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a b s t r a c t

Network coherence generally refers to the emergence of simple aggregated dynamical behaviors,
despite heterogeneity in the dynamics of the subsystems that constitute the network. In this paper, we
develop a general frequency domain framework to analyze and quantify the level of network coherence
that a system exhibits by relating coherence with a low-rank property of the system’s input–output
response. More precisely, for a networked system with linear dynamics and coupling, we show that, as
the network’s frequency-dependent algebraic connectivity grows, the system transfer matrix converges to
a rank-one transfer matrix representing the coherent behavior. Interestingly, the non-zero eigenvalue
of such a rank-one matrix is given by the harmonic mean of individual nodal dynamics, and we refer
to it as coherent dynamics. Our analysis unveils the frequency-dependent nature of coherence and a
non-trivial interplay between dynamics and network topology. We further show that many networked
systems can exhibit similar coherent behavior by establishing a concentration result in a setting with
randomly chosen individual nodal dynamics.

© 2025 Elsevier Ltd. All rights are reserved, including those for text and datamining, AI training, and
similar technologies.
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1. Introduction

The study of coordinated behavior in network systems has
een a popular subject of research in many fields, including
hysics (Bressloff & Coombes, 1999), chemistry (Kiss, Zhai, & Hud-
on, 2002), social sciences (DeGroot, 1974), and biology (Mirollo
 Strogatz, 1990). Within engineering, coordination is essential
or the proper operation of many networked systems, including
ower networks (Jiang, Pates, & Mallada, 2017; Paganini & Mal-

lada, 2020), data and sensor networks (Mallada, 2014; Mallada,
Meng, Hack, Zhang, & Tang, 2015), and autonomous transporta-
ion (Bamieh, Jovanovic, Mitra, & Patterson, 2012; Jadbabaie, Lin,
 Morse, 2003; Olfati-Saber, Fax, & Murray, 2007; Sepulchre,
aley, & Leonard, 2008). Among many forms of coordination,
oherence refers to the ability of a group of nodes to have a
imilar dynamic response to some external disturbance (Chow,
2013). While coherence analysis is useful in understanding the
collective behavior of large networks, little do we know about
the underlying mechanism that causes such coherent behavior to
merge in various networks.

✩ The material in this paper was partially presented at the 58th IEEE
onference on Decision and Control, December 11–13, 2019, Nice, France. This

paper was recommended for publication in revised form by Associate Editor
Julien M. Hendrickx under the direction of Editor Christos G. Cassandras.
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richard.pates@control.lth.se (R. Pates), mallada@jhu.edu (E. Mallada).
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0005-1098/© 2025 Elsevier Ltd. All rights are reserved, including those for text and 
Classic slow coherency analyses (Chow, 1982; Ramaswamy
et al., 1996; Romeres et al., 2013; Tyuryukanov et al., 2021)
(with applications mostly to power networks) usually consider
the second-order electro-mechanical model without damping:
ẍ = −M−1Lx, where M is the diagonal matrix of machine
inertias, and L is the Laplacian matrix whose elements are syn-
chronizing coefficients between pair of machines. The coherency
or synchrony (Ramaswamy et al., 1996) (a generalized notion
of coherency) is identified by studying the first few slowest
eigenmodes (eigenvectors with small eigenvalues) of M−1L. The
nalysis can be carried over to the case of uniform (Chow, 1982)

and non-uniform (Romeres et al., 2013) damping. However, such
tate-space-based analysis is limited to very specific node dy-
amics (second order) Moreover, it is widely known that such
oherence is related to strong interconnection among the nodes,
uch relation is not formally justified in the aforementioned slow
oherency analyses.
A vast body of work, triggered by the seminal paper (Bamieh

et al., 2012), has quantitatively studied the role of the network
topology in the emergence of coherence. Examples include, di-
ected (Tegling et al., 2019) and undirected (Oral et al., 2017) con-
sensus networks, transportation networks (Bamieh et al., 2012),
and power networks (Andreasson et al., 2017; Bamieh & Gayme,
2013; Paganini & Mallada, 2020; Pirani et al., 2017; Tegling et al.,
2015). The key technical approach amounts to quantifying the
level of coherence by computing the H2-norm of the system for
appropriately defined nodal disturbance and performance signals.
Broadly speaking, the analysis shows a reciprocal dependence
data mining, AI training, and similar technologies.

https://doi.org/10.1016/j.automatica.2025.112184
https://www.elsevier.com/locate/automatica
https://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2025.112184&domain=pdf
mailto:hanchmin@seas.upenn.edu
mailto:richard.pates@control.lth.se
mailto:mallada@jhu.edu
https://doi.org/10.1016/j.automatica.2025.112184


H. Min, R. Pates and E. Mallada Automatica 174 (2025) 112184

C

o
n
n
n
e

t
t
u
n

Table 1
omparison with prior work.

References Nodal dynamics Input Signal Coherent
dynamics

Time-domain
Bounds

Slow Coherency,
Synchrony

Chow (1982), Ramaswamy
et al. (1996), Romeres, Dörfler,
and Bullo (2013), Tyuryukanov,
Popov, van der Meijden, and
Terzija (2021)

First- or second-order
LTI; Heterogeneous

Any ✔ ✗

H2-Analysis
Bamieh et al. (2012), Siami and
Motee (2014)

LTI; Heterogeneous White Noise ✗ ✔

Andreasson, Tegling, Sandberg,
and Johansson (2017), Bamieh
and Gayme (2013), Oral,
Mallada, and Gayme (2017),
Pirani, Shahrivar, and
Sundaram (2015), Tegling,
Bamieh, and Gayme (2015),
Tegling, Bamieh, and Sandberg
(2019)

LTI; Homogeneous White Noise N/A ✔

H∞-Analysis Pirani, Sandberg, and
Johansson (2018), Pirani et al.
(2015), Pirani, Simpson-Porco,
and Fidan (2017)

First-order LTI;
Homogeneous

Any N/A ✔

Frequency-domain
analysis

This work LTI; Heterogeneous Any ✔ ✔
n

between the performance metrics and the non-zero eigenvalues
f the network graph Laplacian, validating the fact that strong
etwork coherence (low H2-norm) results from the high con-
ectivity of the network (large Laplacian eigenvalues). Unfortu-
ately, the analysis strongly relies on a homogeneity (Andreasson
t al., 2017; Bamieh & Gayme, 2013; Bamieh et al., 2012; Oral

et al., 2017; Pirani et al., 2017; Tegling et al., 2019) or propor-
ionality (Paganini & Mallada, 2020) assumption of the nodal
ransfer functions, and thus fails to characterize how individ-
al heterogeneous node dynamics affect the overall coherent
etwork response.

1.1. Our contribution

In this paper, we seek to overcome these limitations by for-
malizing network coherence through a low-rank structure of the
system transfer matrix that appears when the network feed-
back gain is high. This frequency domain analysis provides a
deeper characterization of the role of both network topology
and node dynamics on the coherent behavior of the network. In
particular, our results make substantial contributions towards the
understanding of coordinated and coherent behavior of network
systems in many ways:

• Frequency-domain analysis: We present a general frame-
work in the frequency domain to analyze the coherence
of heterogeneous networks with arbitrary LTI nodal dy-
namics. We show that network coherence emerges as a
low-rank structure of the system transfer matrix as we
increase its frequency-dependent algebraic connectivity—a
quantity that depends on the network coupling strength and
dynamics.

• Characterization of coherent response: Our analysis ap-
plies to networks with heterogeneous nodal dynamics, and
further provides an explicit characterization in the frequency
domain of the coherent response to disturbances as the
harmonic mean of individual nodal dynamics. Thus, in this
way, our results highlight the contribution of individual
nodal dynamics to the network’s coherent behavior.
2

• Time-domain bounds under general inputs: We formally
connect our frequency-domain results with explicit time-
domain L∞ bounds on the difference between individual
nodal responses and the coherent dynamic response to a
broad class of input signals, suggesting that network co-
herence is a frequency-dependent phenomenon. That is,
the ability of nodes to respond coherently depends on the
frequency composition of the input disturbance.

• Coherent response in large-scale networks: By providing
an exact characterization of the network’s coherent dynam-
ics, our analysis can be further applied in settings where
only distributional information of the network composition
is known. More precisely, we show that the coherent dy-
namics of tightly connected networks with possibly random
nodal dynamics are well approximated by a determinis-
tic transfer function that only depends on the statistical
distribution of node dynamics.

Notably, the problem of characterizing coherent dynamic re-
sponse is unique to heterogeneous networks since the coherent
dynamics for homogeneous networks are exactly equal to the
common nodal dynamics. In real applications, however, such
as power networks, such characterization is relevant to model
reduction (Germond, Podmore, 1978) and control design (Jiang,
Bernstein, Vorobev, & Mallada, 2021). Our analysis provides, in
the asymptotic sense, the exact characterization of coherent dy-
namics that can be used in control design for heterogeneous
etworks.

