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ARTICLE INFO ABSTRACT

Keywords: In this paper, we introduce the notion of recurrence entropy in the context of nonlinear control
Entropy systems. A set is said to be (z-)recurrent if every trajectory that starts in the set returns to it (within
Recurrence at most 7 units of time). The recurrence entropy of a control system quantifies the complexity
Invariance of making a set 7-recurrent measured by the average rate of growth, as time increases, of the
Control Systems number of control signals required to achieve this goal. Our analysis reveals that, compared to

invariance, recurrence is quantitatively less complex, meaning that the recurrence entropy of a
set is no larger than, and often strictly smaller than, the invariance entropy. We provide upper and
lower bounds on recurrence entropy and show that they converge to the bounds on invariance
entropy as 7 decreases to zero. Further, our results show that recurrence entropy lower bounds
the minimum data rate between the sensor and controller required for achieving recurrence. We
present an algorithm according to which the sensor can send state estimates to the controller
over a limited-bandwidth channel to achieve recurrence asymptotically at an exponential rate.
Finally, we show that, under mild stricter conditions on the set and dynamics, the control signals
that enforce the z-recurrence of a set can be generated by a finite alphabet of control signals of
durations of at most 7 units of time, which allows us to store them for quick online execution.

1. Introduction

The topological entropy of a dynamical system is a fundamental property, an invariant (Katok and Hasselblatt,
1995), that describes the rate of the exponential growth of the number of trajectories that are distinguishable with
arbitrarily small but finite accuracy. Originally proposed by Adler, Konheim, and McAndrew (Adler, Konheim and
McAndrew, 1965), and shortly after reformulated in the form described above by Bowen (Bowen, 1971a,b), it provides a
quantitative measure of complexity by capturing how the uncertainty around the system state grows as time evolves. As
a result, topological entropy is closely related to information-theoretic notions, such as the average rate of information
gathering about the system state above which one can distinguish its trajectories with arbitrary accuracy (Liberzon and
Mitra, 2016).

In control theory, wherein one uses the system’s state information to perform a task, several notions of entropy
have been proposed in the literature, characterizing the complexity of and the minimal data rates necessary for
performing a certain control task. Examples of this include estimation entropy (Savkin, 2006; Liberzon and Mitra, 2016;
Sibai and Mitra, 2017, 2018, 2023; Kawan and Yiiksel, 2018), restoration entropy (Matveev and Pogromsky, 2016,
2019), stabilization entropy (Delchamps, 1990; Nair, Evans, Mareels and Moran, 2004; Colonius, 2012), reachability
entropy (Tomar and Zamani, 2022), among others. One notion of entropy particularly instrumental in control is the
invariance entropy (Colonius and Kawan, 2009, 2011; Colonius, Kawan and Nair, 2013; Kawan and Delvenne, 2016;
Rungger and Zamani, 2017; Tomar, Rungger and Zamani, 2021; Tomar, Kawan and Zamani, 2022), which aims to
capture the growth rate of the number of distinct control signals necessary to render a certain set invariant for a period
of time, as that period increases to infinity.

Invariance holds a prominent role in control theory. It is, for instance, a core notion in the development of the
Lyapunov theory (Khalil, 2002). By trapping trajectories on sub-level sets of a Lyapunov function, one can guarantee
boundedness and completeness of trajectories, stability, and even asymptotic or exponential stability via a gradual
reduction of the value of the function. Invariant sets can also be used to estimate regions of attractions of an asymptotically
stable equilibrium (Genesio, Tartaglia and Vicino, 1985). However, due to intrinsic coupling between the dynamics of
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the system and the geometry of the set, finding invariant sets and, by extension, Lyapunov functions is often difficult.
Furthermore, in the context of controlled systems, it is not always possible to make a given set (controlled) invariant.

We are motivated by recent literature aimed at using the notion of recurrent sets as functional substitutes for invariant
sets in control theory (Shen, Bichuch and Mallada, 2022; Siegelmann, Shen, Paganini and Mallada, 2023). While this
literature has shown how recurrence can be useful in stability analysis, it can be a useful concept for control which
achieve safety and stability. However, in this work, we study recurrence in a more abstract manner without tailoring to
specific applications, whether safety or stability. We introduce the notion of recurrence entropy for nonlinear control
systems. A set is said to be (z-)recurrent if every trajectory that starts in the set returns to it (within at most 7 units of
time). Our analysis shows that recurrence, as a control task, is quantitatively less complex than invariance from the
point of view that for a given set and dynamical system, the recurrence entropy is no larger than the invariance entropy.
Furthermore, we provide upper and lower bounds for the recurrence entropy in terms of the upper box dimension of the
set to be made recurrent and a local Lipschitz constant and divergence of the vector field. We also show that recurrence
entropy is a lower bound on the minimum bit rate at which the sensor should send state estimates to the controller to
render the set recurrent. We further present an algorithm according to which the sensor can choose the information it
sends to the controller to achieve this recurrence task asymptotically. Notably, this algorithm results in a bit rate equal to
the recurrence entropy upper bound that we derive, plus a linear term equal to the product of the system dimension and
the desired rate of exponential convergence toward a recurrent trajectory. We finalize the paper by showing a striking
result. By imposing slightly stricter assumptions on the properties of the set and the system capabilities, we show that
the control signals necessary to make a set control zr-recurrent can be generated by a finite alphabet of control signals of
length at most 7. When such a finite alphabet exists, one can compute it offline and then retrieve its signals at runtime
without the need of any further computation, minimizing inference time and power consumption.

Related Work: Our work is closely related to the literature of invariance entropy (Colonius and Kawan, 2009, 2011;
Colonius et al., 2013; Kawan and Delvenne, 2016; Rungger and Zamani, 2017; Tomar et al., 2021, 2022). Naturally,
since every invariant set is (trivially) z-recurrent, for all = > 0, the results presented therein apply for ¢ = 0. Our
work also relates to that of Tomar et al. (Tomar and Zamani, 2023). That work relates the minimal bit rates needed
to enforce a regular safety property for a discrete-time dynamical system to the invariance entropy of a new system
that combines the automaton defining the property and the original system. Particularly, 7-recurrence can be thought
of as regular safety property, but as we define it here, it is for continuous-time dynamical systems. Relating our
results with (Tomar and Zamani, 2023) would be an interesting future direction. It would also be interesting to design
numerical methods such as those proposed in (Tomar et al., 2022) for invariance entropy to estimate recurrence entropy.
On the other hand, many works from the formal methods community use discrete abstractions of continuous-time
systems to design zero-order-hold controllers to achieve various tasks, mainly reach-avoid ones, that naturally have
finite alphabets (Tabuada, 2009; Meyer, Yin, Brodtkorb, Arcak and Sgrensen, 2020; Sibai, Huriot, Martin and Arcak,
2024; Rungger and Zamani, 2016). However, these works usually present algorithms that adjust the set being kept
invariant when needed while synthesizing the controller. Moreover, they usually predefine the alphabet at the time of the
abstraction, mainly by considering constant signals that are equal to the centers of a grid over the control set for a fixed
time horizon. In contrast, we fix the set of states of concern while allowing arbitrary control alphabets. We then define
fundamental metrics to quantify the minimal size of an alphabet needed to achieve invariance and recurrence as a mean
to compare their complexities. We also relate these metrics with the notions of entropy of the system for the same tasks.

Organization of the Paper: The rest of the paper is organized as follows. In Section 2, we provide preliminary
definitions regarding the system to be considered, as well as the notion of invariance entropy. In Section 3, we formally
introduce the notion of recurrence to be studied in the paper, i.e., z-recurrence (c.f. Definition 5), as well as the associated
notion of entropy. We then introduce a fundamental result that allows us to bound the distance from a set that recurrent
trajectories can travel if they are required to come back to the set within 7 units of time. After that, a comparison
between recurrence and invariance entropy is performed. Upper and lower bounds for recurrence entropy are provided
in Section 4. In Section 5, a relationship between entropy and data rates is formally established. Then, we present an
algorithm that runs at the sensor and communicates with the controller over a limited-bandwidth channel to make the
trajectories of the system (asymptotically) z-recurrent and compute its data rate. Finally, Section 6 introduces the notion
of finite alphabet controllers and relates its cardinality with entropy notions. Concluding remarks are given in Section 7.
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2. Preliminaries

Notation: We denote by || - || the supremum norm over R”, unless otherwise specified. If N € N, we denote
by [N] the set of all non-negative integers less than N. Fix an € > 0 and a compact set Q C R". We define
B.(Q) := {y € R"|3x € O,||x — y|ll £ €}. We also define A(Q) to be the Lebesgue measure of Q. If Q is a
singleton set {x}, we abuse notation and denote B,(Q) by B,(x). We call it a ball, or a hyperrectangle, centered at x
with radius €. Given a set .S, cl(.S) denotes its closure. If S is finite, |S| denotes its cardinality. If .S’ is compact subset
of R”, a 6-cover of S is a set of balls of radius § whose union contains .S. We abuse notation and call the set containing
the centers of the balls the cover instead of the balls themselves. We denote by grid(S, 6) the 6-cover of S that is
constructed with the centers of the balls 26 apart and on axis-parallel lines. We also call it a 6-grid of .S. We assume
that the logarithm function is of base 2 throughout the paper. Consider a function with N arguments. If we replace
its i”* argument with “-” (i.e., dot) and its other arguments with constants, we mean the projection of that function to
the one-dimensional domain of the i argument with the other ones fixed to the specified constants. If we replace an
argument with a set in its domain, we mean the function defined only over that set in the domain.

