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 a b s t r a c t

Market power remains a persistent challenge in many liberalized electricity markets worldwide, driving the 
adoption of ex-ante and ex-post mitigation measures. Despite locational mitigation tools (e.g., cost-based refer-
ence levels or default energy bids), evidence of price manipulation has motivated system-level market power 
mitigation (MPM) policies. However, the full implications of these rules are not well understood, and limited 
insight into participant behavior can lead to unintended consequences, including increased market power and 
welfare losses. We study sequentially cleared electricity markets and analyze a two-stage settlement structure 
commonly used by system operators (e.g., day-ahead and real-time markets in North America). Our focus is on 
MPM policies that replace noncompetitive generator offers with operator-estimated default bids, and we model 
competition between generators and loads with inelastic energy requirements who act strategically in allocating 
demand across stages under real-time, day-ahead, and simultaneous applications of MPM policies. Motivated by 
the loss of Nash equilibrium under conventional supply-function bidding, we adopt an alternative mechanism in 
which generators bid the intercept of an affine supply function. Under real-time MPM, strategic interaction in 
the day-ahead market drives all demand to real time, producing an undesirable outcome. To test robustness, we 
incorporate demand uncertainty using a variance-penalized expectation framework. Low risk aversion still leads 
to substantial real-time clearing, while imbalances in risk preferences further amplify market power. Overall, 
intercept-function bidding combined with day-ahead and simultaneous MPM policies mitigates generator mar-
ket power more effectively than real-time substitution alone, although these policies shift some market power 
toward loads. 

1.  Introduction

Electricity markets are well known for the persistent exercise of mar-
ket power, which has continued to appear across regions despite decades 
of restructuring and liberalization. In North America, empirical stud-
ies have shown that even structurally unconcentrated markets experi-
enced capacity withholding and prices above competitive levels (Boren-
stein et al., 1999; Qu, 2007). Similar behavior has been documented 
in Europe: Sweeting (2007) found evidence of tacit collusion in the 
England and Wales pool, while price deviations linked to strategic con-
duct have been reported in the Spanish (Fabra & Toro, 2005) and Ger-
man (Müsgens, 2004) wholesale markets. In Australia’s National Elec-
tricity Market (NEM), generators engaged in rebidding strategies–first 
withholding capacity to influence early dispatch, then re-entering capac-
ity to exploit settlement prices averaged over multiple dispatch intervals 

∗ Corresponding author.
 E-mail addresses: rajnikantb@iima.ac.in (R.K. Bansal), yuechen@mae.cuhk.edu.hk (Y. Chen), pcyou@pku.edu.cn (P. You), mallada@jhu.edu (E. Mallada).

(Dungey et al., 2018). These examples illustrate a wide range of strategic 
behaviors that can distort prices and reduce social welfare.

To limit such behavior, system operators employ a variety of market 
power mitigation strategies. European markets, including the UK and 
Nord Pool, primarily rely on ex-post behavioral monitoring and regu-
latory investigations (European Union, 2011; Kemp et al., 2018), em-
phasizing detection and enforcement after the fact. In contrast, North 
American markets generally employ ex-ante structural measures, such 
as pivotal-supplier tests and offer caps. For instance, PJM applies a three-
pivotal-supplier test and replaces noncompetitive offers with cost-based 
mitigated offers (LLC, 2024, §2.3.6.1); ISO New England substitutes 
offers that fail structural or constrained-area tests with unit-specific 
reference levels (England, 2025, III.A.5.5); and both MISO (Operator, 
2013, §64.1.3) and NYISO (Operator, 2025, §23.4.2) utilize reference-
level frameworks to benchmark and mitigate submitted offers. Although 
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$d_l\in \mathbb {R}^{+}$


\begin {align}\label {load_two_stage} d_l := d_l^d + d_l^r\end {align}


$d_l^d\in \mathbb {R}, \ d_l^r\in \mathbb {R}$
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$l\in \mathcal {L}$


\begin {align}d := \sum \nolimits _{l\in \mathcal {L}} d_l\end {align}


\begin {align}\label {power_bal} \sum \nolimits _{j\in \mathcal {G}}g_j = d\end {align}


\begin {align}\label {planner_problem} \min _{g_j,j\in \mathcal {G}} & \ \sum \nolimits _{j\in \mathcal {G}} \frac {c_j}{2} g_j^2 \ \ \text {s.t.} \ \eqref {power_bal}\end {align}
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\begin {align}\label {gen_intercept_bid_da} g_j^d = b^d\lambda ^d - \beta _j^d,\end {align}
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\begin {align}\label {da_power_bal} \sum \nolimits _{j \in \mathcal {G}} \left (b^d\lambda ^d - \beta _j^d\right ) = \sum \nolimits _{l \in \mathcal {L}} d_l^d.\end {align}


$j$


$\lambda ^d g_j^d$


$l$


$\lambda ^d d_l^d$


$j$


$b^r\in \mathbb {R}^{+}$


$\beta _j^r\in \mathbb {R}$


\begin {align}\label {gen_intercept_bid_rt} g_j^r = b^r\lambda ^r - \beta _j^r,\end {align}


$\lambda ^r$


$l \in \mathcal {L}$


$d_l^r$


$(\beta _j^r,d_l^r)$


\begin {align}\label {rt_power_bal} \sum \nolimits _{j \in \mathcal {G}} \left (b^r\lambda ^r - \beta _j^r\right ) = \sum \nolimits _{l \in \mathcal {L}} d_l^r.\end {align}
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$\pi _j$


\begin {align}\label {generator_profit} &\pi _j(g_j^{d},g_j^{r},\lambda ^{d},\lambda ^{r}) := \lambda ^{r}g_j^{r} + \lambda ^{d}g_j^{d} - \frac {c_j}{2} (g_j^d+g_j^r)^2\end {align}
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$\rho _l$


\begin {align}\label {load_payment_definition} \rho _l(d_l^{d},d_l^{r},\lambda ^{d},\lambda ^{r}) & := \lambda ^{d}d_l^{d} + \lambda ^{r}d_l^{r} = \lambda ^{d}d_l^{d} + \lambda ^{r}(d_l - d_l^d)\end {align}


$(\lambda ^d,\lambda ^r)$


$j$


\begin {align}\label {generator_price_taking_profit} &\max _{g_j^{d},g_j^{r}} \ \pi _j(g_j^{d},g_j^{r};\lambda ^{d},\lambda ^{r})\end {align}


$l$


\begin {align}\label {load_price_taking_payment} \min _{d_l^{d}} \ & \rho _l(d_l^{d};\lambda ^{d},\lambda ^{r})\end {align}


$d_l^{d}, d_l^{r}, l\in \mathcal {L}$


$\beta _k^d,\beta _k^r, k \in \mathcal {G}, k \neq j$


$j$


\begin {align}\label {generator_strategic_profit_total} & \max _{g_j^{d},g_j^{r}} \ \pi _j \left (g_j^{d},g_j^{r},\lambda ^{d}\left (g_j^{d};\overline {g}_{-j}^{d},d^{d}\right ),\lambda ^{r}\left (g_j^{r};\overline {g}_{-j}^{r},d^{r}\right ) \right ) \ \textrm { s.t. } \eqref {da_power_bal}, \eqref {rt_power_bal}\end {align}


$\overline {g}_{-j}^{d} := \sum _{k \in \mathcal {G}, k \neq j}g_k^{d}$


$\overline {g}_{-j}^{r} := \sum _{k \in \mathcal {G}, k \neq j}g_k^{r}$


$l$


\begin {align}\label {load_strategic_payment} & \min _{d_l^{d}} \ \rho _l\left (d_l^{d}, \lambda ^{d}\left (d_l^d;g_j^{d},\overline {d}_{-l}^{d}\right ),\lambda ^{r}\left (d_l^d;g_j^{r},\overline {d}_{-l}^{r}\right )\right ) \ \textrm { s.t. } \eqref {da_power_bal}, \eqref {rt_power_bal}\end {align}


$\overline {d}_{-l}^{d} := \sum _{l \in \mathcal {L}, k \neq l}d_l^{d}, \ \overline {d}_{-l}^{r} := \sum _{l \in \mathcal {L}, k \neq l}d_l^{r}$
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$(\lambda ^d,\lambda ^r)$


\begin {align}\label {gen_std_intercept_profit_comp} \max _{\beta _j^d,\beta _j^r} \ -\beta _j^d{\lambda }^d -\beta _j^r{\lambda }^r - \frac {c_j}{2}(\beta _j^d+\beta _j^r)^2 + c_j(b^d{\lambda }^d+b^r{\lambda }^r)(\beta _j^d+\beta _j^r)\end {align}


$l$


\begin {align}&{\beta }_j^d+{\beta }_j^r = \frac {b^d+b^r - c_j^{-1}}{\sum _{k\in \mathcal {G}}c_k^{-1}}d, \ \forall j \in \mathcal {G} \label {comp_eqbm_wout_mpm.a} \\ & \sum \limits _{j \in \mathcal {G}} (b^d \lambda ^d - \beta _j^d) =\!\! \sum \limits _{l \in \mathcal {L}}d_l^d, \ \sum \limits _{j \in \mathcal {G}} (b^r \lambda ^r - \beta _j^r) \!=\!\! \sum \limits _{l \in \mathcal {L}}d_l^r, \ d_l^d+d_l^r = d_l,\ \forall l \in \mathcal {L} \label {comp_eqbm_wout_mpm.c} \\ & \lambda ^d = \lambda ^r = \frac {1}{\sum _{j\in \mathcal {G}}c_j^{-1}}d \label {comp_eqbm_wout_mpm.d}\end {align}


$l$


$|\mathcal {G}| > 1$


$(g_j^{r},d^r, \lambda ^{r})$


$(g_j^{d},d_l^{d})$


\begin {align}\min _{g_j^{r}} & \ \sum _{j\in \mathcal {G}}\left ( \frac {1}{2b^r(|\mathcal {G}|-1)}{g_j^{r}}^2+\frac {c_j}{2}\left (g_j^{d}+g_j^{r}\right )^2\right ) \label {augmented_obj}\\ & \textrm {s.t.} \ \ \sum _{j \in \mathcal {G}} g_j^r = \sum _{l \in \mathcal {L}} d_l^r \label {augmented_constraint}\end {align}


$\beta _j^d:=\beta ^d, \ \beta _j^r:= \beta ^r, \ \forall j \in \mathcal {G}$


$c_j: = c,\ \forall j \in \mathcal {G}$


$|\mathcal {G}|>1$


\begin {align}& \beta _j^d = \frac {b^dc}{|\mathcal {G}|}d + \frac {b^rc - \frac {|\mathcal {G}|-2}{|\mathcal {G}|-1}}{b^rc+\frac {|\mathcal {L}|+1}{|\mathcal {G}|-1}}\frac {|\mathcal {L}|+1}{|\mathcal {G}|(|\mathcal {G}|-1)}d^d, \ \beta _j^r = \frac {b^rc}{|\mathcal {G}|}d - \frac {|\mathcal {G}|-2}{|\mathcal {G}|(|\mathcal {G}|-1)}d^r,\nonumber \\&\qquad \quad \ \forall j \in \mathcal {G} \label {nash_eqbm_wout_mpm.a2}\\ & g_j^d = \frac {1}{|\mathcal {G}|}d^d, \ g_j^r = \frac {1}{|\mathcal {G}|}d^r, \ \forall j \in \mathcal {G}\label {nash_eqbm_wout_mpm.b}\\ & d_l^d = \frac {b^dd_l}{b^d+b^r(|\mathcal {G}|-1)} + \frac {\frac {b^d}{1+b^rc(|\mathcal {G}|-1)}}{b^d+b^r(|\mathcal {G}|-1)}d^r - \frac {b^r}{b^d+b^r(|\mathcal {G}|-1)}d^d,\nonumber \\&\qquad \ \ d_l^r = d_l - d_l^d, \forall l \in \mathcal {L}\label {nash_eqbm_wout_mpm.c1}\\ & \lambda ^d = \frac {b^rc(|\mathcal {G}|-1) +2}{b^rc(|\mathcal {G}|-1) + 1}\frac {c}{|\mathcal {G}|}d+\frac {\left (\frac {b^r}{b^d}-1\right )c + \frac {1}{b^d(|\mathcal {G}|-1)}}{b^rc(|\mathcal {G}|-1) + 1}\frac {d^d}{|\mathcal {G}|}, \label {nash_eqbm_wout_mpm.d}\\ & \lambda ^r = \lambda ^d +\frac {\frac {1}{|\mathcal {G}|(|\mathcal {G}|-1)}\left (\frac {|\mathcal {G}|-2}{|\mathcal {G}|-1} - b^rc\right )d}{b^d\left (b^rc+\frac {|\mathcal {L}|+1}{|\mathcal {G}|-1}\right ) + b^r\left (b^rc+\frac {1}{|\mathcal {G}|-1}\right )(|\mathcal {G}|+|\mathcal {L}|-1)} \label {nash_eqbm_wout_mpm.e}\end {align}


$|\mathcal {G}| = 1$


\begin {align}&b^d \ge b^r\frac {\left (b^rc+\frac {1}{|\mathcal {G}|-1}\right )(|\mathcal {G}|+|\mathcal {L}|-1)}{\left (b^rc+\frac {|\mathcal {L}|+1}{|\mathcal {G}|-1}\right )} \nonumber \\ \implies & b^d-b^r \ge b^r\frac {b^rc(|\mathcal {G}|+|\mathcal {L}|- 2)+\frac {|\mathcal {G}|-2}{|\mathcal {G}|-1}}{\left (b^rc+\frac {|\mathcal {L}|+1}{|\mathcal {G}|-1}\right )}\end {align}


$d^d \ge d^r$


$\mathcal {L}+\mathcal {G} \ge 2$


$j$


\begin {align}\label {rt_true_dispatch} g_j^{r} = (c_j+\epsilon _j)^{-1}\lambda ^{r}- g_j^{d} , \ \forall j \in \mathcal {G}\end {align}


$\epsilon _j \ge 0$


$j \in \mathcal {G}$


\begin {align}\label {rt_true_prc} {\lambda ^{r}} = \frac {d}{\sum _{j \in \mathcal {G}}(c_j+\epsilon _j)^{-1}}\end {align}


$j$


$\lambda ^d$


\begin {align}\label {generator_profit_rt_mpm} &\max _{\beta _j^d} \ \tilde {\pi }_j(\beta _j^{d};\lambda ^{d}) := \max _{\beta _j^d} \left (\frac {d}{\sum _{j \in \mathcal {G}}(c_j+\epsilon _j)^{-1}} - \lambda ^{d}\right )\beta _j^d\end {align}


$l$


\begin {align}\label {load_payment_intermediate_rt_mpm} & \min _{d_l^d} \ \tilde {\rho }_l(d_l^{d};\lambda ^{d}) := \min _{d_l^d} \ \left (\lambda ^{d} - \frac {d}{\sum _{j\in \mathcal {G}}(c_j+\epsilon _j)^{-1}}\right )d_l^{d}\end {align}


$\lambda ^d$


$\epsilon _j = \epsilon c_j, \ \forall j \in \mathcal {G}$


$\epsilon \ge 0$


$\epsilon _j = \epsilon c_j, \ \forall j \in \mathcal {G}$


$\epsilon \ge 0$


\begin {align}& g_j^{d} + g_j^{r} = \frac {c_j^{-1}}{\sum _{k\in \mathcal {G}}c_k^{-1}}d, \ \beta _j^d \in \mathbb {R}, \ \forall j\in \mathcal {G}\label {comp_eqbm_rt_mpm.a}\\ & d_l^{d} + d_l^{r} = d_l, \ \forall l\in \mathcal {L}\label {comp_eqbm_rt_mpm.b}\\ & \lambda ^{d} = \lambda ^{r} = \frac {1+\epsilon }{\sum _{j\in \mathcal {G}}c_j^{-1}}d\label {comp_eqbm_rt_mpm.c}\end {align}


$\epsilon _j$


$j$


\begin {align}\label {generator_strategic_profit_rt_mpm} & \max _{\beta _j^{d},\lambda ^d} \ \pi _j \left (\beta _j^{d},\lambda ^{d}\left (\beta _j^{d};\overline {\beta }_{-j}^{d},d^{d}\right )\right ) \ \textrm { s.t. } \eqref {da_power_bal}\end {align}


\begin {align}\label {load_strategic_payment_rt_mpm} & \min _{d_l^{d},\lambda ^d} \ \rho _l\left (d_l^{d}, \lambda ^{d}\left (d_l^d;\beta _j^{d},\overline {d}_{-l}^{d}\right )\right ) \ \textrm { s.t. } \eqref {da_power_bal}.\end {align}


$\epsilon _j = \epsilon c_j, \ \forall j \in \mathcal {G}$


$\epsilon \ge 0$


$|\mathcal {G}|>1$


\begin {align}\label {strat_eqbm_traditional_rt_mpm.b0} & g_j^{d} = 0, \ g_j^{r} = \frac {c_j^{-1}}{\sum _{k\in \mathcal {G}}c_k^{-1}}d, \ \forall j\in \mathcal {G} \\ \label {strat_eqbm_traditional_rt_mpm.b1} & \beta _j^{d} = \frac {(1+\epsilon )b^d}{\sum _{k \in \mathcal {G}}c_k^{-1}}d, \ \forall j\in \mathcal {G} \\ & d_l^{d} = 0, \ d_l^{r} = d_l, \ \forall l\in \mathcal {L} \\ \label {strat_eqbm_traditional_rt_mpm.b2} & \lambda ^{d} = \lambda ^{r} = \frac {1+\epsilon }{\sum _{j\in \mathcal {G}}c_j^{-1}}d\end {align}


$\epsilon _j)$


\begin {align}\label {da_true_dispatch} g_j^{d} = (c_j+\epsilon _j)^{-1}\lambda ^d\end {align}


$\epsilon _j \ge 0$


$j \in \mathcal {G}$


\begin {align}\label {da_true_prc} \lambda ^{d} = \frac {d^d}{\sum _{j\in \mathcal {G}}(c_j+\epsilon _j)^{-1}}\end {align}


$j$


\begin {align}& \max _{\beta _j^r} \ \tilde {\pi }_j(\beta _j^{r};{\lambda }^{r}) := \max _{\beta _j^r} \ -\beta _j^r{\lambda }^{r} - \frac {c_j}{2}{\left (\frac {(c_j+\epsilon _j)^{-1}d^d}{\sum _{k \in \mathcal {G}}(c_k+\epsilon _k)^{-1}} + {b}^r{\lambda }^r - \beta _j^r\right )}^2 \label {generator_price_taking_profit_bids_da_mpm}\end {align}


$l$


$\epsilon _j = \epsilon c_j, \ \forall j \in \mathcal {G}$


$\epsilon \ge 0$


\begin {align}& g_j^d = \frac {1}{1+\epsilon }\frac {c_j^{-1}}{\sum _{k\in \mathcal {G}}c_k^{-1}}d, \ g_j^r = \frac {\epsilon }{1+\epsilon }\frac {1}{c_j}\frac {d}{\sum _{k\in \mathcal {G}} c_k^{-1}}, \ \forall j\in \mathcal {G} \label {comp_eqbm_da_mpm.a}\\ & \beta _j^r = \left (b^r -\frac {1}{c_j}\frac {\epsilon }{1+\epsilon }\right )\frac {d}{\sum _{k \in \mathcal {G}} c_k^{-1}}, \ \forall j\in \mathcal {G} \\ & d_l^d+d_l^r = d_l; \ d^d = \frac {1}{1+\epsilon }d, \ d^r = \frac {\epsilon }{1+\epsilon } d \label {comp_eqbm_da_mpm.b}\\ & \lambda ^d = \lambda ^r = \frac {d}{\sum _{j\in \mathcal {G}}c_j^{-1}}\label {comp_eqbm_da_mpm.c}\end {align}


$\epsilon _j = \epsilon c_j, \ \forall j \in \mathcal {G}$


$\epsilon \ge 0$


$|\mathcal {G}|> 1$


\begin {align}\label {strat_eqbm_traditional.a} & g_j^d \!=\!{\left (\!1 \!+\epsilon \frac {\sum \limits _{k\in \mathcal {G}} \!\!{C_k\!}^{-1}}{\sum \limits _{k \in \mathcal {G}}c_k^{-1}}\!\right )\!\!}^{-1}\left (\!1 \!-\! \frac {1}{|\mathcal {L}|\!+\! 1}\frac {\sum \limits _{k\in \mathcal {G}}\!\!{C_k\!}^{-1}}{\sum \limits _{k\in \mathcal {G}}\!\!c_k^{-1}}\right )\frac {c_j^{-1}}{\sum \limits _{k\in \mathcal {G}}\!c_k^{-1}}d,\nonumber \\& g_j^r \!= \frac {(1\!+\!\epsilon (|\mathcal {L}|\!+\!1)}{|\mathcal {L}|+1}{\left (1 \!+\!\epsilon \frac {\sum \limits _{k\in \mathcal {G}} \!\!{C_k\!}^{-1}}{\sum \limits _{k\in \mathcal {G}} \!\!c_k^{-1}}\right )\!}^{-1}\!\frac {{C_j\!}^{-1}}{\sum \limits _{k\in \mathcal {G}}\!\!c_k^{-1}}d \\ \label {strat_eqbm_traditional.b2} & d_l^{d} = \!{\left (\!\!1 \!+\! \epsilon \frac {\sum \limits _{k\in \mathcal {G}}{C_k}^{-1}}{\sum \limits _{k\in \mathcal {G}} c_k^{-1}}\right )\!}^{-1}\left (\! d_l \!+\! \left (\frac {1}{|\mathcal {L}| \!+\! 1}d-d_l\right )\frac {\sum \limits _{k\in \mathcal {G}}{C_k}^{-1}}{\sum \limits _{k\in \mathcal {G}}c_k^{-1}}\right ), \ d_l^r = d_l - d_l^d \\ \label {strat_eqbm_traditional.d} & \lambda ^{d} \!=\! {\left (1+\epsilon \frac {\sum _{j\in \mathcal {G}} {C_j}^{-1}}{\sum _{j\in \mathcal {G}} c_j^{-1}}\right )}^{-1}\left (1 -\frac {1}{|\mathcal {L}|+1}\frac {\sum _{j\in \mathcal {G}}{C_j}^{-1}}{\sum _{j\in \mathcal {G}}c_j^{-1}}\right ) \frac {\left (1+\epsilon \right )d}{\sum _{j\in \mathcal {G}}c_j^{-1}} \\ \label {strat_eqbm_traditional.e} & \lambda ^{r} =\frac {1}{1+\epsilon }\lambda ^d + {\left (1+\epsilon \frac {\sum _{j\in \mathcal {G}} {C_j}^{-1}}{\sum _{j\in \mathcal {G}} c_j^{-1}}\right )}^{-1}\left (\epsilon +\frac {1}{|\mathcal {L}|+1}\right )\frac {d}{\sum _{j\in \mathcal {G}}c_j^{-1}}\end {align}


${C_j} = \left (\frac {1}{b^r(|\mathcal {G}|-1)}+c_j\right )$


\begin {align}& d^d \!= {\left (\!\!1 \!+\!\epsilon \frac {\sum _{j\in \mathcal {G}}{C_j}^{-1}}{\sum _{j\in \mathcal {G}} c_j^{-1}}\right )\!\!}^{-1}\!\!\left (\!\!1 \!-\!\frac {1}{|\mathcal {L}|+1}\frac {\sum _{j\in \mathcal {G}}{{C_j}}^{-1}}{\sum _{j\in \mathcal {G}}c_j^{-1}}\right )\!d,\nonumber \\ & d^r \!= {\left (\!\!1 \!+\!\epsilon \frac {\sum _{j\in \mathcal {G}}{C_j}^{-1}}{\sum _{j\in \mathcal {G}} c_j^{-1}}\right )\!\!}^{-1}\!\!\left (\!\epsilon \!+\!\frac {1}{|\mathcal {L}|+1}\right )\!\frac {\sum _{j\in \mathcal {G}}{{C_j}}^{-1}}{\sum _{j\in \mathcal {G}}c_j^{-1}}d \label {load_allocation_day_ahead_int}\end {align}


$\epsilon = 0$


\begin {equation*}d^d \in (0.5d,d), \ d^r \in (0,0.5d)\end {equation*}


$b^r>0$


\begin {align}& g_j^d = (c_j+\epsilon _j)^{-1}\lambda ^d \label {symm_mpm_estimation.a} \\ & g_j^r = (c_j+\epsilon _j)^{-1}\lambda ^r - g_j^d \label {symm_mpm_estimation.b}\end {align}


$\epsilon _j \ge 0$


$j\in \mathcal {G}$


\begin {align}& \lambda ^d = \frac {d^d}{\sum _{j\in \mathcal {G}}(c_j+\epsilon _j)^{-1}} \label {symm_mpm_estimation_prc.a} \\ & \lambda ^r = \frac {d}{\sum _{j\in \mathcal {G}}(c_j+\epsilon _j)^{-1}} \label {symm_mpm_estimation_prc.b}\end {align}


$l$


\begin {align}\label {load_payment_intermediate_symm_mpm} & \min _{d_l^d} \ \tilde {\rho }_l(d_l^{d}; \lambda ^d, \lambda ^r) := \min _{d_l^d} \ \left (\lambda ^{d} - \frac {d}{\sum \limits _{j\in \mathcal {G}}(c_j+\epsilon _j)^{-1}}\right )d_l^{d}\end {align}


$\lambda ^d$


$\epsilon _j = \epsilon c_j, \ \forall j \in \mathcal {G}$


$\epsilon _j = \epsilon c_j, \ \forall j \in \mathcal {G}$


$\epsilon \ge 0$


\begin {align}& g_j^{d} = \frac {c_j^{-1}}{\sum _{k\in \mathcal {G}}c_k^{-1}}d, \ g_j^r = 0, \ \forall j\in \mathcal {G}\label {comp_eqbm_symm_mpm.a}\\ & d_l^{d} = d_l, \ d_l^r = 0 \ \forall l\in \mathcal {L}\label {comp_eqbm_symm_mpm.b}\\ & \lambda ^{d} = \lambda ^{r} = \frac {1+\epsilon }{\sum _{j\in \mathcal {G}}c_j^{-1}}d\label {comp_eqbm_symm_mpm.c}\end {align}


$\epsilon _j$


$l$


\begin {align}\label {load_payment_strat_symm_mpm} \min _{d_l^{d}} \ \left (\frac {d^d}{\sum \limits _{j\in \mathcal {G}}(c_j+\epsilon _j)^{-1}}-\frac {d}{\sum \limits _{j\in \mathcal {G}}(c_j+\epsilon _j)^{-1}}\right )d_l^{d} + \frac {d}{\sum \limits _{j\in \mathcal {G}}(c_j+\epsilon _j)^{-1}}d_l\end {align}


