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Abstract

Safety certification in dynamical systems has relied heavily on the identification

of an invariant set that strictly requires trajectories to always lie within it. This

foundational approach addresses two key safety objectives: stability and avoidance.

To this end, techniques such as the Lyapunov method and the barrier function

method that are capable of characterizing an invariant set have been pivotal. How-

ever, the invariance requirement poses strict constraints on the learning outcome.

Therefore, as the system dimension increases, directly characterizing invariant sets

or identifying functions that define invariant sets typically demands considerable

domain-specific knowledge or extensive computational resources.

This thesis seeks to develop new data-driven methodologies that facilitate the

verification of stability and avoidance in dynamical systems, without relying on

the identification of invariant sets. A key innovation of this thesis is the appli-

cation of the concept of recurrence to relax the stringent constraints imposed by

invariance. Specifically, a set is recurrent if trajectories originating from it return

to it infinitely often. By leveraging recurrence, safety can be characterized with

enhanced efficiency and accuracy.

This thesis theoretically establishes necessary and sufficient conditions for using

recurrence to characterize safety, offering a deeper understanding of how recur-

rence can serve as a reliable proxy for invariance. Practically, it introduces practical,

data-driven algorithms that utilize only a finite number of finite-length sampled

trajectories to determine safe regions within a dynamical system. Optimized for
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computational efficiency, these algorithms can be implemented on parallel process-

ing units, making them highly applicable in real-world scenarios where rapid and

reliable safety verification is crucial.
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Chapter 1

Introduction

The contemporary control paradigm is undergoing one of the most fundamental

transformations since its inception. Sequential decision-making techniques, such

as reinforcement learning enhanced with deep neural network architectures, have

shown incredible success by achieving super-human performance in various situa-

tions like strategic gameplay, product recommendations, and stock trading. These

approaches hold the potential to significantly impact numerous application areas,

including autonomous transportation, industrial automation, and power networks.

Despite the significant advances, the deployment of these techniques in safety-

critical systems presents a formidable challenge. These environments often involve

high-dimensional dynamical systems where the stakes for operational safety and

reliability are exceptionally high. As the dimensionality of the system increases, the

task of characterizing a safe region becomes computationally intensive and may

result in a highly complex representation of the resultant safety set.

Among the prevailing challenges, the fundamental issue lies in the reliance on

identifying an invariant set — a set within which system trajectories are contin-

uously contained — to characterize a safe region. This invariance requirement

implicitly couples the shape and topology of the learning outcomes with the system

trajectories. For instance, any invariant safe set approximation must be connected,
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and system trajectories must consistently point inward at every point along its

boundary. Therefore, identifying an invariant safe region typically demands consid-

erable domain-specific knowledge or extensive computational resources due to this

intricate coupling.

This dissertation research aims to develop rigorous methodologies for efficiently

certifying the safety of high-dimensional dynamical systems with minimal sys-

tem description. It specifically addresses the following two commonly desired

objectives:

• What is the set of initial conditions such that a given stable equilibrium is

guaranteed to be converged to?

• What is the set of initial conditions such that a given unsafe state space region

is guaranteed to be avoided with?

A key innovation of this work is the application of the concept of recurrence to relax

the stringent constraints imposed by invariance. Specifically, a set is recurrent if

trajectories originating from it return to it infinitely often. Recurrent sets allow tra-

jectories to leave the set and thus constitute a strict relaxation of invariance—every

invariant set is recurrent, but not the other way around. Leveraging this innovative

notion of recurrence, the aforementioned dependence can be disentangled, allowing

for the characterization of safety with greater efficiency and accuracy across diverse

settings. Our parallel work has shown recurrence to be a powerful mechanism

for analyzing dynamical systems, including certifying stability via generalized

Lyapunov conditions [1]. Note that, from an information theoretical viewpoint,

making a set recurrent requires less information than making it invariant [2], thus

making it a more beneficial search target. This dissertation will explore these two

objectives in detail, illuminating the opportunities and challenges associated with

this vital field of safe learning.
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1.1 Objectives

1.1.1 Learning the region of attraction of a stable equilibrium

The first goal of this dissertation research is to determine the region of attraction

(ROA) of a stable equilibrium point, a fundamental task in the control design

process. This challenge has a significant history in the fields of nonlinear control

and dynamical systems theory [3]. For an asymptotically stable equilibrium point

x∗ ∈ X , we aim to learn the largest set A(x∗) ⊆ X for which x(0) ∈ A(x∗) ⇒

limt→∞ x(t) = x∗.

From a theoretical standpoint, there has been a thorough study of conditions

that guarantee several topological properties of such set, e.g., being connected,

open, dense, smooth [4]. From a practical standpoint, having a representation of

such region allows us to test the limits of controller designs, which are usually

based on (possibly linear) approximations of nonlinear systems [5], and provides

a mechanism for safety verification of different (possibly disturbed) operating

conditions [6].

Unfortunately, it is known that finding an analytic form of the region of attraction

is difficult and, in general, impossible [3, p. 122]. As a result, most efforts in char-

acterizing the ROA focus on finding inner approximations by means of invariant

sets, which, while not exhaustive and efficient when applied to high-dimensional

systems, provide valuable insights into the stability boundaries.

1.1.2 Characterizing a safe region of a dynamical system

In addition to stabilizing the system towards a stable equilibrium point, the second

goal of this dissertation research is to characterize a safe state space region that is a

set of initial conditions such that a given unsafe state space region is guaranteed to

be avoided. Specificaly, we consider a continuous-time dynamical system ẋ(t) =
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f(x(t)) with the state vector x(t) ∈ X . We aim to guarantee safety by learning a

safe set Xs ⊆ X such that the trajectory starting from Xs can avoid a set of unsafe

states Xu. Precisely, given an unsafe set Xu ⊆ X , we say a set Xs is safe if starting

from any initial states x(0) ∈ Xs, x(t) ̸∈ Xu for all t ≥ 0. This formulation is

general enough to capture complex dynamical systems. For example, we can set

the individual movements (pitch, yaw, and roll) as well as mutual distances of a

group of UAVs as states. Then, the unsafe set contains the regions that lead to

a crush (e.g., the pitch is low) or a collision (e.g., the mutual distance is small).

Guaranteeing safety is challenging even when the dynamic model is available. Due

to the curse of dimensionality, direct sampling methods that check the invariance of

a tentatively safe set are usually infeasible [7]. A more tractable approach is to use

Barrier Functions (BFs) that render invariant safe sets [8].

1.2 Prior Work

The related works aimed at achieving the aforementioned safety objectives are

summarized in Section 1.2.1 and 1.2.2, respectively. It is important to note that these

approaches all heavily depend on the identification of an invariant set, which re-

quires trajectories to consistently remain within specified boundaries. Additionally,

we invite the reader to refer to Section 1.2.3, where similar but simpler definitions

of recurrence are discussed in different contexts such as stability and constrained

model predictive control.

1.2.1 Prior work on learning the region of attraction of a stable
equilibrium

Several methodologies for computing inner approximations of the ROA have been

proposed in the literature. In a broad sense, they can be classified into two groups:

Lyapunov methods and non-Lyapunov methods. We briefly review such methods
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in cases when accurate, inaccurate, or no information about the dynamic model is

present.

Lyapunov methods: Without calculating the exact solution of a system, Lyapunov

methods utilize the fact that Lyapunov functions are certificates of asymptotic

stability and then build inner approximations using its sublevel sets.

When an exact description of the dynamics is available, methods for finding

such Lyapunov functions are surveyed in, e.g., [9]. In particular, [10] and [11] con-

struct Lyapunov functions that are solutions of Zubov’s equation, and [12] searches

for piece-wise linear Lyapunov functions that are found via linear programming.

Similarly, piece-wise quadratic parameterizations of Lyapunov functions using

methods based on linear matrix inequalities are considered in [13]. Finally, recent

work [14] leverages the universal approximation property of neural networks to

estimate the ROA of an asymptotically stable equilibrium point of general nonlinear

dynamical systems.

In the presence of uncertainty in the dynamic model, [15, 16, 17, 18] generalize

Lyapunov methods by finding a common Lyapunov function across the entire

uncertainty set. Additionally, [19, 20, 21] first acquire a Lyapunov function from

the deterministic part of the system dynamics and then use experimental data to

bound the uncertainty and expand the Lyapunov function level set.

Finally, when there is no information about the dynamic model, trajectory

data can be used to fit Lyapunov functions by leveraging tools such as converse

Lyapunov theorems [22] and neural networks [23, 24].

Non-Lyapunov methods: Alternatively, non-Lyapunov methods focus directly

on the properties of the ROA. With an exact description of the dynamics, [25]

[26] sample reverse trajectories to derive the boundary of ROA directly from the

stable manifold of the equilibria on the boundary. In a model-free setting, [27]
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utilizes a support vector machine, trained with experimental data gathered through

hybrid active learning techniques, to directly delineate the boundary of the ROA.

Meanwhile, [28] integrates auto-encoding neural networks with topological tools to

represent the underlying nonlinear dynamics as a graph, and then characterize the

ROA from it.

1.2.2 Prior work on characterizing the safe region of a dynamical
system

We similarly classify methodologies for computing a safe region of a dynamical

system into two groups: Barrier function methods and Reachability methods.

Note that Barrier function methods characterize the safe region using a Lyapunov-

like function instead of computing the exact solution of the dynamical system,

which can be considered as a generalization of the Lyapunov methods. In contrast,

Reachability methods are based directly on the trajectory information just like

non-Lyapunov methods. We will discuss these connections later as we progress.

Barrier function methods: Similar to the Lyapunov function, the barrier certificate

function, first proposed by [29, 30], can verify the safety (avoidance) property of

an autonomous system. Then, [31] further relaxes the conditions that the barrier

certificate function should satisfy to capture the safe region with a tighter under-

estimation. Given an autonomous system and an unsafe set, these references use

SOS programming to compute a barrier certificate function and use its zero-level

set as a boundary of the safe state space region. The control barrier function is a

generalization of the barrier certificate function in the presence of control inputs.

In particular, [32] first obtains feedback controls for affine control systems to avoid

unsafe state regions. References [33, 34] unify the control barrier function and the

control Lyapunov function (first proposed in [35]) to achieve safety and stability

at the same time. Reference [36] considers the disturbed setting and extends the
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control barrier function to the robust setting. Finally, when the system is unknown,

most of the current corpus accordingly learns a control barrier function from expert

trajectories using, for example, a Neural Network [37] or a Support Vector Machine

(SVM) [38].

Reachability methods: In contrast to barrier function methods, reachability ap-

proaches focus on verifying safety by approximating the reachable set. A common

strategy is to use geometric shapes such as ellipsoids [39, 40], polyhedra [41, 42],

or geometric programs [43] to over-approximate the unsafe set and propagate it

backward over time, particularly under linear dynamics. For nonlinear systems, this

approach has been generalized to propagate more complex geometric approxima-

tions, as explored by [44]. These methods are collectively referred to as ’geometric’

or ’over-approximative methods.’

Alternatively, level set methods represent the reachable set as the zero sub-level

set of a signed distance function, which allows for a more accurate representation

of the true reachable set compared to simple geometric shapes. The boundary of

this reachable set can then be propagated under nonlinear dynamics by solving the

Hamilton-Jacobi equation [45, 46] or the Hamilton-Jacobi-Isaacs partial differential

equation [47, 48].

1.2.3 Prior work on the notion of recurrence

Recurrence is a fundamental mechanism of dynamical systems. For example, the

classic Poincaré recurrent theorem [49] is commonly discussed in statistical physics

[50, 51], states that certain classes of dynamical systems will recur to points arbi-

trarily close to their initial state in finite time. Along the same line, [52] defines the

notion of chain recurrence that requires a ε-chain from a point to itself. The concept

of chain recurrence, as utilized by [53] in his Fundamental Theorem of Dynamical

Systems, demonstrates the existence of a continuous Lyapunov function for con-
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tinuous flows in compact metric spaces. This highlights the intimate connection

between chain recurrence and Lyapunov functions. Moreover, [54] expands this

application to discrete dynamical systems.

In the context of constrained control, [55, 56] share a similar definition of recur-

rence with our approach. Specifically, [55] revisits the concept of set invariance

and introduces the notion of p-invariance, which requires trajectories to satisfy a

constraint set within p steps. Building on this, [56] develops a model predictive

control scheme that relaxes the stringent terminal requirement, which usually de-

mands trajectories to terminate within an invariant set subject to all constraints.

Instead, the scheme assumes a given p-recurrent set inside the invariant set and

then requires trajectories to visit this recurrent set within p steps.

1.3 Thesis Contributions

The principal innovation of this dissertation is the application of the concept of

recurrence to mitigate the stringent constraints imposed by invariance. Rather

than focusing on learning invariant sets that strictly require trajectories to always

lie within the set, we advocate learning sets that satisfy this more flexible notion,

i.e., recurrence. The application of this innovative approach to the two primary

objectives of this research yields multiple contributions:

In the context of learning the region of attraction of a stable equilibrium:

• Recurrent based approach — Sufficiency: We propose the notion of recur-

rence as an alternative property of invariance that guarantees a set to be

contained in the region of attraction. This result allows us, in turn, to recast

the region of attraction learning problem as a problem of characterizing a

recurrent set that contains the stable equilibrium point inside.

• Recurrent based approach — Necessity: Conversely, we show that almost
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every set contained within the region of attraction of an asymptotically stable

equilibrium point, containing such point within, is inherently a recurrent set.

This observation is distinctively not applicable to invariant sets in general.

Therefore, a much vaster family of sets can be certified as subsets of the region

of attraction.

• Data-driven algorithms: We provide several practical algorithms designed to

characterize the region of attraction through counter-examples of recurrence,

utilizing finite-length trajectory samples. These methodologies are termed

"model-free" as they do not necessitate an explicit description of the sys-

tem’s dynamics but instead depend solely on a process that generates sample

trajectories. Such trajectories can be processed simultaneously, leveraging par-

allelizable processing units. Moreover, even after the initial completion of our

algorithm, it can be reinitiated to enhance the accuracy of the approximation.

• Sample complexity guarantees: We demonstrate that after collecting a finite

number of samples, the sampling process can be concluded, and it can be

asserted that our learning outcome is an inner approximation of the region of

attraction with any predetermined error probability.

(This set of contributions is detailed in the following two publications: "Model-

free Learning of Regions of Attraction via Recurrent Sets" (Presented at IEEE Con-

ference on Decision and Control 2022) and "Model-free Learning of Regions of

Attraction via Recurrent Sets: Sample Complexity and Progressive Improvement"

(Submitted to IEEE Transactions on Automatic Control))

In the context of characterizing the safe region of a dynamical system:

• Recurrent based approach — Sufficiency: We systematically generalize bar-

rier functions, commonly used to ensure the invariance of their zero super-

level set, to recurrent barrier functions that guarantee the recurrence of these

9



sets. Subsequently, we demonstrated how a recurrent set is sufficient to

guarantee the system’s safety (avoidance).

• Recurrent based approach — Necessity: Under mild conditions, we show

that a simple sign distance function can satisfy our relaxed recurrent barrier

function criteria. Again, this observation does not generally apply to the

classical barrier functions based on the notion of invariance, highlighting the

generality of our recurrent conditions.

• Data-driven algorithms: We develop GPU-based algorithms designed to

characterize the safe region by utilizing a finite number of finite-length trajec-

tory samples. These algorithms maintain a "model-free" setting, foregoing an

explicit description of the system and relying solely on processes that generate

sample trajectories

(This set of contributions is detailed in the following two publications: "Gener-

alized Barrier Functions: Integral Conditions & Recurrent Relaxations" (Accepted

for presentation at Allerton Conference 2024) and "Model-free Learning of Safe

Regions via Recurrent Barrier Functions" (To be submitted to IEEE Transactions on

Automatic Control))

We validate our proposed algorithms using both demonstrative and practi-

cal examples, which reveal improved accuracy and efficiency. These validations

underscore the algorithms’ robustness and their potentials in real-world scenarios.

1.4 Additional Publications

Earlier publications by the author on the energy storage optimal control [57], and

model predictive control [58] problems are not included in the thesis as they diverge

in focus from the current subject. They are referenced here for completeness.
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Chapter 2

Model-free Learning of Regions of
Attraction via Recurrent Sets

In this chapter, we explore the problem of learning the region of attraction (ROA) of

a stable equilibrium point within a model-free framework. The chapter is organized

as follows: Section 2.1 outlines the ROA learning problem we aim to solve. In

this section, we revisit foundational concepts such as set invariance and Lyapunov

stability, which are crucial to our approach. Section 2.2 introduces the pivotal

concept of recurrence, which is central to our analysis. This section presents initial

results that clarify the relationship between recurrence and containment within the

ROA, illustrating both the sufficiency and necessity of our recurrent-based approach.

We demonstrate that under mild conditions, recurrent sets invariably form subsets

of the ROA, and nearly every subset of the ROA will exhibit recurrence within a

finite timeframe. The proposed algorithms and the corresponding guarantees are

given in Section 2.3. Section 2.4 offers numerical examples, including the analysis of

a demonstrative 2D dynamical system and a real-world 4D power system transient

stability problem, showcasing the accuracy and efficiency of our algorithms. Finally,

we conclude in Section 2.6.
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Notation

Given a set S, we denote its boundary as ∂S , its interior as intS . We use sd(x,S) to

denote the signed distance between a point x and S, i.e.,

sd(x,S) :=

{︄
infy∈∂S ∥y − x∥2 if x ̸∈ S

− infy∈∂S ∥y − x∥2 if x ∈ S.

