with a finite set of controls is impossible. Therefore, enforcing invariance on the entire boundary 𝑄 requires infinitely
many control signals.

To show that 𝑄 can be made 𝜏-recurrent with finitely many controls first note that for any 𝑥 ∈ cl(𝐵1∖𝐵1−𝑟), 𝑟 ∈ (0, 1),
using 𝑢0(𝑡) = 0 ensures that 𝜉(𝑥, 𝑢0,

𝜏
2 ) ∈ cl(𝐵(1−𝑟)−1∖𝐵1) when 𝜏 = 2 ln(1 − 𝑟)−1, where we use 𝐵𝑐 to denote the

2-ball of radius 𝑐 centered at 0. Along the same lines, since the LTI system is controllable, for any 𝑥 ∈ cl(𝐵(1−𝑟)−1∖𝐵1)
one can find 𝑢𝑥 ∶ [0, 𝜏∕2] → 𝑈 s.t. ||𝜉(𝑥, 𝑢, 𝜏∕2)|| = 1 − 𝑟

2 and 𝜉(𝑥, 𝑢𝑥, 𝑡) is parallel to 𝑥. Finally, by making an
𝑟
2exp(−2

𝜏
2 )-cover of cl(𝐵(1−𝑟)−1∖𝐵1) and assigning to each center point 𝑐𝑖 the control

𝑢𝑖(𝑡) ∶=
{

𝑢𝑐𝑖 (𝑡), when 𝑡 ∈ [0, 𝜏2 ] and 0, when 𝑡 ∈ [ 𝜏2 , 𝜏] ,

ensures that for all 𝑦 ∈ cl(𝐵(1−𝑟)−1∖𝐵1), there exists 𝑢𝑖 s.t. 𝜉(𝑦, 𝑢𝑖, 𝜏∕2) ∈ cl(𝐵1∖𝐵1−𝑟) and 𝜉(𝑦, 𝑢𝑖, 𝜏) ∈ cl(𝐵(1−𝑟)−1∖𝐵1).
Therefore, the trajectory must visit 𝑄 at least once in 𝜏 seconds, and thus, {𝑢𝑖} defines a finite alphabet that renders 𝑄
𝜏-recurrent. We illustrate the overall construction of this control scheme in Figure 2

Remark 8 ( Relation with feedback entropy (Nair et al., 2004)). It is shown in Section 6 of (Colonius and Kawan,
2009) that for any nonvoid compact set 𝑄 ⊂ ℝ𝑛, the strict invariance entropy ℎ∗inv(𝑄) is equal to inf (,𝜎,𝜏) ℎ∗inv(, 𝜎, 𝜏),
where the latter is a continuous-time version of the strong topological feedback entropy introduced in (Nair et al.,
2004). We unpack that definition step by step. First, ℎ∗inv(, 𝜎, 𝜏) ∶= 1

𝜏 lim𝑁→∞
log 𝑐(𝑁 |𝑄)

𝑁 . Second, the set over
which the infimum is taken is the set of triples that invariantly cover 𝑄 (Colonius and Kawan, 2009). Third, a
triple (, 𝜎, 𝜏) is said to invariantly cover 𝑄 if 𝜏 is a positive real number,  is a cover of 𝑄, 𝜎 ∶  →  is
a function that assigns the same control signal of duration 𝜏 in  to every element 𝐴 in the cover  such that
∀𝐴 ∈ ,∀𝑥 ∈ 𝐴,∀𝑡 ∈ [0, 𝜏], 𝜉(𝑥, 𝜎(𝐴), 𝑡) ∈ 𝑄. Finally, one can use 𝜎 to define a function 𝜋 ∶ 𝑄 →  , which for any
𝑥 ∈ 𝑄, it assigns it the signal 𝜎(𝐴), for some arbitrary 𝐴 ∈  that contains 𝑥, i.e., 𝑥 ∈ 𝐴. Consider the non-parametric
controller 𝑔 ∶ 𝑄 × ℝ≥0 → 𝑈 that is defined by 𝜋. Then, for any 𝑁 ∈ ℕ, the controller 𝑔 defines a finite cover of 𝑄
where each element in the cover shares the same control signal assigned by 𝑔 over the interval [0, 𝑁𝜏]. That cover is
called 𝑁 and the minimal cardinality of a subcover is denoted by 𝑐(𝑁 |𝑄) in (Colonius and Kawan, 2009).
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We first notice that for any triple (, 𝜎, 𝜏) that invariantly covers 𝑄, the set {𝜎(𝐴) | 𝐴 ∈ } is a (𝜏,𝑄)-invariance
alphabet, i.e., it is a (𝑇 , 𝜀, 𝜏, 𝑄)-invariance alphabet for any 𝑇 ≥ 0 and 𝜀 ≥ 0. Per our definition of (𝜏,𝑄)-invariance
alphabets, their control signals durations are upper-bounded by 𝜏 but can be smaller, in contrast with those defined by
a triple (, 𝜎, 𝜏) that invariantly covers 𝑄 which are required to have a duration of exactly 𝜏. That implies that ∀𝜏′ > 0,
𝑟inv,mem(𝜏′, 𝑄) ≤ inf (,𝜎,𝜏) s.t. 𝜏=𝜏′ ||, where the infimum is taken over triples invariantly covering 𝑄 with 𝜏 is equal to
𝜏′. Hence, ∀𝜏′ > 0, 𝑚inv(𝜏′, 𝑄) = log 𝑟inv,mem(𝜏′, 𝑄) ≤ log