$\epsilon _j = \epsilon c_j, \ \forall j \in \mathcal {G}$


$\epsilon _j = \epsilon c_j, \ \forall j \in \mathcal {G}$


$\epsilon \ge 0$


\begin {align}\label {strat_eqbm_traditional_symm_mpm.b0} & g_j^{d} = \frac {L}{L+1}\frac {c_j^{-1}}{\sum _{k\in \mathcal {G}}c_k^{-1}}d, \ g_j^{r} = \frac {1}{L+1}\frac {c_j^{-1}}{\sum _{k\in \mathcal {G}}c_k^{-1}}d, \ \forall j\in \mathcal {G} \\ \label {strat_eqbm_traditional_symm_mpm.b1} & d_l^{d} = \frac {1}{L+1}d, \ d_l^{r} = d_l - \frac {1}{L+1}d, \ \forall l\in \mathcal {L} \\ \label {strat_eqbm_traditional_symm_mpm.b2} & \lambda ^{d} = \frac {L}{L+1}\frac {(1+\epsilon )}{\sum _{k\in \mathcal {G}}c_k^{-1}}d, \ \lambda ^{r} = \frac {1+\epsilon }{\sum _{k\in \mathcal {G}}c_k^{-1}}d\end {align}


$\epsilon _j$


$l$


$\phi _l$


$O\left (\frac {1}{L}\right )$


$\epsilon = 0$


$\Delta := \sum _{j\in \mathcal {G}}{\frac {c_j}{{{C_j}}^2}}-\frac {{\left (\sum _{j\in \mathcal {G}}{{C_j}}^{-1}\right )}^2}{\sum _{j\in \mathcal {G}}c_j^{-1}}$


$\epsilon = 0$


$c_j=c,~ \forall j \in \mathcal {G}$


$\epsilon = 0$


$\Delta = 0$


$\Delta $


$\epsilon =0$


$b^d = b^r = \frac {1}{c}$


$\epsilon = 0$


$1$


$1$


\begin {equation*}1 - \frac {b^rc(\!|\mathcal {G}|-1\!)}{1+ b^rc(\!|\mathcal {G}|-1\!)}\frac {2|\mathcal {L}|}{(|\mathcal {L}|+1)^2} ,\end {equation*}


$l$


$\tilde {d}_l$


$d_l^d + d_l^r = \tilde {d}_l, \forall l \in \mathcal {L}$


$\tilde {d} := \sum _{l\in \mathcal {L}}\tilde {d}_l$


$j$


\begin {align}\label {vpe_dummy_gen} \max _{g_j^d,g_j^r} \mathbb {E}[\pi _j(g_j^d,g_j^r)] - \delta _j Var(\pi _j(g_j^d,g_j^r))\end {align}


$l$


\begin {align}\label {vpe_dummy_load} \min _{d_l^d,d_l^r} \mathbb {E}[\rho _l(d_l^d,d_l^r)] + \eta _l Var(\rho _l(d_l^d,d_l^r))\end {align}


$\delta _j \in \mathbb {R}^{+}, \ j\in \mathcal {G}$


$\eta _l \in \mathbb {R}^{+}, \ l \in \mathcal {L}$


$j$


$\lambda ^d$


\begin {align}\label {vpe_rt_mpm_gen_profit} \pi _j(\beta _j^d;\lambda ^d) = \left (\lambda ^d-\frac {\tilde {d}}{\sum _{k\in \mathcal {G}}c_k^{-1}}\right )(b^d\lambda ^d-\beta _j^d) + \frac {1}{2c_j}\left (\frac {\tilde {d}}{\sum _{k\in \mathcal {G}}c_k^{-1}}\right )^2\end {align}


$j$


\begin {align}\label {vpe_rt_mpm_gen} \max _{\beta _j^d} \mathbb {E}[\pi _j(\beta _j^d;\lambda ^d)] - \delta _j Var(\pi _j(\beta _j^d;\lambda ^d))\end {align}


$l$


$\lambda ^d$


\begin {align}\label {vpe_rt_mpm_load_payment} \rho _l(d_l^d;\lambda ^d) = \left (\lambda ^d-\frac {\tilde {d}}{\sum _{k\in \mathcal {G}}c_k^{-1}}\right )d_l^d + \frac {\tilde {d}}{\sum _{k\in \mathcal {G}}c_k^{-1}}\tilde {d}_l\end {align}


$l$


\begin {align}\label {vpe_rt_mpm_load} \min _{d_l^d} \mathbb {E}[\rho _l(d_l^d;\lambda ^d)] + \eta _l Var(\rho _l(d_l^d;\lambda ^d))\end {align}


$\mu \in \mathbb {R}, \sigma ^2\in \mathbb {R}^{+},$


$\tilde {\mu }_3\in \mathbb {R}$


$\tilde {d}$


$\delta _j \in \mathbb {R}^{+}, j\in \mathcal {G}$


$\eta _l \in \mathbb {R}^{+}, l \in \mathcal {L}$


$j$


$l$


\begin {align}& d_l^d = \frac {\mathbb {E}[\tilde {d}^2\tilde {d}_l] - \mathbb {E}[\tilde {d}]\mathbb {E}[\tilde {d}\tilde {d}_l]}{Var(\tilde {d})} -\frac {1}{2}\frac {\eta _l^{-1}}{\sum _{j\in \mathcal {G}}\delta _j^{-1}+\sum _{k\in \mathcal {L}}\eta _k^{-1}} \left (\tilde {\mu _3}\sigma + 2\mu \right ) \label {comp_eqbm_rt_mpm_vpe.a}\\ & g_j^d = \frac {1}{2}\left ( \frac {\delta _j^{-1}}{\sum _{k\in \mathcal {G}}\delta _k^{-1}+\sum _{l\in \mathcal {L}}\eta _l^{-1}} + \frac {c_j^{-1}}{\sum _{k\in \mathcal {G}}c_k^{-1}}\right ) \left (\tilde {\mu _3}\sigma + 2\mu \right ) \label {comp_eqbm_rt_mpm_vpe.b}\\ & \lambda ^d = \mathbb {E}[\lambda ^r] + \frac {1}{\sum _{j\in \mathcal {G}}\delta _j^{-1}+\sum _{l\in \mathcal {L}}\eta _l^{-1}} \frac {\left (\tilde {\mu _3}\sigma + 2\mu \right )\sigma ^2}{(\sum _{j\in \mathcal {G}}c_j^{-1})^2}, \ \lambda ^r = \frac {\tilde {d}}{\sum _{k\in \mathcal {G}}c_k^{-1}} \label {comp_eqbm_rt_mpm_vpe.d}\end {align}


\begin {align}d^d = \sum _{j\in \mathcal {G}} g_j^d = \mu + \frac {1}{2}\tilde {\mu }_3\sigma +\frac {1}{2} \frac {\sum _{j\in \mathcal {G}}\delta _j^{-1}}{\sum _{j\in \mathcal {G}}\delta _j^{-1}+\sum _{l\in \mathcal {L}}\eta _l^{-1}} \left (\tilde {\mu _3}\sigma + 2\mu \right )\end {align}


$j$


\begin {align}\label {vpe_rt_mpm_gen_strat} \max _{\beta _j^d} \mathbb {E}[\pi _j(\beta _j^d,\lambda ^d(\beta _j^d; \overline {\beta }_{-j}^d,d^d))] - \delta _j Var(\pi _j(\beta _j^d,\lambda ^d(\beta _j^d; \overline {\beta }_{-j}^d,d^d))) \quad \textrm {s.t.} \ \eqref {da_power_bal}\end {align}


$l$


\begin {align}\label {vpe_rt_mpm_load_strat} \max _{d_l^d} \mathbb {E}[\rho _l(d_l^d,\lambda ^d(d_l^d; \beta _j^d,\overline {d}_{-l}^d))] - \eta _l Var(\rho _l(d_l^d,\lambda ^d(d_l^d; \beta _j^d,\overline {d}_{-l}^d))) \quad \textrm {s.t.} \ \eqref {da_power_bal}\end {align}


$\mu \in \mathbb {R}, \sigma ^2\in \mathbb {R}^{+},$


$\tilde {\mu }_3\in \mathbb {R}$


$\tilde {d}$


$\delta _j \in \mathbb {R}^{+}, j\in \mathcal {G}$


$\eta _l \in \mathbb {R}^{+}, l \in \mathcal {L}$


$j$


$l$


$|\mathcal {G}|\ge 2$


\begin {align}& \!\!d^d =\!\!\frac {\left (\sum \limits _{l\in \mathcal {L}}\!\!\kappa _l^{-1}\!\!\right )\left (\sum \limits _{j \in \mathcal {G}}\!\!\frac {\omega _j^{-1}\delta _j}{c_j}\!\!\right )}{\!\!\left (\! \sum \limits _{j \in \mathcal {G}}\!\omega _j^{-1} + \frac {\sum \limits _{l\in \mathcal {L}}\kappa _l^{-1}}{\!\left (\!1 - \frac {1}{|\mathcal {G}|}\!\right )}\!\right )}\frac {(\tilde {\mu }_3\sigma \!+\! 2\mu )\sigma ^2}{\left (\sum \limits _{j\in \mathcal {G}}\!\!c_j^{-1}\right )^3} \nonumber \\&\quad + \frac {2\sum \limits _{j \in \mathcal {G}}\!\!\omega _j^{-1}}{\!\!\left (\! \sum \limits _{j \in \mathcal {G}}\!\!\omega _j^{-1} \! \!+\! \frac {\sum \limits _{l\in \mathcal {L}}\!\!\kappa _l^{-1}}{\!\left (\!1 - \frac {1}{|\mathcal {G}|}\!\right )}\!\right )}\!\frac {\mathbb {E}\left [\tilde {d}^2\left (\sum \limits _{l\in \mathcal {L}}\!\frac {\eta _l}{\kappa _l}\tilde {d}_l\!\right )\!\right ] \!-\! \mathbb {E}[\tilde {d}]\mathbb {E}\left [\tilde {d}\left (\sum \limits _{l\in \mathcal {L}}\!\frac {\eta _l}{\kappa _l}\tilde {d}_l\!\!\right )\!\right ]}{\left (\sum \limits _{j\in \mathcal {G}}\!\!c_j^{-1}\right )^2} \label {strat_eqbm_rt_mpm_vpe.a}\\ & g_j^d = \frac {\omega _j^{-1}}{\sum \limits _{k \in \mathcal {G}}\!\omega _k^{-1}}d^d - \left (1 - \frac {1}{|\mathcal {G}|}\right )\omega _j^{-1}\left (\frac {\sum \limits _{k \in \mathcal {G}}\frac {\omega _k^{-1}\delta _k}{c_k}}{\sum \limits _{k \in \mathcal {G}}\omega _k^{-1}} - \frac {\delta _j}{c_j} \right ) \frac {(\tilde {\mu }_3\sigma + 2\mu )\sigma ^2}{\left (\sum \limits _{k\in \mathcal {G}}\!\!c_k^{-1}\right )^3} \label {strat_eqbm_rt_mpm_vpe.b}\\ & \lambda ^d = \mathbb {E}[\lambda ^r] + \frac {1}{\sum \limits _{j \in \mathcal {G}}\!\omega _j^{-1}\!\left (1-\!\frac {1}{|\mathcal {G}|}\!\right )}d^d - \frac {\sum \limits _{j \in \mathcal {G}}\frac {\omega _j^{-1}\delta _j}{c_j}}{\sum \limits _{j \in \mathcal {G}}\omega _j^{-1}}\frac {(\tilde {\mu }_3\sigma + 2\mu )\sigma ^2}{\left (\sum _{j\in \mathcal {G}}c_j^{-1}\right )^3} \label {strat_eqbm_rt_mpm_vpe.c}\end {align}


$\kappa _l := (b^d|\mathcal {G}|)^{-1}+2\eta _l\frac {Var(\tilde {d})}{\left (\sum _{j\in \mathcal {G}}c_j^{-1}\right )^2}$


$\omega _j := (b^d|\mathcal {G}|)^{-1}+2\delta _j\frac {Var(\tilde {d})}{\left (\sum _{j\in \mathcal {G}}c_j^{-1}\right )^2}$


$\delta _j, j \in \mathcal {G}$


$\eta _l, l \in \mathcal {L}$


$\delta _j = \delta , \ \forall j \in \mathcal {G}, \ \eta _l = \eta , \ \forall l \in \mathcal {L}$


\begin {equation*}\lim _{\substack {\delta \to \infty , \\ \eta \to \infty }} d^d \approx \!\!\frac {(|\mathcal {L}|+2|\mathcal {G}|)(|\mathcal {G}| - 1)}{|\mathcal {G}|(|\mathcal {L}|+|\mathcal {G}|-1)}(\frac {1}{2}\tilde {\mu }_3\sigma \!+\! \mu )\end {equation*}


$O(\delta )$


\begin {equation*}\lim _{\substack {\delta \to \infty , \\ \eta \to \infty }} \lambda ^d \rightarrow \infty \end {equation*}


$\delta _j, \ j\in \mathcal {G}$


$\eta _l, \ l \in \mathcal {L}$


$c_1 = c_2 = c = 0.1 \$/MW^2$


$\delta _1 = \delta _2 = \delta $


$100,000$


$\tilde {\mu }_3 \in [-1.5, 1.5]$


$\tilde {d} \sim N(150,15)$


$b^d =\frac {1}{c} = 10$


$\delta $


$\eta $


$\delta \in [10^{-2}, 10^{2}]$


$\eta \in [10^{-2}, 10^{2}]$


$\mathbb {E}[\tilde {d}] = 150$


$\delta $


$\eta $


$\delta $


$\eta $


$\delta $


$\eta $


$\delta $


$\eta $


$\delta $


$\tilde {d} \sim \mathcal {N}(150, 15)$


$\eta $


$\delta $


$\delta $


$\eta $


$\tilde {d}\sim N(150,15)$


$\delta $


$\eta $


$\eta $


$\delta $


$\delta $


$\eta $


$\delta $


$\eta $


$\delta $


$\eta $


$\delta $


$\eta $


$\hat {b}_j^d \in \mathbb {R}_{\ge 0}, \ \hat {b}_j^r\in \mathbb {R}_{\ge 0}$


\begin {align}g_j^d = \hat {b}_j^d\lambda ^d, \ \ g_j^r = \hat {b}_j^r\lambda ^r .\end {align}


$\lambda ^d$


$\lambda ^r$


\begin {align}&{\hat {b}}_j^d+{\hat {b}}_j^r = \frac {1}{c_j}, \ {\hat {b}}_j^d \ge 0, \ {\hat {b}}_j^r \ge 0, \forall j \in \mathcal {G}\\ & d_l^d+d_l^r = d_l, \forall l \in \mathcal {L}\\ & \lambda ^d = \lambda ^r = \frac {d}{\sum _{j\in \mathcal {G}}c_j^{-1}}\end {align}


$(c_j := c, \ \forall j \in \mathcal {G})$


$|\mathcal {G}| \ge 3$


$(\hat {b}_j^v:= \hat {b}_j^v, \ \forall j \in \mathcal {G}, v \in \{d,r\})$


\begin {align}&{\hat {b}}_j^d = \frac {|\mathcal {L}|(|\mathcal {G}|-1)+1}{|\mathcal {L}|(|\mathcal {G}|-1)}\frac {|\mathcal {G}|-2}{|\mathcal {G}|-1}\frac {1}{c}, \ {\hat {b}}_j^{r} = \frac {1}{|\mathcal {L}|+1}\frac {(|\mathcal {G}|-2)^2}{(|\mathcal {G}|-1)^2}\frac {1}{c} \label {strat_eqbm_wout_mpm_slope_eq.a}\\ & d_l^{d} = \frac {|\mathcal {L}|(|\mathcal {G}|-1)+1}{|\mathcal {L}|(|\mathcal {L}|+1)(|\mathcal {G}|-1)}d, \ d_l^{r} = d_l - d_l^d \label {strat_eqbm_wout_mpm_slope_eq.b}\\ & \lambda ^{d} = \frac {|\mathcal {L}|}{|\mathcal {L}|+1}\frac {|\mathcal {G}|-1}{|\mathcal {G}|-2}\frac {c}{|\mathcal {G}|}d, \ \lambda ^{r} = \frac {|\mathcal {G}|-1}{|\mathcal {G}|-2}\frac {c}{|\mathcal {G}|}d\label {strat_eqbm_wout_mpm_slope_eq.c}\end {align}


$b^d$


$b^r$


$4$


$4$


$d_l = [0.2, 25.6, 106.6, 199.6]^TMW$


$d = 332 MW$


$c_j = 0.1 \$/MW^2, \ \forall j \in \mathcal {G}$


$b^d(b^r)$


$b^d = b^r = (1-\gamma )^{-1}c^{-1}$


$b^d = b^r = c^{-1}$


$b^d = b^r = (1+\gamma )^{-1}c^{-1}$


\begin {equation*}b^d = b^r = b, b \in \{(1+\gamma )^{-1}c^{-1},c^{-1},(1-\gamma )^{-1}c^{-1}\},\end {equation*}


$\gamma = 0.1$


$|\mathcal {G}|>2$


\begin {align}\label {comp_eqbm_load_solution_wout_mpm} \left \{\begin {array}{l} d_l^{d} = \infty , d_l^{r} = -\infty , d_l^{d}+d_l^{r} = d_l, \mbox { if } \lambda ^{d} < \lambda ^r \\ d_l^{d} = -\infty , d_l^{r} = \infty , d_l^{d}+d_l^{r} = d_l, \mbox { if } \lambda ^{d} > \lambda ^r \\ d_l^{d}+d_l^{r} = d_l, \quad \mbox { if } \lambda ^{d} = \lambda ^r \end {array}\right .\end {align}


\begin {align}\label {comp_eqbm_gen_solution_wout_mpm} \left \{\begin {array}{l} \beta _j^d = \infty , \beta _j^r = -\infty , \beta _j^d+\beta _j^r = \frac {b^d+b^r - c_j^{-1}}{\sum \nolimits _{j\in \mathcal {G}}c_j^{-1}}d, \mbox { if } \lambda ^{d} < \lambda ^r \\ \beta _j^d = -\infty , \beta _j^r = \infty , \beta _j^d+\beta _j^r = \frac {b^d+b^r - c_j^{-1}}{\sum \nolimits _{j\in \mathcal {G}}c_j^{-1}}d, \mbox { if } \lambda ^{d} > \lambda ^r \\ \beta _j^d+\beta _j^r = \frac {b^d+b^r - c_j^{-1}}{\sum \nolimits _{j\in \mathcal {G}}c_j^{-1}}d, \mbox { if } \lambda ^{d} = \lambda ^r \end {array}\right .\end {align}


$(\beta _j^d, g_j^{d}, d-d^{d})$


$j$


$\beta _j^r$


\begin {align}\sum _{j\in \mathcal {G}}g_j^{r} = d^{r} \implies \sum _{j\in \mathcal {G}}(b^r\lambda ^{r} -\beta _j^r) = d^{r} \implies \lambda ^{r} = \frac {d^{r}+\beta ^{r,\mathcal {G}}}{b^r|\mathcal {G}|} \label {gen_price_bid_function}\end {align}


$\beta ^{r,\mathcal {G}} = \sum _{j\in \mathcal {G}}\beta _j^r$


$(\beta _j^d, g_j^{d}, d-d^{d})$


\begin {align}& \max _{\beta _j^r} \left (\frac {d^{r}+\beta ^{r,\mathcal {G}}}{b^r|\mathcal {G}|}\right )\left (b^r\frac {d^{r}+\beta ^{r,\mathcal {G}}}{b^r|\mathcal {G}|}-\beta _j^r\right )\nonumber \\&+\lambda ^{d}g_j^{d} - \frac {c_j}{2}\left (g_j^{d}+b^r\left (\frac {d^{r}+\beta ^{r,\mathcal {G}}}{b^r|\mathcal {G}|}\right )-\beta _j^r\right )^2 \label {gen_profit_startegic_thrm_augmented}\end {align}


$\beta _j^r$


\begin {align}&\frac {\partial \pi _j}{\partial \beta _j^r} = \!\frac {1}{b^r|\mathcal {G}|}\!\left (\frac {d^{r}+\beta ^{r,\mathcal {G}}}{|\mathcal {G}|} - \!\beta _j^r\!\right ) - \frac {|\mathcal {G}|-1}{|\mathcal {G}|}\!\left ( \frac {d^{r}+\beta ^{r,\mathcal {G}}}{b^r|\mathcal {G}|}\right ) \nonumber \\&+ c_j\!\left (\!g_j^{d}+ \frac {d^{r}+\beta ^{r,\mathcal {G}}}{|\mathcal {G}|}-\beta _j^r\right )\frac {|\mathcal {G}|-1}{|\mathcal {G}|} = 0 \nonumber \\ \implies & \frac {1}{b(|\mathcal {G}|-1)}g_j^{r}- \lambda ^{r}+c_j\left (g_j^{d}+g_j^{r}\right ) = 0 \label {augemented_obj_kkt_cond}\end {align}


$\lambda ^{r}$


$\lambda ^{r}$


\begin {align}& g_j^{r} = \frac {\lambda ^{r}-c_jg_j^{d}}{C_j} \implies \sum _{j\in \mathcal {G}}g_j^{r} =\sum _{j\in \mathcal {G}} \frac {\lambda ^{r}-c_jg_j^{d}}{C_j} \label {gen_price_bid_function_startegic_thrm.tmp}\end {align}


$C_j := \left (\frac {1}{b^r(|\mathcal {G}|-1)}+c_j\right )$


\begin {align}& d^{r} =\sum _{j\in \mathcal {G}} \frac {\lambda ^{r}-c_jg_j^{d}}{C_j} \implies \lambda ^{r} = \frac {d^{r} + \sum _{j\in \mathcal {G}} \frac {c_j}{C_j}g_j^d}{\sum _{j\in \mathcal {G}}C_j^{-1}} \label {gen_price_bid_function_startegic_thrm}\end {align}


\begin {align}g_j^{r} = \frac {d^{r} + \sum _{k\in \mathcal {G}} \frac {c_k}{C_k}g_k^d}{C_j\sum _{k\in \mathcal {G}} C_k^{-1} }-\frac {c_j}{C_j}g_j^{d} \label {gen_dispatch_bid_function_startegic_thrm}\end {align}


\begin {align}&\implies \sum _{j \in \mathcal {G}} \left (b^d\lambda ^d - \beta _j^d\right ) = \sum _{l \in \mathcal {L}} d_l^d \implies \nonumber \\& \lambda ^{d} = \frac {d^{d}+\beta ^{d,\mathcal {G}}}{b^d|\mathcal {G}|}, \ g_j^{d} = b^d\frac {d^{d}+\beta ^{d,\mathcal {G}}}{b^d|\mathcal {G}|}-\beta _j^d \label {day_ahead_clearing_startegic_thrm}\end {align}


$\beta ^{d,\mathcal {G}} = \sum _{j\in \mathcal {G}}\beta _j^d$


\begin {align}\label {generator_strategic_profit_total_wout_mpm} & \max _{\beta _j^d} \frac {d^d \!+\! \beta ^{d,\mathcal {G}}}{b^d|\mathcal {G}|}\!\left (\!\!\frac {d^d \!+\! \beta ^{d,\mathcal {G}}}{|\mathcal {G}|} \!-\! \beta _j^d\!\right ) +{\left (\!\!\frac {d^r \!\!+\! \sum \limits _{m\in \mathcal {G}} \!\!\frac {c_m}{C_m}\!\left (\!\frac {d^d + \beta ^{d,\mathcal {G}}}{|\mathcal {G}|} \!-\! \beta _m^d\!\right )}{C_j\sum _{k\in \mathcal {G}} C_k^{-1}}\!\!\right )}^2 \nonumber \\&-\frac {c_j}{C_j} {\frac {d^r \!\!+\!\!\! \sum \limits _{m\in \mathcal {G}} \!\!\frac {c_m}{C_m}\!\left (\!\frac {d^d + \beta ^{d,\mathcal {G}}}{|\mathcal {G}|} \!-\! \beta _m^d\!\right )}{\sum _{k\in \mathcal {G}} C_k^{-1}} \! \left (\!\frac {d^d \!+\! \beta ^{d,\mathcal {G}}}{|\mathcal {G}|} \!-\! b_j^d\!\right )}\nonumber \\ & - \frac {c_j}{2}{\left (\!\left (1-\frac {c_j}{C_j}\right )\left (\frac {d^d + \beta ^{d,\mathcal {G}}}{|\mathcal {G}|} - \beta _j^d\right )+\frac {d^r + \sum _{m\in \mathcal {G}} \frac {c_m}{C_m}\left (\frac {d^d + \beta ^{d,\mathcal {G}}}{|\mathcal {G}|} - \beta _m^d\right )}{C_j\sum _{k\in \mathcal {G}} C_k^{-1}}\right )}^2\end {align}


$\beta _j^d$


\begin {align}\label {generator_strategic_profit_derivative_wout_mpm} & \implies \!\frac {1}{b^d|\mathcal {G}|}\!\left (\!\frac {d^d \!+\! \beta ^{d,\mathcal {G}}}{|\mathcal {G}|} \!-\! \beta _j^d\!\right ) \!+\! \frac {d^d \!+\! \beta ^{d,\mathcal {G}}}{b^d|\mathcal {G}|}\left (\frac {1}{|\mathcal {G}|} \!-\! 1\!\!\right ) \nonumber \\&+\! \frac {2}{C_j}\left (\!\frac {d^r \!+\!\! \sum _{m\in \mathcal {G}} \!\frac {c_m}{C_m}\!\left (\!\frac {d^d + \beta ^{d,\mathcal {G}}}{|\mathcal {G}|} \!-\! \beta _m^d\right )}{\sum _{k\in \mathcal {G}} C_k^{-1}}\right )\left (\frac {\sum _{m\in \mathcal {G}}\!\!\frac {c_m}{C_m}\frac {1}{|\mathcal {G}|} \!-\! \frac {c_j}{C_j}}{\sum _{k\in \mathcal {G}} C_k^{-1}}\!\right )\nonumber \\ & -\frac {c_j}{C_j}\left (\frac {\sum _{m\in \mathcal {G}} \frac {c_m}{C_m}\frac {1}{|\mathcal {G}|} - \frac {c_j}{C_j}}{\sum _{k\in \mathcal {G}} C_k^{-1}}\right )\left (\frac {d^d + \beta ^{d,\mathcal {G}}}{|\mathcal {G}|} - \beta _j^d\right ) \nonumber \\&- \frac {c_j}{C_j}{\frac {d^r + \sum _{m\in \mathcal {G}} \frac {c_m}{C_m}\left (\frac {d^d + \beta ^{d,\mathcal {G}}}{|\mathcal {G}|} - \beta _m^d\right )}{\sum _{k\in \mathcal {G}} C_k^{-1}}\left (\frac {1}{|\mathcal {G}|} - 1\right )}\nonumber \\ & - c_j\left (\!\left (\!\!1\!-\!\frac {c_j}{C_j}\!\right )\!\!\left (\!\frac {d^d \!+\! \beta ^{d,\mathcal {G}}}{|\mathcal {G}|} \!-\! b_j^d\!\right )\!\!+\!\frac {d^r \!\!+\!\!\! \sum _{m\in \mathcal {G}}\!\! \frac {c_m}{C_m}\!\!\left (\!\frac {d^d + \beta ^{d,\mathcal {G}}}{|\mathcal {G}|} \!-\! b_m^d\!\right )}{C_j\sum _{k\in \mathcal {G}} C_k^{-1}}\!\right )\nonumber \\&\left (\!\left (\!\!1\!-\! \frac {c_j}{C_j}\right )\!\!\!\left (\frac {1}{|\mathcal {G}|} \!-\! 1\!\!\right )\!\!+\!\frac {1}{C_j} \frac {\sum _{m\in \mathcal {G}}\!\!\frac {c_m}{C_m}\frac {1}{|\mathcal {G}|} - \frac {c_j}{C_j}}{\sum _{k\in \mathcal {G}} C_k^{-1}}\!\right ) = 0\end {align}