We further use PS(x) to denote the set of projections of a point x on a non-empty

closed set S, i.e.,

PS(x) := argmin
y∈S

∥y − x∥2.

We use Br(x) to denote the closed ball of radius r around a point x. When the

point x is at the origin 0, we abbreviate Br(x) = Br(0) as Br.

We then consider the following set operations that expand or shrink the set S by

a width of α ∈ R:

(S)α :=

{︄
S + Bα if α ≥ 0

S\{∂S + intBα} o.w.,

where the ’+’ stands for the Minkovski sum.

2.1 Problem Formulation

We consider a continuous time dynamical system

ẋ(t) = f(x(t)) , (2.1)

where x(t) ∈ Rd is the state at time t, and the map f : Rd → Rd is continuously

differentiable and (globally) Lipschitz. Given initial condition x(0) = x0, we use

ϕ(t, x0) to denote the solution of (2.1). Using this notation, the positive orbit of x0 is

given by O+(x0) = {y ∈ Rd : y = ϕ(t, x0), t ∈ R+}.

Definition 2.1 (ω-limit Set). Given an initial condition x0, its ω-limit set Ω(x0) is the

set of points y ∈ Rd for which there exists a sequence tn indexed by n ∈ N satisfying
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limn→∞ tn = ∞ and limn→∞ ϕ(tn, x0) = y. We will further use Ω(f) to denote the ω-limit

set of (2.1), which is the union of ω-limit sets of all x ∈ Rd.

Note that by definition, if x∗ is an equilibrium of (2.1), then it follows that

x∗ ∈ Ω(f). We would like then to learn the set of initial conditions that converge to

x∗.

Definition 2.2 (Region of Attraction). Given an invariant set S ⊆ Ω(f), the region of

attraction (ROA) of S under (2.1) is defined as

A(S) :=
{︂
x0 ∈ Rd| lim inf

t→∞
d(ϕ(t, x0), S) = 0

}︂
, (2.2)

where d(y, S) is the distance from the solution y to the set S, i.e., d(y, S) := minx∈S ∥x−y∥2.

When the set S is a singleton that contains exactly one point (say x), we abbreviate

A(S) = A({x}) as A(x).

Note that without further assumptions, the set (2.2) may be a singleton, have

zero measure, or be disconnected, making the problem of characterizing (2.2) from

samples almost impossible. We thus make the following assumption.

Assumption 2.1. The system (2.1) has an asymptotically stable equilibrium at x∗ ∈ Rd.

Remark 1. It follows from Assumption 2.1 that the ROA A(x∗) is an open contractible

set [59], i.e., the identity map of A(x∗) to itself is null-homotopic [60].

Having set up the necessary assumption for an ROA to be learnable, we now

move on to a certain property that helps us to characterize subsets of the region of

attraction.

By definition, A(S) satisfies the invariant property that every trajectory that

starts in the set A(S) remains in the set for all future times, i.e., A(S) is a positively

invariant set [3].
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Definition 2.3 (Invariant Set). A set I ⊆ Rd is invariant w.r.t. (2.1) if and only if:

x0 ∈ I =⇒ ϕ(t, x0) ∈ I, ∀ t ∈ R+. (2.3)

The notion of positive invariance is fundamental for control. It is used to

trap trajectories in compact sets and allows the development of the Lyapunov

theory. By trapping trajectories on sub-level sets of a function, one can guarantee

boundedness of trajectories, stability, and even asymptotic stability via a gradual

reduction of the value of the Lyapunov function. A natural approach is therefore

to search for Lyapunov functions [3] that render its sublevel sets as invariant

inner-approximations of A(x∗). Such methods are particularly justified after the

fundamental result by Vladimir Zubov [61] that guarantees the existence of such a

function:

Theorem 2.1 (Zubov’s Existence Criterion). A set A containing x∗ in its interior is the

region of attraction of x∗ under (2.1) if and only if there exist continuous functions V , h

such that the following hold:

• V (x∗) = h(x∗) = 0, 0 < V (x) < 1 for x ∈ A\{x∗}, h(x) > 0 for x ∈ Rd\{x∗}.

• For every γ2 > 0, there exists γ1 > 0, α1 > 0 such that V (x) > γ1, h(x) > α1,

whenever ∥x∥ ≥ γ2.

• V (xk) → 1 for all sequences {xk} such that xk → ∂A or ∥xk∥ → ∞.

• V and h satisfy

(LfV )(x) = −h(x)(1− V (x))
√︁

1 + ∥f(x)∥2, (2.4)

where (LfV )(x) is the Lie derivative of V under the flow induced by f .

Particularly, when f(x) is continuously differentiable, h(x) can always be selected such

that V is differentiable, i.e., (LfV )(x) = ∇V (x)Tf(x).
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Corollary 2.1. Under Assumption 2.1, there exists a Lyapunov function V with domain on

A(x∗) such that for any c ∈ (0, 1) the sublevel set V≤c := {x : V (x) ≤ c} is a contractible

invariant subset of A(x∗).

Proof. See Appendix 2.5

The Zubov’s function V of Theorem 2.1 provides a parametric family {V≤c :

c ∈ (0, 1)} of positively invariant sets inside A(x∗). Further, while Zubov’s result

provides a constructive method for V (x), by means of solving a partial differential

equation, such a method becomes impractical in the absence of a descriptive model

for (2.1). Thus, in the absence of an exact model of the dynamics, it is natural

to try to find a set inside A(x∗) that is positively invariant in a robust sense, in

the presence of bounded uncertainty [18], or that is positively invariant with high

probability [19].

However, one of the caveats of positively invariant sets is that they need to

be specified very carefully, in the sense that even a good approximation of a posi-

tively invariant set is not necessarily positively invariant. Particularly, subsets of

positively invariant sets need not be positively invariant. This indirectly imposes

strict constraints on the complexity of the set that one needs to learn via (2.3). This

motivates the alternative proposed in the next section.

2.2 Recurrent and τ -Recurrent Sets

This section delves into the relaxed notion of invariance, termed here as recurrence

and τ -recurrence, contrasting it with traditional invariant sets. A visual illustration

highlighting the differences between invariant, recurrent, and τ -recurrent sets can

be found in Figure 2-1.

We then introduce the recurrent set and show how it constitutes a more flexible

and more general class of objects of study.
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Figure 2-1. Illustration of recurrent and τ -recurrent sets. In particular, trajectories
starting from a recurrent set will return to it infinitely often, and a τ -recurrent set
further poses a time limit for such a return.

Definition 2.4 (Recurrent Set). A set R ⊆ Rd is recurrent w.r.t. (2.1), if for any point

x0 ∈ R and any time t ≥ 0, there exists a time t′ > t, such that ϕ(t′, x0) ∈ R.

Note that while a recurrent set is not inherently invariant, it guarantees that

solutions originating from this set will invariably return to it infinitely often. Ac-

cording to Definition 2.3, any positively invariant set, I, is inherently recurrent.

This establishes that Definition 2.4 generalizes the notion of positive invariance by

allowing the solution ϕ(t, x0) to step outside the set R for some finite time. Addi-

tionally, it is important to highlight that our analysis does not assume connectivity

of R, allowing for the possibility that R could be disconnected. This flexibility can

enhance our ability to more accurately approximate the ROA.

However, a notable limitation of the current definition of recurrence is that while

it confirms that trajectories will eventually return to the set R, it does not specify

the time frame within which this return must occur. The absence of a defined

time limit for a trajectory’s return to R after departure can complicate the practical

characterization of recurrent sets. This limitation motivates the following stricter

notion of recurrence, aimed at providing a more precise temporal framework for

these returns.

Definition 2.5 (τ -Recurrent Set). A set R ⊆ Rd is τ -recurrent w.r.t. (2.1), if for any
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point x0 ∈ R and any time t ≥ 0, there exists a t′ ∈ (t, t+ τ ], such that ϕ(t′, x0) ∈ R.

Such a τ -recurrent set further guarantees that solutions starting in this set will

visit it back within τ -seconds, infinitely often. Thus, τ -recurrent sets are recurrent

by definition. Also, according to Definition 2.3, any invariant set is τ -recurrent for

any τ > 0. Conversely, a 0-recurrent set is strictly invariant.

Similar to the definition of recurrent, Definition 2.5 generalizes the notion of

invariance by permitting the solution ϕ(t, x0) to temporarily exit the set R, but

limits this departure to a predetermined time interval, τ . This adaptation introduces

a necessary regularity condition to the general concept of recurrence, providing

a practical framework to characterize the region of attraction using finite-length

trajectories.

2.2.1 Recurrent sets are subsets of the ROA

One concern may be however that by allowing ϕ(t, x0) to leave the set R, this will

lead to trajectories that diverge, thus leading to unstable behavior. The following

result shows that under mild assumptions, this should not be a source of concern

as any trajectory starting in a recurrent set R will remain within R after a certain

time T > 0.

Lemma 2.1. Let R ⊂ Rd be a compact recurrent set satisfying ∂R ∩ Ω(f) = ∅. Then

for any x0 ∈ R, there exists some time T > 0, such that the solution ϕ(t, x0) ∈ R for all

t ≥ T .

Proof. See Appendix 2.5

After characterizing regularity conditions for trajectories starting from a recur-

rent set R, we are ready to show how recurrent sets can be used to characterize

subsets of an ROA.
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Theorem 2.2. Let R ⊂ Rd be a compact set satisfying ∂R∩Ω(f) = ∅. Then R is recurrent

if and only if Ω(f) ∩R ≠ ∅ and R ⊂ A(Ω(f) ∩R).

Proof. See Appendix 2.5

Theorem 2.2 illustrates the recurrence of a compact set R, together with the

condition ∂R∩ Ω(f) = ∅, necessarily implies its containment within the region of

attraction of Ω(f) ∩R. As a result, by imposing mild conditions on Ω(f), one leads

to the following quite useful result.

Corollary 2.2. Let assumptions 2.1 hold. Further, let R be a compact set satisfying

∂R ∩ Ω(f) = ∅ and Ω(f) ∩ R = {x∗}. Then the set R is recurrent if and only if

R ⊂ A(x∗).

Proof. See Appendix 2.5

Note that Theorem 2.2 and Corollary 2.2 unveil the equivalent relationship be-

tween recurrence and containment within the region of attraction. This equivalence

is distinctively not applicable to invariant sets in general, emphasizing the broader

applicability of recurrent sets.

2.2.2 Almost every ROA subset is finite-time recurrent

Corollary 2.2 implies that one may use recurrence as a mechanism for finding inner

approximations for A(x∗). Specifically, if a compact recurrent set encompasses the

equilibrium point x∗, it can be confidently regarded as a subset of the ROA A(x∗).

However, in practical applications, we often have access only to finite-length tra-

jectory samples. This limitation necessitates focusing on characterizing τ -recurrent

sets, which are adapted to the constraints of finite observation windows.

To address this, we introduce the following theorem, which asserts that a com-

pact set R ⊆ A(x∗) will satisfy the τ -recurrent requirement as long as τ exceeds a
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certain lower bound. This theorem ensures that, even with finite-length trajectory

data, we can still reliably characterize a subset of the ROA.

Theorem 2.3. Let Assumption 2.1 hold, and consider a compact set R ⊆ A(x∗) satisfying

x∗ ∈ intR and R ∩ ∂A(x∗) = ∅. Then there exists positive constants c , c , and a ,

depending on R, such that for all τ ≥ τ̄ := c−c
a

, the set R is τ -recurrent. Further, starting

from any point x ∈ R, the solution ϕ(t, x) ∈ R for all t ≥ τ̄ .

Proof. See Appendix 2.5

Note that the lower bound on τ in Theorem 2.3 implicitly depends on the set

R. This makes the process of learning a recurrent set difficult as τ would change,

and the set is updated. To eliminate this dependence, one is required to introduce

conservativeness. To that end, for given δ > 0, c ∈ (0, 1), and V as in Theorem 2.1,

we consider the set

Ã := V≤c\{intBδ + x∗}, (2.5)

where as mentioned before V≤c := {x : V (x) ≤ c} is a compact Lyapunov sublevel

set contained in A(x∗) . The sign ’+’ in (2.5) represents the Minkowski sum, and

Bδ is a closed δ ball centered at the origin, i.e., Bδ = {x|∥x∥2 ≤ δ}. Note we further

choose δ > 0 to be small enough such that Bδ + x∗ ⊆ V≤c, and the set V≤c can

approximate the ROA A(x∗) with arbitrary (2-norm) accuracy as c → 1 in the case

that A(x∗) is bounded.

Then, by denoting c(δ) as the minimum Lyapunov function value in Ã, and a(δ)

as the largest Lie derivative within the set Cδ = {x ∈ Rd : c(δ) ≤ V (x) ≤ c}, i.e.,

c(δ) := min
x∈Ã

V (x), and a(δ) := max
x∈Cδ

∇V (x)Tf(x),

we obtain a lower bound on τ that is independent of R.
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Theorem 2.4. Let Assumption 2.1 hold, and consider δ > 0, c ∈ (0, 1) and a compact set

R satisfying: Bδ + x∗ ⊆ R ⊆ V≤c. Then R is τ -recurrent for τ ≥ τ̄(δ) := (c(δ)− c)/a(δ).

Moreover, when t ≥ τ̄(δ), ϕ(t, x) ∈ R for any point x ∈ R.

Proof. Let us first construct a contradiction to show V≤c(δ) ⊆ Bδ + x∗. Particularly,

if V≤c(δ) ̸⊆ Bδ + x∗, then for any point x̃ ∈ V≤c(δ)\{Bδ + x∗}, limt→∞ ϕ(t, x̃) = x∗

and V (ϕ(t, x̃)) < c(δ) for all t > 0. Therefore, there exists a t̃ > 0 such that

V (ϕ(t̃, x̃)) < c(δ) and ϕ(t̃, x̃) ∈ ∂{Bδ+x∗} ⊂ Ã, which contradicts with the definition

of c(δ).

Now, since V≤c(δ) ⊆ Bδ + x∗ ⊆ R ⊆ V≤c, any point x ∈ R must have V (x) ≤ c.

Then, it follows from the definition of a(δ) that after t ≥ τ(δ), the Lyapunov value

V (ϕ(t, x)) ≤ c(δ), and thus ϕ(t, x) ∈ R.

2.3 Learning the ROA as a recurrent set

Having laid down the basic theory underlying recurrent sets, we now propose a

method to compute inner approximations of the region of attraction A(x∗) based

on checking the recurrence property on finite-length trajectory samples. For con-

creteness, we consider the following type of sampled trajectories for system (2.1):

xn = ϕ(nτs, x0), x0 ∈ Rd , n ∈ N , (2.6)

where τs > 0 is the sampling period. In this setting, we will define two notions of

discrete-time recurrence w.r.t. a length k trajectory. An illustration that visually

highlights these differences can be found in Figure 2-2.

Definition 2.6 (k-Recurrent Set).

A set R ⊆ Rd is k-steps recurrent (k-recurrent for short) w.r.t. (2.6), if for any point x0 ∈ R

and any step index n ≥ 0,

∃ n′ ∈ {n+ 1, ..., n+ k}, s.t. xn′ ∈ R.
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Figure 2-2. Illustration of k-recurrent and λ-strict k-recurrent sets. Note that a
k-recurrent is simply a discrete version of a τ -recurrent set. Conversely, a λ-strict
k-recurrent set imposes a more stringent requirement for trajectories to reach.

Remark 2. Note that a set R being k-recurrent implies that R is τ -recurrent with τ = kτs.

One can then conclude that R ⊂ A(x∗) under the assumptions of Corollary 2.2.

In our previous work [62], we leverage this k-recurrent property to develop

several algorithms that can learn inner approximations of the ROA almost surely,

potentially requiring an infinite number of finite-length trajectory samples. To fur-

ther propose algorithms that require only a finite number of finite-length trajectory

samples, we define a more conservative notion referred to here as strict recurrence.

Definition 2.7 (λ-strict k-recurrent Set).

Given any strictness parameter λ ∈ R+, the set R is further λ-strict k-recurrent w.r.t. (2.6),

if for any x0 ∈ R and any step index n ≥ 0,

∃ n′ ∈ {n+ 1, ..., n+ k}, s.t. xn′ ∈ (R)−λ.

Remark 3. In the strict recurrence case, trajectory starting from p ∈ R is required to visit

not only R, but a more conservative approximation (R)−λ. Note that if a set R is λ-strict

k-recurrent, then R is also a k-recurrent set, thus recurrent.

To ensure one can find such a k-recurrent set or a λ-strict k-recurrent set, we

consider again the specific set Ã defined in (2.5) that gives the following sufficient

conditions for a set R to be k-recurrent or λ-strict k-recurrent, respectively.
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Theorem 2.5. Let Assumption 2.1 hold, and consider δ > 0, c ∈ (0, 1) and a compact set

R satisfying: Bδ + x∗ ⊆ R ⊆ V≤c. Then R is τ -recurrent for k > k̄(δ) := τ̄(δ)/τs, where

τ̄(δ) is defined as in Theorem 2.4.