1.2. Comparison with prior work

We compare our work to existing analyses on network coher-
ence (summarized in Table 1):

Slow coherency and Synchrony: Classic coherency analysis
(Chow, 1982; Ramaswamy et al., 1996; Romeres et al., 2013;
Tyuryukanov et al., 2021) assumes a first- or second-order LTI
nodal dynamics, which do not account for more complex dynam-
ics or controllers that are usually present at a node level; e.g., in
the power systems literature (Ekomwenrenren et al., 2021; Jiang,
Bernstein, et al., 2021; Jiang, Pates, & Mallada, 2021), while our
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analyses apply to general LTI nodal dynamics. Moreover, classic
nalysis lacks theoretical bounds on the difference between the
odal responses and the coherent responses. Our results provide
 set of such time-domain bounds (See Section 4).

H2/H∞-Analyses The seminal paper Bamieh et al. (2012) quan-
tifies network coherence as H2-norm of the system that maps
disturbance to some cohesiveness measure of network states,
and Pirani et al. (2018, 2015, 2017) also considered the H∞ norm.
While H2/H∞-norm can be computed (Bamieh et al., 2012) for
ny network with heterogeneous LTI nodes, interpretable closed-
orm solution can only be obtained when nodal dynamics are
omogeneous (Andreasson et al., 2017; Bamieh & Gayme, 2013;

Oral et al., 2017; Pirani et al., 2018, 2015, 2017; Tegling et al.,
2015, 2019) or proportional to one another (Paganini & Mallada,
2020). More importantly, H2/H∞-analyses cannot characterize
ggregate nodal response. In other words, H2/H∞-norm only
easures how similar nodal responses are close to each other
ut does not lead to a dynamic representation of the coherent
esponse. On the contrary, our analysis is valid for networks with
eterogeneous LTI nodal dynamics and explicitly characterizes
he coherent response. Lastly, H2-analysis implicitly assumes that
he network is subjected to white noise disturbance, while our
esults hold for a broad class of inputs and particularly highlight
he role input signals have in the emergence of coherence.

1.3. Other related work

Consensus and synchronization: Consensus (Bamieh et al., 2012;
DeGroot, 1974; Ghaedsharaf, Siami, Somarakis, & Motee, 2021;
Jadbabaie et al., 2003; Olfati-Saber et al., 2007; Olfati-Saber &
Murray, 2004; Tegling et al., 2019) refers to the ability of the net-
work nodes to asymptotically reach a common value over some
uantities of interest. Synchronization (Kim, Shim, & Seo, 2011;

Mallada, 2014; Mallada et al., 2015; Mirollo & Strogatz, 1990;
Nair & Leonard, 2008; Sepulchre et al., 2008; Wieland, Sepulchre,

 Allgöwer, 2011) refers to the ability of network nodes to
ollow a commonly defined trajectory. Although for nonlinear
ystems synchronization is a structurally stable phenomenon, in
he linear case (Kim et al., 2011; Nair & Leonard, 2008; Sepulchre
t al., 2008; Wieland et al., 2011), synchronization requires the
xistence of a common internal model that acts as a virtual
eader (Kim et al., 2011; Wieland et al., 2011). As such, con-
sensus and synchronization are coordinated behaviors generally
achieved in steady state, and require a common internal model
for every node. On the contrary, the network can exhibit coherent
behavior during the transient phase (a formal comparison is
presented in Section 4.3), and coherence exists even without a
ommon internal model.

Area aggregation and dynamic equivalents: For a group of
nodes that exhibit coherent behavior, one can construct dynamic
equivalents (Chow, 1982; Ramaswamy et al., 1996) that char-
acterize the slow coherence. Finding the dynamic equivalent,
or an aggregate model, for interconnected power generators
is a long-standing research subject in power system literature.
Previously proposed aggregation model (Anderson & Mirheydar,
1990; Germond, Podmore, 1978; Guggilam, Zhao, Dall’Anese,
hen, & Dhople, 2018; Paganini & Mallada, 2020; Romeres et al.,

2013), mostly assume first- or second-order generator dynamics,
hich does not account for more complex dynamics or con-

trollers (Ekomwenrenren et al., 2021; Jiang, Bernstein, et al.,
2021; Jiang, Pates, & Mallada, 2021). Our explicit characterization
of coherent dynamics provides a principled way to obtain an
aggregate model for general node dynamics.
 w

3

Fig. 1. Block diagram of networked dynamical systems.

1.4. Paper organization

The paper is organized as follows. In Section 3, we discuss
the network coherence as a low-rank property of the network
transfer matrix. In Section 4, we discuss the time-domain impli-
cation of such coherence in the transfer matrix. In Section 5, the
dynamics concentration in large-scale networks is discussed. In
ection 6, we apply our analysis to synchronous generator net-

works. Lastly, we conclude with a discussion on future research
in Section 7.

Notation. For a vector x, ∥x∥ =
√
x⊤x denotes the 2-norm of x,

and for a matrix A, σmin(A) denotes the minimum singular value
of A, ∥A∥ denotes the spectral norm of A. Particularly, if A is real
symmetric, we let λi(A) denote the ith smallest eigenvalue of A.
We let diag{xi}ni=1 denote an n× n diagonal matrix with diagonal
entries xi. We let In denote the identity matrix of order n, 1 denote
column vector [1, . . . , 1]⊤, [n] denote the set {1, 2, . . . , n} and N+

denote the set of positive integers. We use Sn−1
:= {u ∈ Rn

:

∥u∥ = 1} to denote the set of all unit-norm vectors in Rn. Also,
we write complex numbers as a+ jb, where j =

√
−1. We denote

the field of complex numbers and define the following subsets
(s0, δ) := {s ∈ C : |s − s0| ≤ δ}.

2. Problem setup

Consider a network consisting of n nodes (n ≥ 2), indexed by
i ∈ [n] with the block diagram structure in Fig. 1. L is the Laplacian
atrix of a weighted undirected graph that describes the network

nterconnection. We further use f (s) to denote the transfer func-
ion representing the dynamics of network coupling, and G(s) =

iag{gi(s)} to denote the nodal dynamics, with gi(s), i ∈ [n],
eing a SISO transfer function representing the dynamics of node
. Throughout this paper, we assume all gi(s), i = 1, . . . , n and f (s)
re rational proper transfer functions, and the Laplacian matrix L
s real symmetric.

Under this setting, we can compactly express the transfer
matrix from the input signal vector u to the output signal vector
y by

T (s) = (In + G(s)f (s)L)−1G(s)

= (In + diag{gi(s)}f (s)L)−1diag{gi(s)}. (1)

Many existing networks can be represented by this structure.
or example, for the first-order consensus network (Olfati-Saber

et al., 2007; Olfati-Saber & Murray, 2004), f (s) = 1, and the node
dynamics are given by gi(s) =

1
s . For power networks (Andreasson

t al., 2017; Paganini & Mallada, 2020), f (s) =
1
s , gi(s) are

the dynamics of the generators, and L is the Laplacian matrix
epresenting the sensitivity of power injection w.r.t. bus phase
ngles. Finally, in transportation networks (Jadbabaie et al., 2003;

Olfati-Saber et al., 2007), gi(s) represent the vehicle dynamics
hereas f (s)L describes local inter-vehicle information transfer.
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Since L has an eigendecomposition L = VΛV⊤ where V =

1
√
n , V⊥

]
, VV⊤

= V⊤V = In, and Λ = diag{λi(L)} with 0 =

λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L), we can rewrite T (s) as

T (s) = (In + diag{gi(s)}f (s)L)−1diag{gi(s)}

= (diag{g−1
i (s)} + f (s)L)−1

= (diag{g−1
i (s)} + f (s)VΛV⊤)−1

= V (V⊤diag{g−1
i (s)}V + f (s)Λ)−1V⊤. (2)

As we mentioned in the introduction, we are interested in the
egime where the closed-loop system T (s) of (1) has a low-rank
structure. To gain some insight, we first consider the following
simplified example.

2.1. Simple case: homogeneous network

Suppose gi(s) are homogeneous, i.e., gi(s) = g(s). Then using
(2) one can decompose T (s) as follows

T (s) =
1
n
g(s)11⊤

+ V⊥diag
{

1
g−1(s) + f (s)λi(L)

}n

i=2
V⊤

⊥
, (3)

where the network dynamics decouple into two terms: 1) the
dynamics 1

ng(s)11
⊤ that is independent of network topology and

corresponds to the coherent behavior of the system; 2) the re-
maining dynamics that are dependent on the network structure
via both, the eigenvalues λi(L), i = 2, . . . , n and the eigenvectors
V⊥. Notice that |f (s)λ2(L)| ≤ |f (s)λi(L)|, i = 2, . . . , n, then
1
ng(s)11

⊤ is dominant in T (s) as long as |f (s)λ2(L)| (later referred
as frequency-dependent algebraic connectivity), is large enough to
ake the norm of the second term in (3) sufficiently small.
ollowing such observation, we can find two regimes where the
oherent dynamics 1

ng(s)11
⊤ is dominant:

(1) (High network connectivity) If a compact set S ⊂ C con-
tains neither zeros nor poles of g(s), then limλ2(L)→∞ sups∈ST (s) −

1
ng(s)11

⊤
 = 0.1

(2) (High gain in coupling dynamics) If s0 is a pole of f (s), and
the network is connected, i.e., λ2(L) > 0, then lims→s0T (s) −

1
ng(s)11

⊤
 = 0 .