$c_j:= c, \ \forall j \in \mathcal {G}$


$\beta _j^d: = \beta ^d, \ \forall j \in \mathcal {G}$


\begin {align}\label {generator_strategic_profit_equilibrium_wout_mpm} \implies & \beta ^d = b^dc\frac {d}{|\mathcal {G}|} +b^dc\frac {d^r}{|\mathcal {G}|}\left (1-\frac {c}{C}\right ) - \frac {d^d}{|\mathcal {G}|}\frac {|\mathcal {G}|-2}{|\mathcal {G}|-1}\end {align}


$C = \left (\frac {1}{b^r(|\mathcal {G}|-1)}+c\right )$


\begin {align}\label {load_strategic_payment_wout_mpm} & \min _{d_l^d} \frac {d^d + \beta ^{d,\mathcal {G}}}{b^d|\mathcal {G}|}d_l^d+\frac {d-d^d + \sum _{m\in \mathcal {G}} \frac {c_m}{C_m}\left (\frac {d^d + \beta ^{d,\mathcal {G}}}{|\mathcal {G}|} - \beta _m^d\right )}{\sum _{k\in \mathcal {G}}C_k^{-1}}(d_l-d_l^d)\end {align}


\begin {align}\label {load_strategic_payment_derivative_wout_mpm} \!\!\!\!\implies & \frac {d_l^d}{b^d|\mathcal {G}|} \!+\! \frac {d^d \!+\! \beta ^{d,\mathcal {G}}}{b^d|\mathcal {G}|} +\frac {-1+ \sum _{m\in \mathcal {G}} \frac {c_m}{C_m}\frac {1}{|\mathcal {G}|} }{\sum _{k\in \mathcal {G}}C_k^{-1}}(d_l-d_l^d) \nonumber \\&- \frac {d-d^d \!+\!\! \sum _{m\in \mathcal {G}}\! \frac {c_m}{C_m}\!\!\left (\!\frac {d^d + \beta ^{d,\mathcal {G}}}{|\mathcal {G}|} \!-\! \beta _m^d\!\right )}{\sum _{k\in \mathcal {G}}C_k^{-1}} = 0\end {align}


$c_j:= c, \ \forall j \in \mathcal {G}$


$l \in \mathcal {L}$


\begin {align}\label {load_strategic_payment_equilibrium_wout_mpm} \!\!\implies & d^d = - \frac {|\mathcal {G}|}{|\mathcal {L}|+1}\frac {|\mathcal {L}|\beta _j^d + b^dC\frac {-(|\mathcal {L}|+1)+ \frac {c}{C}}{|\mathcal {G}|}d}{1+\frac {b^d}{b^r(|\mathcal {G}|-1)}}\end {align}


\begin {align}\label {comp_eqbm_load_solution_rt_mpm} \left \{\begin {array}{l} d_l^{d} = \infty , d_l^{r} = -\infty , d_l^{d}+d_l^{r} = d_l, \mbox { if } \lambda ^{d} < \frac {d}{\sum _{k\in \mathcal {G}}(c_k+\epsilon _k)^{-1}} \\ d_l^{d} = -\infty , d_l^{r} = \infty , d_l^{d}+d_l^{r} = d_l, \mbox { if } \lambda ^{d} > \frac {d}{\sum _{k\in \mathcal {G}}(c_k+\epsilon _k)^{-1}} \\ d_l^{d}+d_l^{r} = d_l, \quad \mbox { if } \lambda ^{d} = \frac {d}{\sum _{k \in \mathcal {G}}(c_k+\epsilon _k)^{-1}} \end {array}\right .\end {align}


\begin {align}\label {comp_eqbm_gen_solution_rt_mpm} \left \{\begin {array}{l} \beta _j^d = \infty , \mbox { if } \lambda ^{d} < \frac {d}{\sum _{k \in \mathcal {G}}(c_k+\epsilon _k)^{-1}} \\ \beta _j^d = -\infty , \mbox { if } \lambda ^{d} > \frac {d}{\sum _{k \in \mathcal {G}}(c_k+\epsilon _k)^{-1}} \\ \beta _j^d \in \mathbb {R}, \quad \mbox { if } \lambda ^{d} = \frac {d}{\sum _{k \in \mathcal {G}}(c_k+\epsilon _k)^{-1}} \end {array}\right .\end {align}


\begin {align}&\implies \sum _{j \in \mathcal {G}} \left (b^d\lambda ^d - \beta _j^d\right ) = \sum _{l \in \mathcal {L}} d_l^d \nonumber \\&\implies \lambda ^{d} = \frac {d^{d}+\beta ^{d,\mathcal {G}}}{b^d|\mathcal {G}|}, \ g_j^{d} = b^d\frac {d^{d}+\beta ^{d,\mathcal {G}}}{b^d|\mathcal {G}|}-\beta _j^d \label {day_ahead_clearing_startegic_thrm_tmp}\end {align}


\begin {align}\label {gen_strat_profit_rt_mpm_proof} & \max _{\beta _j^d} \ \left (\frac {d^{d}+\beta ^{d,\mathcal {G}}}{b^d|\mathcal {G}|}-\frac {d}{\sum _{k \in \mathcal {G}}(c_k+\epsilon _k)^{-1}}\right )\nonumber \\&\left (\frac {d^{d}+\beta ^{d,\mathcal {G}}}{|\mathcal {G}|}-\beta _j^d\right ) +\frac {c_j^{-1}}{2}{\left (\frac {d}{\sum _{j \in \mathcal {G}}c_j^{-1}}\right )}^2\end {align}


$\beta ^{d,\mathcal {G}} = \sum _{j\in \mathcal {G}}\beta _j^d$


$\beta _j^d$


\begin {align}\label {gen_strat_deriv_rt_mpm_proof} & \frac {1}{b^d|\mathcal {G}|}\left (\frac {d^{d}+\beta ^{d,\mathcal {G}}}{|\mathcal {G}|}-\beta _j^d\right ) \nonumber \\&\quad + \left (\frac {d^{d}+\beta ^{d,\mathcal {G}}}{b^d|\mathcal {G}|}-\frac {d}{\sum _{k \in \mathcal {G}}(c_k+\epsilon _k)^{-1}}\right )\left (\frac {1}{|\mathcal {G}|}-1\right ) = 0\end {align}


$j \in \mathcal {G}$


\begin {align}&\implies \frac {1}{b^d|\mathcal {G}|}d^{d} - \left (\!\frac {d^{d}+\beta ^{d,\mathcal {G}}}{b^d|\mathcal {G}|}-\frac {d}{\sum _{k \in \mathcal {G}}\!(c_k\!+\!\epsilon _k)^{-1}}\!\right )\left (|\mathcal {G}|\!-\!1\right ) \!=\! 0 \nonumber \\&\implies \! \!\beta ^{d,\mathcal {G}} \!=\! \frac {b^d|\mathcal {G}|}{\sum _{k \in \mathcal {G}}(c_k\!+\!\epsilon _k)^{-1}}d - \frac {(|\mathcal {G}|\!-\!2)}{(|\mathcal {G}|\!-\!1)}d^{d} \nonumber \\ &\implies \beta _j = b^d\frac {d}{\sum _{k \in \mathcal {G}}(c_k+\epsilon _k)^{-1}} - \frac {|\mathcal {G}|-2}{|\mathcal {G}|} \frac {1}{(|\mathcal {G}|-1)}d^{d}\label {gen_strat_deriv_contd_rt_mpm_proof.b}\end {align}


\begin {align}\label {load_strat_pay_rt_mpm_proof} & \min _{d_l^{d}} \ \left (\frac {d^{d}+\beta ^{d,\mathcal {G}}}{b^d|\mathcal {G}|}\right )d_l^{d} +\left (\frac {d}{\sum _{k \in \mathcal {G}}(c_k+\epsilon _k)^{-1}}\right )(d_l-d_l^{d})\end {align}


\begin {align}\label {load_strat_pay_deriv_rt_mpm_proof} \frac {d_l^{d}+ d^{d}+\beta ^{d,\mathcal {G}}}{b^d|\mathcal {G}|} - \frac {d}{\sum _{k \in \mathcal {G}}(c_k+\epsilon _k)^{-1}} = 0\end {align}


$l\in \mathcal {L}$


\begin {align}\label {load_strat_pay_deriv_rt_mpm_proof.a} \implies d^{d} = \frac {|\mathcal {L}|}{|\mathcal {L}|+1}\frac {b^d|\mathcal {G}|}{\sum _{k \in \mathcal {G}}(c_k+\epsilon _k)^{-1}}d - \frac {|\mathcal {L}|}{|\mathcal {L}|+1}\beta ^{d,\mathcal {G}}\end {align}


\begin {align}\label {comp_eqbm_load_solution_wout_mpm_tmp} \left \{\begin {array}{l} d_l^{d} = \infty , d_l^{r} = -\infty , d_l^{d}+d_l^{r} = d_l, \mbox { if } \lambda ^{d} < \lambda ^r \\ d_l^{d} = -\infty , d_l^{r} = \infty , d_l^{d}+d_l^{r} = d_l, \mbox { if } \lambda ^{d} > \lambda ^r \\ d_l^{d}+d_l^{r} = d_l, \quad \mbox { if } \lambda ^{d} = \lambda ^r \end {array}\right .\end {align}


$\beta _j^r$


\begin {align}&-\lambda ^{r}+c_j\left (\frac {(c_j+\epsilon _j)^{-1}d^d}{\sum _{k\in \mathcal {G}}(c_k+\epsilon _k)^{-1}}+b^r\lambda ^{r}-\beta _j^r\right ) = 0 \label {comp_eqbm_generator_solution}\end {align}


\begin {align}\implies & -\lambda ^{r}+c_j(g_j^{d}+g_j^{r}) = 0 \implies \sum _{j\in \mathcal {G}}\frac {1}{c_j}\lambda ^{r} = \sum _{j\in \mathcal {G}}g_j = d \implies \lambda ^{r} = \frac {d}{\sum _{j\in \mathcal {G}}c_j^{-1}} \label {comp_eqbm_gen_real_time_price}\end {align}


\begin {equation*}\lambda ^{r} = \lambda ^{d} = \frac {d}{\sum _{j\in \mathcal {G}}c_j^{-1}}; d_l^d+d_l^r = d_l,\ \forall l\in \mathcal {L}; d^d = \frac {1}{1+\epsilon }d; d^r = \left (1-\frac {1}{1+\epsilon }\right ) d\end {equation*}


\begin {equation*}g_j^d = \frac {1}{c_j}\frac {1}{1+\epsilon }\frac {d}{\sum _{k \in \mathcal {G}} c_k^{-1}}, \ g_j^r = \frac {1}{c_j}\left (1- \frac {1}{1+\epsilon }\right )\frac {d}{\sum _{k \in \mathcal {G}} c_k^{-1}}\end {equation*}


$\epsilon _j = \epsilon c_j, \forall j \in \mathcal {G}$


$\epsilon \ge 0$


$(g_j^{d}, d-d^{d})$


$j$


$\beta _j^r$


\begin {align}\sum _{j\in \mathcal {G}}g_j^{r} = d^{r} \implies \sum _{j\in \mathcal {G}}(b\lambda ^{r} -\beta _j^r) = d^{r} \implies \!\! \lambda ^{r} = \frac {d^{r}+\sum _{j\in \mathcal {G}}\beta _j^r}{bG} \label {gen_price_bid_function_tmp}\end {align}


\begin {align}& \max _{\beta _j \ge 0} \left (\frac {d^{r}+\beta ^{\mathcal {G}}}{bG}\right )\left (b\frac {d^{r}+\beta ^{\mathcal {G}}}{bG}-\beta _j\right )+\lambda ^{d}g_j^{d} - \frac {c_j}{2}\left (g_j^{d}+b\left (\frac {d^{r}+\beta ^{\mathcal {G}}}{bG}\right )-\beta _j\right )^2 \label {gen_profit_startegic_thrm_tmp}\end {align}


\begin {align}& \lambda ^{r} = \frac {d^{r} + \sum _{j\in \mathcal {G}} \frac {c_j}{C_j}g_j^{d}}{\sum _{k\in \mathcal {G}}C_k^{-1}}, \ g_j^{r} = \frac {d^{r} + \sum _{m\in \mathcal {G}} \frac {c_m}{C_m}g_m^{d}}{C_j\sum _{k\in \mathcal {G}}C_k^{-1}}-\frac {c_j}{C_j}g_j^{d} \label {gen_dispatch_bid_function_startegic_thrm_2}\end {align}


$C_j = \frac {1}{b^r(|\mathcal {G}|-1)}+c_j$


\begin {align}& \lambda ^{r} = \frac {d^{r}}{\sum _{k\in \mathcal {G}} C_k^{-1}}+ \frac {d^{d}}{\sum _{k\in \mathcal {G}} c_k^{-1}}, \ g_j^{r} = \frac {1}{C_j}\frac {d^{r}}{\sum _{k\in \mathcal {G}}C_k^{-1}} \label {price_dispatch_real_time_startegic_thrm}\end {align}


$l$


\begin {align}& \min _{d_l^{d}} \ \frac {(1+\epsilon )d^{d}}{\sum _{j \in G}c_j^{-1}}d_l^{d} + \left (\frac {d-d^{d}}{\sum _{k\in \mathcal {G}}C_k^{-1}}+ \frac {d^{d}}{\sum _{k\in \mathcal {G}}c_k^{-1}}\right )(d_l-d_l^{d}) \label {load_payment_startegic_thrm}\end {align}


$d_l^{d}$


\begin {align}& \epsilon \frac {d^d+d_l^d}{\sum _{j \in G}c_j^{-1}}- \frac {d-d^d}{\sum _{j\in \mathcal {G}}C_j^{-1}} + \frac {d_l}{\sum _{j \in \mathcal {G}} c_j^{-1}} + \frac {d_l^d-d_l}{\sum _{j\in \mathcal {G}}C_j^{-1}} = 0\end {align}


$l\in \mathcal {L}$


\begin {align}d^d = \frac {\sum _{j\in \mathcal {G}}c_j^{-1} - \frac {1}{L+1}\sum _{j\in \mathcal {G}}C_j^{-1}}{ \sum _{j\in \mathcal {G}} c_j^{-1}+ \epsilon \sum _{j\in \mathcal {G}}C_j^{-1}}d\end {align}


\begin {align}\label {comp_eqbm_load_solution_symm_mpm} \left \{\begin {array}{l} d_l^{d} = \infty , d_l^{r} = -\infty , d_l^{d}+d_l^{r} = d_l, \mbox { if } \lambda ^{d} < \frac {d}{\sum _{k\in \mathcal {G}}(c_k+\epsilon _k)^{-1}} \\ d_l^{d} = -\infty , d_l^{r} = \infty , d_l^{d}+d_l^{r} = d_l, \mbox { if } \lambda ^{d} > \frac {d}{\sum _{k\in \mathcal {G}}(c_k+\epsilon _k)^{-1}} \\ d_l^{d}+d_l^{r} = d_l, \quad \mbox { if } \lambda ^{d} = \frac {d}{\sum _{k \in \mathcal {G}}(c_k+\epsilon _k)^{-1}} \end {array}\right .\end {align}


\begin {equation*}d_l^d = d_l, \ d_l^r = 0; \lambda ^{d} = \lambda ^{r}\end {equation*}


$d_l^d$


\begin {align}& \left (\frac {d^d}{\sum \limits _{j\in \mathcal {G}}(c_j+\epsilon _j^d)^{-1}}-\frac {d}{\sum \limits _{j\in \mathcal {G}}(c_j+\epsilon _j^r)^{-1}}\right ) + \left (\frac {d_l^d}{\sum \limits _{j\in \mathcal {G}}(c_j+\epsilon _j^d)^{-1}}\right ) = 0 \\ \implies & d^d = \frac {L}{L+1}\frac {\sum \nolimits _{j\in \mathcal {G}}(c_j+\epsilon _j^d)^{-1}}{\sum \nolimits _{j\in \mathcal {G}}(c_j+\epsilon _j^r)^{-1}}d \implies d_l^d = \frac {1}{L+1}\frac {\sum \nolimits _{j\in \mathcal {G}}(c_j+\epsilon _j^d)^{-1}}{\sum \nolimits _{j\in \mathcal {G}}(c_j+\epsilon _j^r)^{-1}}d\end {align}


\begin {equation*}\lambda ^d = \frac {L}{L+1}\frac {d}{\sum \nolimits _{j\in \mathcal {G}}(c_j+\epsilon _j^r)^{-1}}, \lambda ^r = \frac {d}{\sum \nolimits _{j\in \mathcal {G}}(c_j+\epsilon _j^r)^{-1}}\end {equation*}


\begin {align}\label {vpe_rt_mpm_gen_obj} & \max _{\beta _j^d} -(\lambda ^d - \mathbb {E}[\lambda ^r])\beta _j^d \nonumber \\&\quad + \delta _j \left ((\lambda ^d - \mathbb {E}[\lambda ^r])^2(b^d\lambda ^d - \beta _j^d)^2 - \frac {1}{c_j}(\lambda ^d - \mathbb {E}[\lambda ^r])\mathbb {E}[(\lambda ^r)^2]\beta _j^d\right ) \nonumber \\ & \quad - \delta _j\left (\mathbb {E}[(\lambda ^d-\lambda ^r)^2](b_d\lambda ^d-\beta _j^d)^2 - \frac {1}{c_j}\mathbb {E}[(\lambda ^d - \lambda ^r)(\lambda ^r)^2]\beta _j^d\right ) + \vartheta _l\end {align}


\begin {align}\vartheta _l := & b^d\lambda ^d(\lambda ^d - \mathbb {E}[\lambda ^r]) + \frac {1}{2c_j}\mathbb {E}[(\lambda ^r)^2] \nonumber \\&+ \delta _j\left (\frac {1}{4c_j^2}\left (\mathbb {E}[(\lambda ^r)^2]\right )^2 + \frac {1}{c_j}(\lambda ^d - \mathbb {E}[\lambda ^r])b^d\lambda ^d\mathbb {E}[(\lambda ^r)^2]\right ) \nonumber \\ & \quad \quad \quad - \delta _j\left (\frac {1}{4c_j^2}\mathbb {E}[(\lambda ^r)^4] + \frac {1}{c_j}\mathbb {E}[(\lambda ^d - \lambda ^r)(\lambda ^r)^2]b^d\lambda ^d\right )\\ \lambda ^r = & \frac {\tilde {d}}{\sum _{j\in \mathcal {G}}c_j^{-1}}\end {align}


\begin {align}& \delta _j \left (2(\lambda ^d - \mathbb {E}[\lambda ^r])^2\right ) - \delta _j\left (2\mathbb {E}[(\lambda ^d-\lambda ^r)^2]\right ) = - 2\delta _jVar(\lambda ^d-\lambda ^r) \le 0\end {align}


\begin {align}& -(\lambda ^d - \mathbb {E}[\lambda ^r]) + \delta _j \left (-2(\lambda ^d - \mathbb {E}[\lambda ^r])^2(b^d\lambda ^d - \beta _j^d) - \frac {1}{c_j}(\lambda ^d - \mathbb {E}[\lambda ^r])\mathbb {E}[(\lambda ^r)^2]\right ) \nonumber \\ & - \delta _j\left (-2\mathbb {E}[(\lambda ^d-\lambda ^r)^2](b_d\lambda ^d-\beta _j^d) - \frac {1}{c_j}\mathbb {E}[(\lambda ^d - \lambda ^r)(\lambda ^r)^2]\right ) = 0 \\ &\implies \beta _j^d \!=\! \frac {1}{2\delta _j Var(\lambda ^r)}\nonumber \\&\left ( \mathbb {E}[\lambda ^r] -\lambda ^d + \delta _j \left (2b^dVar(\lambda ^r)\lambda ^d + \frac {1}{c_j}\mathbb {E}[\lambda ^r]\mathbb {E}[(\lambda ^r)^2] - \frac {1}{c_j}\mathbb {E}[(\lambda ^r)^3]\right )\right ) \label {vpe_rt_mpm_gen_kkt.b}\end {align}


$l$


\begin {align}\label {vpe_rt_mpm_load_obj} \min _{d_l^d} & \ (\lambda ^d - \mathbb {E}[\lambda ^r])d_l^d - \eta _l \left ((\lambda ^d - \mathbb {E}[\lambda ^r])^2(d_l^d)^2 + 2(\lambda ^d - \mathbb {E}[\lambda ^r])\mathbb {E}[\lambda ^r\tilde {d}_l]d_l^d\right ) \nonumber \\ & \qquad +\eta _l \left ( \mathbb {E}[(\lambda ^d-\lambda ^r)^2](d_l^d)^2 + 2 d_l^d\mathbb {E}[(\lambda ^d - \lambda ^r)\lambda ^r\tilde {d}_l]\right ) + \varrho _l\end {align}


\begin {align}\varrho _l := & \mathbb {E}[\lambda ^r\tilde {d}_l] - \eta _l(\mathbb {E}[\lambda ^r\tilde {d}_l])^2 + \eta _l\mathbb {E}[(\lambda ^r)^2\tilde {d}_l^2]\end {align}


\begin {align}&- \eta _l \left (2(\lambda ^d - \mathbb {E}[\lambda ^r])^2\right ) + \eta _l\left (2\mathbb {E}[(\lambda ^d-\lambda ^r)^2]\right ) = 2\eta _l Var(\lambda ^d-\lambda ^r) \ge 0\end {align}


\begin {align}& (\lambda ^d - \mathbb {E}[\lambda ^r]) - \eta _l \left (2(\lambda ^d - \mathbb {E}[\lambda ^r])^2d_l^d + 2(\lambda ^d - \mathbb {E}[\lambda ^r])\mathbb {E}[\lambda ^r\tilde {d}_l]\right ) \nonumber \\ & \qquad + \eta _l \left ( 2\mathbb {E}[(\lambda ^d-\lambda ^r)^2]d_l^d + 2 \mathbb {E}[(\lambda ^d - \lambda ^r)\lambda ^r\tilde {d}_l]\right ) = 0 \\ \implies & d_l^d = - \frac {1}{2\eta _l Var(\lambda ^r)}\left ( (\lambda ^d - \mathbb {E}[\lambda ^r]) - \eta _l \left ( - 2\mathbb {E}[\lambda ^r]\mathbb {E}[\lambda ^r\tilde {d}_l] + 2 \mathbb {E}[(\lambda ^r)^2\tilde {d}_l]\right ) \right ) \label {vpe_rt_mpm_load_kkt.b}\end {align}


\begin {align}\tilde {\mu }_3 & = \frac {E[\tilde {d}^3] - 3\mu \sigma ^2 - \mu ^3}{\sigma ^3} \implies \frac {\mathbb {E}[\tilde {d}^3] - \mathbb {E}[\tilde {d}]\mathbb {E}[\tilde {d}^2]}{Var(\tilde {d})} = \tilde {\mu }_3\sigma + 2\mu \label {skewness_definition}\end {align}


$j$


\begin {align}\label {vpe_rt_mpm_gen_obj_strat} &\max _{\beta _j^d} -(\lambda ^d - \mathbb {E}[\lambda ^r])\beta _j^d \nonumber \\&+ \delta _j \left ((\lambda ^d - \mathbb {E}[\lambda ^r])^2(b^d\lambda ^d - \beta _j^d)^2 - \frac {1}{c_j}(\lambda ^d - \mathbb {E}[\lambda ^r])\mathbb {E}[(\lambda ^r)^2]\beta _j^d\right ) \nonumber \\ & \quad - \delta _j\left (\mathbb {E}[(\lambda ^d-\lambda ^r)^2](b_d\lambda ^d-\beta _j^d)^2 - \frac {1}{c_j}\mathbb {E}[(\lambda ^d - \lambda ^r)(\lambda ^r)^2]\beta _j^d\right ) + \vartheta _l\end {align}


\begin {align}\vartheta _l := & b^d\lambda ^d(\lambda ^d - \mathbb {E}[\lambda ^r]) + \frac {1}{2c_j}\mathbb {E}[(\lambda ^r)^2] \nonumber \\&+ \delta _j\left (\frac {1}{4c_j^2}\left (\mathbb {E}[(\lambda ^r)^2]\right )^2 + \frac {1}{c_j}(\lambda ^d - \mathbb {E}[\lambda ^r])b^d\lambda ^d\mathbb {E}[(\lambda ^r)^2]\right ) \nonumber \\ & \quad \quad \quad - \delta _j\left (\frac {1}{4c_j^2}\mathbb {E}[(\lambda ^r)^4] + \frac {1}{c_j}\mathbb {E}[(\lambda ^d - \lambda ^r)(\lambda ^r)^2]b^d\lambda ^d\right )\\ \lambda ^d = & \frac {d^d\!+\!\!\sum \limits _{j\in \mathcal {G}}\beta _j^d}{b^d|\mathcal {G}|}, \
\lambda ^r = \frac {\tilde {d}}{\sum _{j\in \mathcal {G}}c_j^{-1}}\end {align}


\begin {align}& \!\!\!\!\!-\frac {2}{|\mathcal {G}|b^d} - \delta _j \left (-2Var(\lambda ^r)(\frac {1}{|\mathcal {G}|} - 1)\right ) + \frac {2}{|\mathcal {G}|}\frac {1}{|\mathcal {G}|b^d} =\nonumber \\& - \left (1-\frac {1}{|\mathcal {G}|}\right )\left [\frac {2}{|\mathcal {G}|b^d}+2\delta _jVar(\lambda ^r)\right ] \!< \!0\end {align}


\begin {align}& \left (\frac {1}{|\mathcal {G}|}-1\right )(\lambda ^d - \mathbb {E}[\lambda ^r]) + \omega _jb^d\lambda ^d \nonumber \\&+ \left (\frac {1}{|\mathcal {G}|}-1\right )\frac {\delta _j}{c_j}\left (\mathbb {E}[(\lambda ^r)^3] - \mathbb {E}[\lambda ^r]\mathbb {E}[(\lambda ^r)^2]\right ) = \omega _j\beta _j^d \label {vpe_rt_mpm_gen_obj_strat_kkt}\end {align}


\begin {align}\omega _j := \left (\frac {1}{b^d|\mathcal {G}|} + 2\delta _j Var(\lambda ^r)\right )\end {align}


$l$


\begin {align}\label {vpe_rt_mpm_load_obj_strat} \min _{d_l^d} & \ (\lambda ^d - \mathbb {E}[\lambda ^r])d_l^d - \eta _l \left ((\lambda ^d - \mathbb {E}[\lambda ^r])^2(d_l^d)^2 + 2(\lambda ^d - \mathbb {E}[\lambda ^r])\mathbb {E}[\lambda ^r\tilde {d}_l]d_l^d\right ) \nonumber \\ & \qquad + \eta _l \left ( \mathbb {E}[(\lambda ^d-\lambda ^r)^2](d_l^d)^2 + 2 d_l^d\mathbb {E}[(\lambda ^d - \lambda ^r)\lambda ^r\tilde {d}_l]\right ) + \varphi \end {align}


\begin {align}&\varphi := \mathbb {E}[\lambda ^r\tilde {d}_l] - \eta _l(\mathbb {E}[\lambda ^r\tilde {d}_l])^2 + \eta _l\mathbb {E}[(\lambda ^r)^2\tilde {d}_l^2]\nonumber \\& \lambda ^d = \frac {d^d\!+\!\!\sum \limits _{j\in \mathcal {G}}\beta _j^d}{b^d|\mathcal {G}|}, \
\lambda ^r = \frac {\tilde {d}}{\sum _{j\in \mathcal {G}}c_j^{-1}}\end {align}


\begin {align}& (\lambda ^d - \mathbb {E}[\lambda ^r]) + \left (\frac {1}{b^d|\mathcal {G}|} + 2\eta _l Var(\lambda ^r)\right )d_l^d \nonumber \\&- 2\eta _l \left (\mathbb {E}[(\lambda ^r)^2\tilde {d}_l] - \mathbb {E}[\lambda ^r]\mathbb {E}[\lambda ^r\tilde {d}_l]\right ) = 0 \label {vpe_rt_mpm_load_obj_strat_kkt}\end {align}


\begin {align}\kappa _l := \frac {1}{b^d|\mathcal {G}|} + 2\eta _l Var(\lambda ^r)\end {align}
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R.K. Bansal et al.

these approaches differ in design, their effectiveness ultimately hinges 
on how strategic participants adjust their behavior in response. An in-
complete understanding of these incentive effects can lead to mitiga-
tion designs that unintentionally create new opportunities for exercising 
market power.