Proof. Given Theorem 2.4, this result follows directly from ϕ(t, x) ∈ R for all x ∈ R

when t ≥ τ̄(δ).

Theorem 2.6. Let Assumption 2.1 hold, and consider δ > 0, c ∈ (0, 1) and a compact set

R satisfying: Bδ+λ + x∗ ⊆ R ⊆ V≤c. Then R is λ-strict k-recurrent for any λ ∈ (0, r − δ]

and k > k̄ := τ̄(δ)/τs, where τ̄(δ) is defined in Theorem 2.4 and r is the smallest distance

between the origin (equilibrium) and the boundary ∂V≤c.

Proof. See Appendix 2.5

In the rest of this section, we assume w.l.o.g. that the asymptotically stable

equilibrium is at the origin, i.e., x∗ = 0. Next, we will outline the mechanism

that will be employed to characterize the region of attraction by learning strictly

recurrent sets.

2.3.1 Algorithm Summary

We will first initialize a compact ROA approximation S ⊂ Rd satisfying S ⊇ Bδ+λ,

and then sequentially update it towards a subset of the ROA by computing λ-strict

k-recurrent sets R that seek to satisfy the properties of Theorem 2.6. Precisely,

we sample points uniformly from an augmented sampling set (S)η parameterized

by a constant η > 0. Each sample point will be classified, and we update the

approximation S and restart the sampling process if a counter-example is found.

This method is illustrated in Algorithm 1.

The rest of this section provides a detailed explanation of each step of the

algorithm, as well as a rigorous justification of the proposed methodology.
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Algorithm 1: Learning a λ-strict k-recurrent set
Initialize S according to (2.8)
while S ⊇ Bδ+λ do

Generate enough random samples within (S)η according to (2.11)
if observe a counter-example w.r.t (S)η then

Update S according to (2.9)
else

return S

Classification of sample points

To classify each point p sampled from (S)η, we correspondingly define the set Sp as

Sp := (S)d,

where d is the signed distance between sample point p and the set S, i.e.,

d := sd(p,S) =

{︄
−d(p, ∂S) if p ∈ S
d(p, ∂S) o.w.,

Then, we say p is a λ-strict k-steps point if starting from x0 = p,

∃ n ∈ {1, ..., k}, s.t. xn ∈ Bδ ∪ (Sp)−λ.
(2.7)

That is, the trajectory starting from p either visits the ball Bδ ⊂ A(0), or certifies the

set Sp is a λ-strict k-recurrent set.

If (2.7) does not hold, we say p is a counter-example. We will use such counter-

examples to update our current set approximation S.

Construction of set approximations

In order to gradually update the sets S, we consider a parametric family of set

approximations known as the sphere approximation. To construct such a sphere

approximation, we start by choosing a radius b > 0 large enough such that the set

S := {x| ∥x∥2 ≤ b} ⊇ Bδ+λ.
(2.8)
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Then, given a sample point p ∈ (S)η, we update S based on the following criterion:

p is a counter-example =⇒ b = ∥p∥2 − ε, (2.9)

where ε > η is an algorithm parameter expressing the level of conservativeness in

our update.

If the process reaches a value of b < δ + λ, we declare the search a failure. At

such point, one may choose to either reduce the value of ε or increase the length of

the trajectories sampled.

2.3.2 Bound on the number of updates

As mentioned before, the aforementioned search for approximations will fail if

b < δ + λ after an update. We will show next that, provided that k and ε are

chosen appropriately, there will be no failure. In other words, there will be no

counter-examples after a finite number of set updates.

Given k ≥ k̄, and an arbitrary approximation S satisfying Bδ+λ ⊆ (S)η ⊆ V≤c,

then Theorem 2.6 guarantees that any sample p ∈ (S)η will lead to a λ-strict k-

recurrent trajectory. As a result, the algorithm will stop updating at this point since

we cannot find further counter-examples within (S)η.

This means that, if it is possible for (S)η to become a subset of V≤c, without

violating the condition Bδ+λ ⊆ S, then the algorithm will stop updating and will

never fail. The following theorem shows that this is indeed the case, whenever ε

and k are properly chosen.

Theorem 2.7. Let the approximation S satisfy S ⊇ Bδ+λ and trajectory length k > k̄, for

k̄ as defined in Theorem 2.6. Then, given any counter-example p, the resulting updated

approximation will always satisfy S ⊇ Bδ+λ whenever

ε ≤ r − δ − λ, (2.10)
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where r is the smallest distance between the origin (equilibrium) and the boundary ∂V≤c.

Proof. See Appendix 2.5

Theorem 2.7 establishes that one can choose parameters k and ε so that the

updates of approximation S never leads to b < δ + λ, i.e., the algorithm never

fails. However, this requires prior knowledge of k̄, r, and δ. We argue that local

information on the dynamics can be sufficient to find conservative bounds for r and

δ, and thus ε. However, k̄ depends in a highly non-trivial way on δ. We solve this

issue by, doubling the side of k, i.e. k+ = 2k, every time the failure conditions are

met, and re-initializing the approximation S.

In what follows, we use Fb̄ to denote the parametric family of closed balls

defined by {x : ||x||2 ≤ b}, for b ∈ [0, b̄]. This leads to the following total bound on

the number of iterations.

Theorem 2.8. Given the initial approximation S ∈ Fb̄ and initial constant b̄ defined in

(2.8), the total number of counter-examples encountered in Algorithm 1, with k-doubling

after each failure and ε > η, is bounded by b̄
ε−η

log2 k̄.

Proof. See Appendix 2.5

Our results provide an upper bound on the number of updates the set approxi-

mation may experience by ensuring that S always contains an (δ+λ)-ball around the

equilibrium point. However, this is not sufficient to guarantee that S is k-recurrent,

which is required to guarantee that S ⊆ V≤c. This issue is addressed next.

2.3.3 Sample complexity

By Definition 2.6, a set S is λ-strict k-recurrent if every point p ∈ S satisfies (2.7). As

shown before, certifying this property will enable us to guarantee that S ⊂ A(0).

However, it is infeasible to enforce condition (2.7) for every point in S . Instead, we
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will demonstrate that after processing a finite number of samples, our algorithm can

identify a set S satisfying intS ⊆ A(0) with the error probability bounded within a

specified error bound β ∈ (0, 1).

To achieve this, we first define Ssc as the set that contains all λ-strict k-steps

counter-examples within (S)η, i.e.,

Ssc := {p ∈ (S)η| p is a counter-example}.

This implies that for any starting point p ∈ Ssc ⊆ (S)η, the trajectory xn does not

enter Bδ nor stay within (Sp)−λ for all n ∈ {1, ..., k}.

The following result confirms that there must exist at least one point p ∈ ∂S be-

longs to Ssc whenever S ̸⊆ A(0). Consequently, in such instances, Ssc is guaranteed

to be non-empty.

Lemma 2.2. Given any compact set S satisfying ∂S ∩ Ω(f) = ∅ and Ω(f) ∩ S = {0}, if

S ̸⊆ A(0), there then exists a point p ∈ ∂S such that the solution ϕ(t, p) ̸∈ int{S} for all

t ≥ 0.

Proof. Since S ̸⊆ A(0), Corollary 2.2 implies that S is not recurrent, i.e., there exists

a point q ∈ S and a t′ > 0 such that ϕ(t, q) ̸∈ S, ∀t > t′. Then, by the continuity of

solutions, there exists a point p ∈ ∂S such that ϕ(t, p) ̸∈ int{S} ⊆ S for all t ≥ 0.

Therefore, the result follows.

Rather than merely establishing that Ssc is non-empty, we will demonstrate that

by appropriately selecting η, the volume of Ssc can be lower bounded whenever S

is convex and S ̸⊆ A(0).

Theorem 2.9. let S ⊇ Bδ+λ be a convex compact approximation satisfying ∂S ∩Ω(f) = ∅

and Ω(f) ∩ S = {0}. If S ̸⊆ A(0), then (S)η has λ-strict k-steps counter-example set

volume vol(Ssc) ≥ vol(Bη) for all λ ∈ (0, r − δ) and k ∈ {1, 2, ...} whenever

η < min{λ(1 + exp(Lkτs))
−1, r − δ − λ},
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where r is defined in Theorem 2.7 and L is the globally Lipschitz constant of the system

(2.1).

Proof. See Appendix 2.5

We now leverage the findings from Lemma 2.9 to establish a sample complexity

bound. Specifically, since the volume of Ssc is lower bounded, the probability of not

encountering a counter-example and consequently returning an incorrect result is

also bounded. Therefore, by collecting a sufficient number of samples uniformly,

we can meet any pre-specified error bound β ∈ (0, 1).

Theorem 2.10. Given any convex compact approximation S ⊇ Bδ+λ satisfying ∂S ∩

Ω(f) = ∅ and Ω(f) ∩ S = {0}, and consider parameters λ ∈ (0, r − δ), β ∈ (0, 1), k > k̄,

and η < min{λ(1 + exp(Lkτs))
−1, r − δ − λ}. Then, whenever we fail to find a λ-strict

k-steps counter-example within

m ≥ vol((S)η)
vol(Bη)

log
1

β
(2.11)

points uniformly sampled from Sη, we can terminate sampling and conclude current

approximation S ⊆ A(0) with error probability bounded by β.

Proof. We generate samples pj uniformly within (S)η, i.e., pj
iid∼ U((S)η) for all j.

Thus, we define the indicator random variable:

Xj =

{︄
0 if pj ∈ Ssc

1 o.w.,

as well as a hypothesis test: {︄
H0 : ρ < ρ̄

H1 : ρ ≥ ρ̄,
(2.12)

where ρ̄ ∈ (0, 1) is a preset error threshold for the potentially unknown error ratio

ρ := vol(Ssc)/vol((S)η). If m ∈ N+ points sampled uniformly from S are all λ-

strict,k-recurrent, then hypothesis set (2.12) can be terminated with the probability
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of type II error (accept H0 when H1 is true) bounded by:

P
(︁
X1= ... =Xm=1

⃓⃓
H1

)︁
≤ sup

ρ≥ρ̄
(1−ρ)m=(1−ρ̄)m.

Therefore, for any tolerance β ∈ (0, 1), we have the error

P
(︁
X1= ... =Xm=1

⃓⃓
H1

)︁
≤ β, if (1− ρ̄)m ≤ β,

which can be further simplified as the following lower bound:

log
1

β
≤ m log

1

1− ρ̄
≤ m

ρ̄

1− ρ̄
=⇒ m ≥ 1

ρ̄
log

1

β
.

Finally, given parameters λ ∈ (0, r−δ) and η < min{λ(1+exp(Lkτs))
−1, r−δ−λ},

Theorem 2.9 implies S ⊆ A(0) whenever vol(Ssc) < vol(Bη). Thus, we let ρ̄ =

vol(Bη)/vol((S)η) and the result follows.

2.3.4 Multiple center point approximation

When the ROA A(0) is distorted or nonconvex, Algorithm 1 may significantly

underestimate A(0), meaning that the volume of the resulting approximation

vol(S) ≪ vol(A(0)). To address this problem, we can refine Algorithm 1 by generat-

ing additional approximations similar to S but centered at points different from the

equilibrium x∗ = 0.

In particular, we consider h ∈ N+ center points xi indexed by i ∈ {1, 2, ..., h},

where the first center point is x1 = x∗ = 0. Then other centers, i.e., x2,...,xh, can

be chosen uniformly within some region of interest or selected to be in some

preferred place. At each center point xi the sphere approximation is defined by

Si := {x| ∥x− xi∥2 ≤ bi}, where bi represents the radius to be updated in the

presence of counter-examples. As before we initialize bi = b̄.

Then, the multi-center ROA approximation Smulti is the union of all approxima-

tions, i.e., Smulti := ∪h
i=1Si. Note that S1 is equivalent to the original approximation

S of the previous sections, and S2 to Sh are additional enhancements.
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Similar to Algorithm 1, sample points are generated uniformly within Smulti,η :=

∪h
i=1(Si)η. In this multi-center case, a sample point p is classified as a counter-

example if starting from x0 = p,

xn ̸∈ {∪h
i=1(S

p
i )−λ} ∪ Bδ,∀n ∈ {1, ..., k},

where Sp
i := (Si)−di and

di :=

⎧⎪⎨⎪⎩
−d(p, ∂Si) if p ∈ Si

d(p, ∂Si) if p ∈ (Si)η\Si

0 o.w.,

i.e., the signed distances between the point p and the set Si whenever p ∈ (Si)η and

0 otherwise.

Once encounter a counter-example, we update Smulti and restart the sampling

process. In particular, given a counter-example p ∈ Smulti, every approximations Si

satisfying p ∈ Si are subjected to update respectively via the following criterion:

bi = ∥p− xi∥2 − ε.

Then, those approximations not containing p will not be updated. Note that

the parameter ε is strictly positive. Thus, for all center points xi ̸∈ A(0), the

corresponding constraint parameters bi could decrease to negative values and result

in Si = ∅ without affecting our results.

In this multi-center setting, we use Fh
b̄

to denote the parametric family of h

closed balls defined by ∪h
q=1Sq, where Si = {x : ||x − xi||2 ≤ bi}, for bi ∈ [0, b̄]

and xi ∈ Rd indexed by i = {1, ..., h}. We aim to demonstrate that the established

bounds on the number of updates and the sample complexity continue to apply

within this framework.

Theorem 2.11. The approximation Smulti is non-vanishing, i.e., Smulti ⊇ Bδ+λ, whenever

k > k̄ and condition (2.10) is satisfied. The total number of counter-examples encountered,

with k-doubling after each failure, is bounded by h b̄
ε
log2 k̄.
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Proof. See Appendix 2.5

Theorem 2.12. Given any compact multi-center approximation Smulti ∈ Fh
b̄

satisfying

∂Smulti ∩ Ω(f) = ∅ and Ω(f) ∩ Smulti = {0}, and consider parameters λ ∈ (0, r − δ),

β ∈ (0, 1), k > k̄, and η < min{λ(1+exp(Lkτs))
−1, r−δ−λ}. If we fail to find a λ-strict

k-steps counter-example within

m ≥ m :=
vol(Smulti,η)

vol(Bη)
log

1

β

points uniformly sampled from Smulti,η, we can terminate sampling and conclude current

approximation Smulti ⊆ A(0) with error probability bounded by β.

Proof. See Appendix 2.5

2.4 Numerical Methods

In this section, we will first illustrate the details of our numerical methods based

on Theorem 2.12. Precisely, we will leverage the highly parallelizable processing

units to process samples simultaneously, approximate the Lipschitz constant locally

to relax our sample complexity, and run our algorithm episodically to further

increase the learning accuracy. Finally, we validate the accuracy and efficiency of

our proposed algorithms through two autonomous dynamic system examples.

Parallel processing sample points

Recall from Theorem 2.12 that we need m λ-strict k-steps recurrent samples uni-

formly taken from Smulti,η to bound the error probability by β.

However, it is very computationally costly to sample uniformly from sphere

approximations that are potentially interacting with each other. Therefore, we

instead sample

mi :=
vol((Si)η)

vol(Bη)
log

1

β
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points uniformly from each approximation i ∈ {1, .., h}. If all of them are λ-strict

k-steps recurrent samples, we can terminate sampling and return the resulting

approximation since:

h∑︂
i=1

mi =
h∑︂

i=1

vol((Si)η)

vol(Bη)
log

1

β
≥ m.

When running our algorithm, we use the Torchode toolbox [63] to compute

many trajectories in parallel. In particular, we divide samples into Nb batches and

sample mi/Nb points uniformly from each approximation i ∈ {1, .., h} to from a

batch. If a batch contains λ-strict k-steps counter-examples, we update Smulti and

restart the sampling process. Otherwise, we can terminate sampling and return the

resulting approximation after Nb batches.

Local estimation of the Lipschitz constants:

In order to apply Theorem 2.12, we need to choose

η < λ(1 + exp(Lkτs))
−1 (2.13)

w.r.t a global consistent Lipschitz constant L. Since the vector field is assumed to

be locally Lipschitz, it is also locally one-sided Lipschitz[64, Page 70], i.e., for any

point z ∈ D, there exists a neighborhood Uz around z and a constant Lz such that

∀x, y ∈ Uz :

(y − x)T (f(y)− f(x)) ≤ Lz∥y − x∥2.

We note that a uniform one-sided Lipschitz constant can be defined under these

conditions over any (bounded) subset.

Therefore, we build a uniform grid G that covers our region of interest with

a maximum separation l > 0 small enough. For each grid cell g ⊆ G, we will

approximate a local Lipschitz constant Lg for each sample points p ∈ g. Precisely,

we simulate the trajectories starting from all sample points p ∈ g for k steps. Then,
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we let Lg be the largest log-norm (defined in [64, p. 76]) evaluated along those

trajectory points, i.e.,

Lg := max log-norm(ϕ(p, nτs)),

for all sample points p ∈ g and n ∈ {1, 2, ..., k}.