Such convergence results suggest that if 1) the network has high
lgebraic connectivity, or 2) our point of interest in the frequency

domain is close to a pole of f (s), the response of the entire system
is close to one of 1

ng(s)11
⊤. We refer 1

ng(s)11
⊤ as the coherent

dynamics2 in the sense that in such system, the inputs are ag-
regated, and all nodes have exactly the same response to the
ggregate input. Therefore, coherence of the network corresponds,
n the frequency domain, to the property that the network’s transfer
atrix approximately has a particular rank-one structure.
The aforementioned analysis can be extended to the case with

proportionality assumption, i.e., gi(s) = pig(s) for some g(s) and
i > 0, i = 1, . . . , n, where one can still obtain decoupled

dynamics through proper coordinate transformation (Paganini &
Mallada, 2020) and the coherent dynamics are again character-
zed by the common dynamics g(s). However, it is challenging
o analyze the transfer matrix T (s) without the proportionality
assumption: First, it is unclear whether a low-rank structure

1 In this paper, we write most of our convergence results in the high
onnectivity regime as the limit of differences in norm when λ2(L) → ∞ for
implicity. However, one does not require infinitely high connectivity to achieve
oherence. These limits suggest, under sufficiently high connectivity, the transfer
atrix T (s) is, in some sense, close to coherent dynamics 1

n g(s)11⊤ . The precise
on-asymptotic result is presented in Lemma 2.
2 We also refer g(s) as the coherent dynamics since transfer matrix of the

orm 1 g(s)11⊤ is uniquely determined by its non-zero eigenvalue g(s).
n

4

would even emerge under high network connectivity or high gain
in the coupling dynamics; Then most importantly, there is no
obvious choice for coherent dynamics, hence characterizing the
coherent dynamics is a non-trivial problem unique to hetero-
geneous networks, and no existing work has shown an explicit
characterization.

Remark 1. For any connected graph with λ2(L) > 0, scaling all
the weights by a factor of α > 1 leads to a new graph Laplacian αL
with λ2(αL) = α λ2(L), thus one can make λ2(αL) arbitrarily large
y increasing α, for finite n, and regardless of the network topol-
gy. Therefore, high connectivity can be achieved without having
 complete graph; However, the motivation behind studying the
igh connectivity regime is not to achieve some desired level
f coherence by increasing the connectivity of the network but
ather to provide theoretical explanations for practical networks
xhibiting coherent behavior.

2.2. Goal of this work

Our work precisely aims at understanding the coherent dy-
namics of non-proportional heterogeneous networks. We would
like to show that even when gi(s) are heterogeneous, similar
results as in our simple example of homogeneous networks
still hold. More precisely, we show that, in Section 3, T (s) con-
verges to a rank-one transfer matrix of the form 1

n ḡ(s)11
⊤, as the

frequency-dependent algebraic connectivity |f (s)λ2(L)| increases.
owever, unlike the homogeneous node dynamics case where the
oherent behavior is driven by ḡ(s) = g(s), the coherent dynamics
¯ (s) are given by the harmonic mean of gi(s), i = 1, . . . , n, i.e.,

ḡ(s) =

(
1
n

n∑
i=1

g−1
i (s)

)−1

. (4)

The convergence results are presented in the aforementioned two
regimes: high network connectivity and high gain in coupling
dynamics. We then discuss in Section 4 their implications on the
network’s time-domain response:

(1) Network with high connectivity responds coherently to a
wide class of input signals;

(2) Network with coupling dynamics f (s) =
1
s is naturally

coherent with respect to sufficiently low-frequency signals,
regardless of its connectivity.

One additional feature of our analysis is that it can be further
applied in settings where the composition of the network is
unknown and only distributional information is present. More
precisely, we, in Section 5, consider a network where node dy-
namics are given by random transfer functions. As the network
size grows, the coherent dynamics ḡ(s), the harmonic mean of all
node dynamics, converge in probability to a deterministic transfer
function. We term such a phenomenon, where a family of uncer-
tain large-scale systems concentrates to a common deterministic
ystem, dynamics concentration.
Lastly, we verify our theoretical results in Section 6 by several

umerical experiments on linearized power network model and
iscuss a general aggregation model for a group of coherent
enerators.

3. Coherence in frequency domain

In this section, we analyze the network coherence as the low-
rank structure of the transfer matrix in the frequency domain.
We start with an important lemma revealing how such coherence
is related to the algebraic connectivity λ2(L) and the coupling
dynamics f (s).
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Lemma 2. Let T (s) and ḡ(s) be defined as in (1) and (4), re-
pectively. Suppose that for s0 ∈ C that is not a pole of f (s), we
ave

|ḡ(s0)| ≤ M1, and max
1≤i≤n

|g−1
i (s0)| ≤ M2,

for some M1,M2 > 0. Then the following inequality holds:T (s0) −
1
n
ḡ(s0)11⊤

 ≤
(M1M2 + 1)2

|f (s0)|λ2(L) − M2 − M1M2
2
, (5)

whenever |f (s0)|λ2(L) ≥ M2 + M1M2
2 .

We refer readers to Appendix A for the proof. Theorem 4
provides a non-asymptotic bound for our incoherence measure:
hen |f (s0)|λ2 is sufficiently large, then there exists a constant

C > 0 such thatT (s0) −
1
n
ḡ(s0)11⊤

 ≤
CM2

1M
2
2

|f (s0)|λ2(L)
. (6)

A large value of |f (s0)|λ2(L) is sufficient to have the incoher-
nce measure small, and we term this quantity as frequency-

dependent algebraic connectivity. This term is jointly determined
by the algebraic connectivity of the network λ2(L), and the gain
of the coupling dynamics |f (s0)| at the frequency of our interest
s0, which reduces to the standard algebraic connectivity if we
evaluate it at some frequency s0 where |f (s0)| = 1, and gets
amplified (or weakened) when |f (s0)| > 1 (or |f (s0)| < 1).

We see that there are two possible ways to achieve such
oint-wise coherence: Either we increase the network algebraic
onnectivity λ2(L), by adding edges to the network and increasing
edge weights, etc., or we move our point of interest s0 to a
pole of f (s). This point-wise coherence via frequency-dependent
connectivity provides the basis of our subsequent analysis. As we
mentioned above, we can achieve such coherence by increasing
either λ2(L) or |f (s0)|, provided that the other value is fixed and
non-zero. Section 3.1 considers the former and Section 3.2 the
atter.

3.1. Coherence under high network connectivity

It is intuitive that a network behaves coherently under high
onnectivity. A formal frequency domain characterization is
tated as follows.

Theorem 3. Let T (s) and ḡ(s) be defined as in (1) and (4),
espectively. Given a compact set S ⊂ C, if

(1) S does not contain any pole of ḡ(s);
(2) S does not contain any zero of gi(s) for i = 1, . . . , n;
(3) infs∈S |f (s)| > 0 ,

we have limλ2(L)→+∞ sups∈S

T (s) −
1
n ḡ(s)11

⊤
 = 0 .

Proof. On the one hand, since S does not contain any pole
f ḡ(s), ḡ(s) is continuous on the compact set S, and hence
ounded (Rudin et al., 1964, Theorem 4.15). On the other hand,
ecause S does not contain any zero of gi(s), every g−1

i (s) must
e continuous on S, and hence bounded as well. It follows that
ax1≤i≤n |g−1

i (s)| is bounded on S, and the conditions of Lemma 2
are satisfied for all s ∈ S with a uniform choice of M1 and M2.
iven any λ2(L) that satisfies λ2(L) ≥

M2+M1M2
2

infs∈S |f (s)| , one can apply (5)
for all s0 ∈ S, which lead to

sup
s∈S

T (s) −
1
n
ḡ(s)11⊤

 ≤
(M1M2 + 1)2

Flλ2(L) − M2 − M1M2
2
,

where Fl = infs∈S |f (s)|. We finish the proof by taking λ2(L) →

∞ on both sides.
5

Theorem 3 formally shows that high network connectivity
leads to coherence. We emphasize that such coherence is
frequency-dependent: the incoherence measure is defined over a
compact set S. Roughly speaking, if we would like to see whether
the network could have a coherent response under certain input
signals, then S should cover most of the frequency components
of that signal, as well satisfy the assumptions in Theorem 3. We
iscuss the proper choice of S when we use Theorem 3 to infer
he time-domain response at the beginning of Section 4.