To address these concerns, this paper develops a counterfactual anal-
ysis of how strategic participants adapt their behavior under system-
level market power mitigation (MPM) policies in a sequential electricity 
market. We consider a two-stage settlement process that abstracts the 
forward-spot interaction present in many market designs, and focus on 
MPM schemes based on default-bid substitution, whereby noncompet-
itive generator offers are replaced with operator-estimated cost-based 
bids. While default-bid and reference-level substitution appear in lo-
calized, constraint-based form in several U.S. ISOs, CAISO has recently 
considered extending this principle to the system level (Operator, 2020; 
Servedio, 2019; Servedio et al., 2020). This initiative is motivated by pe-
riods of system-wide market power–identified through residual supply 
index tests–that cannot be addressed by local, congestion-based mitiga-
tion alone, suggesting that similar circumstances could arise for other 
system operators. Understanding the strategic effects of such system-
level policies is complicated by the behavior of the demand side. Even 
when energy requirements are inelastic, loads behave strategically in 
sequential markets by allocating demand across stages in response to 
anticipated prices, and this intertemporal choice can fundamentally al-
ter market outcomes. Previous work (Bansal et al., 2023) showed that 
under conventional slope-based supply-function bidding, the interac-
tion between strategic loads and strategic generators may lead to the 
nonexistence of a Nash equilibrium in two-stage markets. This illustrates 
the type of subtleties that arise when analyzing system-level mitigation 
rules: strategic responses by loads can destabilize standard bidding mod-
els and obscure the incentives created by substitution. These challenges 
motivate the use of an alternative bidding mechanism that guarantees 
equilibrium existence while preserving the ability of both generators 
and loads to participate strategically.

In this paper, we adopt intercept function bidding (Baldick et al., 
2004; Chen et al., 2021; Hobbs et al., 2000) as such a mechanism. 
We model competition between generators and loads with inelastic en-
ergy requirements in a two-stage settlement electricity market, where 
each generator bids the intercept of an affine supply function to maxi-
mize profit across both stages, while loads bid demand quantities and 
seek to minimize their total payment. Within this framework, we study 
how system-level default-bid substitution affects the resulting equilib-
ria. Since the market operator can estimate generation costs with rea-
sonable accuracy (Servedio et al., 2020), we assume that executing the 
default-bid MPM policy in either stage substitutes noncompetitive gen-
erator bids in that stage with an estimate of their true marginal cost. The 
resulting strategic behavior depends critically on the stage in which bid 
substitution is applied.

When substitution occurs only in the real-time market (a real-time 
MPM policy), generators behave as price-takers in real time, and all 
strategic interaction shifts to the day-ahead stage, yielding a two-
stage Nash game between generators and loads. When substitution 
occurs in the day-ahead market instead, generators bid truthfully in 
day-ahead while loads choose their day-ahead allocations strategically, 
with generators responding in real time; this produces a multi-leader-
follower structure in which loads act as leaders and generators as fol-
lowers, together with within-group Nash competition, consistent with 
Stackelberg-Nash formulations in related markets (Carvalho et al., 2024; 
Li et al., 2020). Finally, when substitution is applied in both stages (a si-
multaneous MPM policy), generators behave truthfully in both markets 
and loads compete in quantities, resulting in a Nash-Cournot game.

Contributions. The main contributions of this paper are threefold.

1. A tractable equilibrium framework for sequential electricity markets with 
strategic demand. We develop a two-stage equilibrium model in which 
generators bid intercepts of affine supply functions and loads strate-

gically allocate demand across stages. This formulation guarantees 
the existence of Nash equilibria under broad conditions and enables 
closed-form analysis of strategic behavior in settings where con-
ventional slope-based supply-function bidding fails to admit equi-
librium. The resulting characterization of the standard (no-MPM) 
market provides a baseline against which the effects of mitigation 
policies can be systematically evaluated.

2. A unified analytical characterization of system-level default-bid MPM 
policies. We introduce a general modeling framework for system-level 
default-bid substitution in sequential markets and derive the result-
ing equilibrium outcomes for three policy designs: real-time MPM, 
day-ahead MPM, and simultaneous MPM. Our analysis provides the 
first closed-form characterization of these equilibria under intercept 
bidding and reveals how each policy reshapes strategic incentives 
across market stages. In particular, the framework highlights why 
real-time MPM induces an undesirable equilibrium in which all de-
mand clears in the real-time market, whereas day-ahead and simul-
taneous MPM policies mitigate generator market power while pre-
serving substantial day-ahead clearing.

3. A risk-aware extension via variance-penalized expectations. To assess 
the robustness of the undesirable equilibrium identified under real-
time MPM in the deterministic model, we extend our framework to 
incorporate demand uncertainty and heterogeneous risk preferences 
using a variance-penalized expectation formulation. This stochas-
tic extension isolates the policy for which robustness is most in 
question–real-time MPM–and allows us to analyze how risk aver-
sion influences stage allocation, price formation, and market power. 
The analysis shows how low risk aversion preserves the deterministic 
outcome of predominantly real-time clearing, while higher risk aver-
sion or asymmetric risk preferences can substantially alter incentives 
and amplify market power.

Related Work:
Our work advances the literature along three dimensions and pro-

vides a policy-relevant understanding of electricity market dynamics.
Market power, forward markets, and counterfactual policy analysis. A 

large body of work has examined the root causes of market power, its 
susceptibility to strategic behavior, and the role of forward markets in 
mitigating it. Classical studies such as Allaz and Vila (1993) and Bush-
nell (2007) show how forward contracting can reduce market power in 
single-stage settings, while Newbery (2002) demonstrates how under-
contracting and insufficient capacity can lead to high real-time prices, 
even in unconcentrated markets. These works identify structural drivers 
of market power but do not study market power mitigation rules them-
selves. A smaller set of papers evaluates the effects of specific mitigation 
mechanisms using counterfactual analysis–for instance, virtual transac-
tions in PJM (Long & Giacomoni, 2020) or vertical integration in the 
Australian NEM (Gans & Wolak, 2012). Such analyses illustrate the fea-
sibility of policy evaluation but remain rare and focus on targeted in-
terventions rather than system-level mitigation. Our work extends this 
literature by providing the first analytical counterfactual evaluation of 
a system-level default-bid MPM policy, carried out within a tractable 
intercept-bidding framework that guarantees equilibrium existence and 
enables closed-form analysis. This approach clarifies how system-level 
substitution reshapes strategic incentives in sequential markets–linking 
classical insights on forward markets and price caps to practical mitiga-
tion mechanisms–and shows how participants may adapt their strategies 
under default-bid substitution (Wu et al., 2023). The framework further 
highlights that default-bid policies do not inherently limit demand-side 
market power, and enables system operators to anticipate strategic re-
sponses and assess impacts on prices, welfare, and efficiency.

Strategic demand as a critical aspect of market power analysis. A further 
important aspect of the literature concerns the treatment of demand 
in electricity-market games. Classical models typically treat demand 
as passive–either exogenous or merely price-responsive–while strate-
gic behavior is modeled predominantly on the generation side. Early 
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Bertrand (Hobbs, 1986) and Cournot (Allaz & Vila, 1993) models, as 
well as the supply function equilibrium (SFE) framework (Klemperer 
& Meyer, 1989) and its extensions (Anderson & Hu, 2008; Bushnell, 
2007), provide insights into strategic supply behavior but largely omit 
active demand-side participation. More recent work has begun to incor-
porate strategic loads, either through explicit price-quantity bidding or 
through intertemporal allocation decisions in sequential markets. For 
example, You et al. (2019a) analyze strategic inelastic demand, while 
Emami et al. (2022) study demand-function equilibria–analogous to 
SFE–showing that strategic demand can amplify price spreads and re-
duce efficiency. Our work builds on and extends this aspect of the litera-
ture by treating demand as an active strategic participant in a sequential 
market with market-power mitigation. By allowing loads to choose when
to buy (day-ahead versus real-time), even with inelastic energy require-
ments, we show that mitigation policies targeting only generators can 
unintentionally shift market power to the demand side. This highlights 
the importance of modeling strategic demand explicitly when evaluat-
ing the effectiveness of system-level MPM policies.

Risk aversion and its influence on market incentives. A third aspect of 
the literature examines how risk aversion shapes strategic behavior in 
electricity markets subject to demand fluctuations, renewable uncer-
tainty, and price volatility. Stochastic optimization models–often us-
ing Conditional Value-at-Risk (CVaR)–show that risk preferences influ-
ence bidding, forward contracting, and equilibrium prices. For example, 
Kazempour and Pinson (2016) demonstrate that CVaR-based risk aver-
sion widens price spreads in a two-stage market with renewable un-
certainty, while Murphy and Smeers (2010) extend the classical frame-
work of Allaz and Vila (1993) to include capacity constraints and un-
certain demand, showing that risk can weaken the power-mitigating ef-
fects of forward contracting. Evidence on how risk preferences inter-
act with market design or policy interventions is comparatively limited. 
One of the few policy-focused studies, Downward et al. (2016), shows 
that risk-averse participation can interact with asset-transfer policies in 
nuanced ways, sometimes increasing and sometimes reducing whole-
sale prices. Our work contributes to this literature by introducing het-
erogeneous risk preferences into a sequential market with system-level 
market power mitigation. Using a variance-penalized expectation frame-
work, we incorporate risk sensitivity for both generators and strategic 
loads and analyze how risk aversion modifies incentives under default-
bid substitution. This extension reveals how risk preferences can am-
plify or dampen market power and materially affect the performance of 
mitigation policies–an aspect that has received little attention in prior 
counterfactual policy analysis.

Finally, we position this paper within our broader research agenda 
on market-power mitigation. Our earlier work (Bansal et al., 2022, 
2023) established some of the first analytical foundations for studying 
default-bid MPM policies. Bansal et al. (2022) analyzed a day-ahead 
MPM policy, offering initial insights into how default-bid substitution 
affects strategic behavior in a forward market. Bansal et al. (2023) ex-
tended this analysis to real-time mitigation using a deterministic slope-
based supply-function framework and highlighted the essential role of 
strategic demand. These studies examined individual policies in isola-
tion and did not provide a unified treatment of day-ahead, real-time, and 
simultaneous MPM designs, or incorporate uncertainty. Building on this 
foundation, the present work develops a tractable two-stage equilibrium 
framework that integrates all three policies and introduces both inter-
cept bidding and a risk-aware extension to systematically assess their 
strategic implications.

Paper Organization: The rest of the paper is structured as follows. 
In Section 2, we formulate the social planner problem, describe the two-
stage market, and define participants’ behavior. In Section 3, we char-
acterize the market equilibrium in a standard market based on intercept 
bidding. We model MPM policies and characterize the market equilib-
rium for different participation behaviors in Section 4. We provide in-
sights on the market outcome in a market with MPM policy and compare 
it with the standard market in Section 5. To streamline the presentation, 

we relegate the comparison of the intercept bid-based standard market 
with the slope bid-based standard market to Appendix A. In Section 6, 
we discuss the variance penalized expectation framework and further 
investigate the real-time MPM policy. Finally, conclusions are in Sec-
tion 7.

Notation: The standard notation 𝑓 (𝑥, 𝑦) denotes a function of inde-
pendent variables 𝑥 and 𝑦. We use 𝑓 (𝑥; 𝑦) to represent a function of an 
independent variable 𝑥 and a parameter 𝑦. Also, || represents the car-
dinality of the set . 

2.  Electricity market clearing

In this section, we formulate the underlying social planner problem 
and then describe the standard two-stage settlement electricity market 
design, and define participants’ behavior. Finally, we define a general 
market equilibrium in such a market setting.

2.1.  Social planner problem

Consider a single-interval two-stage settlement electricity market 
where a set  of generators compete with a set  of inelastic loads. The 
power dispatch of generator 𝑗 over the two stages is denoted by 𝑔𝑗 ∈ ℝ
such that 
𝑔𝑗 ∶= 𝑔𝑑𝑗 + 𝑔𝑟𝑗 (1)

where 𝑔𝑑𝑗 ∈ ℝ, 𝑔𝑟𝑗 ∈ ℝ denote the dispatch in the two stages, i.e., day-
ahead and real-time markets, respectively. In this paper, we use the su-
perscripts 𝑑 and 𝑟 to denote the decision variables and market parame-
ters associated with the day-ahead and real-time markets, respectively. 
The total inelastic demand of load 𝑙, denoted by 𝑑𝑙 ∈ ℝ+, is allocated 
across two market stages: 
𝑑𝑙 ∶= 𝑑𝑑𝑙 + 𝑑𝑟𝑙 (2)

where 𝑑𝑑𝑙 ∈ ℝ, 𝑑𝑟𝑙 ∈ ℝ represent the amounts of load allocated in the 
day-ahead and real-time markets, respectively. Further, the total inelas-
tic demand across all loads, denoted as 𝑑 ∈ ℝ+, is obtained by summing 
the individual demands over all loads 𝑙 ∈ , i.e., 
𝑑 ∶=

∑

𝑙∈
𝑑𝑙 (3)

The market operator seeks to achieve supply-demand balance, i.e., 
∑

𝑗∈
𝑔𝑗 = 𝑑 (4)

The social planner problem that seeks to minimize the cost of dispatch-
ing generators to meet aggregate demand is given by: 

min
𝑔𝑗 ,𝑗∈

∑

𝑗∈

𝑐𝑗
2
𝑔2𝑗 s.t. (4) (5)

where we assume a quadratic cost of dispatching generators, parame-
terized by quadratic coefficients 𝑐𝑗 ∈ ℝ+. The underlying social planner 
problem (5) is considered a benchmark, and we will analyze the devia-
tion between market equilibrium and the social planner solution as one 
of the metrics to study market power.

2.2.  Two-stage market mechanism

We now describe a standard two-stage market clearing, as shown in 
panel (a) of Fig. 1.

Day-ahead Market
Each generator 𝑗 submits an intercept function, with constant slope 

𝑏𝑑 ∈ ℝ+ and parameterized by 𝛽𝑑𝑗 ∈ ℝ, that indicates the willingness of 
the generator to participate in the market, given by: 
𝑔𝑑𝑗 = 𝑏𝑑𝜆𝑑 − 𝛽𝑑𝑗 , (6)
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Fig. 1. Two-stage market mechanism in (a) a standard market, (b) a market with a real-time MPM policy, and (c) a market with a day-ahead MPM policy.

where 𝜆𝑑 denotes the day-ahead price. Each load 𝑙 ∈  in the day-ahead 
market bids quantity 𝑑𝑑𝑙 . Once all the bids (𝛽𝑑𝑗 , 𝑑𝑑𝑙 ) are received, the mar-
ket clears with supply-demand balance: 
∑

𝑗∈

(

𝑏𝑑𝜆𝑑 − 𝛽𝑑𝑗
)

=
∑

𝑙∈
𝑑𝑑𝑙 . (7)

The solution to (7) gives the dispatch and clearing price such that 
generator 𝑗 earns 𝜆𝑑𝑔𝑑𝑗  while load 𝑙 pays 𝜆𝑑𝑑𝑑𝑙  in the market settlement 
process.

Real-time Market
Similar to the day-ahead market, each generator 𝑗 submits an inter-

cept function, with constant slope 𝑏𝑟 ∈ ℝ+ and parameterized by 𝛽𝑟𝑗 ∈ ℝ, 
as: 
𝑔𝑟𝑗 = 𝑏𝑟𝜆𝑟 − 𝛽𝑟𝑗 , (8)

where 𝜆𝑟 denotes the real-time prices. Each load 𝑙 ∈  in real-time mar-
ket bids quantity 𝑑𝑟𝑙 . The load allocation in the real-time market is given 
once the load allocation in the day-ahead market is determined due to 
the demand inelasticity and (2). Once all the bids (𝛽𝑟𝑗 , 𝑑𝑟𝑙 ) are received, 
the market clears with supply-demand balance, given by 
∑

𝑗∈

(

𝑏𝑟𝜆𝑟 − 𝛽𝑟𝑗
)

=
∑

𝑙∈
𝑑𝑟𝑙 . (9)

The solution to (9) determines the dispatch and clearing price such that 
generator 𝑗 earns 𝜆𝑟𝑔𝑟𝑗 while load 𝑙 pays 𝜆𝑟𝑑𝑟𝑙  in the market settlement 
process.

2.3.  Participant behavior

We focus on two different forms of participation behavior, i.e., price-
taking and price-anticipating, where each generator 𝑗 (load 𝑙) seeks to 
maximize (minimize) its profit (payment) in the two-stage market. The 
profit of generator 𝑗, denoted by 𝜋𝑗 , is given by: 

𝜋𝑗 (𝑔𝑑𝑗 , 𝑔
𝑟
𝑗 , 𝜆

𝑑 , 𝜆𝑟) ∶= 𝜆𝑟𝑔𝑟𝑗 + 𝜆𝑑𝑔𝑑𝑗 −
𝑐𝑗
2
(𝑔𝑑𝑗 + 𝑔𝑟𝑗 )

2 (10)

Similarly, the payment of load 𝑙, denoted by 𝜌𝑙, is given by: 
𝜌𝑙(𝑑𝑑𝑙 , 𝑑

𝑟
𝑙 , 𝜆

𝑑 , 𝜆𝑟) ∶= 𝜆𝑑𝑑𝑑𝑙 + 𝜆𝑟𝑑𝑟𝑙 = 𝜆𝑑𝑑𝑑𝑙 + 𝜆𝑟(𝑑𝑙 − 𝑑𝑑𝑙 ) (11)

where we substitute the load inelasticity constraint (2).

Price-taking Participation
We first discuss the price-taking participant behavior and then for-

mulate the individual problems of participants. A participant is price-
taking in the market if it does not anticipate the impact of its bid on the 
market prices and accepts the existing prices as given. Given the day-
ahead and real-time prices (𝜆𝑑 , 𝜆𝑟) in the market, the individual problem 
of price-taking generator 𝑗 is: 
max
𝑔𝑑𝑗 ,𝑔

𝑟
𝑗

𝜋𝑗 (𝑔𝑑𝑗 , 𝑔
𝑟
𝑗 ; 𝜆

𝑑 , 𝜆𝑟) (12)

and the individual problem of price-taking load 𝑙 is given by: 
min
𝑑𝑑𝑙

𝜌𝑙(𝑑𝑑𝑙 ; 𝜆
𝑑 , 𝜆𝑟) (13)

Price-anticipating (Strategic) Participation
We now discuss the price-anticipating participant behavior. A par-

ticipant is price-anticipating (strategic) in the two-stage market if it can 
manipulate the prices by anticipating the impact of its bid and other 
participants’ bids in two stages. Given load bids 𝑑𝑑𝑙 , 𝑑𝑟𝑙 , 𝑙 ∈ , and other 
generators’ bids 𝛽𝑑𝑘 , 𝛽𝑟𝑘, 𝑘 ∈ , 𝑘 ≠ 𝑗, the individual problem of a price-
anticipating generator 𝑗 is given by: 

max
𝑔𝑑𝑗 ,𝑔

𝑟
𝑗

𝜋𝑗
(

𝑔𝑑𝑗 , 𝑔
𝑟
𝑗 , 𝜆

𝑑
(

𝑔𝑑𝑗 ; 𝑔
𝑑
−𝑗 , 𝑑

𝑑
)

, 𝜆𝑟
(

𝑔𝑟𝑗 ; 𝑔
𝑟
−𝑗 , 𝑑

𝑟
))

 s.t. (7), (9) (14)

where 𝑔𝑑−𝑗 ∶=
∑

𝑘∈,𝑘≠𝑗 𝑔
𝑑
𝑘 , and 𝑔

𝑟
−𝑗 ∶=

∑

𝑘∈,𝑘≠𝑗 𝑔
𝑟
𝑘. Similarly, the indi-

vidual problem for price-anticipating load 𝑙 is given by: 

min
𝑑𝑑𝑙

𝜌𝑙
(

𝑑𝑑𝑙 , 𝜆
𝑑
(

𝑑𝑑𝑙 ; 𝑔
𝑑
𝑗 , 𝑑

𝑑
−𝑙

)

, 𝜆𝑟
(

𝑑𝑑𝑙 ; 𝑔
𝑟
𝑗 , 𝑑

𝑟
−𝑙

))

 s.t. (7), (9) (15)

where 𝑑𝑑−𝑙 ∶=
∑

𝑙∈,𝑘≠𝑙 𝑑
𝑑
𝑙 , 𝑑

𝑟
−𝑙 ∶=

∑

𝑙∈,𝑘≠𝑙 𝑑
𝑟
𝑙 .

2.4.  Market equilibrium

In this section, we describe the notion of market equilibrium in a two-
stage settlement electricity market. In the market, firms make decisions 
in their best interest without accounting for others’ incentives. However, 
at the equilibrium, the resulting prices are such that the market achieves 
the supply-demand balance, and no participating firm has any incentive 
to deviate from its bid. More formally,
Definition 1. A two-stage market is at equilibrium if the participant 
bids and market clearing prices (𝛽𝑑𝑗 , 𝛽𝑟𝑗 , 𝑗 ∈ , 𝑑𝑑𝑙 , 𝑑

𝑟
𝑙 , 𝑙 ∈ , 𝜆𝑑 , 𝜆𝑟) in the 

day-ahead and real-time markets satisfy:

1. The bid 𝛽𝑑𝑗 , 𝛽𝑟𝑗  of generator 𝑗 maximizes its profit.
2. The allocation 𝑑𝑑𝑙 , 𝑑𝑟𝑙  of load 𝑙 minimizes its payment.
3. The market clears with prices 𝜆𝑑 given by (7) and 𝜆𝑟 given by (9).

An equilibrium analysis of the market is often used to understand the 
presence of market power and stability of a market mechanism. Though 
equilibrium is hard to attain in reality due to the dynamic nature of the 
market, descriptive and predictive equilibrium outcomes (if possible) 
provide intuition about the behavior of individual participants (Starr, 
2011) and their interplay. We use equilibrium analysis in this paper to 
analyze the impact of system-level MPM policies on market outcomes.

3.  Equilibrium in standard market

In this section, we model the competition between generators and 
loads in a standard two-stage market without any mitigation policy. The 
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participants bid in both day-ahead and real-time markets. Such a game 
essentially forms a bi-level game, with the real-time market at the lower 
level and day-ahead market at the upper level. We analyze such a game 
backward, starting from the real-time market, for the equilibrium path. 
The resulting equilibrium is regarded as a benchmark to determine the 
impact of the system-level MPM policies later.

Competitive Equilibrium

We first consider the case of price-taking participants in the market. 
We substitute (6) and (8) into (12) to get the individual problem of 
generator 𝑗, given the prices (𝜆𝑑 , 𝜆𝑟), as: 

max
𝛽𝑑𝑗 ,𝛽

𝑟
𝑗

−𝛽𝑑𝑗 𝜆
𝑑 − 𝛽𝑟𝑗𝜆

𝑟 −
𝑐𝑗
2
(𝛽𝑑𝑗 + 𝛽𝑟𝑗 )

2 + 𝑐𝑗 (𝑏𝑑𝜆𝑑 + 𝑏𝑟𝜆𝑟)(𝛽𝑑𝑗 + 𝛽𝑟𝑗 ) (16)

The individual problem of load 𝑙 is given in the optimization prob-
lem (13). We can now characterize the competitive equilibrium in this 
market setting:
Theorem 1. A competitive equilibrium in a standard two-stage settlement 
market without any mitigation policy exists and is given by 

𝛽𝑑𝑗 + 𝛽𝑟𝑗 =
𝑏𝑑 + 𝑏𝑟 − 𝑐−1𝑗
∑

𝑘∈ 𝑐
−1
𝑘

𝑑, ∀𝑗 ∈  (17a)

∑

𝑗∈
(𝑏𝑑𝜆𝑑 − 𝛽𝑑𝑗 ) =

∑

𝑙∈
𝑑𝑑𝑙 ,

∑

𝑗∈
(𝑏𝑟𝜆𝑟 − 𝛽𝑟𝑗 )=

∑

𝑙∈
𝑑𝑟𝑙 , 𝑑

𝑑
𝑙 + 𝑑𝑟𝑙 = 𝑑𝑙 , ∀𝑙 ∈ 

(17b)

𝜆𝑑 = 𝜆𝑟 = 1
∑

𝑗∈ 𝑐
−1
𝑗

𝑑 (17c)

We provide the proof of the theorem in Appendix B. The competi-
tive equilibrium in Theorem 1 exists non-uniquely, i.e., each load 𝑙 is 
indifferent to demand allocation due to equal prices in the two stages.