2.1. System description
In this paper, we consider control systems that are defined as follows.

Definition 1. Consider a nonlinear control system of the form:

x(1) = f (x(8), u(?)), ey

where x(t) € R", u € U', with U being a set of piece-wise continuous functions mapping R to a compact set U C R™,
and the map f is locally Lipschitz in x uniformly in u. We often abuse notation and interchangeably refer to a function
in U as well as an input vector in U by u. Finally, we denote by & : R" X U X Ry, — R" the flow of the system.

2.2. Invariance entropy
In this section, we recall the definition of invariance entropy of system (1) from (Colonius and Kawan, 2009). It
requires the definitions of controlled invariant sets, invariant trajectories, and invariance spanning sets.

Definition 2 (Controlled invariant sets (Colonius and Kawan, 2009)). A set Q C R™ is controlled invariant for system (1)
ifVx € Q, u € U such that for any t > 0, &(x,u,t) € Q.

We call controlled invariant sets invariant from hereafter for brevity.

Definition 3 (T, &, Q)-invariant trajectories (Colonius and Kawan, 2009)). Fix any € > 0, T > 0, compact set Q C R",
x € Q,andu € V. The trajectory £(x, u, -) of system (1) is (T , €, Q)-invariant, if for every t € [0,T], (x,u,t) € B.(Q).
If the condition is E(x,u,t) € Q instead, we say that & is (T, Q)-invariant.

Fix two non-empty sets K C Q C R",ane > 0,andaT > 0. A set .S C U is called an invariance (T , e, K, Q)-
spanning set if for any x € K, there exists a u € S, such that &(x, u, [0, T]) is (T, €, Q)-invariant. Let r; (T, €, K, Q) be
the minimal cardinality of such a set if it exists, and be equal to infinity otherwise. The invariance entropy of system (1)
is defined in (Colonius and Kawan, 2009) as follows:

- 1
hiay (K, Q) 2= limylim sup 75 log riy (T, &, K., Q). @
— 00

If the trajectories are required to be (T, Q)-invariant in (2), then the minimal cardinality of the corresponding
invariance spanning set is denoted in (Colonius and Kawan, 2009) by rfnv(T, K, Q). If substituted in (2), the resulting
entropy notion hfnv (K, Q) is called the strict invariance entropy of system (1). When K is equal to Q, we drop the K
argument in the definitions above. Finally, observe that if there exists a finite T > O such that r;,, (T, €, K, Q) is infinite,
then h;,, (K, Q) is infinite. The same argument holds for strict invariance entropy.

3. 7-Recurrence Entropy

In this section, we define the main concept that we introduce in this paper: r-recurrence entropy. Before being able
to define it, we need to define controlled z-recurrent sets, recurrent trajectories, and recurrence spanning sets, in parallel
with the definitions preceding the definition of invariance entropy in the previous section.
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(a) Ilustration of recurrent trajectories and sets (b) Bound of the Containment Lemma

Figure 1: lllustration of recurrence and the Containment Lemma (Lemma 1).

3.1. Recurrence spanning sets and entropy

In the following definition, we introduce controlled z-recurrent sets as compact subsets of the state space of system (1)
which satisfy the following condition: for each state in such a set, there exists a control signal that drives the system
to have a trajectory that visits the set at least once within each time interval of size z. This concept generalizes the
notion of z-recurrent sets, first introduced in (Shen et al., 2022), to control systems. We then define the concept of
(T, €, 7, Q)-recurrent trajectories, which are ones that return to B, (Q) at least once within each time interval of size =
in the interval [0, T'].

Definition 4 (Controlled z-recurrent sets). A set @ C R™ is controlled z-recurrent for system (1), for some finite
7 € R20, if for every x € Q, there exists a u € U such that for any t € R20, there exists at’' € [t,t + 7] such that

E(x,u,t') € 0.

We call controlled z-recurrent sets z-recurrent from hereafter for brevity. We refer the reader to Figure 1a for an
illustration of recurrent sets and trajectories.

Definition 5 (T, ¢, 7, Q)-recurrent trajectories). Fixanyt >0, >0, T > 1, compact set Q CR", x € Q, andu € U".
The trajectory E(x,u,-) of system (1) is (T, &, 7, Q)-recurrent, if for every t € [0, T — 7], there exists at' € [t,t + 1]
such that &(x,u,t’) € B.(O).

For simplicity of notation, if € = 0, we drop the & argument. Similarly, if T' = oo, we drop the T" argument. We will
also use Definition 5 for piece-wise continuous functions of time that are not necessarily trajectories of system (1).

The final definition before that of z-recurrence entropy is that of spanning sets. They are sets of control signals
which are sufficient to make any trajectory starting from a r-recurrent set z-recurrent.

Fixat € R29, a compact z-recurrent set Q C R", ane > 0,andaT > 0. A set .S C U is called a recurrence
(T, e, 7,Q)-spanning set if for any x € Q, there exists a u € S such that £(x,u,[0,T]) is (T, €, 7, Q)-recurrent. Let
reec(T, €, 7, Q) be the minimal cardinality of such a set if it exists, and be equal to infinity otherwise. We define the
T-recurrence entropy of system (1) as follows:

Nie.(7,0) 1= lim lim sup 1 logro(T,€,7,0). 3)
e\ To0 T

If we require the trajectories to be (T, 7, Q)-recurrent in (3), then we denote the minimal cardinality of the

corresponding spanning set 77, (T, 7, Q). If substituted in (3), we call the resulting entropy notion A}, (z, Q) the

strict T-recurrence entropy of system (1). Finally, as in the invariance entropy case, if there exists a finite T > 0 such

that r...(T', €, 7, Q) is infinite, then A (7, Q) is infinite. The same argument holds for strict z-recurrence entropy.

Remark 1 (Computability of z-Recurrent Control Signals). A common consideration in the entropy literature is that
control signals of finite duration can be computationally obtained in many practical scenarios. For linear control
systems, standard computational tools such as Model Predictive Control (MPC) can readily provide suitable control
signals. More broadly, nonlinear control signals can be computed using existing nonlinear MPC methods, or through
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sampling-based techniques such as Model Predictive Path Integral (MPPI) control, which efficiently leverages GPU
parallelization to compute approximately optimal controls. Such methods are not guaranteed to find a solution even if
one exists, but guaranteeing feasibility is not in the scope of this paper.

3.2. Containment Lemma
In this section, we show how trajectories that are (z, Q)-recurrent cannot depart arbitrarily from Q. The following
assumption is instrumental in achieving this goal.

Assumption 1 (z-completeness). For any x € Q and u € U, the trajectory &(x,u, -) of system (1) is defined for all
t € [0, 7] and is continuous in its first argument.

An immediate consequence of Assumption 1 is that for any u € U, the closure reachable set R(Q,u,7) :=
Urelo.1.xe0 (X, u, 1) of system (1), i.e., cl(R(Q,u, 7)), is compact. Moreover, it follows from Proposition 5.2 (Lin,
Sontag and Wang, 1996), that under Assumption 1, the set

R@Q,7) = | RQ.u17)

uelr

is bounded. The set R(Q, 7) contains all states visited by trajectories starting from some initial state x € Q and following
some control u € U for = seconds. While such a set is, indeed, bounded, it may be quite big, as not all control inputs
are meant to make trajectories recurrent. We will therefore consider the subset U, C U containing all control inputs
u € U such that for some x € Q, the trajectory &(x, u, -) is (z, Q)-recurrent.

A similar reasoning as before, using the fact that U, C U, leads to fact that

R.(0,7) := | RQ,u.7) C RO, 7), “

uev,

is bounded. For the purpose of estimating how far out (z, Q)-recurrent trajectories can reach starting from a compact
set Q, we define

”f(xl > bl) - f(x27 bl)ll
L, = max < o
xpxed(RQo)uet  lx; = x|

®

Note that L is an upper bound of the Lipschitz constant of the vector field along any (z, Q)-recurrent trajectory.
The following lemma, which is a generalization of Lemma 2 in (Siegelmann et al., 2023), allows us to obtain an
upper bound on how far trajectories can go outside Q. The result is qualitatively illustrated in Figure 1b.