In our algorithm, we fix the choice of parameters η, λ, τs, and simulate trajec-

tories starting from all sample points for k steps. We then leverage the trajectory

information of all sample points p ∈ g to solve Lg and further define a step limit:

kg :=
1

Lgτs
ln (

λ

η
− 1)

within each cell g in our grid. Finally, if a sample point p belongs to a cell g with

kg ≥ k, we check if it is a λ-strict k-steps recurrent point. If p belongs to a cell g with

kg < k, we instead check if p is a kg-steps recurrent point. Such that the requirement

(2.13) will always be satisfied.

Grow the ROA approximation:

When dealing with complex dynamical systems, simulating them over a large

time-step horizon k becomes inefficient, and fully covering the region of interest by

merely increasing the number of approximations h is not feasible in higher dimen-

sions. To address this, we exploit the recurrent property to add new approximations

episodically.

Specifically, after completing our algorithm with h initial approximations, we

introduce an additional h distinct initial approximations and rerun our algorithm.

This iterative process can be repeated until the accumulated volume of our multi-

center point ROA approximation meets our satisfaction. In subsequent runs, we

only require sample points from these newly added approximations to confirm their

inclusion within the ROA. Nonetheless, we update our approximations whenever

we detect a counter-example w.r.t. the union of all existing approximations.
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2.4.1 Learning the ROA of a 2D system:

We initiate our analysis by approximating the region of attraction for a 2D au-

tonomous dynamical system, which is governed by the following equations:[︃
ẋ1

ẋ2

]︃
=

[︃
x2

−x1 +
1
3
x3
1 − x2

]︃
.

In Figure 2-3, the black dashed line delineates the boundary of the ROA for the

origin, providing a visual benchmark for our approximations.

In our algorithm, we set parameters η = 0.0125, λ = 0.1, ε = 0.2, τs = 0.1s,

and δ = 0.3. The outcomes of our approximation are marked in green. Specificaly,

Figure 2-3 compares the results of our multiple center points algorithm for different

choices of h (the number of sets used for approximation) and k (the number of time

steps considered for recurrence).

It is important to note that the accuracy of our approximation critically depends

on the choice of h and k. A smaller h and k limit the likelihood of certifying addi-

tional approximations as strict recurrent due to reduced opportunity for trajectories

to return within the designated time frame. Specifically, the green line in Figure

2-3 illustrates the boundary of the recurrent area. This boundary is determined by

systematically testing a mesh grid of points; any point from which the trajectory

fails to visit any Si for i = 1, ..., h within k steps is considered to be outside of this

region.

To extend the ROA approximation, we strategically increase the number of

approximations by including h = 50 additional approximations in each iteration

and repeat this process for 200 episodes. This episodic enhancement allows us

to progressively refine our ROA approximation. The impacts of different time-

step horizons k on the accuracy and efficiency of our algorithm are depicted in

Figure 2-4.
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Figure 2-3. Our ROA approximation outcomes under different settings. The black
dashed line represents the true boundary of the ROA. The union of all green circles
illustrates our computed approximation of the ROA. The solid green line delineates
the boundary of the recurrent area, showing the limits within which trajectories are
guaranteed to return.
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Figure 2-4. The growth of the ROA approximation in 200 episodes w.r.t. different
time-step horizon k.

2.4.2 Learning the ROA of a 4D transient stability problem:

We then study this 4D power system transient stability problem introduced in [65]:⎡⎢⎢⎣
δ̇1
ω̇1

δ̇2
ω̇2

⎤⎥⎥⎦ =

⎡⎢⎢⎣
ω1

− sin (δ1)− 0.5 sin (δ1 − δ2)− 0.4ω1

ω2

−0.5 sin (δ2)− 0.5 sin (δ2 − δ1)− 0.5ω2 + 0.05

⎤⎥⎥⎦ .

In this problem, we set parameters η = 0.025, λ = 0.2, ε = 0.15, τs = 0.5s, δ = 2,

and k = 10. Figure 2-6 shows the resulting ROA approximation and recurrent area

volume by episodically including h = 20 additional approximations and growing

our ROA approximation for 80 episodes.

The green line in Figure 2-6 demonstrates the accuracy of the Sum-of-Squares

(SOS) method as introduced in [65]. Notably, our method surpasses the SOS-based

results in accuracy after just ten episodes. Furthermore, as depicted in Figure 2-

5, the precision of our approximation method continues to improve, ultimately

reaching an accuracy of 58%.
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Figure 2-5. Our ROA approximation results after 80 episodes. The black dashed
line depicts the true ROA boundary. The union of all green circles is the projection
of our ROA approximation.

Figure 2-6. The growth of our ROA approximation and the associated recurrent
area in 80 episodes.
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2.5 Appendix

Proof of Corollary 2.1

Let V be the Zubov’s function whose existence is guaranteed by Theorem 2.1. Thus

by the definition of V , for c ∈ (0, 1), V≤c ⊆ A(x∗). Further from (2.4), it follows that

(LfV )(x) ≤ 0, for x ∈ V≤c ⊂ A(x∗). Thus, V≤c is positively invariant.

To prove the V≤c is contractible, we need to provide a continuous mapping

H : [0, 1]×V≤c → V≤c such that H(0, x) = x and H(1, x) = x∗ for all x ∈ V≤c. Similar

to [59], we define H(s, x) := ϕ( s
1−s

, x) for s < 1, and H(1, x) ≡ x∗. Note that H is

continuous in s and x for s < 1 , as in [3]. We are thus left to prove continuity at

each (1, x). To do so, we take any such x and pick any open neighborhood V of

H(1, x) = x∗. By Assumption 2.1 as well as the definition of asymptotic stability, it

follows that there exists another open neighborhood W ⊆ A(x∗) of x∗ for which

all trajectories starting in W remain in V , i.e., ϕ(t, x0) ∈ V for all x0 ∈ W and t > 0.

Given V≤c ⊆ A(x∗), any point x ∈ V≤c satisfies ϕ(T, x) ∈ W for some T > 0. This,

together with the continuity of ϕ(T, ·), implies that there is a neighborhood V ′ ⊆ V≤c

of x such that ϕ(T, y) ∈ W for all y ∈ V ′, which let us conclude:

H(s, y) ∈ V whenever y ∈ V ′ and s > 1− 1

T + 1

and continuity follows since V could be made arbitrarily small.

Proof of Lemma 2.1

We will prove this statement by contradiction. Assume the result does not hold, i.e.,

there exists x0 ∈ R s.t. for any t > 0 there exists a t′ ≥ t such that ϕ(t′, x0) ̸∈ R. This,

together with the definition of the recurrent set (Definition 2.4) and the continuity

of the solution, implies there exists a t′′ ≥ t such that ϕ(t′′, x0) ∈ ∂R for any t > 0.

Therefore, we can construct an infinite sequence {xn}∞n=0 that lies within ∂R, i.e.,

{xn}∞n=0 ⊂ ∂R.
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Precisely, let t0 ≥ 0 be a time such that ϕ(t0, x0) ∈ ∂R. Then, given xn :=

ϕ(tn, x0) ∈ ∂R and some fixed time interval τ > 0, we defined tn+1 as the first time

since tn + τ that the solution xn+1 := ϕ(tn+1, x0) lies within ∂R, i.e., ϕ(tn+1, x0) ∈ ∂R

and ϕ(t, x0) ̸∈ ∂R for all t ∈ [tn + τ, tn+1).

Then, since ∂R is compact, by Bolzano-Weierstrass theorem, {xn}∞n=0 must

have a sub-sequence {xni
}∞i=1 that converges to an accumulation point x̄ ∈ ∂R. It

follows then from the definition of ω-limit sets (Definition 2.1) that x̄ = limi→∞ xni
∈

Ω(f) ∩ ∂R, which contradicts with the assumption that ∂R∩ Ω(f) = ∅.

Proof of Theorem 2.2

( =⇒ ): If R is a compact recurrent set satisfying ∂R∩Ω(f) = ∅, Lemma 2.1 implies

that for any point x0 ∈ R, there exists a time T > 0 such that ϕ(t, x0) ∈ R, ∀t ≥ T ,

i.e., the solution is bounded in the compact set R for all t ≥ T . It then follows from

[3, p. 127] that the limit set Ω(x0) ̸= ∅ and limt→∞ d(ϕ(t, x0),Ω(x0)) = 0. Therefore,

we conclude Ω(f) ∩ R ⊇ Ω(x0) ̸= ∅ and x0 ∈ A(Ω(f) ∩ R). Finally, since x0 was

chosen arbitrarily within R, it follows that R ⊂ A(Ω(f) ∩R).

(⇐=): By assumption Ω(f) ∩ R ⊂ intR. Therefore, we can always construct an

open ζ-neighborhood ΩR
ζ := {x ∈ Rd|d(x,Ω(f)∩R) < ζ} of Ω(f)∩R for some ζ > 0

small enough such that ΩR
ζ ⊂ intR.

Then for any point x0 ∈ R, by the assumption that R ⊂ A(Ω(f) ∩ R), the

solution ϕ(t, x0) converges to Ω(f) ∩ R, i.e., lim inft→∞ d(ϕ(t, x0),Ω(f) ∩ R) = 0. It

follows then that for any ζ > 0 and time t > 0, there always exists some time t′ ≥ t

such that d(ϕ(t′, x0),Ω(f) ∩ R) < ζ, and thus ϕ(t′, x0) ∈ ΩR
ζ ⊂ R. Therefore, R is

recurrent.
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Proof of Theorem 2.3

The proof of the theorem relies on Zubov’s existence criterion stated in Theorem 2.1.

Given R, let us now define

c := min
x∈∂R

V (x), c := max
x∈∂R

V (x),

and a := max
x∈C

∇V (x)Tf(x),

where C = {x ∈ Rd : c ≤ V (x) ≤ c} is compact.

We first argue that V≤c := {x : V (x) ≤ c} ⊆ R. Let x be the point in ∂R that

achieves the minimum, i.e, V (x) = c . Since R is not necessarily connected, we use

R′ to denote the connected component of R containing x.

Figure 2-7. An visualization of the
proof of Theorem 2.3. Particularly, when
R is disconnected, the equilibrium x∗

must be contained in R′, since other-
wise, one could find a point x′ ∈ ∂R with
V (x′) < V (x) along the trajectory ϕ(t, x)
that strictly decreases V .

Note that x∗ ∈ intR must be contained

in R′, since otherwise, the trajectory

ϕ(t, x), which strictly decreases V must

eventually find a point x′ ∈ ∂R with

V (x′) < c ; which contradicts the defini-

tion of c , see Fig 2-7. Thus, x∗ ∈ R′ ⊆

R.

Suppose then that V≤c ̸⊆ R′ ⊆ R, for

any point x̃ ∈ V≤c\R′, V (ϕ(t, x̃)) < c ,

for t > 0, and limt→∞ ϕ(t, x̃) = x∗. Thus

there exists t̃ > 0 s.t. V (ϕ(t̃, x̃)) < c and

ϕ(t̃, x̃) ∈ ∂R; which contradicts again

with the definition of c. It follow then

that V≤c ⊆ R′ ⊆ R.

Similarly, since the contradictable set V≤c contains every point in the boundary

of R, there cannot be any point in x ∈ R with V (x) > c. We therefore get that the
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following inclusions must hold:

V≤c ⊆ R ⊆ V≤c.
(2.14)

Finally, by (2.14), for any point x ∈ R we must have V (x) ≤ c. Since the time

derivative of V (x) is at most a < 0, it follows that after t ≥ τ̄ := c−c
a

the Lyapunov

value V (ϕ(t, x)) ≤ c , which implies that ϕ(t, x) ∈ R and result follows.

Proof of Theorem 2.6

Note first that r is the smallest distance between the origin (equilibrium) and the

boundary ∂V≤c, hence if λ ≤ r − δ, then Bδ+λ ⊆ V≤c and such a R always exists.

Then, we further conclude (R)−λ ⊇ Bδ since R ⊇ Bδ+λ. Finally, it follows from

Theorem 2.4 that after k > k̄ = τ̄(δ)/τs steps, trajectory ϕ(t, x) ∈ Bδ ⊆ (R)−λ for any

point x ∈ R, and thus results follow.

Proof of Theorem 2.7

Given any counter-example p w.r.t S ⊇ Bδ+λ, one can conclude p ̸∈ V≤c from

Theorem 2.6; since otherwise, p would generate a λ-strict k-recurrent trajectory. It

then follows from the definition of r that ∥p∥2 ≥ r.

Now, since ∥p∥2 ≥ r, the update leads to b = ∥p∥2 − ε ≥ r − ε ≥ δ + λ whenever

ε ≤ r − δ − λ. This, together with the fact that S ⊇ Bδ+λ, implies the result.

Proof of Theorem 2.8

Note that once a counter-example is encountered, we decrease the radius constraint

by at least ε−η. Therefore, our approximation S ∈ Fb̄ after every updates. Then, for

any fixed k, our method can find at most b̄/(ε− η) counter-examples without failing.

Since it takes at most log2 k̄ updates on k to find some k ≥ k̄ using the doubling

method, the result follows.
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Proof of Theorem 2.9

The proof of Theorem 2.9 relies on the following properties of the set (S)η.

Lemma 2.3. Given any compact convex set S, then for all points q ∈ ∂S, the distance

d(q, ∂(S)η) = η. Moreover, d(p, ∂(S)η) < η whenever p ∈ (S)η\S.

Lemma 2.4. Given any compact convex set S and any sample point p ∈ (S)η, then (Sp)−λ

is a subset of S whenever λ > η.

Corollary 2.3. Given any compact convex set S, any sample point p ∈ (S)η, and any

parameter ζ > 0, then (Sp)−λ is a subset of (S)−ζ whenever λ > η + ζ .

Note that Lemma 2.2 guarantees the existence of a point p ∈ ∂S with solution

ϕ(t, p) ̸∈ int{S} for all t ≥ 0. We then use B(p, η) to denote a closed ball with

radius η centered at this point p, i.e., B(p, η) = {x| ∥x− p∥2 ≤ η}. Then, for all

points q ∈ B(p, η) ⊆ (S)η, we will show that by choosing η appropriately, q will be

classified as a λ-strict counter-example, i.e., ϕ(q, nτs) ̸∈ (Sq)−λ and ϕ(q, nτs) ̸∈ Bδ for

all n ∈ {1, 2, ...}.

Towards this goal, we first argue that it is sufficient for us to just show ϕ(q, nτs) ̸∈

(Sq)−λ for all n ∈ {1, 2, ...} since η < r − δ − λ implies the distance d(∂(Sq)−λ, 0) ≥

r − η − λ > δ, and thus (Sq)−λ ⊇ Bδ.

Now recall the assumption that the dynamical system (2.1) is globally L-Lipschitz,

it follows from [3, p. 96] that the distance between solutions ∥ϕ(t, p)− ϕ(t, q)∥ ≤

∥p− q∥ exp (Lt) ≤ η exp (Lt) for all t ≥ 0. This, together with the fact that ϕ(t, p) ̸∈

int{S}, implies ϕ(t, q) ̸∈ (S)−ζ for all t ≥ 0 if ζ > η exp (Lt) = η exp (Lkτs).

Finally, Corollary 2.3 further implies (Sq)−λ ⊆ (S)−ζ whenever λ > η + ζ >

η(1 + exp (Lkτs)). Therefore, by choosing η < λ(1 + exp(Lkτs))
−1, every point

q ∈ B(p, η) will be classified as a λ-strict counter-example, and thus the λ-strict

k-steps counter-example set volume vol(Ssc) ≥ vol(Bη).
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Proof of Theorem 2.11

By definition Smulti ⊇ S1 for all i ∈ N+, Theorem 2.7 therefore implies Smulti ⊇ S1 ⊇

Bδ under (2.10). The bound on the total number of counter-examples follows as in

Theorem 2.8, since every additional approximation Si ∈ Fb̄ for all i ∈ {1, ..., h}.

Proof of Theorem 2.12

Since Smulti ∈ Fh
b̄

is the union of convex compact sets with S1 ⊇ Bδ+λ, we can

generalize the proof of Theorem 2.9-2.10 to this case.

Similar to the proof of Theorem 2.9, it follows from Lemma 2.2 that there exists

a point p ∈ ∂Smulti with solution ϕ(t, p) ̸∈ intSmulti for all t ≥ 0. There further exists

a ball B(p, η) such that ϕ(t, q) ̸∈ (Smulti)−ζ for all q ∈ B(p, η) and t ≥ 0, whenever

ζ > η exp (Lkτs).

Then, by choosing a λ > η+ζ > η(1+exp (Lkτs)), Corollary 2.3 implies (Sq
i )−λ ⊆

(Si)−ζ for all i = 1, ..., h. This, together with the fact that {∪h
i=0(Si)−ζ} ⊆ (Smulti)−ζ ,

implies

{∪h
i=1(S

q
i )−λ} ⊆ {∪h

i=1(Si)−ζ} ⊆ (Smulti)−ζ .

Now, since the trajectory ϕ(t, q) ̸∈ (Smulti)−ζ , we conclude ϕ(t, q) ̸∈ {∪h
i=1(S

q
i )−λ}.

Since the other condition η < r − δ − λ implies Bδ ⊆ {∪h
i=1(S

q
i )−λ}, we further

conclude ϕ(t, q) ̸∈ Bδ. Thus, Smulti has λ-strict k-steps counter-example set volume

vol(Ssc) ≥ vol(Bη).