Nash Equilibrium

We next characterize the Nash equilibrium as a result of competi-
tion between price-anticipating participants. We first characterize the 
interaction between generators and loads in a real-time market for some 
given allocation in the day-ahead market. This results in a real-time sub-
game equilibrium that will help compute the Nash equilibrium in the 
two-stage market.
Theorem 2. We assume that there is more than one strategic generator 
in the market, i.e., || > 1. The subgame equilibrium (𝑔𝑟𝑗 , 𝑑𝑟, 𝜆𝑟) due to the 
interplay between generators and loads in the real-time market, given the 
day-ahead market outcome (𝑔𝑑𝑗 , 𝑑𝑑𝑙 ), is an optimal primal-dual solution to 
an augmented convex social planner problem, as: 

min
𝑔𝑟𝑗

∑

𝑗∈

(

1
2𝑏𝑟(|| − 1)

𝑔𝑟𝑗
2 +

𝑐𝑗
2

(

𝑔𝑑𝑗 + 𝑔𝑟𝑗
)2

)

(18a)

s.t.
∑

𝑗∈
𝑔𝑟𝑗 =

∑

𝑙∈
𝑑𝑟𝑙 (18b)

We provide the proof of the theorem in Appendix C. The strategic 
participation of generators in real-time shifts the dispatch of generators, 
captured by the first term in the objective function of the augmented 
social planner problem in Theorem 2. Since the augmented problem 
is strictly convex, the subgame equilibrium is unique. Moreover, the 
subgame equilibrium does not exist if there is only one generator in the 
market and prices become indefinite.

The following theorem characterizes the Nash equilibrium, where 
load minimizes its payment as a leader, anticipating the prices in two 
stages with the knowledge of others’ bids. Since analyzing supply func-
tion equilibria in closed form is inherently challenging, prior literature 
has often relied on simplifying assumptions to gain analytical insights 
(Banal-Estanol & Micola, 2011; Matsui, 2016; Mousavian et al., 2020; 
Rudkevich et al., 1998; You et al., 2019a). In this case, we first introduce 
the notion of a symmetric market equilibrium, as defined below:

Definition 2. A market equilibrium that satisfies Definition 1 is said 
to be symmetric on the generator side if all the generators are homoge-
neous and make identical decisions in both stages, i.e., 𝛽𝑑𝑗 ∶= 𝛽𝑑 , 𝛽𝑟𝑗 ∶=
𝛽𝑟, ∀𝑗 ∈ .

For tractability and closed-form analysis, we consider the participation 
of homogeneous generators and analyze the resulting symmetric mar-
ket equilibrium. The following theorem characterizes the resulting sym-
metric Nash equilibrium in the market, where each individual generator 
solves (14) while each individual load solves (15).
Theorem 3. Let’s assume that generators are homogeneous, i.e., 𝑐𝑗 ∶=
𝑐, ∀𝑗 ∈ . If there is more than one generator participating in the market, i.e., 
|| > 1, then a symmetric Nash equilibrium uniquely exists and it is given by: 

𝛽𝑑𝑗 = 𝑏𝑑𝑐
||

𝑑 +
𝑏𝑟𝑐 − ||−2

||−1

𝑏𝑟𝑐 + ||+1
||−1

|| + 1
||(|| − 1)

𝑑𝑑 , 𝛽𝑟𝑗 =
𝑏𝑟𝑐
||

𝑑 −
|| − 2

||(|| − 1)
𝑑𝑟,

∀𝑗 ∈  (19a)

𝑔𝑑𝑗 = 1
||

𝑑𝑑 , 𝑔𝑟𝑗 =
1
||

𝑑𝑟, ∀𝑗 ∈  (19b)

𝑑𝑑𝑙 =
𝑏𝑑𝑑𝑙

𝑏𝑑 + 𝑏𝑟(|| − 1)
+

𝑏𝑑

1+𝑏𝑟𝑐(||−1)

𝑏𝑑 + 𝑏𝑟(|| − 1)
𝑑𝑟 − 𝑏𝑟

𝑏𝑑 + 𝑏𝑟(|| − 1)
𝑑𝑑 ,

𝑑𝑟𝑙 = 𝑑𝑙 − 𝑑𝑑𝑙 ,∀𝑙 ∈  (19c)

𝜆𝑑 =
𝑏𝑟𝑐(|| − 1) + 2
𝑏𝑟𝑐(|| − 1) + 1

𝑐
||

𝑑 +

(

𝑏𝑟

𝑏𝑑 − 1
)

𝑐 + 1
𝑏𝑑 (||−1)

𝑏𝑟𝑐(|| − 1) + 1
𝑑𝑑

||
, (19d)

𝜆𝑟 = 𝜆𝑑 +
1

||(||−1)

(

||−2
||−1 − 𝑏𝑟𝑐

)

𝑑

𝑏𝑑
(

𝑏𝑟𝑐 + ||+1
||−1

)

+ 𝑏𝑟
(

𝑏𝑟𝑐 + 1
||−1

)

(|| + || − 1)
(19e)

We provide the proof of the theorem in Appendix D. At the equi-
librium, the load allocation across stages depends on the slope of the 
bidding function, and operators can tune these for a higher allocation in 
the day-ahead market. Such behavior is desirable, as observed in current 
market practice, with the majority of demand in the day-ahead market. 
More specifically, we provide such a condition on the slope of the inter-
cept functions in Corollary 1. Moreover, for || = 1, the generator makes 
arbitrary large bid decisions to drive prices high in the market, and the 
Nash equilibrium does not exist.
Corollary 1. The load allocation across the two stages at the Nash equilib-
rium in a standard market (19) is given by:

𝑑𝑑 =
𝑏𝑑

(

𝑏𝑟𝑐+ ||+1
||−1

)

𝑏𝑑
(

𝑏𝑟𝑐+ ||+1
||−1

)

+𝑏𝑟
(

𝑏𝑟𝑐+ 1
||−1

)

(||+||−1)
𝑑,

𝑑𝑟 =
𝑏𝑟
(

𝑏𝑟𝑐+ 1
||−1

)

(||+||−1)

𝑏𝑑
(

𝑏𝑟𝑐+ ||+1
||−1

)

+𝑏𝑟
(

𝑏𝑟𝑐+ 1
||−1

)

(||+||−1)
𝑑 (20)

Furthermore, for

𝑏𝑑 ≥ 𝑏𝑟

(

𝑏𝑟𝑐 + 1
||−1

)

(|| + || − 1)
(

𝑏𝑟𝑐 + ||+1
||−1

)

⟹ 𝑏𝑑 − 𝑏𝑟 ≥ 𝑏𝑟
𝑏𝑟𝑐(|| + || − 2) + ||−2

||−1
(

𝑏𝑟𝑐 + ||+1
||−1

) (21)

the load allocation in the day-ahead market is higher than in the real-time 
market, i.e., 𝑑𝑑 ≥ 𝑑𝑟.

Since  +  ≥ 2 holds at equilibrium, the above corollary provides a 
lower bound on the slope of the day-ahead supply function, such that 
demand allocates more in the day-ahead stage at equilibrium. Specifi-
cally, if the price sensitivity of generator dispatch (slope of the intercept 
bid function) in the day-ahead market is sufficiently higher than in the 
real-time market, or if the price sensitivity in the real-time market is 
sufficiently low, then the load prefers to allocate more demand to the 
real-time market instead.
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4.  Equilibrium in market with an MPM policy

In this section, we model the impact of system-level MPM policies 
on market equilibrium. Each generator operates truthfully in the stage 
with an MPM policy in response to operator intervention in the form 
of a mitigation policy. With considerable market knowledge of partici-
pants’ technology, fuel prices, operational constraints, historical prices, 
etc., ISOs can estimate, if not accurately, a reasonable bound on the op-
eration cost of generators, which is used in substituting their bids with 
default bids in the presence of an MPM policy. However, each generator 
is allowed to bid an intercept function in the other stage.

These policies are planned firstly for the real-time followed by the 
day-ahead market to keep a check on the high risk of market power 
exercise in the real-time market compared to the day-ahead market. For 
this paper, we assume that the operator makes an error in estimating the 
operation cost of a generator in the stage with an MPM policy. We first 
develop an understanding of the system-level MPM policies and then 
compare them with the standard market.

4.1.  Real-time MPM policy

In this subsection, we model the real-time default-bid MPM policy, 
as shown in panel (b) of Fig. 1. We then formulate the individual prob-
lem for different participation behaviors and characterize the market 
equilibrium.

Modelling Real-time Default-bid MPM Policy
For the real-time MPM policy, the operator roughly estimates the 

operation cost of the generator 𝑗 in the real-time market, given the dis-
patch in the day-ahead market, i.e., 
𝑔𝑟𝑗 = (𝑐𝑗 + 𝜖𝑗 )−1𝜆𝑟 − 𝑔𝑑𝑗 , ∀𝑗 ∈  (22)

where 𝜖𝑗 ≥ 0 denotes the estimation error. Summing the Eq. (22) over 
𝑗 ∈  and substituting the two-stage supply-demand balance (4), we get 

𝜆𝑟 = 𝑑
∑

𝑗∈(𝑐𝑗 + 𝜖𝑗 )−1
(23)

Both generators and loads compete in the day-ahead market, and 
we characterize the resulting equilibrium under different participation 
modes in the following subsections.

Competitive Equilibrium
We first consider the case of price-taking participants in the market. 

We substitute (6), (22), and (23) in (12) to get the individual problem 
of price-taking generator 𝑗, given the clearing price 𝜆𝑑 , as: 

max
𝛽𝑑𝑗

𝜋̃𝑗 (𝛽𝑑𝑗 ; 𝜆
𝑑 ) ∶= max

𝛽𝑑𝑗

(

𝑑
∑

𝑗∈(𝑐𝑗 + 𝜖𝑗 )−1
− 𝜆𝑑

)

𝛽𝑑𝑗 (24)

Similarly, substituting (23) in (13) gives the individual problem of load 
𝑙 as: 

min
𝑑𝑑𝑙

𝜌̃𝑙(𝑑𝑑𝑙 ; 𝜆
𝑑 ) ∶= min

𝑑𝑑𝑙

(

𝜆𝑑 − 𝑑
∑

𝑗∈(𝑐𝑗 + 𝜖𝑗 )−1

)

𝑑𝑑𝑙 (25)

where the price 𝜆𝑑 is given in the market. Without loss of generality, we 
assume 𝜖𝑗 = 𝜖𝑐𝑗 , ∀𝑗 ∈ , for a constant parameter 𝜖 ≥ 0. The resulting 
competitive equilibrium is characterized below:
Theorem 4. Let’s assume 𝜖𝑗 = 𝜖𝑐𝑗 , ∀𝑗 ∈ , for a constant parameter 𝜖 ≥ 0. 
The competitive equilibrium in a two-stage market with a real-time MPM 
policy exists and it is given by: 

𝑔𝑑𝑗 + 𝑔𝑟𝑗 =
𝑐−1𝑗

∑

𝑘∈ 𝑐
−1
𝑘

𝑑, 𝛽𝑑𝑗 ∈ ℝ, ∀𝑗 ∈  (26a)

𝑑𝑑𝑙 + 𝑑𝑟𝑙 = 𝑑𝑙 , ∀𝑙 ∈  (26b)

𝜆𝑑 = 𝜆𝑟 = 1 + 𝜖
∑

𝑗∈ 𝑐
−1
𝑗

𝑑 (26c)

We provide proof of the theorem in Appendix E. (The proof in Ap-
pendix E considers arbitrary 𝜖𝑗). In the market, generators prefer higher 
prices, while loads prefer lower prices, resulting in opposing interests. 
A set of equilibria exist in the market with equal prices in two stages. 
However, at such equilibria, loads do not have any incentive to allocate 
demand in the day-ahead market. Interestingly, the resulting competi-
tive equilibrium still aligns with the social planner problem (5).

Nash Equilibrium
In this section, we characterize the market equilibrium for the com-

petition between price-anticipating participants. Substituting (22) and
(23) in (14), we get the individual problem of the price-anticipating 
generator 𝑗 that seeks to maximize the profit as: 

max
𝛽𝑑𝑗 ,𝜆

𝑑
𝜋𝑗
(

𝛽𝑑𝑗 , 𝜆
𝑑
(

𝛽𝑑𝑗 ; 𝛽
𝑑
−𝑗 , 𝑑

𝑑
))

 s.t. (7) (27)

Similarly, we substitute (22),(23) in (15) to get the individual problem 
of the price-anticipating load as: 

min
𝑑𝑑𝑙 ,𝜆

𝑑
𝜌𝑙
(

𝑑𝑑𝑙 , 𝜆
𝑑
(

𝑑𝑑𝑙 ; 𝛽
𝑑
𝑗 , 𝑑

𝑑
−𝑙

))

 s.t. (7). (28)

We analyze the sequential game backward, starting with the real-time 
market where generators operate truthfully, resulting in fixed clearing 
prices. Although loads could bid in the real-time market, the bids are 
fixed by their decisions in the day-ahead market and load inelasticity. 
Therefore, each participant competes in the day-ahead market for indi-
vidual interests. The following theorem characterizes the Nash equilib-
rium.

Theorem 5. Let’s assume 𝜖𝑗 = 𝜖𝑐𝑗 , ∀𝑗 ∈ , for a constant parameter 𝜖 ≥ 0. 
If there is more than one generator participating in the market, i.e., || > 1, 
the two-stage Nash equilibrium in a market with a real-time MPM policy 
uniquely exists, as: 

𝑔𝑑𝑗 = 0, 𝑔𝑟𝑗 =
𝑐−1𝑗

∑

𝑘∈ 𝑐
−1
𝑘

𝑑, ∀𝑗 ∈  (29a)

𝛽𝑑𝑗 =
(1 + 𝜖)𝑏𝑑
∑

𝑘∈ 𝑐
−1
𝑘

𝑑, ∀𝑗 ∈  (29b)

𝑑𝑑𝑙 = 0, 𝑑𝑟𝑙 = 𝑑𝑙 , ∀𝑙 ∈  (29c)

𝜆𝑑 = 𝜆𝑟 = 1 + 𝜖
∑

𝑗∈ 𝑐
−1
𝑗

𝑑 (29d)

We provide proof of the theorem in Appendix F (the proof considers 
arbitrary 𝜖𝑗 ). For a non-zero demand allocation in the day-ahead mar-
ket, generators have the incentive to change their bids while attempt-
ing to manipulate prices and extract higher profits. Loads attempt to 
decrease prices to seek minimum payment simultaneously. The mutual 
competition to outbid each other results in the same price across stages, 
and all the demand shifts to the real-time market. Although there is 
no price difference across stages, i.e., no arbitrage opportunity, and the 
market dispatch aligns with the social planner optimum, i.e., efficient 
market equilibrium, such an equilibrium may not be desirable from the 
operator’s perspective. In practice, the day-ahead market accounts for a 
majority of energy trades.

4.2.  Day-ahead MPM policy

In this section, we consider the impact of a day-ahead MPM policy, 
as shown in panel (c) of Fig. 1.

Modeling Day-ahead Default-bid MPM policy
In this case, the operator estimates the cost of generator dispatch 

cost in the day-ahead, as: 
𝑔𝑑𝑗 = (𝑐𝑗 + 𝜖𝑗 )−1𝜆𝑑 (30)
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where 𝜖𝑗 ≥ 0 represents the error in the estimation. Summing the 
Eq. (30) over 𝑗 ∈  and using the power-balance in day-ahead market (7) 
implies that: 

𝜆𝑑 = 𝑑𝑑
∑

𝑗∈(𝑐𝑗 + 𝜖𝑗 )−1
(31)

Each generator has the flexibility to bid in the real-time market and 
we characterize the resulting market equilibrium in the following sub-
section. Such a game essentially constitutes a bi-level game, with multi-
ple leaders (loads) acting in the day-ahead market and followers (gener-
ators) in the real-time market. We solve this by formulating individual 
optimization problems for each participant’s payoff (profit or payment) 
and then simultaneously solving the necessary and sufficient KKT con-
ditions to obtain the equilibrium.

Competitive Equilibrium
We first define the individual problem of participants and then char-

acterize the resulting competitive equilibrium. The individual problem 
of price-taking generator 𝑗 is given by: 

max
𝛽𝑟𝑗

𝜋̃𝑗 (𝛽𝑟𝑗 ; 𝜆
𝑟) ∶= max

𝛽𝑟𝑗
−𝛽𝑟𝑗𝜆

𝑟 −
𝑐𝑗
2

(

(𝑐𝑗 + 𝜖𝑗 )−1𝑑𝑑
∑

𝑘∈(𝑐𝑘 + 𝜖𝑘)−1
+ 𝑏𝑟𝜆𝑟 − 𝛽𝑟𝑗

)2

(32)

where we substitute (30),(31) in (12). Similarly, the individual prob-
lem of load 𝑙 is given by (13). The resulting competitive equilibrium is 
characterized in the theorem below.

Theorem 6. Let’s assume 𝜖𝑗 = 𝜖𝑐𝑗 , ∀𝑗 ∈ , for a constant parameter 𝜖 ≥ 0. 
The competitive equilibrium in the two-stage market with a day-ahead MPM 
policy exists: 

𝑔𝑑𝑗 = 1
1 + 𝜖

𝑐−1𝑗
∑

𝑘∈ 𝑐
−1
𝑘

𝑑, 𝑔𝑟𝑗 =
𝜖

1 + 𝜖
1
𝑐𝑗

𝑑
∑

𝑘∈ 𝑐
−1
𝑘

, ∀𝑗 ∈  (33a)

𝛽𝑟𝑗 =
(

𝑏𝑟 − 1
𝑐𝑗

𝜖
1 + 𝜖

)

𝑑
∑

𝑘∈ 𝑐
−1
𝑘

, ∀𝑗 ∈  (33b)

𝑑𝑑𝑙 + 𝑑𝑟𝑙 = 𝑑𝑙; 𝑑𝑑 = 1
1 + 𝜖

𝑑, 𝑑𝑟 = 𝜖
1 + 𝜖

𝑑 (33c)

𝜆𝑑 = 𝜆𝑟 = 𝑑
∑

𝑗∈ 𝑐
−1
𝑗

(33d)

The proof of the theorem was first presented in our previous pa-
per (Bansal et al., 2022), we include it here in Appendix G for complete-
ness. Unlike the case of the real-time MPM policy in Theorem 4 with 
equal prices across stages, the equilibrium in Theorem 6 is unique and 
incentivizes load to allocate the majority of demand in the day ahead 
market.

Nash Equilibrium
We next consider the competition between price-anticipating partic-

ipants in a market with a day-ahead MPM policy. The sequential game 
where generators operate truthfully in the day-ahead market results in 
a multi-leader-follower game with loads making decisions in the day-
ahead as leaders and generators participating as followers in the real-
time market. The following theorem characterizes the Nash equilibrium, 
where load minimizes its payment as a leader, anticipating the prices in 
two stages with the knowledge of others’ bids.

Theorem 7. Let’s assume 𝜖𝑗 = 𝜖𝑐𝑗 , ∀𝑗 ∈ , for a constant parameter 𝜖 ≥ 0
and that more than one generator is participating in the market under a day-
ahead MPM policy, i.e., || > 1. Then the Nash equilibrium exists uniquely 
as: 

𝑔𝑑𝑗 =

⎛

⎜

⎜

⎜

⎝

1+ 𝜖

∑

𝑘∈
𝐶𝑘

−1

∑

𝑘∈
𝑐−1𝑘

⎞

⎟

⎟

⎟

⎠

−1
⎛

⎜

⎜

⎜

⎝

1− 1
||+1

∑

𝑘∈
𝐶𝑘

−1

∑

𝑘∈
𝑐−1𝑘

⎞

⎟

⎟

⎟

⎠

𝑐−1𝑗
∑

𝑘∈
𝑐−1𝑘

𝑑,

𝑔𝑟𝑗 =
(1+𝜖(||+1)

|| + 1

⎛

⎜

⎜

⎜

⎝

1+𝜖

∑

𝑘∈
𝐶𝑘

−1

∑

𝑘∈
𝑐−1𝑘

⎞

⎟

⎟

⎟

⎠

−1

𝐶𝑗
−1

∑

𝑘∈
𝑐−1𝑘

𝑑 (34a)

𝑑𝑑𝑙 =

⎛

⎜

⎜

⎜

⎝

1+𝜖

∑

𝑘∈
𝐶𝑘

−1

∑

𝑘∈
𝑐−1𝑘

⎞

⎟

⎟

⎟

⎠

−1
⎛

⎜

⎜

⎜

⎝

𝑑𝑙+
(

1
||+1

𝑑 − 𝑑𝑙

)

∑

𝑘∈
𝐶𝑘

−1

∑

𝑘∈
𝑐−1𝑘

⎞

⎟

⎟

⎟

⎠

, 𝑑𝑟𝑙 = 𝑑𝑙 − 𝑑𝑑𝑙 (34b)

𝜆𝑑 =

(

1 + 𝜖
∑

𝑗∈ 𝐶𝑗
−1

∑

𝑗∈ 𝑐
−1
𝑗

)−1(

1 − 1
|| + 1

∑

𝑗∈ 𝐶𝑗
−1

∑

𝑗∈ 𝑐
−1
𝑗

)

(1 + 𝜖)𝑑
∑

𝑗∈ 𝑐
−1
𝑗

(34c)

𝜆𝑟 = 1
1 + 𝜖

𝜆𝑑 +

(

1 + 𝜖
∑

𝑗∈ 𝐶𝑗
−1

∑

𝑗∈ 𝑐
−1
𝑗

)−1
(

𝜖 + 1
|| + 1

)

𝑑
∑

𝑗∈ 𝑐
−1
𝑗

(34d)

where 𝐶𝑗 =
(

1
𝑏𝑟(||−1) + 𝑐𝑗

)

.

The proof of the theorem was first presented in our previous pa-
per (Bansal et al., 2022), and we include it here in Appendix H for com-
pleteness. Unlike the standard Nash equilibrium in Theorem 3, in the 
presence of a day-ahead MPM policy, the resulting Nash equilibrium 
always leads to higher prices in the real-time market; see (34d). As gen-
erators operate truthfully in the day-ahead market, loads exploit this 
opportunity to allocate higher demand in the day-ahead market to seek 
lower payment. Generators, with the flexibility to bid in the real-time 
market, attempt to manipulate and drive prices in the real-time market. 
The design of the day-ahead MPM policy puts generators in a disadvan-
tageous position as followers in the market.

Corollary 2. At the Nash equilibrium (34) in a market with a day-ahead 
MPM policy, the load allocation in the day-ahead and the real-time market 
is given by:

𝑑𝑑 =

(

1+𝜖
∑

𝑗∈ 𝐶𝑗
−1

∑

𝑗∈ 𝑐
−1
𝑗

)−1(

1− 1
|| + 1

∑

𝑗∈ 𝐶𝑗
−1

∑

𝑗∈ 𝑐
−1
𝑗

)

𝑑,

𝑑𝑟=

(

1+𝜖
∑

𝑗∈ 𝐶𝑗
−1

∑

𝑗∈ 𝑐
−1
𝑗

)−1
(

𝜖+ 1
|| + 1

)

∑

𝑗∈ 𝐶𝑗
−1

∑

𝑗∈ 𝑐
−1
𝑗

𝑑 (35)

Assuming 𝜖 = 0, the following relation holds,
𝑑𝑑 ∈ (0.5𝑑, 𝑑), 𝑑𝑟 ∈ (0, 0.5𝑑)

The proof uses the relation 𝑏𝑟 > 0 and sums up the individual load allo-
cation at the Nash equilibrium (34).

4.3.  Simultaneous (real-time and day-ahead) MPM policy

In this subsection, we model the impact of a simultaneous MPM pol-
icy, i.e., the impact of applying the MPM policy to both real-time and 
day-ahead markets. In this case, the operator estimates the cost of the 
generator dispatch cost in both stages as: 
𝑔𝑑𝑗 = (𝑐𝑗 + 𝜖𝑗 )−1𝜆𝑑 (36a)

𝑔𝑟𝑗 = (𝑐𝑗 + 𝜖𝑗 )−1𝜆𝑟 − 𝑔𝑑𝑗 (36b)

where 𝜖𝑗 ≥ 0 denotes the estimation error. Summing the Eqs. (36a) and
(36b) over 𝑗 ∈  and using the supply-demand balance (4) and (7), we 
get 

𝜆𝑑 = 𝑑𝑑
∑

𝑗∈(𝑐𝑗 + 𝜖𝑗 )−1
(37a)

𝜆𝑟 = 𝑑
∑

𝑗∈(𝑐𝑗 + 𝜖𝑗 )−1
(37b)

In this case, each load has the flexibility to allocate its demand in ei-
ther of the stages, and we characterize the resulting market equilibrium 
in the following subsection.
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Table 1 
Competitive (CE) and Nash (NE) Equilibrium in standard market and MPM policy markets.
 Instance  Standard  Real-time MPM  Day-ahead MPM  Simultaneous MPM

CE

 Non-unique equilibrium  Non-unique equilibrium  Unique equilibrium  Unique equilibrium
 Solves social planner  Partially solves social planner  Solves social planner  Solves social planner
 Arbitrary load allocation  Arbitrary load allocation  Majority of load in day-ahead  Total load in day-ahead
 Price same as marginal cost  Price higher than marginal cost  Price same as marginal cost  Price same as marginal cost

NE
 Unique & non-efficient equilibrium  Unique & efficient equilibrium  Unique & non-efficient equilibrium  Unique & non-efficient equilibrium
 Load allocation depends on slope  All load in real-time  Load allocation depends on error  Majority of load in day-ahead
 –  Undesirable to operator  Desired market power mitigation  Desired market power mitigation

Competitive Equilibrium
For the case of price-taking participation, the individual problem of 

each load 𝑙 is given by: 

min
𝑑𝑑𝑙

𝜌̃𝑙(𝑑𝑑𝑙 ; 𝜆
𝑑 , 𝜆𝑟) ∶= min

𝑑𝑑𝑙

⎛

⎜

⎜

⎜

⎝

𝜆𝑑 − 𝑑
∑

𝑗∈
(𝑐𝑗 + 𝜖𝑗 )−1

⎞

⎟

⎟

⎟

⎠

𝑑𝑑𝑙 (38)

where 𝜆𝑑 is assumed to be given in the market. The resulting competitive 
equilibrium, assuming 𝜖𝑗 = 𝜖𝑐𝑗 , ∀𝑗 ∈ , is characterized as follows:
Theorem 8. Let’s assume 𝜖𝑗 = 𝜖𝑐𝑗 , ∀𝑗 ∈ , for a constant parameter 𝜖 ≥ 0. 
The competitive equilibrium in a two-stage market with both real-time and 
day-ahead MPM policy exists, as: 

𝑔𝑑𝑗 =
𝑐−1𝑗

∑

𝑘∈ 𝑐
−1
𝑘

𝑑, 𝑔𝑟𝑗 = 0, ∀𝑗 ∈  (39a)

𝑑𝑑𝑙 = 𝑑𝑙 , 𝑑
𝑟
𝑙 = 0 ∀𝑙 ∈  (39b)

𝜆𝑑 = 𝜆𝑟 = 1 + 𝜖
∑

𝑗∈ 𝑐
−1
𝑗

𝑑 (39c)

We provide the proof of the theorem in Appendix I (the proof con-
siders arbitrary 𝜖𝑗). Loads allocate all the demand in the day-ahead mar-
ket, leading to equal prices across two stages. However, any variations 
in demand allocation within the real-time market may cause price dis-
crepancies between the two stages. This situation would incentivize load 
participants to shift towards the stage with the lower prices. As a result, 
at equilibrium, the prices in both stages remain equal.