Lemma 1 (Containment Lemma). Consider a compact set Q C R". Then, given any x € Q, and u € U, such that the
trajectory E(x,u, -) of system (1) is (T, t, Q)-recurrent, the following holds:

sup d(&(x,u,1),0) < Fyrels, (6)
t€[0,T]

where d(y, Q) :=min, o ||y — x||, L, is given in (5), and

Foi= sup [f(xu)l <.
xeQ,uelU

Proof. As mentioned before, the proof of this lemma is akin to (Siegelmann et al., 2023), Lemma 2. Given x € Q
and the corresponding u € U, that makes &(x, u, -) (T, 7, Q)-recurrent, let f; > O be the first time the trajectory leaves
0, i.e., such that &(x,u,t) € Q, for t < ¢, and for all sufficiently small 6 > 0, §(x,u,t; + 6) & Q. Without loss
of generality, we assume #; < T. It then follows from the assumption that the trajectory is (T, 7, Q)-recurrent that
for all t € [0, min{?; + 7,T'}], &(x, u,t) can only be outside Q for at most 7 seconds. Using now the short notation
x(t) = &(x,u,t) we have

t t
a(t) :=d(x(),0) < ||x(0) — x|| = /0 S (x(s), u(s))ds S/O (ILf x(s), u() = fTp[x()], u(s))l

H. Sibai and E. Mallada: Preprint submitted to Elsevier Page 5 of 18



Recurrence of Nonlinear Control Systems

t
+ |If Mg [x()], u(s)) )ds < (/ a(S)LTdS> + Fo(t— 1)),
1

+

where [1y[y] € argmin, () ||y — x|| and (a); := max{0, a}. It follows then from Gronwall’s inequality (c.f Lemma 2.1
in (Khalil, 2002)), with 4 = Fo(t — 1)), u = L, y(t) = a()) that V¢ € [0, min{t, + 7, T'}],

a(t) = d(€(x,u,1), Q) < Fo(t — 1)) e < Forele.

Finally, by repeating the same argument every additional time &(x, u, t) leaves Q, the result follows. O

For the rest of the paper, we define 6, := FQreLfT, which is the right-hand-side of the inequality Lemma 1.

3.3. Relation between recurrence, r-recurrence, and invariance entropy

In this section, we show different relations between recurrence and invariance entropy of system (1). In Theorem 1,
we show that z-recurrence entropy is both lower and upper bounded by invariance entropy with different initial and
invariant sets. That results in a corollary showing that as = approaches zero, z-recurrence entropy approaches invariance
entropy, which is in agreement with the intuition that z-recurrence with z = 0 is invariance. In Lemma 2, we show that
7/-recurrence entropy is less than t-recurrence entropy if / > 7. That is in agreement with the intuition that faster
recurrence to Q requires more information about the state.

Theorem 1. Forany v > 0 and compact t-recurrent set Q C R" for system (1), i, (Q, Bs (Q)) < hyeo(7, Q) < hip (Q)
and h* (Q, B(ST Q) <hn* (r,0) <L h;“nv(Q), where 6_ is as defined at the end of the last section (Section 3.2).

mv rec

Proof. The first inequality follows from the containment lemma that shows that for any ¢ > 0 and T > 0, any
recurrence (T, g, 7, Q)-spanning (resp. (T, 7, Q)-spanning) set is an invariance (T, €, O, Bs, (Q))-spanning (resp. (T, O,
B;_(Q))-spanning) set. The second inequality follows from the observation that any invariance (T', €, Q)-spanning (resp.

(T, Q)-spanning) set is a recurrence (T, €, 7, Q)-spanning (resp. (T, 7, Q)-spanning) set as well, Vz > O0and e > 0. [
Corollary 1. For any compact set Q C R" for system (1), as t — 0, T-recurrence entropy of system (1) becomes equal

fo its invariance entropy, i.e., lim.\ Ao (7, Q) = hip (Q).

Lemma 2. For any compact set Q C R" that is t-recurrent for system (1) for some © > 0, and for any v’ > r,
heee (7', Q) < hoo(, Q) and hY, (7', Q) < I, (7, Q).
Proof. The result follows from the observation that for any € > 0 and T > 0, any (T, €, 7, Q)-spanning set (resp.

(T, 7, Q)-spanning set) is a (T, €, 7', Q)-spanning one (resp. (T, 7/, Q)-spanning) as well. O

Though Theorem 1 only provides a non-strict statement, it is important to notice that it only requires Q to be
controlled z-recurrent. As a result, it is certainly possible to have scenarios wherein

Prec(Q,7) < hiny (Q) = 0 @)

which further emphasizes the fact that achieving z-recurrence is less demanding than achieving invariance. We will
show such an example in the next section.

4. Recurrence entropy bounds

In this section, we present an upper and a lower bound on z-recurrence entropy. We show that when 7 = 0, we
recover the upper bound on invariance entropy presented in (Colonius and Kawan, 2009).

Theorem 2 (Upper bound). For any compact t-recurrent set Q C R" for system (1) for some © > 0 and any t’' > ,
Ree(t',0) < L, dimp(Q)/In2 < L.n/In2, where dim(Q) := limsupg o “l‘n’z(f/’g) is the upper box dimension of Q,
b(6, Q) is the minimal cardinality of a 6-cover of Q, and L is as defined in (5).

Proof. The proof follows that of Theorem 4.2 in (Colonius and Kawan, 2009). Fix any T, €, and 7’ > 7. We define

xXi,u)— f(xy,u
Lo- - /G = ool ®
T X xEB (IR (Q.0NuEU  ||x] — X5
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T

Let C be a minimal ee~L=<T -cover of Q. Since Q is z-recurrent, then there exists a set S = {u;} ieq|c)y such that

E(x;,u;,[0,T]) is a (T, T, Q)-recurrent trajectory, where x; is the i center in the cover.

Using Gronwall’s inequality, V7 € [0, T] and Vx € B, -1,,.7(x;) N Q, |ECx;,u;, 1) — E(x, u;, D)]| < eleel||x; — x|| <
eLf’f’(ee_LfvéT) < €. Consequently, &(x,u;, 1) is a (T, €, T, Q)-recurrent trajectory and S is a recurrence (T, €, ', 0)-
spanning set, for any 7/ > 7. Thus, r,..(T,&,7',0) < b(ee‘LwT, 0) = | S|. Now that we have an upper bound on the
minimal cardinality of a (T, ¢, 7/, Q)-spanning set, we can get the upper bound on recurrence entropy by substituting it
in equation (3). Formally,

heo(#'.0) = limlim sup . log (T £.'.0)

< lim lim sup l logr...(T,e,7,0)
eN0 7o T

. . 1 _L T
< liml —logh wel|
< limlim sup 7. log (ee 0)

7,6

< lim lim sup log b(ge L=cT Q)

N0 Tooo In(elre” Je) +Ine

. . 1 LT
=lim L, limsup ————— log b(ee™ =<', Q)
N0 T ln(eLT‘ET/e)
Inb(6, Q)

= }:13(1) L., lil;]\s(l)lp In21n(1/5) = L dimg(Q)/In2. )

The first inequality follows from the fact that any (T, €, 7, Q)-spanning set is a (T, €, t’, Q)-spanning one when
t < 7/, The second inequality follows from the set .S we constructed earlier being a (T, €, 7, Q)-spanning set with
cardinality b(ee LT, Q). The third inequality follows from multiplying the numerator and denominator with L, and
using the fact that In(efr<” /&) + Ine = L, T. The equality after that follows from the lim sup being unaffected by In e
in the denominator and L, being independent of T'. The one before the last equality follows from replacing ge LeeT
with 6, which transform lim supy_, , to lim supg.  as well as the fact that log ¢ = Inc/ In 2. The last equality follows

from substituting the definition of dim(Q) and lim,\ o L, by its value L. O

Remark 2. Setting 7 to zero makes R,.(Q, ) as defined in (4) equal to Q and in the definition of L in (5), the domain
of the maximum would be cl(Q). Substituting L_ in the bound in Theorem 2 results in the same upper-bound as that
on invariance entropy in Theorem 4.2 in (Colonius and Kawan, 2009). Note that they use the natural logarithm in
their invariance entropy definition instead of the base-2 logarithm we use in our definitions which results in In2 factor
difference between the two bounds.

Remark 3. Theorem 2 shows that if the system is capable of achieving faster recurrence to Q than required, i.e.,
achieving t-recurrence, for some t > 0, while the requirement is t'-recurrence for some v’ > t, then we can obtain a
tighter upper bound on recurrence entropy since L. < L.