3.2. Coherence under high gain in coupling dynamics

However, high network connectivity is not necessary for co-
herence. A high gain in the coupling dynamics effectively ampli-
fies the network connection, leading to the following frequency-
domain coherence.

Theorem 4. Let T (s) and ḡ(s) be defined as in (1) and (4),
espectively. Given a pole of f (s) denoted by s0, if

(1) s0 is not a pole of ḡ(s);
(2) s0 is not a zero of gi(s) for i = 1, . . . , n ,

then lims→s0

T (s) −
1
n ḡ(s)11

⊤
 = 0.

Proof. Since s0 is neither a pole of ḡ(s), nor a zero of any gi(s),
∃δ1 > 0 such that ∀s ∈ B(s0, δ1), we have |ḡ−1(s)| ≤ M1 and
max1≤i≤n |g−1

i (s)| ≤ M2 for some M1,M2 > 0.
Now notice that lims→s0 |f (s)| = +∞, by the definition of the

limit, we know that ∃δ2 > 0 such that ∀s ∈ B(s0, δ2), we have
1
2 |f (s)|λ2(L) ≥ M2 + M1M2

2 . By Lemma 2, let δ := min{δ1, δ2},
hen ∀s ∈ B(s0, δ), the following holds

∥T (s) −
1
n
ḡ(s)11⊤

∥ ≤
(M1M2 + 1)2

|f (s)|λ2(L) − M2 − M1M2
2

≤
2 (M1M2 + 1)2

|f (s)|λ2(L)
.

Taking s → s0, the limit of the right-hand side is 0.

Theorem 4 suggests that for any connected network, some
coupling dynamics cause coherent responses from the network
under specific input signals. For example, when f (s) =

1
s , the

network T (s) is naturally coherent around s = 0, which implies
that such a network behaves coherently under sufficiently low-
frequency input signals. This is formally justified in Section 4.2,
long with time-domain results for other choices of coupling

dynamics.

Remark 5. The convergence results presented in this section
xclude the region that contains any zero or pole of ḡ(s). One

can derive convergence results over those regions under certain
conditions, but the results is less useful in understanding the net-
work’s time-domain behavior. We refer readers to the technical
note (Min, Pates, & Mallada, 2021) for details.

4. Implications on time-domain response

In this section, we discuss how one can infer the network’s
time-domain response using the established frequency-domain
coherence in Theorems 3 and 4. Provided that the network T (s)
and the coherent dynamics ḡ(s) are BIBO stable, we let y(t) =

y1(t), . . . , yi(t), . . . , yn(t)]⊤ be the response of the network when
he network input is an n-dimensional U(s), and let ȳ(t) be the re-
ponse of ḡ(s) to 1⊤

n U(s). The inverse Laplace transform (Dullerud
& Paganini, 2013) suggests that for all i = 1, . . . , n, we have



H. Min, R. Pates and E. Mallada Automatica 174 (2025) 112184

m
i
o
w
b
o
u

t

t
S

h
r[
a
a
e

c

p
n

s
t
n
b
i
s

c
s
b
m
a

p
i
s

c
c

L
a
w

o

c
n

|yi(t) − ȳ(t)| =⏐⏐⏐⏐ limω→∞

∫ σ+jω

σ−jω
este⊤

i

(
T (s) −

1
n
ḡ(s)11⊤

)
U(s)ds

⏐⏐⏐⏐ , (7)

with a proper choice of σ > 0. Here ei is the ith column of identity
atrix In. This integral can be decomposed into two parts: one

ntegral on the low-frequency band (σ−jω0, σ+jω0); and another
n the high-frequency band (σ − j∞, σ − jω0)∪ (σ + jω0, σ + j∞),
ith some choice of ω0. The former can be shown to be upper
ounded by the frequency-domain difference ∥T (s) −

1
n ḡ(s)11

⊤
∥

ver the set S : (σ − jω0, σ + jω0). Then we identify conditions
nder which this difference is small. In particular,

(1) sups∈S ∥T (s)− 1
n ḡ(s)11

⊤
∥ is small under high network con-

nectivity, as suggested by Theorem 3;
(2) sups∈S ∥T (s) −

1
n ḡ(s)11

⊤
∥ is small when S is confined in

a neighborhood around pole of coupling dynamics f (s),
suggested by Theorem 4. The case f (s) =

1
s is of the most

interest.
Moreover, when U(s) is a sufficiently low-frequency signal such
hat the high-frequency band (σ −j∞, σ −jω0)∪(σ +jω0, σ +j∞)
does not include much of its frequency components, the latter
integral can be made small. Given an upper bound on the integral
in (7), we show that the time-domain response of every node in
he network resembles the one from the coherent dynamics ḡ(s).
imilar to Section 3, we show such time-domain coherence in two

regimes: high network connectivity or high gain in the coupling
dynamics.

Remark 6. In order to infer the time-domain response, it is
necessary that both the transfer functions T (s) and 1

n ḡ(s)11
⊤ are

stable. Since our primary focus is on the interpretation of the
frequency domain results, we are largely working under the tacit
assumption that these transfer functions are stable whenever
required. It should also be noted that there exists a range of
scalable stability criteria in the literature that can be used to
guarantee internal stability of the feedback setup in Fig. 1. Per-
aps the most well known is that if each gi(s) is strictly positive
eal, and f (s) is positive real, then the transfer functions ḡ(s) and
G(s)
I

]
(I + f (s)LG(s))−1 [f (s)L I

]
are stable (see e.g. Marquez

nd Damaren (1995)). Alternative approaches that can be easily
dapted to our framework that give criteria that allow for differ-
nt classes of transfer functions include Jönsson and Kao (2010),

Lestas and Vinnicombe (2006), Pates and Mallada (2019).

4.1. Coherent response under high network connectivity

Our first result considers networks with high connectivity.

Theorem 7. Given a network with node dynamics {gi(s)}ni=1 and
oupling dynamics f (s), assume that there exists γ > 0, such that

∥ḡ(s)∥H∞
≤ γ and ∥T (s)∥H∞

≤ γ for any symmetric Laplacian
matrix L. Consider a network coupling f (s) and a real input signal
vector u(t) with its Laplace transform U(s) such that for some σ ≥ 0,
we have

(1) infω∈R |f (σ + iω)| > 0;
(2) supRe(s)>σ ∥U(s)∥ is finite;
(3) limω→∞

∫ σ+jω
σ+j0 ∥U(s)∥ds is finite .

The following holds:

• If σ = 0, then for any ϵ > 0, there exists a λ > 0, such that
whenever λ2(L) ≥ λ, we have ∥y(t) − ȳ(t)1∥L∞

≤ ϵ, i.e.,

max sup |yi(t) − ȳ(t)| ≤ ϵ .

i∈[n] t>0

6

• If σ > 0, then given any ϵ > 0 and T > 0, there exists a
λ > 0, such that whenever λ2(L) ≥ λ, we have

max
i∈[n]

sup
0<t<T

|yi(t) − ȳ(t)| ≤ ϵ .

We refer readers to Appendix B for the proof. Theorem 7
provides a formal explanation of coherent behavior observed in
ractical networks and shows its relation with network con-
ectivity. That is, a stable network with high connectivity can

respond coherently to a class of input signals. More importantly,
the coherent response is well approximated by ḡ(s); hence, it
suffices to study ḡ(s) to understand the coherent behavior of a
network with high connectivity.

Furthermore, depending on the poles of the signal U(s), our
results vary: When U(s) has no pole on the imaginary axis (ex-
ponentially decaying signals), our time-domain bounds between
ystem response y(t) and the coherent response ȳ(t)1 holds no-
ably for all time t > 0. When U(s) has poles on the imagi-
ary axis, our theoretical analysis only provides the time-domain
ound within some time interval [0, T ], due to some limitations
n our current proof techniques. Refining the bound for the latter
cenario is left for future research.
While the theorem suggests that some level of coherence

an be achieved by increasing the network connectivity, one
hould be cautious about the potential network instability caused
y strong interconnection. Nonetheless, some simple passivity-
otivated criteria that ensure stability even as λ2(L) becomes
rbitrarily large:

Theorem 8. Suppose that all gi(s), i = 1, . . . , n are output strictly
assive: Re(gi(s)) ≥ ϵ|gi(s)|2, ∀Re(s) > 0, for some ϵ > 0, and f (s)
s positive real: Re(f (s)) ≥ 0, ∀Re(s) > 0, then there exists γ > 0,
uch that given any positive semidefinite matrix L, we have

∥ḡ(s)∥H∞
≤ γ , and ∥T (s)∥H∞

≤ γ .

We refer readers to the technical note (Min et al., 2021) for
the proof. Theorem 8, together with Theorem 7, shows that for
ertain passive networks, the coherence can be achieved over a
lass of input signals by increasing the network connectivity.