Nash Equilibrium
In this subsection, we characterize the market equilibrium for the 

competition between price-anticipating loads. The resulting competition 
can be visualized as a Nash-Cournot game among participants. Substi-
tuting (37a) and (37b) in (15), we get the individual problem of load 𝑙
as: 

min
𝑑𝑑𝑙

⎛

⎜

⎜

⎜

⎝

𝑑𝑑
∑

𝑗∈
(𝑐𝑗 + 𝜖𝑗 )−1

− 𝑑
∑

𝑗∈
(𝑐𝑗 + 𝜖𝑗 )−1

⎞

⎟

⎟

⎟

⎠

𝑑𝑑𝑙 + 𝑑
∑

𝑗∈
(𝑐𝑗 + 𝜖𝑗 )−1

𝑑𝑙 (40)

The following theorem, assuming 𝜖𝑗 = 𝜖𝑐𝑗 , ∀𝑗 ∈ , characterizes the 
Nash equilibrium.
Theorem 9. Let’s assume 𝜖𝑗 = 𝜖𝑐𝑗 , ∀𝑗 ∈ , for a constant parameter 𝜖 ≥ 0. 
The Nash equilibrium in a market with both real-time and day-ahead MPM 
policy uniquely exists as: 

𝑔𝑑𝑗 = 𝐿
𝐿 + 1

𝑐−1𝑗
∑

𝑘∈ 𝑐
−1
𝑘

𝑑, 𝑔𝑟𝑗 =
1

𝐿 + 1

𝑐−1𝑗
∑

𝑘∈ 𝑐
−1
𝑘

𝑑, ∀𝑗 ∈  (41a)

𝑑𝑑𝑙 = 1
𝐿 + 1

𝑑, 𝑑𝑟𝑙 = 𝑑𝑙 −
1

𝐿 + 1
𝑑, ∀𝑙 ∈  (41b)

𝜆𝑑 = 𝐿
𝐿 + 1

(1 + 𝜖)
∑

𝑘∈ 𝑐
−1
𝑘

𝑑, 𝜆𝑟 = 1 + 𝜖
∑

𝑘∈ 𝑐
−1
𝑘

𝑑 (41c)

We provide the proof of the theorem in Appendix J (the proof consid-
ers arbitrary 𝜖𝑗). Although the day-ahead prices are lower relative to 

the real-time prices, load participants do not have any incentive to de-
viate from the equilibrium. A unilateral deviation of load 𝑙 in terms of 
an additional allocation of demand 𝜙𝑙 in the day-ahead market results 
in its increased payment. Interestingly, real-time prices depend only on 
the total demand and remain unaffected by any such unilateral devia-
tions. Furthermore, the net load payment at Nash equilibrium is lower 
than in the competitive equilibrium and depends on the number of load 
participants. As the number of load participants increases, the relative 
difference tends to zero, with a complexity of 𝑂

(

1
𝐿

)

.

5.  Market analysis

In this section, we analyze the impact of system-level mitigation poli-
cies by comparing the resulting market equilibria with standard market 
equilibrium.

5.1.  Equilibrium insights on MPM policies

We first discuss the case of the real-time MPM policy followed by 
the day-ahead MPM policy, as summarized in Table 1. The mitigation 
policies in real time result in equal prices across stages. Despite esti-
mation errors, the individual generator dispatch aligns with the social 
planner dispatch (5) at both competitive (26) and Nash equilibrium (29). 
However, the resulting clearing price (26c) and (29d) at the equilib-
rium is higher than the system marginal cost. Moreover, the competi-
tive equilibrium outcome fails to incentivize loads to allocate demand 
in the day-ahead market (26b) and allows for an arbitrary allocation 
between stages. On the other hand, Nash equilibrium incentivizes loads 
to allocate demand to the real-time market entirely (29b), making it 
undesirable from the operators’ perspectives.

The day-ahead MPM policy also results in a unique competitive equi-
librium (33) that aligns with the social planner optimum (5) while in-
centivizing loads to allocate the majority of demand (for a small er-
ror in the estimation of cost) to the day-ahead market (33c). At the 
Nash equilibrium, the mitigation policy leads to generators participat-
ing as followers and limiting their market power. Generators participate 
strategically in real-time, inflating the prices above the system marginal 
cost (34d). However, loads acting as leaders anticipate the real-time 
sub-game equilibrium and allocate more demand in the day-ahead mar-
ket (35). Although a higher demand allocation in the day-ahead market 
increases the day-ahead clearing prices (34c), it is still below the clear-
ing prices in the real-time market (34d). The loads are favored in the 
competition with a total payment at Nash equilibrium below the com-
petitive equilibrium levels (assuming estimation error 𝜖 = 0), as shown 
in row 1 of Table 2.

Finally, a simultaneous MPM policy, applied in both the day-ahead 
and real-time markets, results in a Nash-Cournot competition among 
loads, while generators act truthfully in both stages. The resulting equi-
librium is unique, and the policy effectively mitigates generator market 
power.

Corollary 3.  Assuming estimation error 𝜖 = 0, in a market with a day-
ahead MPM policy, the total generator profit at the Nash equilibrium (34) is 
always below the competitive equilibrium levels (33). 
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Table 2 
Comparison of normalized Nash equilibrium (normalized with competitive equilibrium) be-
tween a standard market and a day-ahead market policy market (DA-MPM).
 Case  Social Cost  Generators Aggregate Profit  Loads Aggregate Payment

 DA-MPM 1+
Δ

(||+1)2
∑

𝑗∈
𝑐−1𝑗

1 −
∑

𝑗∈ 𝐶𝑗
−1

∑

𝑗∈ 𝑐
−1
𝑗

2||
(||+1)2

−
Δ

(||+1)2
∑

𝑗∈ 𝑐
−1
𝑗

1 −
∑

𝑗∈ 𝐶𝑗
−1

∑

𝑗∈ 𝑐
−1
𝑗

||
(||+1)2

 Standard  1 1+
2 𝑑𝑑 𝑑𝑟

𝑑2

𝑏𝑟𝑐(||−1)+1
+

2 (𝑑𝑑 )2

𝑑2

𝑏𝑑 𝑐(||−1)
+

2 (𝑑𝑟 )2

𝑑2

𝑏𝑟𝑐(||−1)
1 +

𝑑𝑑 𝑑𝑟

𝑑2

𝑏𝑟𝑐(||−1)+1
+

(𝑑𝑑 )2

𝑑2

𝑏𝑑 𝑐(||−1)
+

(𝑑𝑟 )2

𝑑2

𝑏𝑟𝑐(||−1)

where Δ ∶=
∑

𝑗∈
𝑐𝑗
𝐶𝑗

2 −
(
∑

𝑗∈ 𝐶𝑗
−1)2

∑

𝑗∈ 𝑐
−1
𝑗

From the market perspective, the social cost is higher at the Nash 
equilibrium (34) than the competitive equilibrium (33), as shown in 
column 1 of Table 2.

Corollary 4. Assuming generators are homogeneous, i.e., 𝑐𝑗 = 𝑐, ∀𝑗 ∈ , 
and estimation error 𝜖 = 0, the social cost at the Nash equilibrium (34) is the 
same as the competitive equilibrium (33). 

The corollary uses the fact that for homogeneous generators Δ = 0, 
as shown in Table 2. The term Δ is a non-linear function of the cost 
coefficients of generators and provides a quantitative measure of the 
heterogeneity in the system.

5.2.  Comparison of day-ahead MPM policy with a standard market

We next compare only the equilibrium for a day-ahead MPM pol-
icy with equilibria in a standard market, as the real-time MPM policy 
market equilibrium results in undesirable market outcomes. Unlike a 
set of competitive equilibria in a standard market (17), the competitive 
equilibrium in the market with a day-ahead MPM policy is unique. It 
incentivizes loads to allocate the majority of demand in the day-ahead 
market (33).

Interestingly, at the Nash equilibrium in a market with a day-ahead 
MPM policy, clearing prices in real-time is always higher than in the day-
ahead market (34d) due to the leader-follower structure and strategic 
participation of generators in real-time only. However, in the standard 
market, generators exploit the inelasticity of demand to manipulate the 
prices at Nash equilibrium in two stages, resulting in higher day-ahead 
clearing prices (19e) under certain conditions, i.e., the number of gen-
erators participating in the market and slope of the intercept function. 
We study the role of price-anticipating participants in a standard mar-
ket and market with a day-ahead mitigation policy from the market and 
individual perspectives, i.e., social cost, generators’ profit, and loads’ 
payment in Table 2.

For the sake of comparison between two market settings, we eval-
uate the Nash equilibrium with the assumption that generates are ho-
mogeneous and participate symmetrically in the market. Furthermore, 
we assume the estimation error to be 𝜖 = 0. Since generators are ho-
mogeneous, the market clears with the minimum cost of dispatch that 
equals the social planner cost, as shown in column 1 of Table 2. We next 
look at the individual perspective to evaluate the properties of the Nash 
equilibrium. In the standard market, generators win the competition at 
the Nash equilibrium since they always earn a higher profit than the 
one achieved in the competitive equilibrium level, as shown in row 2 of 
Table 2. However, in the case of the day-ahead MPM policy, loads win 
the competition with lower payment at the Nash equilibrium than the 
competitive equilibrium, as shown in row 1 of Table 2. Although the 
day-ahead MPM policy does have the intended mitigation effect on the 
market power of generators, it results in loads exercising market power 
at the expense of generators.

Fig. 2 compares the (normalized) aggregate profit and (normalized) 
aggregate payment at the Nash equilibrium in the standard market with 
a day-ahead MPM policy (DA-MPM) market, respectively. For simplic-
ity, we assume that 𝑏𝑑 = 𝑏𝑟 = 1

𝑐  and that the estimation error 𝜖 = 0. 
The aggregate generator profit (load payment) at the Nash equilibrium 

is normalized with the corresponding competitive equilibrium levels, 
which are the same in both market settings, and analyzed as we in-
crease the number of participants in the market. If the ratio is greater 
than 1, then it means that generators make more profit and loads have 
to pay more at the Nash equilibrium when compared to the competitive 
equilibrium. This means that generators benefit more than loads. On 
the other hand, if the ratio is less than 1, then loads win the competition 
and benefit more than the generators.  The aggregate profit ratio in the 
DA-MPM policy market, as given by

1 −
𝑏𝑟𝑐(|| − 1)

1 + 𝑏𝑟𝑐(|| − 1)
2||

(|| + 1)2
,

increases monotonically in the number of loads due to increased compe-
tition between loads, signaling a reduction in market power. In contrast, 
the ratio decreases monotonically in the number of generators due to 
increased competition between generators. This increased competition 
with an increase in the number of generators exacerbates their exploita-
tion in the market, as shown by darker colors in the columns of panels 
(b) and (d) in Fig. 2.

The aggregate profit or payment ratio in the standard market in-
creases with the number of loads and decreases with the number of 
generators, as shown in panels (a) and (c) in Fig. 2. The generators al-
ways win the competition in the standard market with higher profit lev-
els at the Nash equilibrium compared with the competitive equilibrium. 
However, the day-ahead MPM policy results in the complete mitigation 
of generator market power, as shown in the comparison of generator 
normalized aggregate profit in the two markets in panels (a) and (b) in 
Fig. 2, respectively.

6.  Variance penalized model for demand uncertainty

In this section, we model the impact of demand uncertainty on a 
two-stage market equilibrium under real-time MPM policies. We employ 
variance-penalized expectation (VPE) optimization to balance the trade-
off between maximizing expected rewards and managing variance as a 
measure of risk in uncertain decision-making caused by demand fluc-
tuations. Several studies have applied similar techniques in financial 
markets for portfolio optimization and, more recently, in the shortest 
path problem, where the objective is to maximize the expected weight 
before reaching a target state (Piribauer et al., 2022).

We assume that demand of each individual load 𝑙 is random and 
denoted by 𝑑𝑙 such that 𝑑𝑑𝑙 + 𝑑𝑟𝑙 = 𝑑𝑙 ,∀𝑙 ∈ . The total two stage demand 
is denoted by 𝑑 ∶=

∑

𝑙∈ 𝑑𝑙 The market operator seeks to minimize the 
cost of meeting the supply demand balance. Also, each generator 𝑗 seeks 
to maximize its profit as: 
max
𝑔𝑑𝑗 ,𝑔

𝑟
𝑗

𝔼[𝜋𝑗 (𝑔𝑑𝑗 , 𝑔
𝑟
𝑗 )] − 𝛿𝑗𝑉 𝑎𝑟(𝜋𝑗 (𝑔𝑑𝑗 , 𝑔

𝑟
𝑗 )) (42)

and load 𝑙 seeks to minimize its payment as: 
min
𝑑𝑑𝑙 ,𝑑

𝑟
𝑙

𝔼[𝜌𝑙(𝑑𝑑𝑙 , 𝑑
𝑟
𝑙 )] + 𝜂𝑙𝑉 𝑎𝑟(𝜌𝑙(𝑑𝑑𝑙 , 𝑑

𝑟
𝑙 )) (43)

Here, 𝛿𝑗 ∈ ℝ+, 𝑗 ∈ , and 𝜂𝑙 ∈ ℝ+, 𝑙 ∈ , are model parameters which 
indicate the risk preference of a participant, described in terms of a 
trade-off between expected rewards and variance. For ease of analysis, 
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Fig. 2. Total profit and total payment at Nash Equilibrium (NE) normalized with competitive equilibrium (CE): total profit in (a) standard markets and (b) day-ahead 
MPM (DA-MPM), and total payment in (c) standard markets and (d) day-ahead MPM (DA-MPM).

we ignore the error in estimating the generator dispatch cost in the stage 
with the MPM policy in the following analysis.

Competitive Equilibrium
We substitute (6), (22), and (23) in (10) to get the individual profit 

function of generator 𝑗, given the clearing price 𝜆𝑑 , as: 

𝜋𝑗 (𝛽𝑑𝑗 ; 𝜆
𝑑 ) =

(

𝜆𝑑 − 𝑑
∑

𝑘∈ 𝑐
−1
𝑘

)

(𝑏𝑑𝜆𝑑 − 𝛽𝑑𝑗 ) +
1
2𝑐𝑗

(

𝑑
∑

𝑘∈ 𝑐
−1
𝑘

)2

(44)

Then the individual problem of each generator 𝑗 is given by: 

max
𝛽𝑑𝑗

𝔼[𝜋𝑗 (𝛽𝑑𝑗 ; 𝜆
𝑑 )] − 𝛿𝑗𝑉 𝑎𝑟(𝜋𝑗 (𝛽𝑑𝑗 ; 𝜆

𝑑 )) (45)

Similarly, we substitute (23) in (11) to get the individual payment func-
tion of load 𝑙, given the clearing price 𝜆𝑑 , as: 

𝜌𝑙(𝑑𝑑𝑙 ; 𝜆
𝑑 ) =

(

𝜆𝑑 − 𝑑
∑

𝑘∈ 𝑐
−1
𝑘

)

𝑑𝑑𝑙 + 𝑑
∑

𝑘∈ 𝑐
−1
𝑘

𝑑𝑙 (46)

and the individual problem of each load 𝑙 is given by: 

min
𝑑𝑑𝑙

𝔼[𝜌𝑙(𝑑𝑑𝑙 ; 𝜆
𝑑 )] + 𝜂𝑙𝑉 𝑎𝑟(𝜌𝑙(𝑑𝑑𝑙 ; 𝜆

𝑑 )) (47)

The resulting competitive equilibrium is characterized below:

Theorem 10. Let’s assume 𝜇 ∈ ℝ, 𝜎2 ∈ ℝ+, and 𝜇̃3 ∈ ℝ denote the mean, 
variance, and standardized skewness of uncertain demand 𝑑. Also, let 𝛿𝑗 ∈
ℝ+, 𝑗 ∈  and 𝜂𝑙 ∈ ℝ+, 𝑙 ∈  denote the variance penalty parameters asso-
ciated with each generator 𝑗 and load 𝑙, respectively. Then, a competitive 
equilibrium in a two-stage market with a real-time MPM policy exists and 
given by: 

𝑑𝑑𝑙 =
𝔼[𝑑2𝑑𝑙] − 𝔼[𝑑]𝔼[𝑑𝑑𝑙]

𝑉 𝑎𝑟(𝑑)
− 1

2
𝜂−1𝑙

∑

𝑗∈ 𝛿
−1
𝑗 +

∑

𝑘∈ 𝜂−1𝑘

(

𝜇3𝜎 + 2𝜇
)

(48a)

𝑔𝑑𝑗 = 1
2

(

𝛿−1𝑗
∑

𝑘∈ 𝛿
−1
𝑘 +

∑

𝑙∈ 𝜂−1𝑙
+

𝑐−1𝑗
∑

𝑘∈ 𝑐
−1
𝑘

)

(

𝜇3𝜎 + 2𝜇
)

(48b)

𝜆𝑑 = 𝔼[𝜆𝑟] + 1
∑

𝑗∈ 𝛿
−1
𝑗 +

∑

𝑙∈ 𝜂−1𝑙

(

𝜇3𝜎 + 2𝜇
)

𝜎2

(
∑

𝑗∈ 𝑐
−1
𝑗 )2

, 𝜆𝑟 = 𝑑
∑

𝑘∈ 𝑐
−1
𝑘

(48c)

We provide the proof of the theorem in Appendix K. Unlike in the de-
terministic case of real-time MPM policy in Theorem 4, the equilibrium 
in Theorem 10 exists uniquely, with the majority of demand in the day-
ahead market, given by: 

𝑑𝑑 =
∑

𝑗∈
𝑔𝑑𝑗 = 𝜇 + 1

2
𝜇̃3𝜎 + 1

2

∑

𝑗∈ 𝛿
−1
𝑗

∑

𝑗∈ 𝛿
−1
𝑗 +

∑

𝑙∈ 𝜂−1𝑙

(

𝜇3𝜎 + 2𝜇
)

(49)

Nash Equilibrium
We next characterize the equilibrium for the competition between 

price-anticipating participants. Similarly, substituting (22), and (23) in
(42), we get the individual problem of generator 𝑗 as: 
max
𝛽𝑑𝑗

𝔼[𝜋𝑗 (𝛽𝑑𝑗 , 𝜆
𝑑 (𝛽𝑑𝑗 ; 𝛽

𝑑
−𝑗 , 𝑑

𝑑 ))] − 𝛿𝑗𝑉 𝑎𝑟(𝜋𝑗 (𝛽𝑑𝑗 , 𝜆
𝑑 (𝛽𝑑𝑗 ; 𝛽

𝑑
−𝑗 , 𝑑

𝑑 ))) s.t. (7)

(50)

Similarly, substituting (22), and (23) in (43), we get the individual prob-
lem of load 𝑙 as: 
max
𝑑𝑑𝑙

𝔼[𝜌𝑙(𝑑𝑑𝑙 , 𝜆
𝑑 (𝑑𝑑𝑙 ; 𝛽

𝑑
𝑗 , 𝑑

𝑑
−𝑙))] − 𝜂𝑙𝑉 𝑎𝑟(𝜌𝑙(𝑑𝑑𝑙 , 𝜆

𝑑 (𝑑𝑑𝑙 ; 𝛽
𝑑
𝑗 , 𝑑

𝑑
−𝑙))) s.t. (7)

(51)

The resulting Nash equilibrium is characterized as below:
Theorem 11. Let’s assume 𝜇 ∈ ℝ, 𝜎2 ∈ ℝ+, and 𝜇̃3 ∈ ℝ denote the 
mean, variance, and standardized skewness of uncertain demand 𝑑. Let 
𝛿𝑗 ∈ ℝ+, 𝑗 ∈  and 𝜂𝑙 ∈ ℝ+, 𝑙 ∈  denote the variance penalty parameters 
associated with each generator 𝑗 and load 𝑙, respectively. Also, assume that 
there are at least two generators, i.e., || ≥ 2. Then, a Nash equilibrium in a 
two-stage market with a real-time MPM policy exists and given by: 

𝑑𝑑 =

(

∑

𝑙∈
𝜅−1
𝑙

)

(

∑

𝑗∈

𝜔−1
𝑗 𝛿𝑗
𝑐𝑗

)

(

∑

𝑗∈
𝜔−1
𝑗 +

∑

𝑙∈
𝜅−1𝑙

(

1− 1
||

)

)

(𝜇̃3𝜎+2𝜇)𝜎2
(

∑

𝑗∈
𝑐−1𝑗

)3

+
2
∑

𝑗∈
𝜔−1
𝑗

(

∑

𝑗∈
𝜔−1
𝑗 +

∑

𝑙∈
𝜅−1𝑙

(

1− 1
||

)

)

𝔼
[

𝑑2
(

∑

𝑙∈

𝜂𝑙
𝜅𝑙
𝑑𝑙

)]

−𝔼[𝑑]𝔼
[

𝑑
(

∑

𝑙∈

𝜂𝑙
𝜅𝑙
𝑑𝑙

)]

(

∑

𝑗∈
𝑐−1𝑗

)2
(52a)

𝑔𝑑𝑗 =
𝜔−1
𝑗

∑

𝑘∈
𝜔−1
𝑘

𝑑𝑑 −
(

1 − 1
||

)

𝜔−1
𝑗

⎛

⎜

⎜

⎜

⎜

⎝

∑

𝑘∈

𝜔−1
𝑘 𝛿𝑘
𝑐𝑘

∑

𝑘∈
𝜔−1
𝑘

−
𝛿𝑗
𝑐𝑗

⎞

⎟

⎟

⎟

⎟

⎠

(𝜇̃3𝜎 + 2𝜇)𝜎2
(

∑

𝑘∈
𝑐−1𝑘

)3
(52b)

𝜆𝑑 = 𝔼[𝜆𝑟] + 1
∑

𝑗∈
𝜔−1
𝑗

(

1 − 1
||

)𝑑𝑑 −

∑

𝑗∈

𝜔−1
𝑗 𝛿𝑗
𝑐𝑗

∑

𝑗∈
𝜔−1
𝑗

(𝜇̃3𝜎 + 2𝜇)𝜎2
(

∑

𝑗∈ 𝑐
−1
𝑗

)3
(52c)

where 𝜅𝑙 ∶= (𝑏𝑑 ||)−1 + 2𝜂𝑙
𝑉 𝑎𝑟(𝑑)

(

∑

𝑗∈ 𝑐−1𝑗
)2  and 𝜔𝑗 ∶= (𝑏𝑑 ||)−1 +

2𝛿𝑗
𝑉 𝑎𝑟(𝑑)

(

∑

𝑗∈ 𝑐−1𝑗
)2 , respectively. 

We provide the proof of the theorem in Appendix L. In the stochas-
tic setting with uncertain demand, the total load allocation in the day-
ahead stage (as given in Eq. (52a)) is determined as a function of the 
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Fig. 3. Day-ahead allocation at (a) competitive equilibrium and (b) Nash equilibrium with respect to homogeneous penalty parameters 𝛿 (x-axis) and 𝜂 (y-axis) 
associated with generators and loads.

expected demand, scaled by constant coefficients that depend on the 
penalty parameters 𝛿𝑗 , 𝑗 ∈  and 𝜂𝑙 , 𝑙 ∈ . On one hand, in a largely risk-
neutral market setting, where the penalty parameters are close to zero, 
the day-ahead allocation tends to vanish, thereby shifting most of the 
load adjustment to the real-time stage. On the other hand, in a strongly 
risk-averse market with large penalty parameters, assuming homoge-
neous penalty parameters for simplicity (i.e.,𝛿𝑗 = 𝛿, ∀𝑗 ∈ , 𝜂𝑙 = 𝜂, ∀𝑙 ∈
), the day-ahead allocation is given by::

lim
𝛿→∞,
𝜂→∞

𝑑𝑑 ≈
(|| + 2||)(|| − 1)
||(|| + || − 1)

( 1
2
𝜇̃3𝜎+𝜇)

However, the forced load allocation in the day-ahead stage results in an 
increase in day-ahead prices on the order of 𝑂(𝛿), i.e.,
lim
𝛿→∞,
𝜂→∞

𝜆𝑑 → ∞

Therefore, the real-time MPM policy may not be desirable from the op-
erator perspective.

6.1.  Impact of penalty parameters

We now analyze the impact of the penalty parameters 𝛿𝑗 , 𝑗 ∈ 
and 𝜂𝑙 , 𝑙 ∈  on the competitive and Nash equilibria in Theorems 10 
and 11, respectively, using a numerical case study. For ease of analy-
sis, we consider two generators with equal cost coefficients and equal 
penalty parameter, i.e., 𝑐1 = 𝑐2 = 𝑐 = 0.1$∕𝑀𝑊 2 and 𝛿1 = 𝛿2 = 𝛿. We 
also consider an uncertain net inelastic load (demand minus renew-
able generation), sampled 100, 000 times from a normal distribution1
𝑑 ∼ 𝑁(150, 15). Moreover, we fix the value of the constant slope 𝑏𝑑 =
1
𝑐 = 10.
First, we examine the impact of the penalty parameters on the day-

ahead load allocation at the equilibria, as given in Eqs. (48a) and (52a), 
respectively. Fig. 3 illustrates the resulting allocations - (a) at the com-
petitive equilibrium and (b) at the Nash equilibrium - as we vary the 
penalty parameters, 𝛿 ∈ [10−2, 102] and 𝜂 ∈ [10−2, 102], respectively. In-
terestingly, at the competitive equilibrium (panel a), the load is con-
sistently allocated above the expected value of net demand, 𝔼[𝑑] = 150
MW, resulting in low or even negative demand in the real-time market. 
Moreover, a small value of 𝛿 - representing more risk-averse generators - 
has a relatively stronger impact on load allocation than its counterpart 𝜂, 
which reflects the risk preference of the loads, as shown on the left edge 
of the panel (a) in Fig. 3. We observe a similar behavior, at the Nash 

1 The data analysis on load data from New York ISO for 2023 indicated low 
skewness values, i.e., 𝜇̃3 ∈ [−1.5, 1.5]. Hence, for simplicity, we assume a sym-
metric normal distribution to model the uncertainty in net demand.

equilibrium, where risk preference of generators again has a stronger 
effect on load allocation, as shown in the top-left corner of panel (b). 
However, in the case of risk-neutral loads, the day-ahead allocation de-
creases, and more demand is cleared in real-time. The situation worsens 
for small values of the penalty parameters - indicating increasingly risk-
neutral participants - the day-ahead load allocation drops significantly 
and eventually vanishes, as shown in the bottom-left corner of panel (b) 
in Fig. 3. This results in a similar observation to Theorem 5 where load 
clears in the real-time market, a scenario that is typically undesirable 
for market operators.