(

inf (,𝜎,𝜏) s.t. 𝜏=𝜏′ ||

)

= inf (,𝜎,𝜏) s.t. 𝜏=𝜏′ log ||, where
the first equality follows from Remark 5 and the infimum is defined as before.

Moreover, we notice that for any triple (, 𝜎, 𝜏) that invariantly covers 𝑄 and any 𝑁 ∈ ℕ, 𝑐(𝑁 |𝑄) ≤ |𝑁 | ≤
||

𝑁 , where the first inequality follows from the definition of a subcover and the second follows from the fact that
the number of distinct signals the corresponding non-parametric controller 𝑔 can generate over the interval [0, 𝑁𝜏]
for the states in 𝑄 is upper-bounded by ||

𝑁 . That would also be the maximum cardinality of a cover of 𝑄 it can
induce. Consequently, for any triple (, 𝜎, 𝜏) that invariantly covers 𝑄, ℎ∗inv(, 𝜎, 𝜏) ≤ 1

𝜏 lim𝑁→∞
log ||

𝑁

𝑁 = 1
𝜏 log ||.

Therefore, ∀𝜏′ > 0, ℎ∗inv(𝑄) = inf (,𝜎,𝜏) ℎ∗inv(, 𝜎, 𝜏) ≤ inf (,𝜎,𝜏) s.t. 𝜏=𝜏′ ℎ∗inv(, 𝜎, 𝜏′) ≤ inf (,𝜎,𝜏) s.t. 𝜏=𝜏′
1
𝜏′ log ||,

where the first equality follows from Theorem 6.1 in (Colonius and Kawan, 2009), the second step follows from
fixing 𝜏 to 𝜏′ in the infimum, and the last step follows from the preceding analysis. In summary, ∀𝜏′ > 0, ℎ∗inv(𝑄) ≤
inf (,𝜎,𝜏) s.t. 𝜏=𝜏′

1
𝜏′ log ||, where the infimums are defined as before. This is an alternative upper bound on strict

invariance entropy ℎ∗inv(𝑄) to the one we obtained in Theorem 7.
We observe that the concept of invariantly covering triples used in the definition of feedback entropy (particularly the

version in (Colonius and Kawan, 2009)) is closely related to the notion of invariance alphabets we define in this paper
and can be used to derive similar results. Studying further this relation and generalizing the results to the recurrence
case is an interesting future direction.

7. Conclusions and Future Work
We present the notion of 𝜏-recurrence entropy for nonlinear control systems as a generalization of the notion of

invariance entropy. A system is 𝜏-recurrent to a compact set of states if its trajectories starting from that set can leave it
but only for 𝜏 seconds at a time. 𝜏-recurrence entropy measures the rate at which the number of control signals that
are sufficient to make the system 𝜏-recurrent with respect to a predetermined set increases with time. We show that
𝜏-recurrence entropy is bounded from above and below by the invariance entropy of the system with respect to different
compact sets. Moreover, we show that it converges to invariance entropy with respect to the same set as 𝜏 decreases
to zero, as expected. Then, we derive upper and lower bounds on 𝜏-recurrence entropy as a function of the system
dimension, local Lipschitz constant, and the divergence of the vector field. We show that both bounds converge to
known corresponding bounds on invariance entropy as 𝜏 → 0, also as expected, and connect the newly defined entropy
notion with necessary bit rates for recurrence, providing an algorithm that asymptotically achieves this task. We finalize
by showing that, in fact, in many situations, recurrence can be obtained by a finite alphabet of control signals.

When put together, our results suggest that recurrence is a less complex task, in the sense that in many instances, it
not only requires smaller spanning sets to perform the task but there are also instances where such spanning sets can be
generated via a finite alphabet. This opens up the possibility of storing the control signals and thus avoiding the need to
compute controllers online. Future research directions along these lines includes understanding other classes of control
tasks, where a hierarchy of task complexity can be defined, as is the case of invariance and recurrence, as well as other
instances where finite alphabets can be generated.
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