Example 1 (Illustrative Example). Consider the case following two-dimensional linear system

)'Cl _ 0 1 X1 0
=00 of [ <[ @
We assume u € U = [—1, 1], and consider the set Q = [—1, 1]2.
Observe that with simple integration, we can get the closed form solution as follows:

i(x’ u, t) — [xl (I):l

l/s’zzo ! _ou(s)ds dsy + x;(0)t + x,(0)
x(7)

fstzo u(s)ds + x,(0)

Consider the case when x = [1, 1]. Then, for the trajectory starting at x to not leave Q, the control signal should be
chosen so that neither of the two coordinates increase. Both coordinates are monotonically increasing in u. If we choose
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the control signal to have the minimum value —1 for some interval [0, T] in the effort of preventing the state coordinates
from increasing and escaping Q, then E(x,u,t’) = [1 +1 — %tz, —t + 1). Thus, forall t <2, &(x,u,t’) & Q. Therefore,
there is no piece-wise continuous control signal that can make the trajectory starting from x invariant to Q or even
T-recurrent with t < 2, and Q is not controlled invariant or t-recurrent with any t < 2. Thus, the invariance entropy
hi,(Q) and t-recurrence entropy h...(Q, 7) of system (10) are infinite for T < 2.

In contrast, observe that any trajectory with an initial state in Q can be driven back to Q within 2 time units using a
control signal in U, the set of piecewise-continuous control signals mapping time to U. Thus, Q is controlled 2-recurrent
and we can use Theorem 2 to compute a finite upper bound on h...(Q, 7). Observe that L < || % | = |All = 1, where
|| - || is the induced supremum matrix norm. It therefore follows that

+o0 T<2

hi (@) =400 and h (0, 7)= {< 2/n2 32 .

In the following theorem, we present a lower bound on z-recurrence entropy of system (1). To that end, we will
require a stronger version of Assumption 1.

Assumption 2 ((g, 7)-completeness). There is some € > 0, such that, for any x € B,(Q) and u € U, the trajectory
E(x,u, ) is defined for all t € [0, t] and is continuous in its first argument.

Theorem 3 (Lower bound). Under Assumption 2, for any compact t-recurrent set Q C R” for some v > 0 for system (1),

heo(T,0) > IL max

0, min div_f(x,u) o,
n2 { (x.u)€cl(Bs_(Q)XU < 0610 }

where div_f(x,u) = 3" 2i(x,u) = tr 2 (x, ).

i=1 gx;

Proof. A small modification of the proof of Theorem 4.1 in (Colonius and Kawan, 2009) would result in the theorem.
The modified proof is as follows: first, fix T > 0, € that satisfies Assumption 2, and let S = {u : } jelM] be a minimal
recurrence (T, €, 7, Q)-spanning set, where M is the cardinality of .S. Let us define the following sets: for any j € [M],

Qj ={x € Q| &x, uj, [0,T])is (T, &, 1, Q)-recurrent}. (11)

For simplicity of notation, we define £(Q U T) := Uerj {&(x,u s T)}. Note further that the statement &(x, u s [0, T]
is (T, &, 7, Q)-recurrent is equivalent to the statement that £(x, u;, [0, T]) is (T', 7, B,(Q))-recurrent. Then, by Lemma 1
(applied to B,(Q)), we have that A(§(Q;,u;,T)) < )”(Béz,e (Q)), where 6, , = FQ,greUnfT, which is the right-hand-side
of Lemma | when Q is replaced by B,(Q) as we define F,, = F (o) and L ¢ is defined as follows:

L[ — max ”f(.XI,u)_f(.X2,u)|| < 00 (]2)
TE xxE(R(B(Q) o)l  ||x] — X;]|
Note that in the case of invariance (as when 7 = 0), we instead have A(§(Q;,u;,T)) < A(B.(Q)), as shown in
(Colonius and Kawan, 2009).

Now, we can use the transformation theorem and Liouville’s trace formula to get:

(x,u) €OV,

0 0
A(S(Qj,uj,T))=/ Idet—é(x,u,,T)Idx > MQ) inf Idet—g(x,u,T)l
0, 0x 0x
! E(xal0.TNCB;,, ()

T
= XQ)) inf exp ( / div, f(&(x,u, 5),u(s))ds) > MQ;) min exp (Tdiv, f(x,u)).
0

i
(x,u)EQXV,., (xu)ecl(Bs_ (Q)xU
E(xa[0.TDEB;, , (Q) ‘
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Now since 1(Q) < M max;cpr /I(Qj),

max; () AE(Q;,u;, T))
min(x,u)ecl(B(;T,é oyxu exp (Tdiv, f(x,u))
AM(B;s_ (Q))

MiN(yeci(B; (Q)xU EXP (Tdiv, f(x,u))

MO <M

<M

Consequently,

AQ) .
B W (x,u)ecl(B(STIi (0)XU exp (lefo(X, u)),

Recall that M here is equal to r,..(T, €, 7, Q). Thus, since 7 is finite, ¢, is finite and A ..(7, Q)

rec

1 .
> lim lim su logexp (T'div, f(x,u
eNo T—>oop T (x, u)ecl(B[3 opxu 8P ( oS Gew)

1 i
= lim — div, f(x,u
N0 In 2 (x, u)eol(35 E(Q))XU xf (%)

1 .
= — min div, f(x,u).
In2 (xu)ecl(B;_(Q)xU xf (6 u)

Note that 6, strictly increases with 7. Thus, with a larger 7, the domain over which the minimum is taken in the lower
bound becomes larger, and the minimum itself becomes smaller. This is expected since A(z’, Q) < h(z, Q) if 7’ > 7,
according to Lemma 2. Also, as = — 0, we get the same lower bound as invariance entropy presented in (Colonius and
Kawan, 2009). O

Remark 4. Theorem 3 does not follow directly from Theorem 4.1 in (Colonius and Kawan, 2009), i.e., from the result
that hi, (Q) is greater than or equal to max{0, min, ,\eoxy div, f(x,w)}, since h..(7,0) < hy,, (Q), for any T > 0.

5. Entropy and 7-Recurrence data rates: bounds and algorithm

In this section, we describe the relation between z-recurrence entropy and control under bandwidth constraints,
particularly on the communication channel between the sensor and controller. We first prove that 7-recurrence entropy
lower bounds the bit rate needed between the sensor and controller for any control algorithm that enforces the r-recurrence
of a z-recurrent set. We then present an example of such a control algorithm and prove that it can asymptotically achieve
T-recurrence with a bit rate equal to the upper bound on entropy derived in Theorem 2 plus an/ In2, where « is the
exponential rate of convergence to r-recurrence.

5.1. Recurrence entropy lower bounds the data rate between the sensor and controller

We assume the setup where there is a sensor that can measure the state of system (1) at any time instant with
an arbitrary accuracy. It also has computation capabilities that allows it to simulate the system starting from any
initial state and following any control, as long as that trajectory exists. The sensor is connected to a controller over
a limited-bandwidth channel. The controller does not have information about the state of the system besides what it
receives from the sensor. It does however know the z-recurrent set O C R” and the control signals that drive the system
when starting from any state in Q to have an (g, 7, Q)-recurrent trajectory.

An (g, 7, Q)-recurrence enforcing algorithm is a pair of procedures, one for the sensor and the other for the controller.
The sensor’s procedure determines the bits it sends over the channel to the controller. Based on these bits, the controller’s
procedure determines how to map these bits to a control signal to drive the system to have an (g, 7, Q)-recurrent
trajectory. The average bit rate of an (g, 7, Q)-recurrence enforcing algorithm is defined as follows: limy_, #b"%m,
where #bits(T) is the total number of bits sent by the sensor until time 7T'.

Theorem 4. For any controlled t-recurrent set Q C R" for some t > 0 for system (1), and for any € > 0, there exists
no (g, 7, Q)-recurrence enforcing algorithm with an average bit rate smaller than h...(t, Q).
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Proof. Fix Q, 7, and ¢ that satisfy the assumption of the theorem. The proof is by contradiction. If there is such an
algorithm with an average data rate smaller than entropy, then there exists a 7' > 0 such that

#bits(T) 1
—— < g logre(T.e.7.0). (13)

That implies that 2% < r (T, g, 7, Q). Observe that 2#1(T) i5 the number of control signals that the controller
can possibly generate over the interval [0, T']. By the assumption that the controller enforces the system to have an
(T, e, 7, Q)-recurrent trajectory, then for every x € Q, it can generate a control signal that results in a (T, g, 7, Q)-
recurrent trajectory. Therefore, the set of control signals that the controller can generate is a (T, €, 7, Q)-spanning one
that has a smaller cardinality than r...(T, €, 7, Q), which contradicts the latter’s definition being the minimal cardinality
of a (T, e, 7, Q)-spanning set. O

5.2. Algorithm for enforcing z-recurrence over limited-bandwidth channels

In this section, we present Algorithm 1, which when the sensor follows and the controller follows a corresponding
symmetric procedure, the resulting control signal drives system (1) to have an exponentially converging trajectory to a
(z, Q)-recurrent one at a user-specified rate « > 0. When a = 0, the trajectory would be an (g, 7, Q)-recurrent trajectory
with a user-specified €. We define this more formally in Theorem 5 and Corollary 2. After that, we show that the bit rate
at which the sensor sends information to the controller when following Algorithm 1 is equal to the upper bound on
T-recurrence entropy presented in Theorem 2 when @ = 0, and grows linearly with @, otherwise.