Finally, by constructing the same hypothesis test as defined in the proof of

Theorem 2.10 with parameter ρ̄ = vol(Bη)/vol((Smulti)η), result follows.
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2.6 Conclusion

In this chapter, we introduce a novel methodology for learning the region of at-

traction of an asymptotically stable equilibrium point within a model-free context,

utilizing only sampled system trajectories.

We begin by advocating for a more flexible notion of invariance, termed recur-

rence. Utilizing this concept, we demonstrate that under mild conditions, a compact

set containing an asymptotically stable equilibrium point is a subset of the ROA

if and only if it is recurrent. To facilitate the practical learning of an ROA inner

approximation, we establish that there exists a time horizon k within which almost

every compact ROA subset exhibits recurrence. This finding not only highlights a

regularity condition necessary for ROA inner approximations but also enables their

characterization using only finite-length trajectory samples.

Building on this theoretical foundation, we propose a practical algorithm de-

signed to characterize the region of attraction for a given asymptotically stable

equilibrium point. This algorithm is optimized for efficiency, requiring only a finite

number of finite-length trajectory samples and updates. It also takes full advantage

of highly parallelizable processing units, allowing for simultaneous processing of

trajectory samples.

Moreover, the adaptability of our approach is demonstrated by its capacity for

incremental improvement: even after the algorithm has terminated, it can be warm-

started with additional sets to further enhance the accuracy of the approximation.

The chapter concludes with the presentation of two numerical examples that

illustrate the effectiveness of our method.
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Chapter 3

Model-free Learning of Safe Regions
via Recurrent Barrier Functions

Having established a practical method to characterize the region of attraction for

a stable equilibrium point, we now shift our focus to identifying the set of initial

conditions such that a given unsafe state space region is guaranteed to be avoided.

Specifically, in Section 3.1 we systematically relax the classic differential barrier

conditions into integral conditions and further into recurrent conditions. These

adaptations simplify the searching process of a barrier function that can be utilized

to confirm safety. We further extended our analysis in Section 3.2 to a practical safety

objective and developed in Section 3.3 an algorithm that uses only a finite number

of finite-length trajectory samples to characterize safety regions and analyze safety

levels.

Notation

Given a set S and an arbitrary norm (denoted by ∥ · ∥), we use sd(x, S) to denote

the signed distance between a point x and S, i.e.,

sd(x, S) :=

{︄
infy∈∂S ∥y − x∥ if x ̸∈ S

− infy∈∂S ∥y − x∥ if x ∈ S.

We further use PS(x) to denote the set of projections of a point x on a non-empty
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closed set S, i.e.,

PS(x) := argmin
y∈S

∥y − x∥.

We respectively use [x]+ and [x]− to denote the projection of a number x ∈ R on the

set of all non-negative real numbers and the set of all non-positive real numbers,

respectively. For a continuous function h, we use h<0 (h≤0), h>0 (h≥0), and h=0 to

denote the open (closed) sub-level set, open (closed) super-level set and closed level

set, respectively.

For a vector field that is assumed to be locally Lipschitz, it is also locally one-

sided Lipschitz [64, Page 70], i.e., for any point z ∈ D, there exists a neighborhood

Uz around z and a constant Lz such that ∀x, y ∈ Uz :

(y − x)T (f(y)− f(x)) ≤ Lz∥y − x∥2

We note that a uniform one-sided Lipschitz constant can be defined under these

conditions over any (bounded) subset of D. In what follows, we will use:

F (S) := sup
z∈S

∥f(z)∥; L(S) := sup
z∈S

Lz,

for a set S ⊆ D.

3.1 Generalized Barrier Functions

Barrier functions constitute an effective tool for assessing and enforcing safety-

critical constraints on dynamical systems. To this end, one is required to find a

function h that satisfies a Lyapunov-like differential condition, thereby ensuring

the invariance of its zero super-level set h≥0. This methodology, however, does not

prescribe a general method for finding the function h that satisfies such differential

conditions, which, in general, can be a daunting task. In this section, we seek to

overcome this limitation by developing a generalized barrier condition that makes

the search for h easier.
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The section is structured as follows: Section 3.1.1 introduces preliminary def-

initions pertinent to dynamical systems and safety and revisits classical barrier

conditions that will be utilized throughout this work. In Section 3.1.2, we detail

the development of integral-based barrier functions. This discussion is expanded

in Section 3.1.3, where we introduce and elaborate on the recurrence conditions.

Under these conditions, one can certify that a super-level set of h is τ -recurrent, im-

posing regularity conditions on the trajectories. In Section 3.1.4, we demonstrate the

generality of the recurrence conditions, specifically showing that almost every safe

set would satisfy our recurrent barrier conditions with a bounded time horizon τ .

In Section 3.1.5, we argue that recurrent sets are functionally equivalent to invariant

sets and, thus, can be indicative of safety.

3.1.1 Preliminary results

Throughout the chapter, we consider a continuous-time dynamical system described

using the following ordinary differential equation:

ẋ = f(x) , (3.1)

where x ∈ D ⊂ Rn is the state, and the map f : D → Rn is a continuous and locally

Lipschitz function defined over a domain D. Given an initial state x0, we use ϕ(t, x0)

to denote the solution of (3.1). We assume system 3.1 is forward complete, which is

specified in the following assumption.

Assumption 3.1 (Forward Completeness). For any x ∈ D, the trajectory ϕ(·, x) is

defined for all t ∈ [0,∞).

In the following, we formally define the notions of safety and invariance.

Definition 3.1 (Safety). Let Xu ⊆ D be a set of unsafe states, a trajectory ϕ(t, x0) of (3.1)

is unsafe if there exists a time t ≥ 0 such that ϕ(t, x0) ∩ Xu ̸= ∅.
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We say that a set Xs ⊆ D is a safe state space region if there are no unsafe trajectories

starting from Xs.

Note that the notion of invariance defined in Definition 2.3 is closely related to

the barrier function methods that characterize safe state space regions. By trapping

trajectories on level sets of a function, one can ensure the system’s safety whenever

its initial state belongs to an invariant set S that does not intersect with Xu.

Next, we review some classic formulations of barrier functions that certify the

invariance of their super-level sets. These formulations require the barrier functions

to be differentiable, which we will relax in the following sections. We start with

the most basic formulation: Nagumo’s. It only requires the time derivative of the

barrier function h, which is also its Lie derivative along f , to be non-negative at any

state of its zero level set h=0. That implies that whenever a trajectory reaches the

boundary of that set h≥0 from its interior, h must not decrease. Thus, the trajectory

must remain in the set, ensuring the latter’s invariance.

Theorem 3.1 (Nagumo’s Barrier Functions). [66, Th 3.1]

Consider a dynamical system (2.1) and a differentiable function h : D ⊂ Rn → R, then h is

a Nagumo’s Barrier Function (NBF) satisfying:

Lfh(x) := lim
t→0

h(ϕ(t, x))− h(x)

t
≥ 0, ∀x ∈ h=0, (3.2)

if and only if the super-level set h≥0 is invariant.

The following theorem adds an additional constraint to Nagumo’s definition

that further lower-bounds the rates at which h can at most decrease along the

trajectories starting from the interior of its super-level set and the least at which

it should increase along the trajectories starting from the exterior of that set. That

ensures safe trajectories approach the boundary slowly, if at all, and possibly unsafe

ones converge to the safe set fast enough, ensuring its stability. The latter is not

guaranteed by Nagumo’s version.
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Definition 3.2 (Extended class K function). [34, Def 2]

A continuous function ζ := (−b, a) → (−∞,∞) is said to belong to extended class K for

some a, b > 0 if it is strictly increasing and ζ(0) = 0.

Theorem 3.2 (Zeroing Barrier Functions). [34, Prop 1]

Consider a differentiable function h : D → R and an extended class K function ζ . Assume

there exists a super-level set D0 := h≥−c ⊆ D for some c ≥ 0 such that:

Lfh(x) ≥ −ζ(h(x)), ∀x ∈ D0,
(3.3)

then:

(i) h is called a Zeroing Barrier Functions (ZBF), and the super-level set h≥0 is invariant.

(ii) whenever x ∈ h<0 ∩D0, then as long as h(ϕ(t, x)) < 0, h(ϕ(t, x)) must monotoni-

cally increase to zero, at least, with a positive rate of −ζ(h(ϕ(t, x))), and

(iii) whenever h(ϕ(t, x)) > 0, then h(ϕ(t, x)) may decrease to zero, at most, with a

negative rate of −ζ(h(ϕ(t, x))).

The bounds on the boundary-approaching rates of Zeroing barrier functions in

Theorem 3.2 are non-uniform and state-dependent. In the following remark and

the rest of the section, we describe the special case when ζ is a (piece-wise) linear

function of h(x), which results in uniform exponential bounds on the evolution of

h(ϕ(t, x)).

Remark 4. [34, Remark 6] A special case of (3.3) is:

Lfh(x) ≥ −αh(x), ∀x ∈ D0,
(3.4)

for some α > 0. Since ζ(s) = αs is an extended class K function, the super-level set h≥0

is invariant as stated in Theorem 3.2. This formulation is commonly used since it leads

to a convex problem that can be efficiently solved using techniques like SoS programming

[31, 67].
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The following lemma provides the formal statement on the exponential bounds

on the convergence rates of the function value h(ϕ(t, x)) under condition (3.4).The

proof is analogous to [31, Thm 1], with an extension to consider all states x ∈ h≤−c

instead of just h≤0.

Lemma 3.1. Consider a continuous function h : D → R, an α > 0, and a super-level

set D0 := h≥−c for some c ≥ 0, then condition (3.4) implies the following exponential

convergence result:

h(ϕ(t, x)) ≥ e−αth(x), ∀t ≥ 0, x ∈ D0.

Proof. See Appendix 3.4

We end this section by generalizing the case in Remark 4 to one where the

bounds on the different sides of the boundary differ, calling the resulting func-

tions exponential barrier functions (EBFs). The need for this generalization will

become clear in Section 3.1.4, where we show the generality of our newly developed

conditions.

Theorem 3.3 (Exponential Barrier Functions). Consider a differentiable function h :

D ⊂ Rn → R, and parameters α, β > 0. Assume there exists a super-level set D0 := h≥−c

for some c ≥ 0 such that:

Lfh(x) ≥ −(β[h(x)]− + α[h(x)]+), ∀x ∈ D0,
(3.5)

then:

(i) we call h an Exponential Barrier Function (EBF), the super-level set h≥0 is positively

invariant,

(ii) whenever x ∈ h<0 ∩D0, then as long as h(ϕ(t, x)) < 0, h(ϕ(t, x)) must monoton-

ically increase to zero, at least, with a positive linear rate of −βh(ϕ(t, x)), which
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implies,

h(ϕ(t, x)) ≥ e−βth(x), ∀t ≥ 0, x ∈ h<0 ∩D0,
(3.6)

and

(iii) whenever x ∈ h>0, then h(ϕ(t, x)) may decrease to zero, at most, with a negative

linear rate of −αh(ϕ(t, x)), which implies,

h(ϕ(t, x)) ≥ e−αth(x), ∀t ≥ 0, x ∈ h≥0.
(3.7)

Proof. See Appendix 3.4

We finalize by reminding that all the results of this section require the differen-

tiability of h. In the next section, we relax this requirement.

3.1.2 Integral Barrier Functions

This section examines integral-based versions of the classic barrier function formu-

lations previously discussed. We will explore how these integral forms relate to

earlier formulations and their implications for the invariance of a set. Specifically,

in Theorems 3.4, 3.5, and 3.6, we present the integral-based versions of the barrier

function formulations of Theorems 3.1, 3.2, and 3.3, respectively. Additionally, we

discuss in Remarks 5, 6, and 7 the equivalence between the integral formulations

and classical ones when the barrier function is differentiable.

Theorem 3.4 (Integral Nagumo’s Barrier Functions). Consider a continuous function

h : D → R. The super-level set h≥0 is invariant if and only if h satisfies:

h(ϕ(t, x)) ≥ 0, ∀x ∈ h=0, t ≥ 0, (3.8)

in which case we call h an Integral Nagumo’s Barrier Function (INBF).

Proof. See Appendix 3.4
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Remark 5. Theorem 3.4 only requires h to be continuous. If h is also differentiable, then

(3.8) is equivalent to (3.2). Specifically, starting from an arbitrary point x ∈ h=0, condition

(3.8) implies that h(ϕ(t, x)) ≥ 0 for all t ≥ 0. Therefore, h(ϕ(t, x)) − h(x) ≥ −h(x) =

0, ∀x ∈ h=0, t ≥ 0. Then, by evaluating the Lie derivative:

Lfh(x) = lim
t→0

h(ϕ(t, x))− h(x)

t
≥ 0,

condition (3.2) follows.

For the other direction, note that condition (3.2) implies h≥0 is invariant, which is

equivalent to condition (3.8).

In the following theorem, we relax the differentiability conditions on zeroing

barrier functions recalled in Theorem 3.2 and define the integral zeroing barrier

functions.

Theorem 3.5 (Integral Zeroing Barrier Functions). Consider a continuous function

h : D ⊂ Rn → R, and an extended class K function ζ . Assume there exists a super-level set

D0 := h≥−c for some c ≥ 0 such that:

h(ϕ(t, x)) +

∫︂ t

0

ζ(h(ϕ(s, x)))ds ≥ h(x), (3.9)

for all t ≥ 0 and x ∈ D0, then:

(i) we call h an Integral Zeroing Barrier Function (IZBF), the super-level set h≥0 is

invariant, and

(ii) the conditions (ii)-(iii) stated in Theorem 3.2 are satisfied.

Proof. See Appendix 3.4

Remark 6. Theorem 3.5 only requires h to be continuous. If h is also differentiable, (3.9) is

equivalent to (3.3), and thus the asymptotic convergence results (ii)-(iii) stated in Theorem

3.2 are satisfied.
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Precisely, condition (3.3) follows by evaluating the following Lie derivative everywhere

under condition (3.9):

Lfh(x) = lim
t→0

h(ϕ(t, x))− h(x)

t

≥ lim
t→0

−
∫︁ t

0
ζ(h(ϕ(s, x)))ds

t

= lim
t→0

0− ζ(h(ϕ(0, x)))t− o(t)

t
=− ζ(h(x)).

For the other direction, condition (3.9) follows directly from (3.3) by applying the ‘funda-

mental theorem of calculus II’[68].

In the last theorem of this section, we relax the differentiability conditions on

exponential barrier functions introduced in Theorem 3.3 and define the integral

exponential barrier functions.

Theorem 3.6 (Integral Exponential Barrier Functions). Consider a continuous function

h : D ⊂ Rn → R and parameters α, β > 0. Assume there exists a super-level set

D0 := h≥−c for some c ≥ 0 such that:

h(ϕ(t, x)) ≥ e−βt[h(x)]− + e−αt[h(x)]+,
(3.10)

for all x ∈ D0 and t ≥ 0, then:

(i) we call h an Integral Exponential Barrier Function (IEBF), the super-level set h≥0 is

invariant, and

(ii) the conditions (ii)-(iii) stated in Theorem 3.3 are satisfied.

Proof. See Appendix 3.4

Remark 7. Theorem 3.6 only requires h to be continuous. If h is also differentiable,

then (3.10) is equivalent to (3.5). In particular, condition (3.5) follows by evaluating the

following Lie derivative everywhere under condition (3.10), i.e.,
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Whenever x ∈ h≥0 :

Lfh(x) = lim
t→0

h(ϕ(t, x))− h(x)

t

≥ lim
t→0

h(x)e−αt − h(x)

t

= h(x) lim
t→0

e−αt − 1

t
= −αh(x).

Similarily, whenever x ∈ D0 ∩ h<0 :

Lfh(x) = lim
t→0

h(ϕ(t, x))− h(x)

t
≥ −βh(x).

For the other direction, we have shown condition (3.5) implies (3.10) in Theorem 3.3 part

(ii-iii).

Figure 3-1. This illustration depicts the integral exponential barrier function. The
red dashed lines represent e−βt[h(x)]− + e−αt[h(x)]+, i.e., the right-hand side of
equation 3.10, evaluated at three different states x1, x2, and x3 over time t ≥ 0.
The two black lines, representing h(ϕ(t, x1)) and h(ϕ(t, x3)), demonstrate that these
function values do not fall below their respective red dashed thresholds.
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3.1.3 Recurrent Barrier Functions

We are now ready to provide a relaxation to the barrier conditions that lead to the

invariance of the super-level set h≥0. To relax the notion of invariance, one must

allow trajectories to temporarily leave a set. Therefore, we recall the definitions of

recurrence and τ -recurrence defined in Definition 2.4 and 2.5, respectively.

Figure 3-2. Relationships among classic barrier functions (Theorems 3.1-3.3),
integral barrier functions (Theorem 3.4-3.6), and recurrent barrier functions (Theo-
rem 3.7-3.9).

In the rest of this section, we generalize the aforementioned barrier function

formulations into recurrent-based versions that certify the τ -recurrence of the super-

level set h≥0. Specifically, in theorems 3.7, 3.8, and 3.9, we present the recurrence-

based versions of the integral barrier function formulations of theorems 3.4, 3.5,

and 3.6, respectively. The relationships between all barrier functions are summa-

rized in Fig 3-2. As usual, we start with Nagumo’s version.