In Fig. 4, we show the day-ahead clearing price as the penalty pa-
rameters 𝛿 and 𝜂 are varied along the x-axis and y-axis, respectively. 
As before, we compare the resulting prices at the (a) competitive equi-
librium and (b) Nash equilibrium. In both cases, the prices - given by 
Eqs. (48a) and (52a) - increase at a polynomial rate with increasingly 
risk-averse market participant behavior, as seen in the top-right corners 
of panels (a) and (b) in Fig. 4. Although the day-ahead prices are con-
sistently higher than the expected real-time prices at the competitive 
equilibrium, this is not always true in the case of the Nash equilibrium. 
Interestingly, when generators are risk-averse (high 𝛿) and loads are 
risk-neutral (low 𝜂), the day-ahead prices fall below the expected real-
time prices -and may even become negative. Intuitively, in such a sce-
nario, the load prefers to allocate less demand in the day-ahead market 
(as seen along the bottom edge of panel (b) in Fig. 3), while genera-
tors prefers to clear more demand in the day-ahead, resulting in lower 
prices. Moreover, a higher variance penalty (i.e., a large 𝛿) discourages 
generators from relying solely on the real-time market, as doing so could 
expose them to higher profit variance.

We next analyze the relation between market power, measured as the 
ratio of aggregate generator profit at the Nash equilibrium and at the 
competitive equilibrium, and the penalty parameters. A similar trend is 
observed for the aggregate load payment. In Fig. 5, we show the ratio 
for demand 𝑑 ∼ 𝑁(150, 15), sampled 100,000 times for different values 
of (a) 𝛿 as we very 𝜂, and (b) 𝜂 as we very 𝛿. In symmetric cases - i.e., 
(low 𝛿, low 𝜂), (med 𝛿, med 𝜂), and (high 𝛿, high 𝜂) - the profit ra-
tio remains relatively small compared to asymmetric cases, where one 
set of participants is more risk-averse than the other. Notably, the ratio 
becomes significantly higher in boundary scenarios, such as when gen-
erators are risk-neutral (low 𝛿) and loads are risk-averse (high 𝜂), or vice 
versa. These cases indicate the presence of excessive market power, as 
shown on the right edge of panel (a) and the left edge of panel (b) in 
Fig. 5, respectively. Moreover, when load participants are risk-neutral, 
they tend to exert market power, resulting in a profit ratio below 1 - as 
shown by the blue scatter plot in panel (a) and the purple scatter plot 
in panel (b). Overall, the risk preference of generators has a relatively 
smaller impact on the overall market power.
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Fig. 4. Day-ahead price at (a) competitive equilibrium and (b) Nash equilibrium with respect to homogeneous penalty parameters 𝛿 (x-axis) and 𝜂 (y-axis) associated 
with generators and loads.

Fig. 5. Aggregate generator profit ratio (Nash Equilibrium (NE) to Competitive Equilibrium (CE)) for demand 𝑑 ∼  (150, 15), sampled 100,000 times, with respect 
to homogeneous penalty parameters: (a) 𝜂 for low, medium, and high values of 𝛿, and (b) 𝛿 for low, medium, and high values of 𝜂.

7.  Conclusions

We analyze strategic interaction in a two-stage settlement market - 
commonly used by many system operators - under system-level MPM 
policies, modeling generators that bid supply-function intercepts and 
loads that strategically allocate quantities across stages. Our focus is 
on default-bid substitution schemes in which noncompetitive gener-
ator offers are replaced with operator-estimated cost-based bids. Us-
ing a (no-mitigation) standard market benchmark, we show that day-
ahead and simultaneous MPM policies (i.e., MPM in both market stages) 
substantially reduce generator market power compared to either real-
time MPM policy, although both policies shift strategic leverage toward 
loads. These results demonstrate that system-level substitution rules can 
materially reshape incentives on both sides of the market.

Under a real-time MPM policy, strategic interaction in the day-ahead 
market shifts all demand to real time, yielding an undesirable market 
outcome. To test the robustness of this effect, we incorporate demand 
uncertainty through a variance-penalized expectation framework. Using 
variance as a measure of risk in uncertain decision making, we show 
that under low risk aversion, loads continue to allocate more demand to 
the real-time market, similar to the outcome in the deterministic model. 
However, as participants become more risk-averse, demand gradually 
shifts toward the day-ahead market, driving up day-ahead prices. Inter-
estingly, an imbalance in risk, where one group of participants is sig-
nificantly more risk-averse than the other, tends to favor generators, 
leading to an increase in market power.
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Appendix A.  Equilibrium comparison with slope function bid in a 
standard market

In this section, we compare the intercept function bidding with the 
conventional slope function bidding2, a.k.a. linear supply function in a 

2 For ease of comparison between the two bidding mechanisms, we say a gen-
erator submits an intercept function or a slope function when it bids intercept 
or slope of the supply function, respectively
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Fig. A.1. Normalized load allocation in the day-ahead stage in intercept func-
tion bid-based standard market.

standard market (without the implementation of an MPM policy). Our 
goal is to further understand the impact of the functional form of the bid 
on the market power of respective participants. In the case of the slope 
function bidding, each generator submits a slope function in the day-
ahead and the real-time markets, parameterized by 𝑏̂𝑑𝑗 ∈ ℝ≥0, 𝑏̂𝑟𝑗 ∈ ℝ≥0, 
respectively: 
𝑔𝑑𝑗 = 𝑏̂𝑑𝑗 𝜆

𝑑 , 𝑔𝑟𝑗 = 𝑏̂𝑟𝑗𝜆
𝑟. (A.1)

Here 𝜆𝑑 and 𝜆𝑟 denote the prices in the day-ahead and real-time mar-
ket, respectively. We first characterize the competitive equilibrium in a 
standard two-stage market.
Theorem 12. (You et al., 2022) A competitive equilibrium in a two-stage 
market exists and is explicitly given by 

𝑏̂𝑑𝑗 + 𝑏̂𝑟𝑗 =
1
𝑐𝑗
, 𝑏̂𝑑𝑗 ≥ 0, 𝑏̂𝑟𝑗 ≥ 0,∀𝑗 ∈  (A.2a)

𝑑𝑑𝑙 + 𝑑𝑟𝑙 = 𝑑𝑙 ,∀𝑙 ∈  (A.2b)

𝜆𝑑 = 𝜆𝑟 = 𝑑
∑

𝑗∈ 𝑐
−1
𝑗

(A.2c)

The resulting competitive equilibrium is efficient, i.e., it aligns with the 
social planner problem (5). Similar to the competitive equilibrium for 
intercept function bidding in Theorem 1, the resulting equilibrium in 
Theorem 12 exists non-uniquely. We next consider the case of price-
anticipating participants and characterize the resulting Nash equilib-
rium.

Theorem 13. (You et al., 2022) Assume strategic generators are homo-
geneous (𝑐𝑗 ∶= 𝑐, ∀𝑗 ∈ ). If there are at least three firms, i.e., || ≥ 3, a 
symmetric Nash equilibrium in a two-stage market exists with identical bids 
(𝑏̂𝑣𝑗 ∶= 𝑏̂𝑣𝑗 , ∀𝑗 ∈ , 𝑣 ∈ {𝑑, 𝑟}). Further, this equilibrium is unique, as:

𝑏̂𝑑𝑗 =
||(|| − 1) + 1
||(|| − 1)

|| − 2
|| − 1

1
𝑐
, 𝑏̂𝑟𝑗 =

1
|| + 1

(|| − 2)2

(|| − 1)2
1
𝑐

(A.3)

𝑑𝑑𝑙 =
||(|| − 1) + 1

||(|| + 1)(|| − 1)
𝑑, 𝑑𝑟𝑙 = 𝑑𝑙 − 𝑑𝑑𝑙 (A.4)

𝜆𝑑 =
||

|| + 1
|| − 1
|| − 2

𝑐
||

𝑑, 𝜆𝑟 =
|| − 1
|| − 2

𝑐
||

𝑑 (A.5)

Theorem 13 shows the existence of a unique symmetric Nash equi-
librium. At the resulting equilibrium, loads allocate more demand in the 
day-ahead market to exploit lower prices. However, the load allocation 
at the Nash equilibrium in the intercept function in Theorem 3 is a func-
tion of market parameters 𝑏𝑑 and 𝑏𝑟. Fig. A.1 plots the aggregate load 

Fig. A.2. Total profit at Nash equilibrium normalized with competitive equilib-
rium in intercept function bid-based standard market.

allocation in the day-ahead market as the slope of the intercept func-
tion bid changes in the day-ahead and real-time markets. We assume 4
strategic homogeneous generators and 4 strategic loads are participat-
ing in a standard two-stage market setting. The mix of individual inelas-
tic demand bids is given by 𝑑𝑙 = [0.2, 25.6, 106.6, 199.6]𝑇𝑀𝑊  with total 
aggregate inelastic demand 𝑑 = 332𝑀𝑊 . We assume a cost coefficient 
𝑐𝑗 = 0.1$∕𝑀𝑊 2, ∀𝑗 ∈  corresponding to the cost coefficients from the 
IEEE 300-bus system (Zimmerman & Murillo-Sanchez, 2019) for homo-
geneous generators. The aggregate allocation in the day-ahead market 
(normalized with the total inelastic demand) can be increased by the 
operator with the help of appropriate slope parameters.

Fig. A.2 plots the normalized aggregate profit at the Nash equilib-
rium in the intercept function bid market mechanism in a standard mar-
ket w.r.t the day-ahead and real-time slope parameters. As discussed in 
row 2 of Table 2, the market power of generators in the standard market 
is relatively low for either end of the spectrum, i.e., most of the demand 
is allocated in either day-ahead or real-time market. Furthermore, high 
values of slope parameters 𝑏𝑑 (𝑏𝑟) for a total allocation of demand in day-
ahead (real-time) further normalize the market power of generators at 
Nash equilibrium, as shown in the top left and the bottom right part of 
Fig. A.2.

Fig. A.3 compares the (normalized) aggregate profit at Nash equilib-
rium in the standard market without any mitigation policy. We perturb 
the value of the slope parameter for the intercept function bid to under-
stand the impact of model parameters, i.e.,
𝑏𝑑 = 𝑏𝑟 = 𝑏, 𝑏 ∈ {(1 + 𝛾)−1𝑐−1, 𝑐−1, (1 − 𝛾)−1𝑐−1},

where 𝛾 = 0.1. For the sake of comparison between the two market set-
tings, we evaluate the Nash equilibrium with the assumption that || > 2
in the market. The aggregate profit is normalized with the profit at com-
petitive equilibrium levels. In the slope function bid-based market mech-
anism, there is a shift in the market power between loads and genera-
tors, e.g., loads win the competition for a relatively large number of 
generators in the market and vice versa. In particular, for a small num-
ber of loads and a large number of generators, loads exercise market 
power with lower payments at the expense of increased competition 
between generators. Similarly, a decrease in the number of generators 
and an increase in the number of loads favors generators in the market, 
as shown in panel (d) in Fig. A.3. However, generators always win the 
competition with higher profits at the Nash equilibrium in the intercept 
function bid based market mechanism, as shown in panel (b) in Fig. A.3. 
Moreover, such behavior, where generators always win the competition, 
exists regardless of slope parameter values in the intercept function bid, 
as shown in row 2 of Table 2 and panels (a),(c) in Fig. A.3.
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Fig. A.3. Aggregate generators’ profit at Nash equilibrium (NE) normalized with competitive equilibrium (CE) in a standard market for Intercept function bid (a) 
with parameters 𝑏𝑑 = 𝑏𝑟 = (1 − 𝛾)−1𝑐−1, (b) with parameters 𝑏𝑑 = 𝑏𝑟 = 𝑐−1, (c) with parameters 𝑏𝑑 = 𝑏𝑟 = (1 + 𝛾)−1𝑐−1, and (d) Slope function bid.

Appendix B.  Proof of Theorem 1

Under price-taking behavior, the individual problem for loads (13) 
is a linear program with the closed-form solution given by: 
⎧

⎪

⎨

⎪

⎩

𝑑𝑑𝑙 = ∞, 𝑑𝑟𝑙 = −∞, 𝑑𝑑𝑙 + 𝑑𝑟𝑙 = 𝑑𝑙 ,  if 𝜆𝑑 < 𝜆𝑟

𝑑𝑑𝑙 = −∞, 𝑑𝑟𝑙 = ∞, 𝑑𝑑𝑙 + 𝑑𝑟𝑙 = 𝑑𝑙 ,  if 𝜆𝑑 > 𝜆𝑟

𝑑𝑑𝑙 + 𝑑𝑟𝑙 = 𝑑𝑙 ,  if 𝜆𝑑 = 𝜆𝑟
(B.1)

where loads prefer lower price in the market. The individual problem 
for generators (16) requires: 
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛽𝑑𝑗 = ∞, 𝛽𝑟𝑗 = −∞, 𝛽𝑑𝑗 + 𝛽𝑟𝑗 =
𝑏𝑑+𝑏𝑟−𝑐−1𝑗
∑

𝑗∈ 𝑐−1𝑗
𝑑,  if 𝜆𝑑 < 𝜆𝑟

𝛽𝑑𝑗 = −∞, 𝛽𝑟𝑗 = ∞, 𝛽𝑑𝑗 + 𝛽𝑟𝑗 =
𝑏𝑑+𝑏𝑟−𝑐−1𝑗
∑

𝑗∈ 𝑐−1𝑗
𝑑,  if 𝜆𝑑 > 𝜆𝑟

𝛽𝑑𝑗 + 𝛽𝑟𝑗 =
𝑏𝑑+𝑏𝑟−𝑐−1𝑗
∑

𝑗∈ 𝑐−1𝑗
𝑑,  if 𝜆𝑑 = 𝜆𝑟

(B.2)

where generators prefer higher prices in the market and seek to maxi-
mize profit. At the competitive equilibrium the intercept function (6),(8) 
and individual optimal solution (B.1),(B.2) holds simultaneously and 
this is only possible if the market price is equal in the two stages. Thus 
a set of competitive equilibria exists.

Appendix C.  Proof of Theorem 2

Given the parameter (𝛽𝑑𝑗 , 𝑔𝑑𝑗 , 𝑑 − 𝑑𝑑 ) from market-clearing in the day-
ahead market, each generator 𝑗 maximizes their profit (14) for the opti-
mal decision 𝛽𝑟𝑗  with complete knowledge of the market clearing in the 
real-time stage as characterized below: 
∑

𝑗∈
𝑔𝑟𝑗 = 𝑑𝑟 ⟹

∑

𝑗∈
(𝑏𝑟𝜆𝑟 − 𝛽𝑟𝑗 ) = 𝑑𝑟 ⟹ 𝜆𝑟 =

𝑑𝑟 + 𝛽𝑟,

𝑏𝑟||
(C.1)

where 𝛽𝑟, =
∑

𝑗∈ 𝛽
𝑟
𝑗 . Given the parameter (𝛽𝑑𝑗 , 𝑔𝑑𝑗 , 𝑑 − 𝑑𝑑 ), substitut-

ing (C.1) in the individual problem (12) gives the concave strategic in-
dividual problem of generators, i.e., the real-time subgame problem: 

max
𝛽𝑟𝑗

(

𝑑𝑟 + 𝛽𝑟,

𝑏𝑟||

)(

𝑏𝑟
𝑑𝑟 + 𝛽𝑟,

𝑏𝑟||
− 𝛽𝑟𝑗

)

+ 𝜆𝑑𝑔𝑑𝑗 −
𝑐𝑗
2

(

𝑔𝑑𝑗 + 𝑏𝑟
(

𝑑𝑟 + 𝛽𝑟,

𝑏𝑟||

)

− 𝛽𝑟𝑗

)2

(C.2)

Hence, taking the derivative of (C.2) with respect to bid 𝛽𝑟𝑗  we get:
𝜕𝜋𝑗
𝜕𝛽𝑟𝑗

= 1
𝑏𝑟||

(

𝑑𝑟 + 𝛽𝑟,

||
−𝛽𝑟𝑗

)

−
|| − 1
||

(

𝑑𝑟 + 𝛽𝑟,

𝑏𝑟||

)

+ 𝑐𝑗

(

𝑔𝑑𝑗 +
𝑑𝑟 + 𝛽𝑟,

||
− 𝛽𝑟𝑗

)

|| − 1
||

= 0

⟹
1

𝑏(|| − 1)
𝑔𝑟𝑗 − 𝜆𝑟 + 𝑐𝑗

(

𝑔𝑑𝑗 + 𝑔𝑟𝑗
)

= 0 (C.3)

where we substitute (8) and (C.1). The Eq. (C.3) is the required KKT con-
dition of the convex dispatch problem (18), with 𝜆𝑟 as the dual variable 
of the constraint (18b).

Appendix D.  Proof of Theorem 3

From the KKT conditions of the augmented convex social planner 
problem (18), we have the relation between price and generator dis-
patch in the real-time stage 𝜆𝑟 as 

𝑔𝑟𝑗 =
𝜆𝑟 − 𝑐𝑗𝑔𝑑𝑗

𝐶𝑗
⟹

∑

𝑗∈
𝑔𝑟𝑗 =

∑

𝑗∈

𝜆𝑟 − 𝑐𝑗𝑔𝑑𝑗
𝐶𝑗

(D.1)

where 𝐶𝑗 ∶=
(

1
𝑏𝑟(||−1) + 𝑐𝑗

)

. Substituting (9) in the Eq. (D.1), we get: 

𝑑𝑟 =
∑

𝑗∈

𝜆𝑟 − 𝑐𝑗𝑔𝑑𝑗
𝐶𝑗

⟹ 𝜆𝑟 =
𝑑𝑟 +

∑

𝑗∈
𝑐𝑗
𝐶𝑗
𝑔𝑑𝑗

∑

𝑗∈ 𝐶
−1
𝑗

(D.2)

Substituting (D.2) in (D.1) we get 

𝑔𝑟𝑗 =
𝑑𝑟 +

∑

𝑘∈
𝑐𝑘
𝐶𝑘

𝑔𝑑𝑘
𝐶𝑗

∑

𝑘∈ 𝐶
−1
𝑘

−
𝑐𝑗
𝐶𝑗

𝑔𝑑𝑗 (D.3)

From the market-clearing in the day-ahead stage (7), we have the fol-
lowing relation

⟹
∑

𝑗∈

(

𝑏𝑑𝜆𝑑 − 𝛽𝑑𝑗
)

=
∑

𝑙∈
𝑑𝑑𝑙 ⟹

𝜆𝑑 =
𝑑𝑑 + 𝛽𝑑,

𝑏𝑑 ||
, 𝑔𝑑𝑗 = 𝑏𝑑

𝑑𝑑 + 𝛽𝑑,

𝑏𝑑 ||
− 𝛽𝑑𝑗 (D.4)

where 𝛽𝑑, =
∑

𝑗∈ 𝛽
𝑑
𝑗 . Substituting (D.2)–(D.4) in the individual 

profit (14), we get, 

max
𝛽𝑑𝑗

𝑑𝑑+𝛽𝑑,

𝑏𝑑||

(

𝑑𝑑+𝛽𝑑,

||
−𝛽𝑑

𝑗

)

+

⎛

⎜

⎜

⎜

⎝

𝑑𝑟+
∑

𝑚∈

𝑐𝑚
𝐶𝑚

(

𝑑𝑑+𝛽𝑑,

||
−𝛽𝑑

𝑚

)

𝐶𝑗
∑

𝑘∈ 𝐶
−1
𝑘

⎞

⎟

⎟

⎟

⎠

2

−
𝑐𝑗
𝐶𝑗

𝑑𝑟+
∑

𝑚∈

𝑐𝑚
𝐶𝑚

(

𝑑𝑑+𝛽𝑑,

||
−𝛽𝑑

𝑚

)

∑

𝑘∈ 𝐶
−1
𝑘

(

𝑑𝑑+𝛽𝑑,

||
−𝑏𝑑𝑗

)

−
𝑐𝑗
2

⎛

⎜

⎜

⎜

⎝

(

1 −
𝑐𝑗
𝐶𝑗

)(

𝑑𝑑 + 𝛽𝑑,

||
− 𝛽𝑑

𝑗

)

+
𝑑𝑟 +

∑

𝑚∈
𝑐𝑚
𝐶𝑚

(

𝑑𝑑+𝛽𝑑,

||
− 𝛽𝑑

𝑚

)

𝐶𝑗
∑

𝑘∈ 𝐶
−1
𝑘

⎞

⎟

⎟

⎟

⎠

2

(D.5)
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Writing the first order condition and taking the derivative of (D.5) wrt 
𝛽𝑑𝑗  we have 

⟹
1

𝑏𝑑||

(

𝑑𝑑+𝛽𝑑,

||
−𝛽𝑑

𝑗

)

+
𝑑𝑑+𝛽𝑑,

𝑏𝑑||

(

1
||

−1
)

+ 2
𝐶𝑗

⎛

⎜

⎜

⎜

⎝

𝑑𝑟+
∑

𝑚∈
𝑐𝑚
𝐶𝑚

(

𝑑𝑑+𝛽𝑑,

||
−𝛽𝑑

𝑚

)

∑

𝑘∈ 𝐶
−1
𝑘

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

∑

𝑚∈
𝑐𝑚
𝐶𝑚

1
||

− 𝑐𝑗
𝐶𝑗

∑

𝑘∈ 𝐶
−1
𝑘

⎞

⎟

⎟

⎠

−
𝑐𝑗
𝐶𝑗

⎛

⎜

⎜

⎝

∑

𝑚∈
𝑐𝑚
𝐶𝑚

1
||

− 𝑐𝑗
𝐶𝑗

∑

𝑘∈ 𝐶
−1
𝑘

⎞

⎟

⎟

⎠

(

𝑑𝑑 + 𝛽𝑑,

||
− 𝛽𝑑

𝑗

)

−
𝑐𝑗
𝐶𝑗

𝑑𝑟 +
∑

𝑚∈
𝑐𝑚
𝐶𝑚

(

𝑑𝑑+𝛽𝑑,

||
− 𝛽𝑑

𝑚

)

∑

𝑘∈ 𝐶
−1
𝑘

(

1
||

− 1
)

− 𝑐𝑗

⎛

⎜

⎜

⎜

⎝

(

1−
𝑐𝑗
𝐶𝑗

)(

𝑑𝑑+𝛽𝑑,

||
−𝑏𝑑𝑗

)

+
𝑑𝑟+

∑

𝑚∈
𝑐𝑚
𝐶𝑚

(

𝑑𝑑+𝛽𝑑,

||
−𝑏𝑑𝑚

)

𝐶𝑗
∑

𝑘∈ 𝐶
−1
𝑘

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

(

1−
𝑐𝑗
𝐶𝑗

)(

1
||

−1
)

+ 1
𝐶𝑗

∑

𝑚∈
𝑐𝑚
𝐶𝑚

1
||

− 𝑐𝑗
𝐶𝑗

∑

𝑘∈ 𝐶
−1
𝑘

⎞

⎟

⎟

⎠

= 0 (D.6)

Assuming generators are homogeneous, i.e. 𝑐𝑗 ∶= 𝑐, ∀𝑗 ∈  and we solve 
for symmetric equilibrium in the market, i.e., 𝛽𝑑𝑗 ∶= 𝛽𝑑 , ∀𝑗 ∈ , the 
Eq. (D.6) can be rewritten as : 

⟹ 𝛽𝑑 = 𝑏𝑑𝑐 𝑑
||

+ 𝑏𝑑𝑐 𝑑
𝑟

||

(

1 − 𝑐
𝐶

)

− 𝑑𝑑

||
|| − 2
|| − 1

(D.7)

Recall 𝐶 =
(

1
𝑏𝑟(||−1) + 𝑐

)

. Similarly, substituting (D.2)–(D.4) in the in-
dividual payment problem (15), we get a convex optimization problem, 

min
𝑑𝑑𝑙

𝑑𝑑 + 𝛽𝑑,

𝑏𝑑 ||
𝑑𝑑𝑙 +

𝑑 − 𝑑𝑑 +
∑

𝑚∈
𝑐𝑚
𝐶𝑚

(

𝑑𝑑+𝛽𝑑,
|| − 𝛽𝑑𝑚

)

∑

𝑘∈ 𝐶
−1
𝑘

(𝑑𝑙 − 𝑑𝑑𝑙 ) (D.8)

Taking the derivative of (D.8) we have

⟹
𝑑𝑑𝑙

𝑏𝑑 ||
+
𝑑𝑑+𝛽𝑑,

𝑏𝑑 ||
+

−1 +
∑

𝑚∈
𝑐𝑚
𝐶𝑚

1
||

∑

𝑘∈ 𝐶
−1
𝑘

(𝑑𝑙 − 𝑑𝑑𝑙 )

−
𝑑 − 𝑑𝑑+

∑

𝑚∈
𝑐𝑚
𝐶𝑚

(

𝑑𝑑+𝛽𝑑,
|| −𝛽𝑑𝑚

)

∑

𝑘∈ 𝐶
−1
𝑘

= 0 (D.9)

Assume generators are homogeneous, i.e. 𝑐𝑗 ∶= 𝑐, ∀𝑗 ∈ . We first sum 
over 𝑙 ∈  and solve for the case of symmetric bid participation of gen-
erators by rewriting the Eq. (D.9) as, 

⟹ 𝑑𝑑 = −
||

|| + 1

||𝛽𝑑
𝑗 + 𝑏𝑑𝐶

−(||+1)+ 𝑐
𝐶

||
𝑑

1 + 𝑏𝑑

𝑏𝑟(||−1)

(D.10)

Solving the Eqs. (6),(8),(D.2)–(D.4),(D.7), and (D.10) simultaneously for 
the equilibrium, we get the unique Nash equilibrium. Thus the symmet-
ric Nash equilibrium exists uniquely.

Appendix E.  Proof of Theorem 4

Under price-taking behavior, the individual problem for loads (25) 
is a linear program with the closed-form solution given by: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑑𝑙 = ∞, 𝑑𝑟𝑙 = −∞, 𝑑𝑑𝑙 + 𝑑𝑟𝑙 = 𝑑𝑙 ,  if 𝜆𝑑 < 𝑑
∑

𝑘∈(𝑐𝑘+𝜖𝑘)−1

𝑑𝑑𝑙 = −∞, 𝑑𝑟𝑙 = ∞, 𝑑𝑑𝑙 + 𝑑𝑟𝑙 = 𝑑𝑙 ,  if 𝜆𝑑 > 𝑑
∑

𝑘∈(𝑐𝑘+𝜖𝑘)−1

𝑑𝑑𝑙 + 𝑑𝑟𝑙 = 𝑑𝑙 ,  if 𝜆𝑑 = 𝑑
∑

𝑘∈(𝑐𝑘+𝜖𝑘)−1

(E.1)

where loads prefers lower price in the market. The individual problem 
for generators (24) requires: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛽𝑑𝑗 = ∞,  if 𝜆𝑑 < 𝑑
∑

𝑘∈(𝑐𝑘+𝜖𝑘)−1

𝛽𝑑𝑗 = −∞,  if 𝜆𝑑 > 𝑑
∑

𝑘∈(𝑐𝑘+𝜖𝑘)−1

𝛽𝑑𝑗 ∈ ℝ,  if 𝜆𝑑 = 𝑑
∑

𝑘∈(𝑐𝑘+𝜖𝑘)−1

(E.2)

where generators prefer higher prices in the market and seek to max-
imize profit. At the competitive equilibrium the day-ahead supply 
function (6), real-time true dispatch condition (22), real-time clearing 
prices (23), and the individual optimal solution (E.1),(E.2) holds simul-
taneously and this is only possible if the market price is equal in the two 
stages. Thus a set of competitive equilibria exists.