Remark 9. Besides network stability as a prerequisite, a few
assumptions are made in Theorem 7: infimum on |f (s)| ensures
that the network coupling does not vanish over our domain of
interest; supremum on ∥U(s)∥ is needed for utilizing inverse
aplace transform; and the last assumption requires U(s) to have
 light tail on the high-frequency range. A low-frequency signal
ith no abrupt change at t = 0 satisfies the assumption with

some σ > 0, for example, sinusoidal signal U(s) =
α

s2+α2 u0,
r exponential approach signal U(s) =

α
s(s+α)u0 of some shape

u0 ∈ Rn. Moreover, if one adds an exponential decay to the
aforementioned input signal, then the new signal U(s−ν) (ν > 0
can be arbitrarily small) satisfies the assumption with σ = 0.

4.2. Coherent response under special coupling dynamics

As we discussed in Section 3, coherence is not all about net-
work connectivity, and high gain in the coupling dynamics causes
oherence as well. One simple and practically seen coupling dy-
amics are f (s) =

1
s . Due to its high gain at s = 0, we expect

that the network has a coherent response under low-frequency
signals, as formally shown below.

Theorem 10. Given a network with node dynamics {gi(s)}ni=1,
coupling dynamics f (s) =

1
s , and a fixed graph Laplacian L with

λ (L) > 0, such that ∥ḡ(s)∥ and ∥T (s)∥ are finite. Then for
2 H∞ H∞
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any ϵ > 0 and T > 0, there exists an α0 > 0 such that if the
network input is either (we use χ (t) = 1t≥0 to denote step signal)

• a sinusoidal signal uα(t) = sin(αt)χ (t)u0 with 0 ≤ α ≤ α0,
in an arbitrary direction u0 ∈ Sn−1;

• or a general input u(t) =
∑

∞

j=1 βj sin(αjt)χ (t)uj, with uj ∈

Sn−1, 0 ≤ αj ≤ α0, βj ≥ 0, ∀j = 1, . . ., and
∑

∞

j=1 βj ≤ 1,

we have maxi∈[n] sup0<t<T |yi(t) − ȳ(t)| ≤ ϵ

We refer readers to Appendix B for the proof. Theorem 10
shows that a stable network with f (s) =

1
s is naturally coherent

ubject to sufficiently low-frequency signals, regardless of its con-
ectivity. Notably, the requirement on the node dynamics here is

much weaker than one in Theorem 7 as we only need to estab-
lish stability for a given interconnection L, whereas Theorem 7
requires stability under any interconnection. However, similar to
Theorem 7 applying to signals with poles on the imaginary axis,
ur results only provide the bound in the transient phase until
ome time T > 0. We believe it is possible to provide an error
ound for all time t > 0 if an exponential decay is added to the
inusoidal inputs, similar to the result in Theorem 7 for the case
f σ = 0, and a formal proof is left to future research.

4.3. Comparison with different notions of coordination

Our Theorems 7 and 10 show the coherent response of the
network in the time domain. We compare our results to prior
work that studies different forms of time-domain coordination in
network systems.

The consensus (Olfati-Saber & Murray, 2004) and synchroniza-
ion (Mallada et al., 2015; Mirollo & Strogatz, 1990; Sepulchre
t al., 2008) are arguably the simplest form of coordination in
etwork systems, which can be viewed as a problem tracking
ome reference signal ȳ(t) representing the final consensus or
ynchronization. However, one only requires yi(t) → ȳ(t) when
→ ∞, i.e., that the node responses become close to ȳ(t) in

teady state. The coherent response considered here is different in
hat we have yi(t) ≃ ȳ(t), ∀t > 0, i.e., ȳ(t) is a good approximation
or yi(t) for all time t > 0, hence our results can be also used for
ransient analysis.

The work on coherency and synchrony (Ramaswamy et al.,
1996; Ramaswamy, Verghese, Rouco, Vialas, & DeMarco, 1995;
Sastry & Varaiya, 1981; Wu & Narasimhamurthi, 1983) studies
 similar behavior as ours, but the behavior is characterized as
airwise coherence achieved under input signal of certain spatial
hape: given an input signal vector u(t) = v(t)u0, Ramaswamy
t al. (1995), Wu and Narasimhamurthi (1983) shows the con-
ition on u0 such that the responses of some pair of nodes are
imilar (or generally, proportional (Ramaswamy et al., 1996)),
.e., yi(t) ≃ yj(t) for some i, j ∈ [n]. Our results show that certain
emporal shape v(t) also causes coherence, and in a stronger
orm: our coherence does not depend on the shape u0 and holds
or all nodes.

5. Dynamics concentration in large-scale networks

In Section 3, we looked into convergence results of T (s) for
etworks with fixed size n. However, one could easily see that
uch coherence depends mildly on the network size n: In
Lemma 2, as long as the bounds regarding gi(s), i.e. M1 and M2 do
not scale with respect to n, coherence can emerge as the network
size increases. This is the topic of this section.

5.1. Coherence in large-scale networks

To start with, we revise the problem settings to account for
ariable network size: Let {gi(s), i ∈ N+} be a sequence of transfer
unctions, and {L , n ∈ N } be a sequence of real symmetric
n + f

7

Laplacian matrices such that Ln is a square matrix of order n,
articularly, let L1 = 0. Then we define a sequence of transfer

matrix Tn(s) as

Tn(s) = (In + Gn(s)Ln)−1 Gn(s), (8)

where Gn(s) = diag{g1(s), . . . , gn(s)}. This is exactly the same
ransfer matrix shown in Fig. 1 for a network of size n. We can
then define the coherent dynamics for every Tn(s) as ḡn(s) =
1
n

∑n
i=1 g

−1
i (s)

)−1
.

For certain family {Ln, n ∈ N+} of large-scale networks, the
network algebraic connectivity λ2(Ln) increases as n grows. For
example, when Ln is the Laplacian of a complete graph of size n
with all edge weights being 1, we have λ2(Ln) = n. As a result,
etwork coherence naturally emerges as the network size grows.
ecall that to prove the convergence of Tn(s) to 1

n ḡn(s)11
⊤ for

ixed n, we essentially seek for M1,M2 > 0, such that |ḡn(s)| ≤ M1
and max1≤i≤n |g−1

i (s)| ≤ M2 for s in a certain set. If it is possible
to find a universal M1,M2 > 0 for all n, then the convergence
results should be extended to arbitrarily large networks, provided
that network connectivity increases as n grows. The results follow
after we state the notion of uniform boundedness for a family of
functions.

Definition 11. Let {gi(s), i ∈ I} be a family of complex functions
indexed by I. Given S ⊂ C, {gi(s), i ∈ I} is uniformly bounded on
S if

∃M > 0 s.t. |gi(s)| ≤ M, ∀i ∈ I, ∀s ∈ S.

Theorem 12. Suppose λ2(Ln) → +∞ as n → ∞. Given a compact
et S ⊂ C, if both {g−1

i (s), i ∈ N+} and {ḡn(s), n ∈ N+} are
uniformly bounded on a set S ⊂ C, and infs∈S |f (s)| > 0, then we
ave

lim
n→∞

sup
s∈S

Tn(s) −
1
n
ḡn(s)11⊤

 = 0.

The proof is similar to the one for Theorem 3. Due to space
constraints, we refer readers to the technical note (Min et al.,
2021) for the proof. Interestingly, in a stochastic setting where
all gi(s) are unknown transfer functions independently drawn
from some distribution, their harmonic mean ḡn(s) eventually
converges in probability to a deterministic transfer function as
the network size increases. Consequently, a large-scale network
onsisting of random node dynamics (to be formally defined
later) concentrates around a deterministic system. We term this
phenomenon dynamics concentration.

Remark 13. In this section, we only discuss the coherence due
to connectivity since the coherence from a high gain in coupling
dynamics shown in Theorem 4 can be applied to any connected
etwork, regardless of its size.

5.2. Dynamics concentration in large-scale networks

Now we consider the cases where the node dynamics are un-
known (stochastic). For simplicity, we constraint our analysis to
he setting where the node dynamics are independently sampled
rom the same random rational transfer function with all or part
f the coefficients are random variables, i.e. the nodal transfer
unctions are of the form

gi(s) ∼
bmsm + · · · b1s + b0
alsl + · · · a1s + a0

, (9)

for some m, l > 0, where b0, . . . , bm, a0, . . . , al are random
ariables.
To formalize the setting, we first define the random transfer

unction to be sampled. Let Ω = Rd be the sample space, F the
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Borel σ -field of Ω , and P a probability measure on Ω . A sample
w ∈ Ω thus represents a d-dimensional vector of coefficients.
We then define a random rational transfer function g(s, w) on
(Ω,F,P) such that all or part of the coefficients of g(s, w) are
random variables. Then for any w0 ∈ Ω , g(s, w0) is a rational
transfer function.