Theorem 3.7 (Recurrent Nagumo’s Barrier Functions). Consider a continuous function
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h : D → R, then the super-level h≥0 is τ -recurrent if and only if h satisfies:

max
t∈(0,τ ]

h(ϕ(t, x)) ≥ 0, ∀x ∈ h=0,
(3.11)

in which case we call it a Recurrent Nagumo’s Barrier Function (RNBF).

Proof. See Appendix 3.4

As in the differential and integral formulations, Nagumo’s version of recurrence

does not restrict the rate at which the barrier function changes along the trajectories.

For that, we will need to introduce the Zeroing formulation.

Definition 3.3 (Recurrent Zeroing Barrier Functions).

A continuous function h : D ⊂ Rn → R is a Recurrent Zeroing Barrier Function (RZBF) if

there exists an extended class K function ζ and a super-level set D0 := h≥−c , c ≥ 0 , such

that:

max
t∈(0,τ ]

h(ϕ(t, x)) +

∫︂ t

0

ζ(h(ϕ(s, x)))ds ≥ h(x), ∀x ∈ D0. (3.12)

In contrast with the differential and integral formulations of zeroing barrier

functions, the recurrent one does not constrain the rates at which the barrier function

changes at all time instants of a trajectory, but only on countably infinite many times

that are most separated by τ in consecutive steps.

Lemma 3.2. Consider a Recurrent Zeroing Barrier Function h defined over D0 := h≥−c

for some c ≥ 0. Then, for any x ∈ D0, there exists a sequence of times {tn}n∈N, with t0 = 0,

tn+1 = max{ argmax
t∈(tn,tn+τ ]

h(ϕ(t, x)) +

∫︂ t

tn

ζ(h(ϕ(s, x)))ds},

lim
n→∞

tn = ∞, and tn+1 − tn ∈ (0, τ ], ∀n ∈ N, (3.13)

such that for each xn := ϕ(tn, x), xn ∈ D0, and

h(xn+1) ≥ max{h(xn) + δn, [h(xn)]−}, ∀n ∈ N, (3.14)
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with δn := −
∫︁ tn+1−tn
0

ζ(h(ϕ(s, xn)))ds, satisfying δn > 0 whenever h(xn) and h(xn+1) <

0.

Proof. See Appendix (Section 3.4).

The following theorem gives a detailed explanation of the implications of the

Recurrent Zeroing Barrier Function.

Theorem 3.8. Consider a Recurrent Zeroing Barrier Function h defined over D0 := h≥−c

for some c ≥ 0 and let xn := ϕ(tn, x) be the states along the sequence of times {tn}n∈N

specified in Lemma 3.2. Then:

(i) the super-level set h≥0 is τ -recurrent,

(ii) whenever x ∈ h<0 ∩ D0, then as long as h(xn) < 0, h(xn+1) must monotonically

increase, at least, by a step size of δn > 0, if h(xn+1) < 0, or −h(xn) > 0, if

h(xn+1) ≥ 0, and

(iii) whenever h(xn) > 0, then h(xn+1) may decrease to zero, at most, by a negative step

size of max{δn,−h(xn)}.

Proof. See Appendix (Section 3.4).

As before, we end with the exponential formulation which constrains the rates

using exponential functions of time. As in the zeroing version, it only constrains

the rates at countably infinite time instants.

Definition 3.4 (Recurrent Exponential Barrier Functions).

A continuous function h : D ⊂ Rn → R is a Recurrent Exponential Barrier Function

(REBF) if there exists parameters α, β > 0 and a super-level set D0 := h≥−c , for some

c ≥ 0, such that:

max
t∈(0,τ ]

eβt[h(ϕ(t, x))]− + eαt[h(ϕ(t, x))]+ ≥ h(x) (3.15)
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for all x ∈ D0.

Figure 3-3. This illustration demonstrates the recurrent exponential barrier function.
The red dashed lines represent e−βt[h(x)]− + e−αt[h(x)]+, i.e., the rearranged right-
hand side of equation 3.15, evaluated at three different states x1, x2, and x3 over
time t ≥ 0. The two black lines, representing h(ϕ(t, x1)) and h(ϕ(t, x3)), demonstrate
that these function values are permitted to temporarily drop below their respective
red dashed thresholds but only for periods shorter than τ .

Lemma 3.3. Consider a Recurrent Exponential Barrier Function h defined over D0 := h≥−c

for some c ≥ 0 with parameters α, β > 0. Then, for any x ∈ D0, there exists a sequence of

times {tn}n∈N, with t0 = 0,

tn+1 = max{ argmax
t∈(tn,tn+τ ]

eβt[h(ϕ(t, x))]− + eαt[h(ϕ(t, x))]+}

lim
n→∞

tn = ∞ and tn+1 − tn ∈ (0, τ ], ∀n ∈ N, (3.16)

such that for each state xn := ϕ(tn, x), we have, xn ∈ D0, and

h(xn+1) ≥ e−β∆tn [h(xn)]− + e−α∆tn [h(xn)]+ , (3.17)

for all n ∈ N, with ∆tn := tn+1 − tn.
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Proof. See Appendix (Section 3.4).

We then summarize the implications of the Recurrent Exponential Barrier Func-

tion in the next theorem.

Theorem 3.9. Consider a Recurrent Exponential Barrier Function h defined over D0 :=

h≥−c for some c ≥ 0 with parameters α, β > 0 and let xn := ϕ(tn, x) be the states along

the sequence of times {tn}n∈N specified in Lemma 3.3. Then:

(i) the super-level set h≥0 is τ -recurrent,

(ii) whenever x ∈ h<0 ∩ D0, then as long as h(xn) < 0, h(xn+1) must monotonically

increase, at least, by a positive step size of δn = (e−β∆tn − 1)h(xn), which implies,

h(xn) ≥ h(x)e−βtn , ∀n ∈ N, x ∈ h<0 ∩D0,
(3.18)

and

(iii) whenever h(xn) > 0, then h(xn+1) may decrease to zero, at most, by a negative step

size of δn = (e−β∆tn − 1)h(xn), which implies,

h(xn) ≥ h(x)e−αtn , ∀n ∈ N, x ∈ h≥0.
(3.19)

Proof. See Appendix (Section 3.4).

3.1.4 The generality of recurrence conditions

In the previous section, we introduced a set of novel barrier conditions that relaxed

the invariant requirement on the zero super level set of h. We will now show that

this relaxation widely decouples the geometry of the vector field with the geometry

of the level sets of h. This allows us to characterize a vast family of sets and functions

that can be used to certify safety. Our prior work in Chapter 2 inspires our results,

wherein we show that under mild conditions, every set contained within the region

of attraction of an equilibrium point is recurrent see, e.g., Corollary 2.2.
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In this section, we generalize this idea in the context of certifying safety. We

start by introducing mild regularity constraints on h, which we will need later in

Theorem 3.10. This requires us to introduce the notion of sector-bounded functions.

Definition 3.5 (Sector Containment). Let h : D ⊂ Rn → R be continuous. If ∃α1, α2 > 0

such that

(h(x)− α1sd(x, h≤0))(h(x)− α2sd(x, h≤0)) ≤ 0, (3.20)

for all x ∈ D, we say that h is sector-contained.

Remark 8. Given parameters α2 ≥ α1 > 0, (3.20) is satisfied if and only if for all x ∈ D:

α2sd(x, h≤0) ≥ h(x) ≥ α1sd(x, h≤0) ≥ 0 if h(x) ≥ 0,

0 ≥ α1sd(x, h≤0) ≥ h(x) ≥ α2sd(x, h≤0) if h(x) < 0.

(3.21)
(3.22)

In the following theorem, we show that the existence of a sector-contained IEBF

h is sufficient to make the signed distance to the zero sub-level set of h a REBF. As

such, this theorem illustrates the generality of our recurrent condition.

Theorem 3.10. Let h be an Integral Exponential Barrier Function with exponential rates

α and β, defined over D0 := h≥−c for some c ≥ 0. Then, if h is sector-contained with

parameters α1 and α2, the function ĥ(·) = sd(·, h≤0) is a Recurrent Exponential Barrier

Function, i.e., the following conditions hold:

max
t∈(0,τ̂ ]

eβ̂t[ĥ(ϕ(t, x))]− + eα̂t[ĥ(ϕ(t, x)]+ ≥ ĥ(x) , (3.23)

for all x ∈ D0 and any α̂, β̂, τ̂ > 0 satisfying α̂ > α, β̂ < β, and

τ̂ ≥ max{ log(α2/α1)

α̂− α
,
log(α2/α1)

β − β̂
}. (3.24)

Proof. See Appendix (Section 3.4).

While the REBF in Theorem 3.10 has a simple definition, it still requires the

knowledge of the sub-level set of the IEBF that is assumed to exist. In the following
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theorem, we relax this assumption and only require the knowledge of any set that

contains the super-level set of the IEBF and is contained in the domain that satisfies

the IEBF conditions.

Theorem 3.11. Let h be an Integral Exponential Barrier Function with exponential rates

α and β defined over D0 := h≥−c for some c ≥ 0. If h is sector-contained with parameters

α1 and α2, then, for any closed set S satisfying h≥0 ⊂ S ⊆ D0 = h≥−c and ∂S ∩ h=0 = ∅,

the function

ĥ(x) := −sd(x, S)

is a Recurrent Exponential Barrier, i.e., the following conditions hold:

max
t∈(0,τ̂ ]

{eβ̂t[ĥ(ϕ(t, x))]− + eα̂t[ĥ(ϕ(t, x))]+} ≥ ĥ(x) (3.25)

for all x ∈ ĥ≥−ĉ with ĉ ≥ 0 such that ĥ≥−ĉ ⊆ D0, any α̂, β̂, τ̂ > 0 satisfying α̂ > α, β̂ < β,

β̂ ≤ α̂, and

τ̂ ≥ max{ log(α2/α1)

α̂− α
,
log(α2/α1)

β − β̂
}+ log(δ̄/δ)

min{α̂, β̂}
,

with

δ̄ := sup
x∈D0

(sd(x, h≥0)− sd(x, S)),

δ := inf
x∈D0

(sd(x, h≥0)− sd(x, S)).

(3.26a)

(3.26b)

Proof. See Appendix (Section 3.4).

3.1.5 Safety assessment

A τ -recurrent set S outside of the known unsafe region does not immediately imply

safety, as is the case with an invariant one. To practically employ the notion of

recurrence for ensuring safety, the following result is pivotal: it demonstrates that

a τ -recurrent set, along with the states visited by the finite-time trajectories starting

from it, i.e., the finite-time reachable set, constitute an invariant set. Consequently,
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this process certifies an invariant set in a manner akin to classical methodologies,

which can be used to verify safety.

Theorem 3.12. Consider a closed set S that is τ -recurrent. Then the finite time reachable

set

Rτ (S) :=
⋃︂

x∈S,t∈[0,τ ]

ϕ(t, x) (3.27)

is invariant.

Proof. See Appendix (Section 3.4).

We have identified sufficient conditions that guarantee a super-level set of a

recurrent-based barrier function is τ -recurrent, which in turn implies its bounded-

time reachable set with bound τ is invariant.

Now, one needs to additionally make sure its τ -seconds reachable set, defined

in (3.27), does not intersect with the known unsafe. However, characterizing such a

finite-time reachable set is non-trivial, as it may require adaptations to accommodate

the distinct trajectories of usually undecidable nonlinear systems.

Yet, under mild conditions, trajectories originating from a τ -recurrent set S are

restricted from straying too far from S, as they can only leave S for at most τ -seconds.

Consequently, it is possible to over-approximate the τ -seconds reachable set and

effectively certify safety if the resulting over-approximation does not intersect the

unsafe set.

Therefore, we provide the following lemma that bounds how far the τ -recurrent

trajectories can stray from the recurrent set in τ seconds. The lemma is an extension

of Lemma 1 in [2].

Lemma 3.4 (Containment Lemma). Let S ⊆ D be a closed set that is τ -recurrent and

define:

c1 = F (Rτ (S))τ, c2 = F (∂S)τeL(Rτ (S))τ ,

c = min{c1, c2}. (3.28)
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Then, starting from any x ∈ S, the trajectory satisfies:

sd(ϕ(t, x), S) ≤ c, ∀t ≥ 0. (3.29)

Proof. See Appendix (Section 3.4).

Note that Lemma 3.4 provides necessary regularity conditions for trajectories

starting of a τ -recurrent set h≥0. Building on this foundation, we present the follow-

ing theorem, which practically leverages the concept of τ -recurrence to characterize

a safe state-space region of the system.

Theorem 3.13. Consider a continuous function h : D → R and a set Xu of unsafe states.

If the super-level set h≥0 is τ -recurrent and {h≥0 + Bc} ∩ Xu = ∅, where the ’+’ stands for

the Minkovski sum, Bc is a closed ball of radius r around the origin, and the constant c is

defined in (3.28), then h≥0 is a safe state space region.

Proof. Given the closed τ -recurrent set h≥0, note first that Theorem 3.12 implies its

τ -seconds reachable set Rτ (h≥0) is invariant. Then, Lemmma 3.4 further ensures the

invariant set Rτ (h≥0) ⊆ {h≥0 + Bc} since trajecties starting from h≥0 cannot depart

from it more then c. Finally, we have

ϕ(t, x) ∈ Rτ (h≥0) ⊆ {h≥0 + Bc},

for all x ∈ h≥0 and t ≥ 0. This, together with the fact that {h≥0 + Bc} ∩ Xu = ∅,

further implies ϕ(t, x) ̸∈ Xu. Therefore, result follows.

3.2 Learning a local safe region

In pursuit of providing practical data-driven methods to delineate the safe state

space region, we have developed recurrent conditions that are computationally

more tractable to characterize. However, like the differential and integral conditions,

these recurrent conditions must be satisfied within a domain D0 := h≥−c for some
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c ≥ 0. In practice, such a super-level set of h is often unbounded, rendering it

impractical to sample sufficiently.

Therefore, in the remainder of this chapter, we adopt the following practical

safety objective, which is commonly employed in the literature, see, e.g., [67].

Definition 3.6 (Local Safety). Let X ⊆ D be a region of interest and Xu ⊆ X be a set of

unsafe states within the region of interest. Then, a trajectory ϕ(t, x) of (2.1) is locally unsafe

if there exists a time T ≥ 0 such that ϕ(T, x) ∩ Xu ̸= ∅ and ϕ(t, x) ∈ X for all t ∈ [0, T ].

We say that a set Xs ⊆ S is a local safe state space region if there are no local unsafe

trajectories starting from Xs.

Note that this local safety requirement prevents trajectories starting in Xs from

entering Xu without leaving X first. According to Definition 3.1, if X is an invariant

set, then local safety is equivalent to safety. However, if X is not invariant, the safety

criteria are not enforced once trajectories depart from X .

From Section 3.2.1 through Section 3.2.4, we adapt the foundational results

introduced in Section 3.1 into this practical safety objective. Then, in Section 3.2.5,

we demonstrate the method for certifying the recurrent barrier function and other

safety requirements for a local neighborhood around a point x, utilizing only one

finite-length trajectory that originates from x.

3.2.1 The local differential and integral barrier conditions

We note that by altering the domain within which the differential and integral barrier

conditions must be satisfied, the corresponding localized barrier functions can

similarly certify these local safety requirements. Furthermore, starting from a point

inside X , the bounds on the convergence rates of the function value h(ϕ(t, x)) remain

valid until trajectories exit X . In the following two theorems, we introduce the

localized versions of the Exponential Barrier Function and the Integral Exponential
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Barrier Function as examples.

Theorem 3.14 (Local EBF). Consider a differentiable function h : D ⊂ Rn → R, and

parameters α, β > 0. Assume that for all x ∈ X :

Lfh(x) ≥ −(β[h(x)]− + α[h(x)]+).

Then,

(i) we call h a Local Exponential Barrier Function (LEBF),

(ii) the set h≥0 ∩ X is locally safe if h(x) < 0,∀x ∈ Xu,

(iii) whenever x∈h<0 ∩ X , then as long as there exists a T > 0 such that h(ϕ(T, x))<0

and ϕ(t, x) ∈ X , ∀t ∈ [0, T ], h(ϕ(t, x)) must monotonically increase for all t ∈ [0, T ],

at least, with a positive linear rate of −βh(ϕ(t, x)), which implies,

h(ϕ(t, x))≥e−βth(x),

for all x ∈ h<0 ∩ X , t ∈ [0, T ], and all T ≥ 0 such that ϕ(t, x) ∈ X ,∀t ∈ [0, T ],

and

(iv) whenever x∈h>0∩X and there exists a T > 0 such that ϕ(t, x) ∈ X , ∀t ∈ [0, T ], then

h(ϕ(t, x)) may decrease to zero, at most, with a negative linear rate of −αh(ϕ(t, x)),

which implies,

h(ϕ(t, x)) ≥ e−αth(x),

for all x ∈ h>0 ∩ X , t ∈ [0, T ], and all T ≥ 0 such that ϕ(t, x) ∈ X ,∀t ∈ [0, T ].