Appendix F.  Proof of Theorem 5

From the market-clearing in the day-ahead stage (7), we have the 
following relation

⟹
∑

𝑗∈

(

𝑏𝑑𝜆𝑑 − 𝛽𝑑𝑗
)

=
∑

𝑙∈
𝑑𝑑𝑙

⟹ 𝜆𝑑 =
𝑑𝑑 + 𝛽𝑑,

𝑏𝑑 ||
, 𝑔𝑑𝑗 = 𝑏𝑑

𝑑𝑑 + 𝛽𝑑,

𝑏𝑑 ||
− 𝛽𝑑𝑗 (F.1)

Substituting the real-time true dispatch condition (22), real-time clear-
ing prices (23), day-ahead dispatch and day-ahead prices (F.1) in the 
individual problem of generator (27), we get: 

max
𝛽𝑑𝑗

(

𝑑𝑑 + 𝛽𝑑,

𝑏𝑑||
− 𝑑

∑

𝑘∈(𝑐𝑘 + 𝜖𝑘)−1

)

(

𝑑𝑑 + 𝛽𝑑,

||
− 𝛽𝑑

𝑗

)

+
𝑐−1𝑗

2

(

𝑑
∑

𝑗∈ 𝑐
−1
𝑗

)2

(F.2)

where 𝛽𝑑, =
∑

𝑗∈ 𝛽
𝑑
𝑗 . Taking the derivative of (F.2) wrt 𝛽𝑑𝑗  and writing 

the first-order condition: 

1
𝑏𝑑||

(

𝑑𝑑 + 𝛽𝑑,

||
− 𝛽𝑑

𝑗

)

+

(

𝑑𝑑 + 𝛽𝑑,

𝑏𝑑||
− 𝑑

∑

𝑘∈(𝑐𝑘 + 𝜖𝑘)−1

)

(

1
||

− 1
)

= 0 (F.3)

Summing the Eq. (F.3) over the set of generators, i.e., 𝑗 ∈  we get 

⟹
1

𝑏𝑑||
𝑑𝑑 −

(

𝑑𝑑 + 𝛽𝑑,

𝑏𝑑||
− 𝑑

∑

𝑘∈(𝑐𝑘+𝜖𝑘)−1

)

(||−1)=0

⟹ 𝛽𝑑,=
𝑏𝑑||

∑

𝑘∈(𝑐𝑘+𝜖𝑘)−1
𝑑 −

(||−2)
(||−1)

𝑑𝑑

⟹ 𝛽𝑗 = 𝑏𝑑 𝑑
∑

𝑘∈(𝑐𝑘 + 𝜖𝑘)−1
−

|| − 2
||

1
(|| − 1)

𝑑𝑑 (F.4a)

Similarly, substituting the real-time clearing prices (23) and day-ahead 
prices (F.1) in the individual problem of generator (28), we get: 

min
𝑑𝑑𝑙

(

𝑑𝑑 + 𝛽𝑑,

𝑏𝑑||

)

𝑑𝑑
𝑙 +

(

𝑑
∑

𝑘∈(𝑐𝑘 + 𝜖𝑘)−1

)

(𝑑𝑙 − 𝑑𝑑
𝑙 ) (F.5)

Writing the first-order condition of the convex optimization prob-
lem (F.5), we get 
𝑑𝑑𝑙 + 𝑑𝑑 + 𝛽𝑑,

𝑏𝑑 ||
− 𝑑

∑

𝑘∈(𝑐𝑘 + 𝜖𝑘)−1
= 0 (F.6)
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Summing the Eq. (F.6) over 𝑙 ∈ , we get 

⟹ 𝑑𝑑 =
||

|| + 1
𝑏𝑑 ||

∑

𝑘∈(𝑐𝑘 + 𝜖𝑘)−1
𝑑 −

||
|| + 1

𝛽𝑑, (F.7)

At the equilibrium the Eqs. (2),(23),(F.1),(F.4a), and (F.7) must hold 
simultaneously. Solving them simultaneously, we get the unique equi-
librium. This completes the proof.

Appendix G.  Proof of Theorem 6

Under price-taking behavior, the individual problem for loads (13) 
is a linear program with the closed-form solution given by: 
⎧

⎪

⎨

⎪

⎩

𝑑𝑑𝑙 = ∞, 𝑑𝑟𝑙 = −∞, 𝑑𝑑𝑙 + 𝑑𝑟𝑙 = 𝑑𝑙 ,  if 𝜆𝑑 < 𝜆𝑟

𝑑𝑑𝑙 = −∞, 𝑑𝑟𝑙 = ∞, 𝑑𝑑𝑙 + 𝑑𝑟𝑙 = 𝑑𝑙 ,  if 𝜆𝑑 > 𝜆𝑟

𝑑𝑑𝑙 + 𝑑𝑟𝑙 = 𝑑𝑙 ,  if 𝜆𝑑 = 𝜆𝑟
(G.1)

where loads prefer lower price in the market. Further solving the indi-
vidual bidding problem for generators in real-time market (32) by taking 
the derivative of the concave profit function w.r.t 𝛽𝑟𝑗 : 

− 𝜆𝑟 + 𝑐𝑗

(

(𝑐𝑗 + 𝜖𝑗 )−1𝑑𝑑
∑

𝑘∈(𝑐𝑘 + 𝜖𝑘)−1
+ 𝑏𝑟𝜆𝑟 − 𝛽𝑟𝑗

)

= 0 (G.2)

Substituting (8), (30), and (31) in (G.2), we get 

⟹ − 𝜆𝑟 + 𝑐𝑗 (𝑔𝑑𝑗 + 𝑔𝑟𝑗 ) = 0 ⟹
∑

𝑗∈

1
𝑐𝑗
𝜆𝑟 =

∑

𝑗∈
𝑔𝑗 = 𝑑 ⟹ 𝜆𝑟 = 𝑑

∑

𝑗∈ 𝑐
−1
𝑗

(G.3)

At the competitive equilibrium the conditions (30),(31),(G.1)–(G.3) 
must hold simultaneously and this is only possible if the market price 
are equal in the two stages, i.e.,

𝜆𝑟 = 𝜆𝑑 = 𝑑
∑

𝑗∈ 𝑐
−1
𝑗

; 𝑑𝑑𝑙 + 𝑑𝑟𝑙 = 𝑑𝑙 , ∀𝑙 ∈ ; 𝑑𝑑 = 1
1 + 𝜖

𝑑; 𝑑𝑟 =
(

1 − 1
1 + 𝜖

)

𝑑

𝑔𝑑𝑗 = 1
𝑐𝑗

1
1 + 𝜖

𝑑
∑

𝑘∈ 𝑐
−1
𝑘

, 𝑔𝑟𝑗 =
1
𝑐𝑗

(

1 − 1
1 + 𝜖

) 𝑑
∑

𝑘∈ 𝑐
−1
𝑘

WLOG, here we assume 𝜖𝑗 = 𝜖𝑐𝑗 ,∀𝑗 ∈ , for a constant parameter 𝜖 ≥ 0.

Appendix H.  Proof of Theorem 7

First, we find the relation between price and generator dispatch in 
real-time by formulating a subgame equilibrium in real-time. Given the 
parameter (𝑔𝑑𝑗 , 𝑑 − 𝑑𝑑 ) from market-clearing in the day-ahead market, 
each generator 𝑗 maximizes their profit (14) for the optimal 𝛽𝑟𝑗 : 
∑

𝑗∈
𝑔𝑟𝑗 = 𝑑𝑟 ⟹

∑

𝑗∈
(𝑏𝜆𝑟 − 𝛽𝑟𝑗 ) = 𝑑𝑟 ⟹ 𝜆𝑟 =

𝑑𝑟 +
∑

𝑗∈ 𝛽
𝑟
𝑗

𝑏𝐺
(H.1)

Substituting (H.1) in the individual problem (12), the individual prob-
lem of generators, is: 

max
𝛽𝑗≥0

(

𝑑𝑟 + 𝛽

𝑏𝐺

)(

𝑏
𝑑𝑟 + 𝛽

𝑏𝐺
− 𝛽𝑗

)

+ 𝜆𝑑𝑔𝑑𝑗 −
𝑐𝑗
2

(

𝑔𝑑𝑗 + 𝑏
(

𝑑𝑟 + 𝛽

𝑏𝐺

)

− 𝛽𝑗

)2

(H.2)

Writing the first-order necessary and sufficient conditions of the con-
cave optimization problem (H.2), and subsequently substituting (8) 
and (H.1), we get 

𝜆𝑟 =
𝑑𝑟 +

∑

𝑗∈
𝑐𝑗
𝐶𝑗
𝑔𝑑𝑗

∑

𝑘∈ 𝐶
−1
𝑘

, 𝑔𝑟𝑗 =
𝑑𝑟 +

∑

𝑚∈
𝑐𝑚
𝐶𝑚

𝑔𝑑𝑚

𝐶𝑗
∑

𝑘∈ 𝐶
−1
𝑘

−
𝑐𝑗
𝐶𝑗

𝑔𝑑𝑗 (H.3)

where 𝐶𝑗 =
1

𝑏𝑟(||−1) + 𝑐𝑗 . Substituting (30),(31) in the expression (H.3) 
we get 

𝜆𝑟 = 𝑑𝑟
∑

𝑘∈ 𝐶
−1
𝑘

+ 𝑑𝑑
∑

𝑘∈ 𝑐
−1
𝑘

, 𝑔𝑟𝑗 =
1
𝐶𝑗

𝑑𝑟
∑

𝑘∈ 𝐶
−1
𝑘

(H.4)

Substituting (31) and (H.4) in the individual problem of load 𝑙 (15) we 
get 

min
𝑑𝑑𝑙

(1 + 𝜖)𝑑𝑑
∑

𝑗∈𝐺 𝑐−1𝑗

𝑑𝑑𝑙 +

(

𝑑 − 𝑑𝑑
∑

𝑘∈ 𝐶
−1
𝑘

+ 𝑑𝑑
∑

𝑘∈ 𝑐
−1
𝑘

)

(𝑑𝑙 − 𝑑𝑑𝑙 ) (H.5)

Therefore taking the derivative of the convex individual problem (H.5) 
wrt 𝑑𝑑𝑙  we get, 

𝜖
𝑑𝑑 + 𝑑𝑑𝑙
∑

𝑗∈𝐺 𝑐−1𝑗

− 𝑑 − 𝑑𝑑
∑

𝑗∈ 𝐶
−1
𝑗

+
𝑑𝑙

∑

𝑗∈ 𝑐
−1
𝑗

+
𝑑𝑑𝑙 − 𝑑𝑙

∑

𝑗∈ 𝐶
−1
𝑗

= 0 (H.6)

Summing over 𝑙 ∈  we get 

𝑑𝑑 =

∑

𝑗∈ 𝑐
−1
𝑗 − 1

𝐿+1
∑

𝑗∈ 𝐶
−1
𝑗

∑

𝑗∈ 𝑐
−1
𝑗 + 𝜖

∑

𝑗∈ 𝐶
−1
𝑗

𝑑 (H.7)

Appendix I.  Proof of Theorem 8

Under price-taking behavior, the individual problem for loads (38) 
is a linear program with the closed-form solution given by: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑑𝑙 = ∞, 𝑑𝑟𝑙 = −∞, 𝑑𝑑𝑙 + 𝑑𝑟𝑙 = 𝑑𝑙 ,  if 𝜆𝑑 < 𝑑
∑

𝑘∈(𝑐𝑘+𝜖𝑘)−1

𝑑𝑑𝑙 = −∞, 𝑑𝑟𝑙 = ∞, 𝑑𝑑𝑙 + 𝑑𝑟𝑙 = 𝑑𝑙 ,  if 𝜆𝑑 > 𝑑
∑

𝑘∈(𝑐𝑘+𝜖𝑘)−1

𝑑𝑑𝑙 + 𝑑𝑟𝑙 = 𝑑𝑙 ,  if 𝜆𝑑 = 𝑑
∑

𝑘∈(𝑐𝑘+𝜖𝑘)−1

(I.1)

where loads prefer lower prices in the market. At the competitive equi-
librium, the day-ahead true dispatch condition (37a), real-time true dis-
patch condition (37b), and the individual optimal solution (I.1) must 
hold simultaneously. This is only possible if the market price is equal in 
the two stages, i.e.,
𝑑𝑑𝑙 = 𝑑𝑙 , 𝑑

𝑟
𝑙 = 0; 𝜆𝑑 = 𝜆𝑟

Appendix J.  Proof of Theorem 9

Writing the first-order condition of the convex optimization prob-
lem (40) and taking the derivative wrt 𝑑𝑑𝑙  we get: 

⎛

⎜

⎜

⎜

⎝

𝑑𝑑
∑

𝑗∈
(𝑐𝑗 + 𝜖𝑑𝑗 )−1

− 𝑑
∑

𝑗∈
(𝑐𝑗 + 𝜖𝑟𝑗 )−1

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

𝑑𝑑𝑙
∑

𝑗∈
(𝑐𝑗 + 𝜖𝑑𝑗 )−1

⎞

⎟

⎟

⎟

⎠

= 0 (J.1a)

⟹ 𝑑𝑑 = 𝐿
𝐿 + 1

∑

𝑗∈(𝑐𝑗 + 𝜖𝑑𝑗 )
−1

∑

𝑗∈(𝑐𝑗 + 𝜖𝑟𝑗 )−1
𝑑 ⟹ 𝑑𝑑𝑙 = 1

𝐿 + 1

∑

𝑗∈(𝑐𝑗 + 𝜖𝑑𝑗 )
−1

∑

𝑗∈(𝑐𝑗 + 𝜖𝑟𝑗 )−1
𝑑

(J.1b)

Substituting (J.1) in Eq. (37), we have

𝜆𝑑 = 𝐿
𝐿 + 1

𝑑
∑

𝑗∈(𝑐𝑗 + 𝜖𝑟𝑗 )−1
, 𝜆𝑟 = 𝑑

∑

𝑗∈(𝑐𝑗 + 𝜖𝑟𝑗 )−1

Appendix K.  Proof of Theorem 10

Substituting the profit function (44) in the optimization prob-
lem (45), we get:
max
𝛽𝑑𝑗

−(𝜆𝑑 − 𝔼[𝜆𝑟])𝛽𝑑𝑗

+ 𝛿𝑗

(

(𝜆𝑑 − 𝔼[𝜆𝑟])2(𝑏𝑑𝜆𝑑 − 𝛽𝑑𝑗 )
2 − 1

𝑐𝑗
(𝜆𝑑 − 𝔼[𝜆𝑟])𝔼[(𝜆𝑟)2]𝛽𝑑𝑗

)

− 𝛿𝑗

(

𝔼[(𝜆𝑑 − 𝜆𝑟)2](𝑏𝑑𝜆𝑑 − 𝛽𝑑𝑗 )
2 − 1

𝑐𝑗
𝔼[(𝜆𝑑 − 𝜆𝑟)(𝜆𝑟)2]𝛽𝑑𝑗

)

+ 𝜗𝑙 (K.1)

where 
𝜗𝑙 ∶=𝑏𝑑𝜆𝑑 (𝜆𝑑 − 𝔼[𝜆𝑟]) + 1

2𝑐𝑗
𝔼[(𝜆𝑟)2]
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+ 𝛿𝑗

(

1
4𝑐2𝑗

(

𝔼[(𝜆𝑟)2]
)2 + 1

𝑐𝑗
(𝜆𝑑 − 𝔼[𝜆𝑟])𝑏𝑑𝜆𝑑𝔼[(𝜆𝑟)2]

)

− 𝛿𝑗

(

1
4𝑐2𝑗

𝔼[(𝜆𝑟)4] + 1
𝑐𝑗
𝔼[(𝜆𝑑 − 𝜆𝑟)(𝜆𝑟)2]𝑏𝑑𝜆𝑑

)

(K.2a)

𝜆𝑟 = 𝑑
∑

𝑗∈ 𝑐
−1
𝑗

(K.2b)

Writing the second-order derivative of the objective function (K.1), we 
have: 
𝛿𝑗
(

2(𝜆𝑑 − 𝔼[𝜆𝑟])2
)

− 𝛿𝑗
(

2𝔼[(𝜆𝑑 − 𝜆𝑟)2]
)

= −2𝛿𝑗𝑉 𝑎𝑟(𝜆𝑑 − 𝜆𝑟) ≤ 0 (K.3a)

Therefore this is a concave optimization problem and the first-order nec-
essary and sufficient conditions is given by: 

− (𝜆𝑑 − 𝔼[𝜆𝑟]) + 𝛿𝑗

(

−2(𝜆𝑑 − 𝔼[𝜆𝑟])2(𝑏𝑑𝜆𝑑 − 𝛽𝑑𝑗 ) −
1
𝑐𝑗
(𝜆𝑑 − 𝔼[𝜆𝑟])𝔼[(𝜆𝑟)2]

)

− 𝛿𝑗

(

−2𝔼[(𝜆𝑑 − 𝜆𝑟)2](𝑏𝑑𝜆𝑑 − 𝛽𝑑𝑗 ) −
1
𝑐𝑗
𝔼[(𝜆𝑑 − 𝜆𝑟)(𝜆𝑟)2]

)

= 0 (K.4a)

⟹ 𝛽𝑑𝑗 =
1

2𝛿𝑗𝑉 𝑎𝑟(𝜆𝑟)
(

𝔼[𝜆𝑟] − 𝜆𝑑 + 𝛿𝑗

(

2𝑏𝑑𝑉 𝑎𝑟(𝜆𝑟)𝜆𝑑 + 1
𝑐𝑗
𝔼[𝜆𝑟]𝔼[(𝜆𝑟)2] − 1

𝑐𝑗
𝔼[(𝜆𝑟)3]

))

(K.4b)

Similarly, substituting (46) in the optimization problem (47), the indi-
vidual optimization problem of each load 𝑙 is given by:
min
𝑑𝑑𝑙

(𝜆𝑑 − 𝔼[𝜆𝑟])𝑑𝑑𝑙 − 𝜂𝑙
(

(𝜆𝑑 − 𝔼[𝜆𝑟])2(𝑑𝑑𝑙 )
2 + 2(𝜆𝑑 − 𝔼[𝜆𝑟])𝔼[𝜆𝑟𝑑𝑙]𝑑𝑑𝑙

)

+ 𝜂𝑙
(

𝔼[(𝜆𝑑 − 𝜆𝑟)2](𝑑𝑑𝑙 )
2 + 2𝑑𝑑𝑙 𝔼[(𝜆

𝑑 − 𝜆𝑟)𝜆𝑟𝑑𝑙]
)

+ 𝜚𝑙 (K.5)

where 
𝜚𝑙 ∶=𝔼[𝜆𝑟𝑑𝑙] − 𝜂𝑙(𝔼[𝜆𝑟𝑑𝑙])2 + 𝜂𝑙𝔼[(𝜆𝑟)2𝑑2𝑙 ] (K.6)

Writing the second-order derivative of the objective function (K.5), we 
have: 
− 𝜂𝑙

(

2(𝜆𝑑 − 𝔼[𝜆𝑟])2
)

+ 𝜂𝑙
(

2𝔼[(𝜆𝑑 − 𝜆𝑟)2]
)

= 2𝜂𝑙𝑉 𝑎𝑟(𝜆𝑑 − 𝜆𝑟) ≥ 0 (K.7)

Therefore, this is a convex optimization problem. Writing the first order 
necessary and sufficient condition, we have 

(𝜆𝑑 − 𝔼[𝜆𝑟]) − 𝜂𝑙
(

2(𝜆𝑑 − 𝔼[𝜆𝑟])2𝑑𝑑𝑙 + 2(𝜆𝑑 − 𝔼[𝜆𝑟])𝔼[𝜆𝑟𝑑𝑙]
)

+ 𝜂𝑙
(

2𝔼[(𝜆𝑑 − 𝜆𝑟)2]𝑑𝑑𝑙 + 2𝔼[(𝜆𝑑 − 𝜆𝑟)𝜆𝑟𝑑𝑙]
)

= 0 (K.8a)

⟹ 𝑑𝑑𝑙 = − 1
2𝜂𝑙𝑉 𝑎𝑟(𝜆𝑟)

(

(𝜆𝑑 − 𝔼[𝜆𝑟]) − 𝜂𝑙
(

−2𝔼[𝜆𝑟]𝔼[𝜆𝑟𝑑𝑙] + 2𝔼[(𝜆𝑟)2𝑑𝑙]
))

(K.8b)

Now, at the equilibrium, the Eqs. (6), (23), (K.4b), and (K.8b) must sat-
isfy simultaneously. Also, using the definition of Skewness (Groeneveld 
& Meeden, 1984), we have 

𝜇̃3 =
𝐸[𝑑3] − 3𝜇𝜎2 − 𝜇3

𝜎3
⟹

𝔼[𝑑3] − 𝔼[𝑑]𝔼[𝑑2]
𝑉 𝑎𝑟(𝑑)

= 𝜇̃3𝜎 + 2𝜇 (K.9a)

Solving the Eqs. (6), (23), (K.4b), and (K.8b) simultaneously, we have a 
unique equilibrium.

Appendix L.  Proof of Theorem 11

Substituting (22), and (23) in (42), we get the individual problem of 
generator 𝑗 as:
max
𝛽𝑑𝑗

−(𝜆𝑑 − 𝔼[𝜆𝑟])𝛽𝑑𝑗

+ 𝛿𝑗

(

(𝜆𝑑 − 𝔼[𝜆𝑟])2(𝑏𝑑𝜆𝑑 − 𝛽𝑑𝑗 )
2 − 1

𝑐𝑗
(𝜆𝑑 − 𝔼[𝜆𝑟])𝔼[(𝜆𝑟)2]𝛽𝑑𝑗

)

− 𝛿𝑗

(

𝔼[(𝜆𝑑 − 𝜆𝑟)2](𝑏𝑑𝜆𝑑 − 𝛽𝑑𝑗 )
2 − 1

𝑐𝑗
𝔼[(𝜆𝑑 − 𝜆𝑟)(𝜆𝑟)2]𝛽𝑑𝑗

)

+ 𝜗𝑙 (L.1)

where 
𝜗𝑙 ∶=𝑏𝑑𝜆𝑑 (𝜆𝑑 − 𝔼[𝜆𝑟]) + 1

2𝑐𝑗
𝔼[(𝜆𝑟)2]

+ 𝛿𝑗

(

1
4𝑐2𝑗

(

𝔼[(𝜆𝑟)2]
)2 + 1

𝑐𝑗
(𝜆𝑑 − 𝔼[𝜆𝑟])𝑏𝑑𝜆𝑑𝔼[(𝜆𝑟)2]

)

− 𝛿𝑗

(

1
4𝑐2𝑗

𝔼[(𝜆𝑟)4] + 1
𝑐𝑗
𝔼[(𝜆𝑑 − 𝜆𝑟)(𝜆𝑟)2]𝑏𝑑𝜆𝑑

)

(L.2a)

𝜆𝑑 =
𝑑𝑑+

∑

𝑗∈
𝛽𝑑𝑗

𝑏𝑑 ||
, 𝜆𝑟 = 𝑑

∑

𝑗∈ 𝑐
−1
𝑗

(L.2b)

Writing the second-order derivative of the objective function (L.1), we 
have 

− 2
||𝑏𝑑

− 𝛿𝑗

(

−2𝑉 𝑎𝑟(𝜆𝑟)( 1
||

− 1)
)

+ 2
||

1
||𝑏𝑑

=

−
(

1 − 1
||

)[

2
||𝑏𝑑

+ 2𝛿𝑗𝑉 𝑎𝑟(𝜆𝑟)
]

<0 (L.3a)

Therefore, this is a strict concave optimization problem. Writing the 
first-order necessary and sufficient conditions, we get:
(

1
||

− 1
)

(𝜆𝑑 − 𝔼[𝜆𝑟]) + 𝜔𝑗𝑏
𝑑𝜆𝑑

+
(

1
||

− 1
) 𝛿𝑗
𝑐𝑗

(

𝔼[(𝜆𝑟)3] − 𝔼[𝜆𝑟]𝔼[(𝜆𝑟)2]
)

= 𝜔𝑗𝛽
𝑑
𝑗 (L.4)

where we define 

𝜔𝑗 ∶=
(

1
𝑏𝑑 ||

+ 2𝛿𝑗𝑉 𝑎𝑟(𝜆𝑟)
)

(L.5)

Similarly, substituting (22), and (23) in (43), we get the individual prob-
lem of load 𝑙 as:
min
𝑑𝑑𝑙

(𝜆𝑑 − 𝔼[𝜆𝑟])𝑑𝑑𝑙 − 𝜂𝑙
(

(𝜆𝑑 − 𝔼[𝜆𝑟])2(𝑑𝑑𝑙 )
2 + 2(𝜆𝑑 − 𝔼[𝜆𝑟])𝔼[𝜆𝑟𝑑𝑙]𝑑𝑑𝑙

)

+ 𝜂𝑙
(

𝔼[(𝜆𝑑 − 𝜆𝑟)2](𝑑𝑑𝑙 )
2 + 2𝑑𝑑𝑙 𝔼[(𝜆

𝑑 − 𝜆𝑟)𝜆𝑟𝑑𝑙]
)

+ 𝜑 (L.6)

where

𝜑 ∶= 𝔼[𝜆𝑟𝑑𝑙] − 𝜂𝑙(𝔼[𝜆𝑟𝑑𝑙])2 + 𝜂𝑙𝔼[(𝜆𝑟)2𝑑2𝑙 ]

𝜆𝑑 =
𝑑𝑑+

∑

𝑗∈
𝛽𝑑𝑗

𝑏𝑑 ||
, 𝜆𝑟 = 𝑑

∑

𝑗∈ 𝑐
−1
𝑗

(L.7)

Writing the first order necessary and sufficient condition of the convex 
optimization problem:

(𝜆𝑑 − 𝔼[𝜆𝑟]) +
(

1
𝑏𝑑 ||

+ 2𝜂𝑙𝑉 𝑎𝑟(𝜆𝑟)
)

𝑑𝑑𝑙

− 2𝜂𝑙
(

𝔼[(𝜆𝑟)2𝑑𝑙] − 𝔼[𝜆𝑟]𝔼[𝜆𝑟𝑑𝑙]
)

= 0 (L.8)

where, 

𝜅𝑙 ∶=
1

𝑏𝑑 ||
+ 2𝜂𝑙𝑉 𝑎𝑟(𝜆𝑟) (L.9)

At the equilibrium (6), (7), (23), (L.4), and (L.8) must hold simulta-
neously. Solving them, we get a unique Nash equilibrium. 
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