Now consider the probability space (Ω∞,F∞,P∞). Every w ∈
∞ gives an instance of samples drawn from our random transfer

unction:

gi(s, wi) := g(s, wi), i ∈ N+,

where wi is the ith element of w. By construction, gi(s, wi), i ∈ N+

re i.i.d. random transfer functions. Moreover, for every s0 ∈ C,
i(s0, wi), i ∈ N+ are i.i.d. random complex variables taking values
n the extended complex plane (presumably taking value ∞).

Now given {Ln, n ∈ N+} a sequence of n × n real symmetric
Laplacian matrices, consider the random network of size n whose
odes are associated with the dynamics gi(s, wi), i = 1, 2, . . . , n
nd coupled through Ln. The transfer matrix of such a network is

given by

Tn(s,w) = (In + Gn(s,w)Ln)−1Gn(s,w), (10)

where Gn(s,w) = diag{g1(s, w1), . . . , gn(s, wn)}. Then under this
setting, the coherent dynamics of the network are given by

¯ (s,w) =

(
1
n

n∑
i=1

g−1
i (s, wi)

)−1

. (11)

Now given a compact set S ⊂ C of interest, and assuming
suitable conditions on the distribution of g(s, w), we expect that
the random coherent dynamics ḡ(s,w) would converge uniformly
in probability to its expectation

ˆ (s) =
(
Eg−1(s, w)

)−1
:=

(∫
Ω

g−1(s, w)dP(w)
)−1

, (12)

for all s ∈ S, as n → ∞. The following Lemma provides a
ufficient condition for this to hold.

Lemma 14. Consider the probability space (Ω∞,F∞,P∞). Let
¯n(s,w) and ĝ(s) be defined as in (11) and (12), respectively, and
iven a compact set S ⊂ C, let the following conditions hold:

(1) g−1(s, w) is uniformly bounded on S × Ω;
(2) {ḡn(s,w), n ∈ N+} are uniformly bounded on S × Ω∞;
(3) ∃Clip > 0 s.t. |g−1

i (s1, w) − g−1
i (s2, w)| ≤ Clip|s1 − s2|, ∀w ∈

Ω , ∀s1, s2 ∈ S, ∀i;
(4) ĝ(s) is uniformly continuous on S.

Then, ∀ϵ > 0, we have

lim
n→∞

P
(
sup
s∈S

1n ḡn(s,w)11⊤
−

1
n
ĝ(s)11⊤

 ≥ ϵ

)
= 0.

This lemma suggests that our coherent dynamics ḡn(s,w), as n
ncreases, converges uniformly on S to its expected version ĝ(s).
hen provided that the coherence is obtained as the network size
rows, we would expect that the random transfer matrix Tn(s,w)
o concentrate to a deterministic one 1

n ĝ(s)11
⊤, as the following

heorem shows.

Theorem 15. Given probability space (Ω∞,F∞,P∞). Let Tn(s,w)
nd ĝ(s) be defined as in (10) and (12), respectively. Suppose
2(Ln) → +∞ as n → +∞. Given a compact set S ⊂ C, if all
he conditions in Lemma 14 hold, then ∀ϵ > 0, we have

lim
n→∞

P
(
sup
s∈S

Tn(s,w) −
1
n
ĝ(s)11⊤

 ≥ ϵ

)
= 0.
8

The proof of Lemma 14 follows the standard procedure for
showing the uniform stochastic convergence of a random func-
tion, then Theorem 15 is its direct application. We refer interested
readers to the technical note (Min et al., 2021) for the proofs.
In summary, because the coherent dynamics is given by the
armonic mean of all node dynamics gi(s), it concentrates around
ts harmonic expectation ĝ(s) as the network size grows. As a
esult, in practice, the coherent behavior of large-scale networks
epends on the empirical distribution of gi(s), i.e. a collective
ffect of all node dynamics rather than every individual node
ynamics. For example, two different realizations of large-scale
etworks with dynamics Tn(s,w) exhibit similar coherent be-
avior with high probability, in spite of the possible substantial
ifferences in individual node dynamics.

Remark 16. With Theorem 15, one can adopt the analysis in
Section 4 to derive a time-domain result similar to the one in
Theorem 7. In this case, the network stability again relies on node
passivity as required in Theorem 8. Nonetheless, for the low-
rder rational transfer function, the condition of being passive is
quivalent to its coefficients satisfying certain algebraic inequali-
ies (Chen & Smith, 2009); hence there exists probability measure
P on the coefficients such that the resulting transfer function is
passive almost surely, under which the time-domain response of
the network Tn(s,w) can be inferred.

6. Application: Aggregate dynamics of synchronous generator
etworks

In this section, we apply our analysis to investigate coherence
in power networks. For coherent generator groups, we find that
1
n ḡ(s) generalizes typical aggregate generator models, which are
ften used for model reduction in power networks (Chow, 2013).

Moreover, we show that heterogeneity in generator dynamics
usually leads to high-order aggregate dynamics, making it chal-
enging to find a reasonably low-order approximation. Consider
the transfer matrix of power generator networks (Paganini &
Mallada, 2020) linearized around its steady-state point, given by
the following block diagram (see Fig. 3). This is exactly the block
tructure shown in Fig. 1 with f (s) =

1
s . Here, the network output,

i.e., the frequency deviation of each generator, is denoted by ω.
Generally, the gi(s) are modeled as strictly positive real transfer
functions, and we assume L is connected. Such interconnection
is stable (Marquez & Damaren, 1995), regardless of the network
onnectivity.

6.1. Numerical verification

We verify our theoretical results, Theorems 7 and 10, with
numerical simulations on the Icelandic power grid (University of
Edinburgh, 2003). Specifically, the generator models are either
modeled as a first-order gi(s) =

1
mis+di

or a second-order gi(s) =

τis+1
(τis+1)(mis+di)+r−1

i
. The order of the generator model and the coef-

icients are all provided in University of Edinburgh (2003), except
for damping ratio di, which we set to 1

2π ω0
times the rating of the

ith generator (w0 is the nominal frequency 60 Hz). The Laplacian L
is given by Lij =

∂
∂ θj

∑n
k=1 |Vi||Vk|bik sin(θi − θk)

⏐⏐⏐
θ=θ0

, where θ0 are

angle deviations at steady state, |Vi| is the voltage magnitude at
bus i and bij is the line susceptance. All these line/bus information
is available in University of Edinburgh (2003).

The connectivity Lij between two generator buses (nodes) crit-
cally, and inversely, depends on their physical distance (longer
transmission line means smaller bij, the line susceptance). Since
the Icelandic power grid has all its generator buses relatively
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Fig. 2. Coherent response of Icelandic Grid. Each column corresponds to a different input signal (from left to right: step, exponential approach, high-frequency
inusoidal, and low-frequency sinusoidal signal. Here we use χ (t) = 1t≥0 to denote step signal); The input signal has a shape u0 = −e2 , i.e., only the second node
s subject to disturbance. The top row shows the responses of the original Icelandic grid, and the bottom row shows the responses of the network with increased
onnectivity. The red dashed line shows the response of ḡ(s) subject to the averaged input ū(t) = 1⊤u(t)/n. Blue solid line shows the Center-of-Inertia frequency of
he grid yCOI = (

∑n
i=1 miyi)/(

∑n
i=1 mi).
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Fig. 3. Block Diagram of Linearized Power Networks.

close to each other, the grid naturally has sufficiently high con-
ectivity to exhibit coherent behavior, as we will verify now.

We plot in Fig. 2 the frequency response of the power network
odel subject to various input disturbances. The network step

esponse is already highly coherent, i.e. response of every single
ode (generator) is close to the one of the coherent dynamics

¯ (s), in the original network and even more coherent when the
etwork connectivity is scaled up, as suggested by Theorem 7.
e note that scaling up the network Laplacian means bringing

enerators closer geographically, which is generally unrealistic.
We do so mostly for illustration purposes, highlighting how the
level of network coherence depends on connectivity. In addi-
tion, the network responds more coherently when subject to
lower-frequency signals (See the second and fourth column in
Fig. 2), as suggested by Theorem 10. But most importantly, the
oherent dynamics ḡ(s) provides a good characterization of the
oherent response. We also plot the Center-of-Inertia frequency
f the grid yCOI = (

∑n
i=1 miyi)/(

∑n
i=1 mi), which is generally used

for frequency response assessment, and we see that it is well
approximated by the response of ḡ(s).

6.2. Aggregate dynamics of generator networks

The numerical simulations above suggest that the coherent
ynamics ḡ(s) characterize well the overall frequency response
f generators in a grid. This leads to a general methodology to
nalyze the aggregate dynamics of such networks. Let

gaggr(s) :=
1
n
ḡ(s) =

(
n∑

i=1

g−1
i (s)

)−1

.