In our algorithm, we assume that there exists a constant £* > 0 such that starting from any state in Bs_,+(Q), there
exists a control signal that drives system (1) to Q within 7z time units. Moreover, we assume that the function that
maps the initial states By ,,(Q) to the shortest time such a control signal takes to drive system (1) to Q to be Lipschitz
continuous. While this latter part of the assumption is not necessary for the correctness of the algorithm, it results in
better guarantees when satisfied, as we describe in Theorem 5 and Corollary 2. The assumption is formulated as follows.

Assumption 3. There exists an €* > 0, a control function h : Bs_ i (Q\Q xR2Y = U, and a corresponding function
lreeo ¢ Bs 4e+(Q) = [0, 7], such that Vx € B;_,.+(Q)\Q, the trajectory of system (1) &(x, h(X, "), Irec o(x)) € Q.
Moreover, there exists some constant ¢* > 0 such that for any x|, xy € Bs_ 4 +(Q\Q, |trec o(x1) = frec 0(X2)| <
c*llxy = x5l

Next, for any 7 > 0 and € € (0, €*], where £* is the one assumed to exist in Assumption 3, we define a new control
function g : By ,,(Q) X RZ% - U, where §, is as defined at the end of Section 3.2, to be used in the algorithm. If the
initial state x is in 0, g(x,-) is equal to a control signal that ensures (7, Q)-recurrence, which exists by the assumption
that Q is r-recurrent. Otherwise, it is equal to the control function 4 defined in Assumption 3 up until reaching Q, i.e.,
until 7, o(x). After that, it is equal to the control function that ensures the trajectory is z-recurrent starting from the
new initial state in Q. In practice, g and A can be synthesized using MPC or MPPI approaches, as we mentioned in
Remark 1.

Formally, let ¢’ : O X R20 - U be such that for any x € Q, the trajectory &(x,g’(x,-),) is a (z, Q)-
recurrent one. Such a function exists because of the assumption that Q is a z-recurrent set. We define g as follows:
Vt>0,g(x,1) :=g'(x,0)ifxe Q.Ifx € B;s_ i+ (ON\Q, Vi < trec 0(x), 8(x,1) 1= h(x,1) and VI > 1, o(x), g(x,1) :=

g,(é(x’ h(x’ ')’ treC,Q(x))7 = trec,Q(-x))'

5.2.1. Algorithm description

Algorithm 1 takes as input a z-recurrent set Q for some = > 0, an e € (0, €*] (where £* is as defined in Assumption 3),
and the control function g defined earlier. It also assumes to be given several functions: sense, quantize, encode, send,
simulate, and sleep. The function sense returns the current state of the system. The function quantize returns the
closest point in the set given in its second argument to the point given in its first argument. The function encode maps
the first argument to a bit vector that uniquely identifies it out of the set of states given in the second argument. The
function send sends the given bit vector over the limited-bandwidth channel to the controller. The function simulate
simulates the system starting from the state in its first argument following the control signal in its second argument until
the time bound specified in its third argument. It returns the last state in the simulated trajectory. If the third argument is
an interval, it returns the trajectory segment within that interval. Finally, the function s/eep makes the sensor wait for
the amount of real time passed as argument before continuing the execution of the algorithm. The time of the algorithm
execution is assumed to be negligible with respect to 7.
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The algorithm starts by initializing .S, to Q and constructing an ge~L=*®7_grid for it, which we denote by C,. The
algorithm then proceeds with an infinite loop. In each iteration, it sends a bit vector that encodes a state estimate to
the controller, according to which it can identify the control function u; the system should follow in the time interval
[it, (i + 1)7). To produce the bit vector, the sensor measures the current state of the system x;, i.e., (xg, &, i7), where i
is the control signal have been followed so far. Then, it quantizes x; to one of the centers g; in the grid C;. The encoding
of g; with respect of C; is the bit vector that the sensor sends. The controller, which is running a similar algorithm to
Algorithm 1, but without the sensing, can recover g; as it knows C;. Using g;, it can choose the same control function y;
that the sensor intends to use to construct C;;.

After that, Algorithm 1 computes u; to be equal to g(g;, [0, 7)). Then, it simulates the system for z time units starting
from ¢; and following u;. It uses the last state in the simulated trajectory as the center of the ball .S;,; which bounds the
region where the next sensed state x;, | might be. The radius r;,; of S;,; is an " factor smaller than that of S;. After
that, it constructs the grid C;; to be the r; ;e F+*®7_grid over .S, , according to which the next state, x;, |, would be
quantized. Finally, the sensor waits for the system to evolve for  time units before sensing it again in the next iteration.

Algorithm 1 Sensor algorithm for achieving recurrence

input: 0, ¢ € (0,6*],7>0,g : B;  (Q) xR > U
Sy <0
rg < €
C,y < grid(Sy, roe~Le+o7)
i=0
while true do
X; « sense()
q; < quantize(x;, C;)
send(encode(q;, C;))
u; < g(g;,[0,7))
Figr < et
Siv1 < By, (simulate(q;, u;, 7))
Ciy1 < grid(Siyy, ripe” o7
i—i+1
sleep(t)

R e AN A > e

I S S e Y
wn AW N = O

5.2.2. Algorithm guarantees

Fix the inputs to Algorithm 1, i.e., a controlled z-recurrent set Q and a corresponding z-recurrence achieving
controller g. Moreover, fix any initial state x, € Q. Let & : R=? — R" be the concatenation of the u;s produced by
Algorithm 1, i.e., for any ¢ > 0, () = u,(t — it), where i = |t/7]. Also, let £ : R — R™ be the concatenation of
the z-sized fragments of trajectories &(g;, u;, [0, 7)) produced by the algorithm, i.e., V# > 0 and # # it for some i € N,
&n = simulate(q;,u;,t — it) and &ir) = g;, where i = |t/7]. Thus, & would be right-piece-wise-continuous. Finally,
the trajectory that the system would have starting from x, following # is denoted as usual by &(x, 4, -).

Theorem S. Fix any compact controlled t-recurrent set Q C R" and any initial state x, € Q. If Assumption 3 holds,
then Algorithm | ensures that:

1. Vi>0,x; €S}, andVt > 0, lE) — E(xg, 0, )| < ee™™,
2. Vi €N, &lit, ) is an (ee™1%7, 1 + c*ee~1tLIT O)-recurrent function, and
3. VieN, &(xq, 4, [it,00)) isa (Qee™ 7 1 4 c*ee~ W+l O recurrent trajectory.

If the Lipschitz continuity assumption on frec, i Assumption 3 does not hold, then Vi € N, f [it, 00) is an (ee~%7, 27, Q)-
recurrent function and Vi € N, &(x, 4, [iT, 00)) is a (2ee™"*", 27, Q)-recurrent trajectory.

Proof. First, we will prove part 1) by induction. For the base case: x; € S, and 1€0) — xoll < ge™Le+07 < ¢ which
hold by the fact that Cj, is a grid over Q with cells of radii ry, = ee~(L<+07 and £(0) = g,.

Inductive case: fix an i € N and assume that x; € S; and Vt € [0, i], HOE E(xq, 8, 1)|| < ee™™. By Gronwall’s
inequality, V¢ € [it, (i + )], |E(x;, u;, 1) — E(q;, u;, )| < eEe070||x; — q,|| < ge=UHDatlo)role(=it) < go=(ithar <
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~o Recall that x;,; = &(x;,u;,7) and rpyy = ee” D Thus, x,,, € B, (&(g;,u;, 7)), and the latter is S
Then, since C,,; is a grid over S;,; with granularity r,,;e~L+97 and E((i + 1)7) = q;,y, llx;4 — &G + DD)|| =
%01 = Qi1 || < Fippe”Eet97 and thus [|E(xg, 4, (i + 17) — E(( + 1)7)|| < ge™ DLt < go=(+Dat That proves
the inductive argument for part 1).