Theorem 3.15 (Local IEBF). Consider a continuous function h : D ⊂ Rn → R and

parameters α, β > 0. If:

h(ϕ(t, x)) ≥ e−βt[h(x)]−+e−αt[h(x)]+,
(3.30)

for all x ∈ X , t ∈ [0, T ], and all T ≥ 0 such that ϕ(t, x) ∈ X , ∀t ∈ [0, T ], then:
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(i) we call h a Local Integral Exponential Barrier Function (LIEBF),

(ii) the set h≥0 ∩ X is locally safe if h(x) < 0,∀x ∈ Xu, and

(iii) the conditions (iii)-(iv) in Theorem 3.14 are satisfied.

3.2.2 The local recurrent barrier condition

To further generalize the localized version of the IEBF into the recurrent form, we

again focus only on the trajectory prior to its exit from X . This requires us to first

introduce this localized version of τ -recurrent sets.

Definition 1 (Locally τ -Recurrent Sets).

A set S ⊆ X is locally τ -recurrent w.r.t. X , if for any x ∈ S, and any T ≥ 0 such that

ϕ(t, x) ∈ X ,∀t ∈ [0, T + τ ],

∃ t′ > T, with t′ − T ∈ (0, τ ] s.t. ϕ(t′, x) ∈ S.

Recall from Definition 2.5 that a τ -recurrent set ensures solutions starting in this

set will visit it back within τ seconds, infinitely often. However, in this localized

version of τ -recurrent, the requirement is only applicable before trajectories exit

X . Leveraging the same idea, we now introduce the localized version of the REBF

defined in Definition 3.4.

Definition 2 (Local REBF). A continuous function h : D ⊂ Rn → R is a Local Recurrent

Exponential Barrier Function (LREBF) if there exist parameters α, β > 0, such that

max
t∈(0,τ ]

eβt[h(ϕ(t, x))]−+eαt[h(ϕ(t, x))]+ ≥ h(x), (3.31)

for all x ∈ Xτ := {x ∈ X |ϕ(t, x) ∈ X ,∀t ∈ [0, τ ]}.

Lemma 3.5. Consider a Local Recurrent Exponential Barrier Function h defined over Xτ

with parameters α, β > 0. Then, for each x ∈ Xτ and for all T ≥ 0 such that ϕ(t, x) ∈ X ,
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∀t ∈ [0, T + τ ], there exists a sequence of times {tn}n∈{0,...,N}, with t0 = 0,

tn+1=max{argmax
t∈(tn,tn+τ ]

eβt[h(ϕ(t, x))]−+eαt[h(ϕ(t, x))]+},

tN >T , and tn+1−tn ∈ (0, τ ], ∀n∈{0, . . . , N−1}, (3.32)

such that for each state xn := ϕ(tn, x), we have

h(xn+1)≥e−β∆tn [h(xn)]−+ e−α∆tn [h(xn)]+ , (3.33)

for all n ∈ {0, . . . , N−1}, with ∆tn := tn+1 − tn.

Proof. See Appendix (Section 3.4).

Theorem 3.16. Consider a Local Recurrent Exponential Barrier Function h defined over

Xτ with parameters α, β > 0 and let xn := ϕ(tn, x) be the states along the sequence of times

{tn}n∈{0,...,N} specified in Lemma 3.5. Then,

(i) the set h≥0 ∩ Xτ is locally τ -recurrent w.r.t. X ,

(ii) whenever x∈h<0 ∩ Xτ , then if h(xn) < 0 and ϕ(t, x) ∈ X , ∀t ∈ [0, tn + τ ], h(xn+1)

must be larger than h(xn), at least, by a positive step size of δn = (e−β∆tn − 1)h(xn)

, which implies that

h(xn) ≥ h(x)e−βtn , (3.34)

for all x ∈ h<0 ∩ Xτ , n ∈ {0, . . . , N},

and

(iii) whenever x ∈ h>0 ∩ Xτ and ϕ(t, x) ∈ X , ∀t ∈ [0, tn + τ ], then h(xn+1) must be

larger than zero but may smaller than h(xn), at most, by a negative step size of

δn=(e−β∆tn−1)h(xn), which implies that

h(xn) ≥ h(x)e−αtn , (3.35)

for all x ∈ h≥0 ∩ Xτ , n ∈ {0, . . . , N}.

Proof. See Appendix (Section 3.4).
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3.2.3 The generality of local the recurrent condition

In this subsection, we will again demonstrate that a simple signed distance function

can satisfy our local recurrence exponential barrier conditions. Similar to the

arguments made in Section 3.1.4, we will assume there exists a Local Integral

Exponential Barrier Function h satisfying the following regularity constraints.

Given a set S satisfies S ∩ X ̸= ∅ and an arbitrary norm (denoted by ∥ · ∥), we

define the constrained signed distance:

sd|X (x, S) :=

{︄
infy∈∂S∩intX ∥y − x∥ if x ̸∈ S

− infy∈∂S∩intX ∥y − x∥ if x ∈ S.

Definition 3.7. Let h : D ⊂ Rn → R be continuous. If ∃α1, α2 > 0 such that

(h(x)− α1sd|X (x, h≤0))(h(x)− α2sd|X (x, h≤0)) ≤ 0, (3.36)

for all x ∈ X , we say that h is locally sector-contained.

Given parameters α2 ≥ α1 > 0, (3.36) is satisfied if and only if for all x ∈ D:

α2sd|X (x, h≤0) ≥ h(x) ≥ α1sd|X (x, h≤0) ≥ 0 ifh(x) ≥ 0,

0 ≥ α1sd|X (x, h≤0) ≥ h(x) ≥ α2sd|X (x, h≤0) ifh(x) < 0.

(3.37)
(3.38)

We then use the following theorem to demonstrate the generality of our recurrent

condition. Precisely, if there exists a locally sector-contained LIEBF h, then the

constrained signed distance to the zero sub-level set of h is an LREBF.

Theorem 3.17. Let h be a Local Integral Exponential Barrier Function defined over X with

exponential rates α and β. Then, if h is locally sector-contained with parameters α1 and

α2, the function ĥ(·) = sd|X (·, h≤0) is a Local Recurrent Exponential Barrier Function, i.e.,

the following conditions hold:

max
t∈(0,τ̂ ]

eβ̂t[ĥ(ϕ(t, x))]− + eα̂t[ĥ(ϕ(t, x)]+ ≥ ĥ(x) , (3.39)

for all x ∈ Xτ̂ with any α̂, β̂, τ̂ > 0 satisfying α̂ > α, β̂ < β, and

τ̂ ≥ max{ log(α2/α1)

α̂− α
,
log(α2/α1)

β − β̂
}. (3.40)
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Proof. See Appendix (Section 3.4).

Again, the LREBF described in Theorem 3.17 necessitates the knowledge of the

sub-level set h≤0 of the presumed LIEBF. Conversely, the following theorem lessens

this dependence. It specifies that knowledge of any set that contains the intersection

h≥0∩X is sufficient to establish a constrained signed distance that fulfills the LREBF

conditions.

Theorem 3.18. Let h be a Local Integral Exponential Barrier Function defined over X with

exponential rates α and β. If h is locally sector-contained with parameters α1 and α2, then,

for any closed set S satisfying h≥0 ∩ X ⊂ S and ∂S ∩ h=0 = ∅, the function

ĥ(x) := −sd|X (x, S)

is a Local Recurrent Exponential Barrier function, i.e., the following conditions hold:

max
t∈(0,τ̂ ]

{eβ̂t[ĥ(ϕ(t, x))]− + eα̂t[ĥ(ϕ(t, x))]+} ≥ ĥ(x) (3.41)

for all x ∈ Xτ̂ and any α̂, β̂, τ̂ > 0 satisfying α̂ > α, β̂ < β, β̂ ≤ α̂, and

τ̂ ≥ max{ log(α2/α1)

α̂− α
,
log(α2/α1)

β − β̂
}+ log(δ̄/δ)

min{α̂, β̂}
,

with

δ̄ := sup
x∈X

(sd|X (x, h≥0)− sd|X (x, S)),

δ := inf
x∈X

(sd|X (x, h≥0)− sd|X (x, S)).

(3.42a)

(3.42b)

Proof. See Appendix (Section 3.4).

3.2.4 Local safety assessment

Similar to the arguments made Section 3.1.5, a locally τ -recurrent set S w.r.t. X

satisfying S ∩ Xu = ∅ does not immediately imply local safety. To assess local safety

within X , we will utilize a backward finite time reachable set, rather than relying on

the invariance of the finite time reachable set Rτ (S). This approach will be detailed

in the following theorem.
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Theorem 3.19. Let S ⊆ X be a closed locally τ -recurrent set S w.r.t. X and define the

finite time backward reachable set of Xu as:

R−1
τ (Xu) := {x ∈ X | ∃ t ∈ [0, τ ] s.t.ϕ(t, x) ∈ Xu} ⊇ Xu.

Then S is locally safe whenever S ∩R−1
τ (Xu) = ∅.

Proof. Suppose S ⊆ X is not locally safe, there is then an initial state x ∈ S and a

time T ≥ 0 such that ϕ(T, x) ∈ Xu and ϕ(t, x) ∈ X for all t ∈ [0, T ]. Since S ∩Xu = ∅,

the unsafe point ϕ(T, x) ̸∈ S. We therefore use T ′ to denote the the trajectory ϕ(t, x)

stays within the closed set S before T , i.e.,

x′ := ϕ(T ′, x) ∈ S and ϕ(t, x) ̸∈ S, ∀t ∈ (T ′, T ].

Additionally, since S∩R−1
τ (Xu) = ∅, T ′−T must be great then τ . Therefore, starting

from x′ ∈ S, we have ϕ(t, x′) ∈ X and ϕ(t, x′) ̸∈ S for all t ∈ (0, T ], which contradicts

with the assumption that S is locally τ -recurrent.

3.2.5 Sampling-based safety verification

To leverage Theorem 3.16 for ensuring that a set is locally τ -recurrent within X ,

we need a LREBF h that satisfies condition (3.31) within Xτ . Subsequently, Theo-

rem 3.19 shows that when h≥0 ∩R−1
τ (Xu) = ∅, local safety is guaranteed. Therefore,

applying these theorems generally involves four steps, characterizing Xτ , defining

h, verifying condition (3.31) within Xτ , and verifying that h≥0 ∩ R−1
τ (Xu) = ∅. It

should be noted, however, that numerically testing these conditions is impossible,

as they require testing an uncountable set of states. Instead, we will seek to check

whether a point x satisfies a set of stricter conditions, which allows certifying its

neighborhood. of x.

In this section, we discuss how to certify such a neighborhood: a ball Br(x)

centered at x ∈ X with radius r > 0. This consists of verifying the set inclusion
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relationships of Br(x) w.r.t. Xτ and R−1
τ (Xu), and then verifying condition (3.31)

within Xτ . We will only need the trajectory originating from x to check these

conditions.

We will use L := L(D) to denote the local Lipschitz constant over D in the

subsequent lemma and corollary to bound the differences in signed distances

between points that are sufficiently close to each other.

Lemma 3.6. Consider two points x and y. If the distance between x and y is bounded by r,

i.e., ∥x− y∥ ≤ r, then the signed distances from points x, y to a set S satisfies:

sd(y, S) ≥ sd(x, S)− r. (3.43)

Proof. See Appendix (Section 3.4).

Corollary 3.1. Starting from any two points x, y such that ∥x − y∥ ≤ r, the trajectory

satisfies:

sd(ϕ(t, y), S) ≥ sd(ϕ(t, x), S)− reLt, ∀t ≥ 0.

Proof. Since the vector field is locally one-sided Lipschitz, Theorem 3.9 in [64]

implies that

∥ϕ(t, x)− ϕ(t, y)∥ ≤ eLt∥x− y∥ ≤ reLt, ∀t ≥ 0. (3.44)

Therefore, the result follows from Lemma 3.6.

By applying Corollary 3.1, one can verify whether Br(x) is a subset of, or inter-

sects with, R−1
τ (Xu), using only the trajectory originating from x.

Theorem 3.20. Consider an initial state x ∈ X , then

(i) if x satisfies

sd(ϕ(t, x),Xu) > reLt, ∀t ∈ [0, τ ], (3.45)

for some r > 0, then Br(x) ∩R−1
τ (Xu) = ∅.
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(ii) Conversely, if x satisfies

∃ t ∈ [0, τ ] s.t. sd(ϕ(t, x),Xu) < −reLt, (3.46)

for some r > 0, then Br(x) ⊆ R−1
τ (Xu).

Proof. See Appendix (Section 3.4).

Similarly, one can verify that the trajectories starting from Br(x) remain inside,

or intersect with, Xτ , using the trajectory starting from x.

Theorem 3.21. Consider an initial state x ∈ X , then

(i) if x satisfies

∃ t ∈ [0, τ ] s.t. sd(ϕ(t, x),X ) > reLt, (3.47)

for some r > 0, then Br(x) ∩ Xτ = ∅.

(ii) Conversely, if x satisfies

sd(ϕ(t, x),X ) < −reLt, ∀t ∈ [0, τ ], (3.48)

for some r > 0, then Br(x) ⊆ Xτ .

Once ensured that Br(x) ⊆ Xτ and Br(x) ∩R−1
τ (Xu) = ∅, we proceed to define a

LREBF h(·) := −sd|X (·, S), as outlined in Theorem 3.18. Our next goal is to verify

that h satisfies condition (3.31) within Br(x). To this end, we will leverage the

following lemma that is analogous to Lemma 3.6 and Corollary 3.1.

Lemma 3.7. Consider a convex set X and two states x, y ∈ X . If the distance between x

and y is bounded by r, i.e., ∥x− y∥ ≤ r, then the constrained signed distances to a set S

from x and y satisfy:

sd|X (y, S) ≥ sd|X (x, S)− r. (3.49)

Additionally, if x, y ∈ Xτ , then the trajectories starting from them satisfy:

sd|X (ϕ(t, y), S) ≥ sd|X (ϕ(t, x), S)−reLt, ∀t ∈ [0, τ ]. (3.50)
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Proof. See Appendix (Section 3.4).

By applying Lemma 3.7, we finially verify whether h satisfies condition (3.31)

within Br(x), using only the trajectory originating from x.

Theorem 3.22. Given a closed set S, a convex region of interest X and let h(·) :=

−sd|X (·, S).

(i) Assume that there is a point x that satisfies

ĥ
−
r (t, x) := h(ϕ(t, x))−reLt

and

max
t∈(0,τ ]

eαt[ĥ
−
r (t, x)]++ eβt[ĥ

−
r (t, x)]− ≥ h(x)+r, (3.51)

for some r > 0. Then, for all y ∈ Br(x), the LREBF condition is satisfied, i.e.,

max
t∈(0,τ ]

eαt[h(ϕ(t, y))]++ eβt[h(ϕ(t, y))]−≥ h(y).

(ii) Assume that there is a point x that satisfies

ĥ
+

r (t, x) := h(ϕ(t, x))+reLt

and

max
t∈(0,τ ]

eαt[ĥ
+

r (t, x)]++ eβt[ĥ
+

r (t, x)]−< h(x)−r, (3.52)

for some r > 0. Then, for all y ∈ Br(x), the LREBF condition is not satisfied, i.e.,

max
t∈(0,τ ]

eαt[h(ϕ(t, y))]++ eβt[h(ϕ(t, y))]−< h(y).

Proof. See Appendix (Section 3.4).
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3.3 Numerical Methods

In this section, inspired by the Theorem 3.16,3.18, and 3.19 we will develop an

algorithm that, given region of interest X , characterize a region h≥0 ∩ Xτ that is

locally safe within X . The algorithm covers X with a grid G, where each grid cell

g ∈ G is represented as an infinity norm ball Br(x) centered at the grid cell center x,

aiming to utilize the highly parallelizable processing units to certify many points

simultaneously.

Precisely, in Section 3.3.1, we leverage the results in Section 3.2.5 to develop an

algorithm to verify the neighborhood of a point x, i.e., Br(x). Then, Section 3.3.2

proposes a parallelizable algorithm that allows us to learn the local safe region and

the safe boundary approaching rates α, β within the entire region X . Finally, an

example of characterizing the safety of a 2D system is provided in Section 3.3.3.

3.3.1 Algorithmic Verification of a Ball

In Algorithm 2, we describe the procedure for verifying a neighborhood Br(x) ⊆ X

around a given point x, assuming that a candidate LREBF function h and a specified

radius r > 0 are provided.

By leveraging conditions (3.45), (3.48), and (3.51) respectively, our goal is to

ascertain whether three critical objectives are met for every y ∈ Br. These objectives

include verifying that y ∈ Xτ , y ̸∈ R−1
τ (Xu), and confirming that the LREBF condi-

tion (3.31) is satisfied. If all these conditions are met, we will successfully verify the

safety of the ball and return true.

Conversely, we return false if we can confirm any of the following contrary

conditions: Br∩Xτ = ∅, Br ⊆ R−1
τ (Xu), or the LREBF condition (3.31) is not satisfied

by any y ∈ Br. These conditions are encoded in (3.46), (3.47), and (3.52). In instances

where a definitive conclusion cannot be reached regarding any of these conditions,
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we classify the result as unknown and seek to refine this neighborhood later in

Algorithm 4.