Our analysis suggests that the transfer function T (s) representing
a network of generators is close gaggr(s)11⊤ within the low-
frequency range, for sufficiently high network connectivity λ (L).
2

9

We can also view gaggr(s) as the aggregate generator dynamics, in
he sense that it takes the sum of disturbances 1⊤u =

∑n
i=1 ui as

its input, and its output represents the coherent response of all
generators.

Such a notion of aggregate dynamics is important in modeling
large-scale power networks (Chow, 2013). Generally speaking,
one seeks to find an aggregate dynamic model for a group of gen-
erators using the same structure (transfer function) as individual
generator dynamics, i.e. when generator dynamics are modeled
as gi(s) = g(s; θi), where θi is a vector of parameters representing
hysical properties of each generator, existing works (Germond,

Podmore, 1978; Guggilam et al., 2018) propose methods to find
aggregate dynamics of the form g(s; θaggr) for certain structures
f g(s; θ ). Our gaggr(s) justifies their choices of θaggr, as shown in
he following example.

Example 17. For generators given by the swing model gi(s) =
1

mis+di
, where mi, di are the inertia and damping of generator i,

respectively. The aggregate dynamics are

gaggr(s) =
1

maggrs + daggr
, (13)

where maggr =
∑n

i=1 mi and daggr =
∑n

i=1 di.

Here the parameters are θ = {m, d}. The aggregate model
given by (13) is consistent with the existing approach of choosing
nertia m and damping d as the respective sums over all the
oherent generators.
However, as we show in the next example when one considers

more involved models, it is challenging to find parameters that
ccurately fit the aggregate dynamics.

Example 18. For generators given by the swing model with
turbine droop gi(s) =

1

mis+di+
r−1
i

τis+1

, where r−1
i and τi are the droop

oefficient and turbine time constant of generator i, respectively.
he aggregate dynamics are given by

gaggr(s) =
1

maggrs + daggr +
∑n

i=1
r−1
i

τis+1

. (14)

Here the parameters are θ = {m, d, r−1, τ }. This example
illustrates, in particular, the difficulty in aggregating generators
with heterogeneous turbine time constants. If the τi are het-
erogeneous, then g (s) is a high-order transfer function and
aggr
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cannot be accurately represented by a single generator model
parametrized by θ . The aggregation of generators essentially asks
for a low-order approximation of gaggr(s). Our analysis reveals the
fundamental limitation of using conventional approaches seeking
aggregate dynamics with the same structure of individual gen-
erators. Furthermore, by characterizing the aggregate dynamics
in the explicit form gaggr(s), one can develop more accurate low-
order approximation (Min & Mallada, 2021). Lastly, we emphasize
hat our analysis does not depend on a specific model of gener-
tor dynamics gi(s). Hence, it provides a general methodology to
ggregate coherent generator networks.

7. Conclusions

In this paper, we study network coherence as a low-rank
property of the transfer matrix T (s) in the frequency domain.
The analysis leads to useful characterizations of coordinated be-
havior and justifies the relation between network coherence and
etwork frequency-dependent algebraic connectivity. Our results
uggest that network coherence is a frequency-dependent phe-
omenon, which is numerically illustrated in generator networks.

Lastly, concentration results for large-scale networks are pre-
sented, revealing the exclusive role of the statistical distribution
of node dynamics in determining the coherent dynamics of such
etworks. One interesting future work is to study the dynamic

behavior of large-scale networks with multiple coherent groups.
One could model the inter-community interactions by replacing
the dynamics of each community with its coherent one, or more
enerally, a reduced one. Although clustering, i.e. finding com-

munities, for homogeneous networks can be efficiently done by
various graph-based methods, it is still open for research to find
ultiple coherent groups in heterogeneous dynamical networks.
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Appendix A. Proof of Lemma 2

Proof. Let H = V⊤diag{g−1
i (s0)}V+f (s0)Λ, such that (2) becomes

T (s) = VH−1V⊤. Then it is easy to see that

∥T (s0) −
1
n
ḡ(s0)11⊤

∥ = ∥T (s0) − ḡ(s0)Ve1e⊤

1 V
⊤
∥

= ∥V
(
H−1

− ḡ(s0)e1e⊤

1

)
V⊤

∥

= ∥H−1
− ḡ(s0)e1e⊤

1 ∥, (A.1)

where e1 is the first column of identity matrix In. The first equality
holds by noticing that 1

√
n is the first column of V .

With V =

[
1

√
n V⊥

]
, we write H in block matrix form:

H =

[
1⊤

√
n

V⊤

⊥

]
diag{g−1

i (s0)}
[

1
√
n V⊥

]
+ f (s0)Λ

:=

[
ḡ−1(s0) h⊤

21
]

,

h21 H22

10
where

h21 = V⊤

⊥
diag{g−1

i (s0)}
1

√
n
,

H22 = V⊤

⊥
diag{g−1

i (s0)}V⊥ + f (s0)Λ̃,

˜ = diag{λ2(L), . . . , λn(L)}.

Inverting H in its block form, we have

H−1
=

[
a −ah⊤

21H
−1
22

−aH−1
22 h21 H−1

22 + aH−1
22 h21h⊤

21H
−1
22

]
,

where a =
1

ḡ−1(s0)−h⊤
21H

−1
22 h21

.

By our assumption, we have ∥diag{g−1
i (s0)}∥ = max1≤i≤n

g−1
i (s0)| ≤ M2, then

∥h21∥ = ∥V⊤

⊥
diag{g−1

i (s0)}
1

√
n
∥

≤ ∥V⊥∥∥diag{g−1
i (s0)}∥

∥1∥
√
n

≤ M2, (A.2)

and

∥H−1
22 ∥ = ∥(f (s0)Λ̃ + V⊤

⊥
diag{g−1

i (s0)}V⊥)−1
∥

=
1

σmin
(
f (s0)Λ̃ + V⊤

⊥
diag{g−1

i (s0)}V⊥

)
≤

1

σmin(f (s0)Λ̃) − ∥V⊤

⊥
diag{g−1

i (s0)}V⊥∥

≤
1

σmin(f (s0)Λ̃) − M2
≤

1
|f (s0)|λ2(L) − M2

, (A.3)

whenever |f (s0)|λ2(L) > M2.
Lastly, when |f (s0)|λ2(L) > M2 +M2

2M1, a similar reasoning as
bove, using (A.2) (A.3), and our assumption |ḡ(s0)| ≤ M1, gives

|a| ≤
1

|ḡ−1(s0)| − ∥h21∥
2∥H−1

22 ∥

=
(|f (s0)|λ2(L) − M2)M1

|f (s0)|λ2(L) − M2 − M1M2
2
. (A.4)

Now we bound the norm of H−1
− ḡ(s0)e1e⊤

1 by the sum of norms
of all its blocks:

∥H−1
− ḡ(s0)e1e⊤

1 ∥

 |aḡ(s0)h⊤

21H
−1
22 h21| + 2∥aH−1

22 h21∥

+ ∥H−1
22 + aH−1

22 h21h⊤

21H
−1
22 ∥

 |a|∥H−1
22 ∥(|ḡ(s0)|∥h21∥

2
+ 2∥h21∥ + ∥h21∥

2
∥H−1

22 ∥)

+ ∥H−1
22 ∥, (A.5)

Using (A.2)(A.3)(A.4), we can further upper bound (A.5) as

∥H−1
− ḡ(s0)e1e⊤

1 ∥ ≤
(M1M2 + 1)2

|f (s0)|λ2(L) − M2 − M1M2
2
. (A.6)

This bound holds as long as |f (s0)|λ2(L) > M2+M2
2M1. Combining

A.1) and (A.6) gives the desired inequality.

Appendix B. Proof of Theorems 7 and 10

When the input to the network is U(s), the output response of
the ith node is

Yi(s) = e⊤

i T (s)U(s),

where ei is the ith column of the identity matrix In.
Using Mellin’s inverse formula (Dullerud & Paganini, 2013,

heorem 3.20), we have

|y (t) − ȳ(t)|
i
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b
w

c

ω

C

i
λ

e
a

a

:

=

⏐⏐⏐⏐ 1
2π j

lim
ω→∞

∫ σ+jω

σ−jω
est
(
Yi(s) − e⊤

i ḡ(s)1
1⊤

n
U(s)

)
ds
⏐⏐⏐⏐

≤
eσ t

2π
lim

ω→∞

∫ σ+jω

σ−jω

⏐⏐⏐⏐e⊤

i T (s)U(s) − e⊤

i ḡ(s)1
1⊤

n
U(s)

⏐⏐⏐⏐ ds
≤

eσ t

2π
lim

ω→∞

∫ σ+jω

σ−jω
∥T (s) −

1
n
ḡ(s)11⊤

∥∥U(s)∥ds

=
eσ t

2π
((A) + (B) + (C)) ,

where

(A) =

∫ σ+jω0

σ−jω0

T (s) −
1
n
ḡ(s)11⊤

 ∥U(s)∥ds,

(B) = lim
ω→∞

∫ σ+jω

σ+jω0

T (s) −
1
n
ḡ(s)11⊤

 ∥U(s)∥ds,

(C) = lim
ω→∞

∫ σ−jω0

σ−jω

T (s) −
1
n
ḡ(s)11⊤

 ∥U(s)∥ds.