We prove part 2) also by induction. We will prove the stronger claim that for any i € N, either &(7) € Q for some
1 € [ir,(i+ )7) or lim,_, ;i 1y7)- &) € Q, and |t;41 — ;] < T+ c*ee™'®7, where 1, is the last time instant in [iz, (i + 1)7)
such that é(t,-) € Q or equal to (i + 1)z, otherwise, and ¢, is the first time instant in [(i + 1)z, (i + 2)7) such that
f(t,-H) € Q, or tj.‘+1 = (i + 2)r, otherwise. When it is the case that lim,_,((,-H)T)_ f(t) € O, we know from part 1) that
q;+1 € S;,1, which is centered at the value of that limit and has a radius of r, ;. Thus, &((i + 1)), which is equal to
qi41,» would be at most r;, | (i.e., ee~+D27) from Q.

Base case: by assumption, x, € Q, £(0) = ¢, and g, € Q as it is the quantization of x,, with respect to C,, which
is a grid over Q. By part 1), [|€(0) — xpll < ee~(LetO7 and thus (0) € B, ,-1,+0:(Q) C B51+Ee-(L,+a>f (Q). Then, u is
equal to g(gy, [0, 7)). That would result in é([O, 7)) being a prefix of a (7, Q)-recurrent trajectory starting from ¢, by
the definition of g. Thus, either é(t) € Qforsomet € (0,7) or lim;_, - .f(t) € Q. Moreover, by the containment lemma
(Lemma 1), V1 € [0, 7),&(t) € B; (Q). Thus, lim,_, - &(1), which is the center of S, would be in B; (Q). Thus, &(2),
which is equal to g; and belongs to S}, would be in B;__ .~ (Q).

Inductive case: fix ani > 1 and assume that that part 2) is true until time iz. Thus, there exists a time instant ¢ € [0, 7)
such that &((i — 1)t + 1) € Q or lim,_, ;- & e 0. Let t;_; be the largest such instant. If #,_; < it and we simulate
system (1) when following g(&(g;_1,u;_1,it +t,_1), ) starting from &(q;_y, u;_;, it +t;_;), the resulting trajectory will
be (z, Q)-recurrent. Thus, there exists ¢ € (0, 7] such that that trajectory belongs to Q at time iz +¢'. However, & is equal
to that trajectory only in the interval [(i — 1)7 +¢;_{, i7). In the interval [iz, (i + 1)7), & will be equal to the trajectory that
starts from ¢; and follows g(g;, -). If ¢; € Q, then & would have visited Q within 7 — t:.k_l time units, which is less than 7.

If g, ¢ Q, then from part 1), we know that g; € .S, and thus ||g; — lim,_;,- &(t)|| < r; = ee™"**. Then, by Assumption 3,
we know that & would reach or be arbitrarily close to Q at or before min{(i + 1)z,t;,_; + 7 + ¢*||¢; — lim,_,;,- En,
which is upper bounded by min{(i + 1)z,#;,_, + 7 + c*ee~"*" }. Note that if Trec,0 18 DOt Lipschitz continuous as assumed
in Assumption 3, we can still guarantee that & will be arbitrarily close to Q at or before (i + 1) since the first argument
of the minimum in the previous sentence is independent of that assumption. We can conclude that the time between two
time instants at which & belongs or is arbitrarily close to Q in the intervals [(i — 1)z, i7) and [i7, (i + 1)7) is less than
or equal to 7 + c*ee™7, if Assumption 3 is satisfied. If Irec,0 18 DOt Lipschitz continuous, then we can still guarantee
that the time between two time instants at which & belongs or is arbitrarily close to Q in the intervals [(i — 1), i7) and
[iz, (i + 1)7) is less than or equal to 27.

Finally, part 3) follows from combining parts 1) and part 2) and using the triangular inequality d(&(x, &, 1), Q) <
[1E(xq, 4, 1) — En)|l + d(&(r), Q) at the time instants where &(7) is visiting Bs_i¢e-iar (Q). We obtain that &(x, i, -) visits
B(s +2ee ier (Q) in the [it, (i + 1)7) interval. Thus, &(x, &, [i, 00)) is a (2ee™*7, 7 + c*€e ™7, Q)-recurrent trajectory. If
Irec,0 18 DOt Lipschitz continuous, then &(x, 4, -) visits Bs_yr¢e-iar (Q) in the [i7, (i + 2)7) interval and &(x, &, [iT, 00))
is a (2ee~% 27, Q)-recurrent trajectory. ]

It follows that the trajectory of system (1) when following the controller & produced by Algorithm 1 asymptotically
approaches a (z, Q)-recurrent trajectory.

Corollary 2. Fix any initial state x, € Q and define the corresponding control signal ii as we did at the beginning of this
section. If Assumption 3 holds, then ast — oo, £(xg, i, [t, 00)) is a (v, Q)-recurrent trajectory. Otherwise, if the Lipschitz
continuity assumption on t.. o in Assumption 3 does not hold, then as t — oo, &(xy, i, [t, o)) is a (27, Q)-recurrent
trajectory.

In the following theorem, we show that the bit rate at which a sensor running Algorithm 1 sends information t the
controller matches the upper bound on z-recurrence entropy in Section 4.

Theorem 6. The average bit rate at which a sensor running Algorithm 1 will send to the controller is equal to
n(L,+a)/In2.

Proof. Fix any i € N. The number of bits that the sensor running Algorithm 1 sends at the time instant ¢ = i is log |C;|.

Given any time bound T' > 0, the total number of bits sent by the sensor over [0, T] is equal to Z L7/z] log |C;|. Thus,

zLT/TJ logIGi|

the average bit rate is limy_, T
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diam(.S;)
2rie—(LT+a)r

1. Then, Cy = [-220D 1 and forany i > 1,C, = [

We can observe that Vi > 0, C; = [ =

['e(LT+Ll)T‘| n

n
2,. e—(L +a)r]
Thus, the average bit rate is equal to:

1 ' 10glcl

lim —
Tooo T =0 T
LT /7]
o 1 dlam(Q) (L +a)Tn
= Jim o ( Yoo Lorwr | Z log[e 1)
=n(L, +a)/In2. (14

6. Finite alphabet controllers and memory bounds

Having established how recurrence, as a control task, is less complex (entropy) and requires less information (bit
rates) than the invariance counterpart, we now center our attention on a striking phenomenon associated with recurrence
that is generally unattainable by invariance tasks. That is, though the number of control signals required to enforce
recurrence grows exponentially with time, such controls can be generated by a finite alphabet of control signals that can
be strategically combined to achieve the desire goal. This allows control signals to be precomputed and stored, thus
circumventing one of the key shortcomings of the entropy-based algorithms, which assumes the ability to efficiently
compute controls online. We start by introducing the building blocks of our controllers, i.e., the control alphabet.

Definition 6 (Control alphabet). Fixat > 0. We call a set S, := {vy,...,v,} consisting of piecewise continuous
control signals of the form v; : [0,t;) = U, for some t; € (0, ], a control alphabet.

Sequentially concatenating signals from the alphabet generate signals over longer time horizons. For example,
the signal u : [0,7; +7;) — U such that u(t) = v;(?) for all ¢ € [0,;) and u(t; + 1) = v; (1) for all 7 € [0, 1;), results
from concatenating v; and v;, and is denoted by u = v;v;. This construction allows the generation of control signals
of arbitrary duration, by subsequent concatenation of alphabet elements, e.g., concatenating v;v; with vy leads to
(v;0;)v) = v;v;v; which has a total duration 7; +¢; + ;. Our goal is then to understand under what condition such
alphabets can induce trajectories with the required properties, as in Definition 3 and Definition 5.

More precisely, we call a control alphabet S, a (T', €, T, Q)-invariance alphabet for system (1) if its members can
be sequentially concatenated to generate signals over the interval [0, T'] that form an invariance (T, €, Q)-spanning set.
Similarly, we call S, a (T, €, T, Q)-recurrence alphabet for system (1) if its members can be sequentially concatenated
to generate signals that form a recurrence (T, €, 7, Q)-spanning set. As before, we drop T from the arguments if equals
to infinity and drop e if equals to zero.

Definition 7 (Nonparametric control). Given a control alphabet S, a non-parametric controller is defined by a map
n : R" = §,. It induces a controller g : R" X R20 — U for system (1). The controller g samples the state Xg of
system (1) at time zero, outputs w(x) for the latter’s duration, i.e., if 7(xy) = v;, g(x(, 1) = v;(t) for all t € [0,1)),
before sampling the state again and repeating the process.

Our goal is to use non-parametric controllers of the form of Definition 7 as a substitute for having to compute
the control signals online via MPC or a similar method. To that end, we define entropy-like metrics that quantify the
minimal number of bits necessary to differentiate across elements of an alphabet that achieves invariance and recurrence.
We call such metrics invariance memory and recurrence memory, respectively, as follows:

mip (7,0) = hm lim sup log ripy mem(T>€,7,Q) and my(7,0) := hm limsuplog rec mem (T €, 7, @), (15)

T—- T—oo

where 7y mem (T €, 7, @) and rie e (T, €, 7, Q) are the minimum cardinalities of (T, €, T, Q)-invariance and recurrence
alphabets, respectively. Note that one could consider having the recurrence time and the upper bound on the durations
of the signals in the alphabet represented using separate parameters for the recurrence memory definition, instead of
considering them both to be equal to 7 as in the definition above, but we avoid that here to keep the presentation simple.
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Remark 5. Fix a v > 0 and a compact set Q C R". Then, m;,(t, Q) is finite if and only if there exists a finite (1, Q)-
invariance alphabet, i.e., a finite set of signals such that for any T > 0, they can be concatenated to define signals over
[0, T that keep the trajectories (T, Q)-invariant. This follows from the observation that ry,, n.(T', €, 7, Q) is monoton-
ically increasing as T increases and € decreases. Consequently, m;, (7, Q) =108 Fipy mem (7, Q), where riyy yem(7, Q) is
the cardinality of the minimal (t, Q)-invariance alphabet, since ryp, e (7, Q) = limg\ o lim supy_, o Finy mem(T'> €, 7, Q).
Thus, in contrast with invariance entropy, a strict version of m;,,, where the alphabets should be able to generate strict
invariance spanning sets, would not result in a different value. A similar argument can be made for recurrence memory to
show that it is finite if and only if there exists a finite (t, Q)-recurrence alphabet and that m..(t, Q) = 10g Fiee mem (7, O,
where Frec mem(T, Q) is the cardinality of the minimal such alphabet.

In the following example, we show that if a system has a zero invariance entropy, that does not imply that it has
a finite invariance memory. Moreover, it is possible for a system to have an infinite invariance memory and a zero
recurrence memory corresponding to the same controlled invariant set, providing further insight about the complexity
difference between recurrence and invariance. Our example follows Example 5.1 in (Colonius and Kawan, 2009).

Example 2. Consider the system x = —x + u, where x € R and let Q C [—1, 1] be an infinite set that is totally
disconnected and such that for any 6 > 0, [—8, 6] N Q is an infinite set. It follows from (Colonius and Kawan, 2009)
that h;,,(Q) = 0 and hi*nV(Q) = o0. However, observe that u = 0 is sufficient to make any trajectory starting from Q to
be (z, Q)-recurrent, for any v > 0, as the system is exponentially stable. Thus, m,..(t,Q) = log 1 = 0. On the other
hand, by the same argument in (Colonius and Kawan, 2009), there is no finite set of control signals that can keep QO
invariant, since starting from any state x, € Q, only the signal u, where u(t) = x for all t > 0, results in &(xy,u,t) € Q
for all t > 0. An infinite alphabet is thus needed to construct an invariance spanning set. Consequently, the limit of
Finv.mem (%> T> €, @), as T goes to infinity and as € goes to zero, is infinity, and my, (r, Q) = oo, for any t > 0.

Remark 6. Fix v > 0, a QO C R” that is controlled invariant, and a set K C Q. Let my, (7, K, Q) and m,..(t, K, Q) be
the invariance memories when K is the initial set of states and Q is the set to keep invariant or recurrent. Then, with
similar arguments to those in the proof of Theorem I, we can show that m;,(t, Q, B(S,(Q)) < M (7, 0) < my,, (7, 0),

where 6, = FQTeLTT, which is the right-hand-side of the containment lemma.
We now show that our notions of memory can be lower-bounded using the strict entropy of the control task.

Theorem 7. Fix any t > 0 and a compact set Q C R". Then, h* (Q) < mv(’l’ 0), where t,, = min;¢ els, 11t and

S, is the minimal (v, Q)-invariance alphabet. Similarly, Then, h}, (z, Q) < Moo (7, Q), where 7, = min;gq s 1

and S, is the minimal (t, Q)-recurrence alphabet The same bounds hold for the non-strict versions of entropy, i.e.,

mv(Q) Ty mv(T Q) al’ld hrec(T Q) < rec(T Q)

Proof. If my,,(z, Q) is infinite, the bound tr1v1a11y holds. Assume that m;,,(z, Q) is finite. Then, there exists a finite
minimal (7, Q)-invariance alphabet .S, as discussed in Remark 5. By definition, for any T > 0, an invariance (T, Q)-
spanning set can be generated by concatenating the signals in .S,. The number of signals over the interval [0, T'] that
can be generated this way is at most | .S, |[7/%1, where z,, = min;gq s |y ;- It follows that ry, (T, Q), i.e., the cardinality

of the minimal invariance (T', Q)-spanning set, is upper-bounded by (rinv,mem(r, Q)) 7751 I we substitute that upper
bound in the definition of hi*nv, we get

T 1
h’k L(0) < limsup — log( Finv.mem (%> Q))[ Il _ T—minv(r, 0).
m

T—oo

The last step follows from adapting Proposition 3.4(ii) in (Colonius and Kawan, 2009) to strict invariance entropy,
instead of invariance entropy, to get that

h: (Q) = lim sup ! logr (Nt,0),

inv
N—-o

which implies that assuming that [T'/z,,] = T/, in the limit does not change entropy. A similar proof can be followed
to obtain the theorem’s claim for the recurrence case. Finally, the bounds for the non-strict versions of entropy follow
from the fact that h;,,(Q) < h;"nv(Q) (Proposition 3.1 of (Colonius and Kawan, 2009)) and h,..(z,0) < h}_ (7, 0),

H. Sibai and E. Mallada: Preprint submitted to Elsevier Page 14 of 18



Recurrence of Nonlinear Control Systems

which can be derived in a similar manner to the invariance case, mainly that every recurrence (T, 7, Q)-spanning set is
also a recurrence (T, €, 7, Q)-spanning set for any € > 0. O

The next theorem shows that, in the case of recurrence, if we allow for slightly stricter assumptions than Q being
control recurrent, one can get a finite upper bound on the recurrence memory.

Theorem 8. Fix any © > 0 and a compact set Q C R". Assume that that there exists an € > 0 s.t. B_.(Q) := {x €
Q| llx=yll =€, Vy € 00}, where 0Q is the boundary of Q, is non-empty and that for every x € Q, there exists a control
signal u such that 3t € (0, 7], s.t. the trajectory of system (1) (x,u,t) € B__.(Q). Then, m..(t, Q) < log b(ee~ L7, Q).

Proof. We follow a similar construction to the proof of Theorem 2. Let C be a minimal ee~L<?-cover of Q'. By the
theorem’s assumption, there exists a set S, = {v;};¢cj; € U', where for every center x; in the cover, there exists a
v; € S, and t; € (0, 7] such that {(x;, v;,t;) € B_.(Q). We assume that the domain of v; is [0, #;]. Using Gronwall’s
mequahty, Vi €[0,7;] and Vx € B, -1, .«(x;) N O, ||E(x;, v;, 1) — E(x, v, D] < eleel||x; — x|| < eFrel(ee™hee?) <.
We will prove by induction that S, is a (T, 7, Q)-recurrence alphabet. Fix any x € Qand T > 0. If T < 7, the
trajectory resulting from starting from x and following any signal in .S is trivially (T, 7, Q)-recurrent. Hence, we
assume that T' > 7. We will concatenate some of the signals in S, to get a signal u that is defined over [0, T] that leads
the trajectory starting from x to be a (T', 7, Q)-recurrent one. Let x; be the center in C such that x € B, -, .-(x;). Since
[1ECx;, v, ) —E(x, v, 1) < € and E(x;, v;,8;) € B_,(Q), then é(x, v;,t;) € Q. Thus, we let u(t) = v;(¢) forall t € [0, 1;].
Assume that we constructed u until some time s < T as a concatenation of signals in .S, such that (x, u, s) € Q and & is
(s, 7, Q)-recurrent. Thus, there exists an x; € C such that &(x,u, s) € B, -1, .:(x;). Using the same analysis again, we
get that [|E(x;, v;,1;) — E(E(x, u, 5), v;,1 )|l < €. We setu(s +1) :=v;(1),Vt € (0,min(t;, T — 5)]. If t; < T — s, then
E(x,u,s+1 j) = E(&(x,u, s),v ot j) € Q. Finally, notice that the resulting trajectory visits Q every = time units at least
once. Hence, u drives the trajectory starting from x to be (T, 7, Q)-recurrent and S, is a (T', 7, Q)-recurrence alphabet.
Consequently, e mem(T>7,0) < |S,| = [C] = b(ee~L<?, Q). Substituting this bound in the definition of
m..(7, Q) results in the theorem. O

Observe that under the same mild conditions of Theorem 8, when combined with Theorem 7, it results in the upper
bound on strict recurrence entropy: hr . (7,0) £ — log b(ee~ L7, Q), where 7,, and e are as defined in the theorems.
We end with an application of Theorem 8 to the dynamlcs and the set of Example 1, which is another example of finite

recurrence memory and an infinite invariance one.