Both proofs use such a decomposition. By our assumption,

(B) = lim
ω→∞

∫ σ+jω

σ+jω0

∥T (s) −
1
n
ḡ(s)11⊤

∥∥U(s)∥ds

≤ lim
ω→∞

∫ σ+jω

σ+jω0

(∥T (s)∥ + ∥ḡ(s)∥) ∥U(s)∥ds

≤ 2γ lim
ω→∞

∫ σ+jω

σ+jω0

∥U(s)∥ds,

where the last inequality uses the fact that ḡ(s) and T (s) are sta-
le: ∥ḡ(s)∥H∞

, ∥T (s)∥H∞
≤ γ . Because for the real input signals,

e have U(s∗) = U∗(s), hence
∫ σ−jω0

σ−jω ∥U(s)∥ds =
∫ σ+jω

σ+jω0
∥U(s)∥ds,

which leads to

(C) ≤ 2γ lim
ω→∞

∫ σ+jω

σ+jω0

∥U(s)∥ds.

Now we are ready to prove Theorems 7 and 10.

Proof (Proof of Theorem 7). First of all, Mellin’s inverse formula
requires that the vertical line Re(s) = σ is on the right of all
poles of the signal. This is the case from our assumption that
supRe(s)>σ ∥U(s)∥ < +∞ and that T (s), ḡ(s) being stable.

Given any t ≥ 0, since limω→∞

∫ σ+jω
σ+j0 ∥U(s)∥ds is finite, one

an pick an ω0 > 0, such that

lim
→∞

∫ σ+jω

σ+jω0

∥U(s)∥ds ≤
2π ϵ

6eσ tγ
,

which leads to

(B) ≤ 2γ lim
ω→∞

∫ σ+jω

σ+jω0

∥U(s)∥ds ≤
2π ϵ

3eσ t .

Similarly, we have (C) ≤
2π ϵ
3eσ t . Notably, the choice of ω0 depends

on σ t . For the remaining term, we have

(A) =

∫ σ+jω0

σ−jω0

∥T (s) −
1
n
ḡ(s)11⊤

∥∥U(s)∥ds

≤ sup
w∈[−w0,w0]

∥T (σ + jw) −
1
n
ḡ(σ + jw)11⊤

∥

×

∫ σ+jω0

σ−jω0

∥U(s)∥ds
11
Since [σ − jω0, σ + jω0] is a compact set that satisfies the
assumption in Theorem 3, we have

lim
λ2(L)→∞

sup
w∈[−w0,w0]

T (σ + jw) −
1
n
ḡ(σ + jw)11⊤

 = 0.

Therefore, for a sufficiently large λ2(L), we have (A) ≤
2π ϵ
3eσ t .

ombining the upperbounds for (A), (B), (C), we have

|yi(t) − ȳ(t)| ≤ ϵ .

When σ = 0, notice that the choice of w0 now does not depend
on time t , thus neither does the lower bound on λ2(L), hence this
nequality holds uniformly for all t > 0 with a sufficiently large
2(L).
When σ > 0, the time domain bound can no longer be

xtended to {t : t > 0}. Nonetheless, given a T > 0, we have
 sufficiently large λ2(L) such that (A)+ (B)+ (C) ≤

2π ϵ

eσT , and this
suffices to show that ∀t ≤ T ,

|yi(t) − ȳ(t)| ≤
eσ t

2π
((A) + (B) + (C)) ≤

eσ t

eσT ϵ ≤ ϵ .

Proof (Proof of Theorem 10). For the first scenario, the input is
 sinusoidal signal U(s) =

α

s2+α2 u0, u0 ∈ Sn−1 (We discuss the
second scenario at the end of the proof). Mellin’s inverse formula
requires that the vertical line Re(s) = σ is on the right of all poles
of the signal, which is satisfied under any choice σ > 0. For our
purpose, we pick

σ = α , ω0 = Kα ,

for some K > 0 (to be determined later). By our assumption,

(B) ≤ 2γ lim
ω→∞

∫ σ+jω

σ+jω0

⏐⏐⏐⏐ α

s2 + α2

⏐⏐⏐⏐ ∥u0∥ds

= 2γ
∫

+∞

ω0

α

|(σ + jω)2 + α2|
dω

= 2γ
∫

+∞

Kα

α

|(α + jω)2 + α2|
dω

= 2γ
∫

+∞

Kα

α
√
4α4 + ω4

dω

≤ 2
√
2γ
∫

+∞

Kα

α

2α2 + ω2 dω

= γ

(
π − 2 arctan

(
K

√
2

))
, (B.1)

where the last inequality uses the fact that for a, b > 0, we have√
a2 + b2 ≥ (a + b)/

√
2.

Similarly, we have

(C) ≤ γ

(
π − 2 arctan

(
K

√
2

))
. (B.2)

For the remaining term, we use the result in the proof of Theorem 4
∃δ > 0, such that ∀s ∈ B(0, δ) such thatT (s) −

1
n
ḡ(s)11⊤

 ≤
2 (M1M2 + 1)2

|f (s)|λ2(L)
,

for some M1,M2 > 0. Then as long as we pick α , K appropriately
such that |σ + jω0| ≤ δ, i.e.,

√
1 + K 2α ≤ δ, we have

(A) =

∫ σ+jω0

σ−jω0

∥T (s) −
1
n
ḡ(s)11⊤

∥

⏐⏐⏐⏐ α

s2 + α2

⏐⏐⏐⏐ ds
≤

∫ σ+jω0 2 (M1M2 + 1)2
⏐⏐⏐⏐ α

2 2

⏐⏐⏐⏐ ds

σ−jω0 |f (s)|λ2(L) s + α
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a

n
t
t
i

=

∫ σ+jω0

σ−jω0

2 (M1M2 + 1)2

λ2(L)/|s|
α

|s2 + α2|
ds

=
2 (M1M2 + 1)2

λ2(L)

∫ σ+jω0

σ−jω0

|s|α
|s2 + α2|

ds

=
4 (M1M2 + 1)2

λ2(L)

∫ Kα

0

|α + jω|α

|(α + jω)2 + α2|
dω

=
4 (M1M2 + 1)2

λ2(L)

∫ Kα

0

√
α2 + ω2α

√
4α4 + ω4

dω

≤
2
√
2 (M1M2 + 1)2

λ2(L)

∫ Kα

0

2(α + ω)α
2α2 + ω2 dω ,

where the last equality used the fact that for a, b > 0, we have

a + b ≥

√
a2 + b2 ≥ (a + b)/

√
2,

to upper and lower bound the numerator and denominator re-
spectively. Notice that∫ Kα

0

2(α + ω)α
2α2 + ω2 dω

= α

(
√
2 arctan

(
K

√
2

)
+ log

(
1 +

K 2

2

))
≤ 2α log

(
K 2

2

)
, (B.3)

for sufficiently large K . We have

(A) ≤
4
√
2 (M1M2 + 1)2

λ2(L)
α log

(
K 2

2

)
. (B.4)

The last step is to find the right choice of α , K . Given ϵ > 0, pick
K > 0, such that

2γ
(

π − 2 arctan
(

K
√
2

))
≤

ϵ π

4
.

Generally, such a K is sufficient for (B.3) to hold. With this choice
of K , let

α0 :=

min

⎧⎨⎩2 log 2
T

,
ϵ π λ2(L)

8
√
2(M1M2 + 1)2 log

(
K2

2

) ,
δ

√
1 + K 2

⎫⎬⎭ .

Then, ∀α ≤ α0, combining (B.1)(B.2)(B.4), we have for any t ≤ T ,

|yi(t) − ȳ(t)| ≤
eσ t

2π
((A) + (B) + (C))

≤
eα0T

2π

(
2γ
(

π − 2 arctan
(

K
√
2

))
+

4
√
2 (M1M2 + 1)2

λ2(L)
α log

(
K 2

2

))
≤

2
π

(ϵ π

4
+

ϵ π

4

)
= ϵ .

This finishes the proof for the first scenario. In the second sce-
ario, the input is a convex combination of inputs that satisfies
he condition in the first scenario. The results are trivial from
he linearity of the system: if we denote the response of node
subjected to sin(αjt)uj as y(j)i (t), then we have, for t ≤ T ,

|yi(t) − ȳ(t)| =

⏐⏐⏐⏐⏐⏐
∞∑
j

βjy
(j)
i (t) − ȳ(t)

⏐⏐⏐⏐⏐⏐
≤

∞∑
j

βj|y
(j)
i (t) − ȳ(t)| ≤ ϵ .
12
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