Remark 7. Consider the system in Example 1. Observe that for any state in Q, we can construct a constant
control signal that drives the trajectory to B_.(Q) in 1 + \/5 time units, where ¢ = 0.5. Thus, by Theorem 8,

Mo (T, Q) log b(ee~L<7, Q), which when substituting T = 1 + \/_ € =05, and L = 1, we get m.(r,0) <
log b(ee™ \f]z 9.05. In contrast, by Theorem 7 and the fact that h;“ (Q) = h;, (Q) (Proposition
3.1 of(C()]omm and Kawan 2009)), myy,(r, Q) > Th;"nv(Q) > thy, (0) =

Example 3 (Invariance of Unit Circle Requires Infinite Alphabet). Consider the nonlinear control system

X, =x; tuy, Xy = X + Uy, (16)
with (x,x,) € R? and control inputs u,,u, € R. Let the set of interest be the unit circle

0 ={(x.x) €R? : x] + x5 = 1}.

To achieve invariance of Q, the derivative of V (x,x;) = x% + x% must be zero on the boundary Q. Computing this
derivative yields the algebraic constraint:

VQ=2+2(x1u1+x2u2)=0 => x1u1+x2u2=—1.

Thus, for a fixed point x € Q, any admissible control u must satisfy: x "u = —1.

I'Notice that we use 7 to construct the cover, instead of T', which we used in the proof of Theorem 2.
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te [0%] te E‘r]

Figure 2: lllustration of control signal used in Example 3. In the first half interval, all center points x, are mapped
info the circle of radius 1 — r/2. In the second half () = 0 is used 1o let trajectories diverge. The scheme
guarantees that Q = 9B, is revisited at most in = units of time.

Now, to investigate whether Q can be made invariant by finitely many control signals, we must find u € R* and
% € R? simultaneously satisfying the algebraic constraints:

lu=-1, |xI>°=1.

x'u=-1,
Given any x, we need some u satisfying x'u = —1 to keep such initial state x invariant. However, for such u Bézout’s
theorem states that the number of X that satisfies the above equations is at most two, since they correspond to the
intersection of a line and a circle. Since Q contains infinitely many points, achieving invariance of the entire boundary
O with a finite set of controls is impossible. Therefore, enforcing invariance on the entire boundary Q requires infinitely
many control signals.

To show that Q can be made t-recurrent with finitely many controls first note that for any x € cl(B;\B;_,), r € (0, 1),
using uy(t) = 0 ensures that E(x, u, %) € cl(B(l_,)_l\Bl) when v = 21In(1 — r)~1, where we use B, to denote the
2-ball of radius c centered at 0. Along the same lines, since the LTI system is controllable, for any x € cl(B(;_,,-1\B})
one can find u,, : [0,7/2] = U s.t. ||ECe,u,v/2)]] =1 — % and &(x, uy, t) is parallel to x. Finally, by making an
%exp(—2%)-cover of cl(B( _,-1\ By) and assigning to each center point c; the control

u(t) := {uc[_(t), whent € [0, %] and 0, whent e [%,T] R

ensures that for all y € cl(B(y_,-1\ By), there exists u; s.t. &(y,u;, 7/2) € cl(B)\B,_,) and §(y,u;, 7) € cl(B(_,-1\By).
Therefore, the trajectory must visit Q at least once in T seconds, and thus, {u;} defines a finite alphabet that renders Q
t-recurrent. We illustrate the overall construction of this control scheme in Figure 2

Remark 8 ( Relation with feedback entropy (Nair et al., 2004)). It is shown in Section 6 of (Colonius and Kawan,
2009) that for any nonvoid compact set Q C R", the strict invariance entropy h (Q) is equal to inf 4 , ) h: (A, 0,7),
where the latter is a continuous-time version of the strong topological feedback entropy introduced in (Nair et al.,
2004). We unpack that definition step by step. First, hi*nv(A, 0,T) = %limN_m loge(AN1O) Second, the set over
which the infimum is taken is the set of triples that invariantly cover Q (Colonius and Kawan, 2009). Third, a
triple (A, o, 1) is said to invariantly cover Q if t is a positive real number, A is a cover of Q, 6 : A - U is
a function that assigns the same control signal of duration t in U to every element A in the cover A such that
VA € A, Vx € AVt € [0,7],&(x,0(A),t) € Q. Finally, one can use o to define a function = . Q — U, which for any
x € Q, it assigns it the signal 6 (A), for some arbitrary A € A that contains x, i.e., x € A. Consider the non-parametric
controller g : Q X R=0 — U that is defined by r. Then, for any N € N, the controller g defines a finite cover of Q
where each element in the cover shares the same control signal assigned by g over the interval [0, Nt]. That cover is
called Ay and the minimal cardinality of a subcover is denoted by c(A |Q) in (Colonius and Kawan, 2009).
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We first notice that for any triple (A, o, T) that invariantly covers Q, the set {c(A) | A € A} is a (z, Q)-invariance
alphabet, i.e., it is a (T, €, T, Q)-invariance alphabet for any T > 0 and € > 0. Per our definition of (t, Q)-invariance
alphabets, their control signals durations are upper-bounded by t but can be smaller, in contrast with those defined by
a triple (A, o, t) that invariantly covers Q which are required to have a duration of exactly t. That implies that Vz' > 0,
Finvmem(7's Q) L inf 4 o 1y 1 r—r | Al, where the infimum is taken over triples invariantly covering Q with t is equal to
/. Hence, V7' > 0, my (t/, Q) = 10g iy mem(7'- @) < log (inf 4 5 1) r=er |Al) = inf( 4 5 1) 5. 1= 0g | Al where
the first equality follows from Remark 5 and the infimum is defined as before.

Moreover, we notice that for any triple (A, o, t) that invariantly covers Q and any N € N, ¢(An|0) < |Ax| £
| AN, where the first inequality follows from the definition of a subcover and the second follows from the fact that
the number of distinct signals the corresponding non-parametric controller g can generate over the interval [0, N 7]

for the states in Q is upper-bounded by | A|N. That would also be the maximum cardinality of a cover of Q it can
loglAlM _ 1

N = . log | A|.
Therefore, Vt' > 0, bt (Q) = inf 4 ;0 hi (A 0,7) < inf( g0 e B (A 0.7") Snf g0 0p = 5 108 Al

where the first equality follows from Theorem 6.1 in (Colonius and Kawan, 2009), the second step follows from
fixing t to ' in the infimum, and the last step follows from the preceding analysis. In summary, V7' > 0, hi*nV(Q) <

induce. Consequently, for any triple (A, o, T) that invariantly covers Q, h?ﬂV(A, 0,7) < % limpy_ o

111] %log | A|, where the infimums are defined as before. This is an alternative upper bound on strict
invariance entropy hfnv(Q) to the one we obtained in Theorem 7.

We observe that the concept of invariantly covering triples used in the definition of feedback entropy (particularly the
version in (Colonius and Kawan, 2009)) is closely related to the notion of invariance alphabets we define in this paper
and can be used to derive similar results. Studying further this relation and generalizing the results to the recurrence
case is an interesting future direction.

7. Conclusions and Future Work

We present the notion of z-recurrence entropy for nonlinear control systems as a generalization of the notion of
invariance entropy. A system is z-recurrent to a compact set of states if its trajectories starting from that set can leave it
but only for 7 seconds at a time. T-recurrence entropy measures the rate at which the number of control signals that
are sufficient to make the system z-recurrent with respect to a predetermined set increases with time. We show that
T-recurrence entropy is bounded from above and below by the invariance entropy of the system with respect to different
compact sets. Moreover, we show that it converges to invariance entropy with respect to the same set as = decreases
to zero, as expected. Then, we derive upper and lower bounds on z-recurrence entropy as a function of the system
dimension, local Lipschitz constant, and the divergence of the vector field. We show that both bounds converge to
known corresponding bounds on invariance entropy as = — 0, also as expected, and connect the newly defined entropy
notion with necessary bit rates for recurrence, providing an algorithm that asymptotically achieves this task. We finalize
by showing that, in fact, in many situations, recurrence can be obtained by a finite alphabet of control signals.

When put together, our results suggest that recurrence is a less complex task, in the sense that in many instances, it
not only requires smaller spanning sets to perform the task but there are also instances where such spanning sets can be
generated via a finite alphabet. This opens up the possibility of storing the control signals and thus avoiding the need to
compute controllers online. Future research directions along these lines includes understanding other classes of control
tasks, where a hierarchy of task complexity can be defined, as is the case of invariance and recurrence, as well as other
instances where finite alphabets can be generated.
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