Algorithm 2: VerifyBall(g, τ , L, h)
Input Grid cell g = Br(x) ∈ G, τ > 0, L > 0
\\Verify Br(x) ⊆ Xτ by checking exceptions
if (3.47), i.e., Br(x) ∩ Xτ = ∅ then

return (False, Not in Xτ )
if not (3.48), i.e., Br(x) ̸⊆ Xτ then

return (Unknown, Xτ unknown)

\\Verify Br(x) ∩R−1
τ (Xu) = ∅ by checking exceptions

if (3.46), i.e., Br(x) ⊆ R−1
τ (Xu) then

return (False, Inside R−1
τ (Xu))

if not (3.45), i.e., Br(x) ∩R−1
τ (Xu) ̸= ∅ then

return (Unknown, R−1
τ (Xu) unknown)

\\Verify LREBF condition (3.31) by checking exceptions
if (3.52), i.e., verified h≥0 NOT recurrent then

return (False, Not recurrent)
if not (3.51), i.e., unable to verify recurrence then

return (Unknown, Recurrence unknown)

\\Definite success
return (True, Verified a ball)

3.3.2 Verification of a Region

Having developed an algorithm to verify a ball Br(x), c.f. Algorithm 2, we are

now ready to integrate it into an algorithm that can characterize a region S that

is locally safe w.r.t. X . Our algorithm divides G into G+ and G−, and defines

h(·) := −sd|X (·, G−). Consequently, all points x ∈ G+ (resp. G−) will have h(x) ≥ 0

(resp. h(x) < 0).

Splitting cells for more accurate verification

When Algorithm 2 returns ’Unknown.’, we will refine the local section of the grid

by splitting the ball Br(x) into 3d balls. We refer the reader to Algorithm 3 for details
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and to Figure 3-4 for an illustration for d = 2.

Algorithm 3: Splitting a Ball
Input Grid cell g = Br(x) ∈ G
(x1, ..., xn) = x
P = {(x), (x1 ± (2/3)r, ..., xn), ..., (x1, ..., xn ± (2/3)r)}
return Set of cells {B2r/3(p) | p ∈ P}

Figure 3-4. Splitting a Ball according to Algorithm 3

Algorithm Summary

The steps outlined above culminate in an algorithm that enables us to characterize

a region h≥0 ∩ Xτ as locally safe within X . This proposed algorithm, detailed in

Algorithm 4, utilizes parallel processing capabilities of GPUs to efficiently verify

multiple points simultaneously. In short, Algorithm 4 establishes an initial grid G

and proceeds to verify each cell g ∈ G.

In this process, it removes g from G in the case that ’Not in Xτ ,’ i.e., condition

(3.47) is satisfied. If a g ∈ G+ is ’Inside R−1
τ (Xu),’ or ’Not recurrent’, i.e., condition

(3.46) or (3.52), it moves g to G−. It then recursively splits the ’unknown’ grid cells

until each cell is either verified or reaches the minimal radius. To elaborate, cells

classified as ’Xτ unknown’ (resp. ’R−1
τ (Xu) unknown’, ’Recurrence unknown’) are

approximately reclassified as ’Inside Xτ ’ (resp. ’Inside R−1
τ (Xu)’, ’Not recurrent’) if

their radius is smaller than the minimal threshold. This approximation ensures the

robustness of the learning outcomes.
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Algorithm 4: Verification of a Region
Input L, ε > 0
G = Grid of balls (x, r) covering X
G− = {g ∈ G | g ⊆ Xu}, G+ = G\G−

while true do
(verified, info) = VerifyBall(G, τ , L)
Unknown_cells = G [verified == Unknown]

Remove G [info == ’Inside R−1
τ (Xu)’] from G+

Add G [info == ’Inside R−1
τ (Xu)’] to G−

\\Select small ’R−1
τ (Xu) unknown’ cells

Gε = G [info == ’R−1
τ (Xu) unknown’, r ≤ ε]

\\Treat them as ’Inside R−1
τ (Xu)’ cells

Remove Gε from G+; Add Gε to G−

Remove G [info == ’Not recurrent’] from G+

Add G [info == ’Not recurrent’] to G−

\\Select small ’Recurrence unknown’ cells
Gε = G [info == ’Recurrence unknown’, r ≤ ε]
\\Treat them as ’Not recurrent’ cells
Remove Gε from G+; Add Gε to G−

Remove G [info == ’False Xτ ’] from G,G+, G−

\\Select small ’Xτ unknown’ cells
Gε = G [info == ’Xτ unknown’, r ≤ ε]
\\Treat them as ’Inside Xτ ’ cells
Remove Gε from Unknown_cells

if Unknown_cells is empty then
return True

Remove Unknown_cells[r > ε] from G
Add Split(Unknown_cells[r > ε]) to G
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Convergence rates bounds

Recall that α and β represent the upper and lower bounds on the boundary-

approaching rates from the sets h≥0 and h<0, respectively, serving as measures

of safety levels. Therefore, in verifying the LREBF condition, we seek to identify the

smallest possible α > 0 and the largest possible β > 0 such that the condition (3.51)

is satisfied for each grid cell g in G+ and G−, respectively. Therefore, we define

α(g) = inf{α > 0 | Cell-wise condition 3.51 is true}
β(g) = sup{β> 0 | Cell-wise condition 3.51 is true}.

It is important to note that the left-hand side of (3.51) is monotonically increasing

as α increases for grid cells in G+ (resp. decreasing as β decreases for grid cells in

G−). Therefore, employing a simple line search algorithm allows for the optimal

determination of α or β for each cell.

Algorithm 5: Find best α, β for all cells
Input L, ε, δe > 0; max_err ∈ (0, 1)
G = Grid of balls (x, r) covering X
G+, G−

for each g in G+ with r > ε do
err(g) = (α(g)− α(g))/α(g)
if err(g) > max_err or α(g) > α(g) + δe then

Remove g from G+; Add Split(g) to G+

for each g in G− with r > ε do
err(g) = (β̄(g)− β(g))/β̄(g)
if err(g) > max_err or β(g) < 0 then

Remove g from G−; Add Split(g) to G−

Find the best α, β

In addition to finding α, β such that the cell-wise LREBF condition (3.51) is satisfied,

we can also determine the optimal bounds, α and β̄, specifically for the point x by

applying the original LREBF condition (3.31). Therefore, we further define

α(g) = inf{α > 0 | Point-wise condition (3.31) is true}
β̄(g) = sup{β> 0 | Point-wise condition (3.31) is true}.
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Algorithm 6: Find best α, β for the region
Input L, ε > 0; max_err ∈ (0, 1)
G = Grid of balls (x, r) covering X
G+, G−

while true do
worst-α = max{α(g) | g ∈ G+}
worst-α = max{α(g) | g ∈ G+}
err = (worst-α− worst-α)/worst-α
G′ := k cells in G+ with largest α
r0 := radius of the cell with largest α
if err > max_err and r0 > ε then

Remove each g ∈ G′ from G+;
Add each Split(g), g ∈ G′ to G+

else
break

while true do
worst-β = min{β(g) | g ∈ G−}
worst-β̄ = min{β̄(g) | g ∈ G−}
worst_err = (worst-β̄ − worst-β)/worst-β̄
G′ := k cells in G+ with smallest β
r0 := radius of the cell with smallest β
if err > max_err and r0 ≥ ε then

Remove each g ∈ G′ from G+;
Add each Split(g), g ∈ G′ to G+

else
Success
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It is important to note that, by definition, β̄ ≥ β and α ≤ α, with both α → α

and β → β̄ as the radius r → 0. This convergence behavior motivates a further

subdivision of the ball Br(x) to refine our grid. This refined grid allows for a more

precise determination of α or β, enhancing the granularity and accuracy of our

safety analysis. To algorithmically achieve this refinement and optimization, we

introduce Algorithms 5 and 6. Algorithm 5 is designed to determine the optimal α

and β for each individual cell, ensuring localized precision. Conversely, Algorithm

6 targets the identification of the region-wise optimal α and β.

3.3.3 Characterizing safety of a 2D system

We end this section by providing a preliminary validation of the proposed algorithm.

To investigate the efficiency of our proposed method, we consider the following

system: [︃
ẋ1

ẋ2

]︃
=

[︃
x2

−x1 +
1
3
x3
1 − x2

]︃
. (3.53)

We fix the set of unsafe states to be Xu = {x ∈ R2 | (x1 + 1)2 + (x2 + 1)2 ≤

0.16}. We seek to characterize a local safe region within the region of interest

X := [−3.5, 3.5]× [−3.5, 3.5]. In our experiments, we use a 7× 7 initial grid to cover

X and simulate the trajectory for a finite length τ = 0.6s.

The outcome of Algorithm 4 as well as sample trajectories for the system (3.53)

can be seen in Figure 3-5. Specifically, the set of unsafe states is visually demarcated

in red within the figure, clearly indicating areas that must be avoided. The union

of grid cells marked in green, referred to as G+, illustrates our algorithmically

determined local safe region.

Figure 3-6 displays the verified boundary-approaching rates for trajectories

originating from both the safe (Xτ ∩ h≥0) and the unsafe (Xτ ∩ h<0) regions as they

approach the local safety boundary defined by h=0 ∩ intX . In the upper panel of

Figure 3-6, the intensity of the green color is used to indicate the level of safety for
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Figure 3-5. The learning outcome of Algorithm 4. Unsafe regions are highlighted in
red. The green cells, collectively forming G+, represent the areas identified as safe
through our experiment.
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different cells within the local safe region Xτ ∩ h≥0. Darker green signifies a higher

safety level, attributed to a smaller required α for satisfying the cell-wise condition

(3.51). This implies a stricter (smaller) upper bound on the boundary-approaching

rates can be posed on trajectories starting from this safe cell. Conversely, lighter

green cells demonstrate larger α, indicating that trajectories from these cells may

approach the boundary more rapidly.

Similarly, in the lower panel of Figure 3-6, the safety levels within the region

Xτ ∩ h<0 are represented by shades of brown. Here, darker brown denotes a higher

safety level, i.e., the cells satisfy condition (3.51) with a larger β. This indicates that

trajectories from these cells approach the boundary, i.e., return back to the safe set,

at a faster rate, allowing for a stricter (larger) upper bound on these rates. Lighter

brown, however, points to a lower safety level with a smaller β, signifying that

some trajectories may approach the boundary more slowly.

Note that in both panels of Figure 3-6, cells with a larger radius generally exhibit

a lower safety level. This trend arises because verifying tighter bounds on the

boundary-approaching rates becomes more challenging as the cell size increases.

This issue is particularly pronounced in the region of Xτ ∩ h<0, where some cells

even record a β ≤ 0. Such values suggest that trajectories originating from these

cells may not be approaching the safe boundary as expected, indicating potential

safety concerns. To address this, we consider the application of Algorithm 5 or 6.

These algorithms aim to optimize the grid structure and accurately determine the

best α and β values for each cell, thereby enhancing reliability and precision.

In the rest of our experiments, we set the max_err = 30%, and we stop splitting

if the radius is smaller than ε = 0.01. The outcomes of Algorithms 5 and 6 are

presented in Figures 3-7 and 3-8, respectively, showcasing their distinct approaches

and effectiveness in approximating the boundary-approaching rates. Figure 3-7

highlights the high precision resolution achieved by Algorithm 5, which diligently
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Figure 3-6. The verified boundary-approaching rates for trajectories originating
from both the safe (Xτ ∩ h≥ 0) and the unsafe (Xτ ∩ h< 0) regions as they approach
the local safety boundary defined by h=0 ∩ intX . In the upper panel, darker green
signifies a higher safety level. While in the lower panel, darker brown denotes a
higher safety level.
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minimizes the error err(g) for all cells g within the grid G. This results in a detailed

and finely-tuned safety analysis across the entire region. Conversely, Algorithm 6,

depicted in Figure 3-8, optimizes a singular error value, err, leading to fewer

cell divisions while still ensuring the worst-case boundary-approaching rates are

maintained, indicated by the strategic placement of red boxes to denote critical

areas. The comparative efficiency of these two methodologies is further explored in

Figure 3-9, which provides a clear visual comparison of their operational efficiency.

Figure 3-7. This figure displays the detailed outcomes of Algorithm 5, showcasing its
high precision resolution. The algorithm focuses on reducing the error measurement
err(g) for each cell g in grid G, resulting in a finer resolution of safety assessments
across the grid.

83



Figure 3-8. Depicted here are the results of Algorithm 6, which aims to reduce a
single error value, err, across the entire grid. The red boxes highlight the cells that
give the worst α and β.

Figure 3-9. This figure provides a comparative analysis of the efficiency between
Algorithm 5 and Algorithm 6, illustrating the trade-offs between grid resolution and
computational simplicity.
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3.4 Appendix

Proof of Lemma 3.1

Proof. Rearranging condition (3.4) gives:

g(x) := Lfh(x)− (−α)h(x) ≥ 0, ∀x ∈ D0

We then have the following differential equation:

dh(ϕ(t, x))

dt
= Lfh(ϕ(t, x))

= g(ϕ(t, x)) + (−α)h(ϕ(t, x)) (3.54)

Solving (3.54) gives:

h(ϕ(t, x)) = e−αt(

∫︂ t

0

g(ϕ(s, x))eαsds+ h(x)). (3.55)

Note that condition (3.4) ensures h≥0 is invariant and the function value h(ϕ(t, x))

is strictly increasing along the trajectory starting from x ∈ h<0 ∩D0. Therefore, D0

is also an invariant set, and thus∫︂ t

0

g(ϕ(s, x))ds ≥ 0, ∀t ≥ 0, x ∈ D0. (3.56)

By applying (3.56) to (3.55), one can conclude that:

h(ϕ(t, x)) ≥ e−αth(x), ∀t ≥ 0, x ∈ D0,

and the result follows.

Proof of Theorem 3.3

Proof. (i): Starting from any initial state x ∈ h=0, condition (3.5) requires Lfh(x) ≥ 0,

i.e., condition (3.2). According to Theorem 3.1, this guarantees the invariance of the

super-level set h≥0.
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(ii): As demonstrated in the proof of Lemma 3.1, the following two conditions

hold for all x ∈ D0 ∩ h<0:

g(x) = Lfh(x)− (−β)h(x) ≥ 0,

h(ϕ(t, x)) = e−βt(

∫︂ t

0

g(ϕ(s, x))eβsds+ h(x)). (3.57)

Note that the super-level set h≥0 is invariant, and the function value h(ϕ(t, x))

increases strictly along the trajectory starting from any x ∈ D0 ∩ h<0. Hence, D0 is

an invariant set.

Now, starting from x ∈ h<0 ∩D0, if there is a time t′ with h(ϕ(t′, x)) ≥ 0, then

condition (3.6) is automatically satisfied for any time t ≥ t′. Thus, w.l.o.g. we

concentrate on the scenario where h(ϕ(t, x)) < 0 for all t ≥ 0. In this case, ϕ(t, x)

remains within D0 ∩ h<0, and consequently:∫︂ t

0

g(ϕ(s, x))ds ≥ 0, ∀t ≥ 0. (3.58)

By applying (3.58) to (3.57), we successfully verify (3.7).

(iii): This result is trivially obtained by applying Lemma 3.1 with D0 = h≥0.

Proof of Theorem 3.4

Proof. (=⇒): This direction follows directly from the definition of the invariant set.

Precisely, the super-level set h≥0 being invariant implies:

ϕ(t, x) ∈ h≥0 =⇒ h(ϕ(t, x)) ≥ 0,

for all t ≥ 0 and x ∈ h≥0.

(⇐=): Suppose h≥0 is not invariant. Then there must exist an initial state x ∈ h≥0

and a time instant t∗ ≥ 0, such that ϕ(t∗, x) ̸∈ h≥0. We then use t′ to denote the last

time the trajectory ϕ(t, x) stays within the closed set h≥0 before t∗, i.e.,

x′ := ϕ(t′, x) ∈ h=0 and h(ϕ(t, x)) < 0, ∀t ∈ (t′, t∗].
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This contradicts condition (3.8), which requires h(ϕ(t, x′)) to always remain non-

negative when starting from h(x′) = h(ϕ(t′, x)) = 0. Therefore, the result follows.

Proof of Theorem 3.5

Proof. (i): Suppose h≥0 is not invariant. As stated in the proof of Theorem 3.4, there

exists a t ≥ 0 and x ∈ h=0 such that:

h(ϕ(s, x)) < 0, ∀s ∈ (0, t].

However, condition (3.9) requires that h(ϕ(t, x)) ≥ h(x)−
∫︁ t

0
ζ(h(ϕ(s, x)))ds, and the

right-hand side would be non-negative in this case. This is a contradiction.

(ii): We first evaluate the following Taylor expansion for t around 0:∫︂ t

0

ζ(h(ϕ(s, x)))ds = 0 + ζ(h(ϕ(0, x)))t+ o(t).

This, together with condition (3.9), implies the following bound on the convergence

rate expressed in the form of the lower-right Dini derivative [69]:

D+h(x) := lim inf
t→0

h(ϕ(t, x))− h(x)

t

≥ lim inf
t→0

−
∫︁ t

0
ζ(h(ϕ(s, x)))ds

t

= lim inf
t→0

0− ζ(h(ϕ(0, x)))t− o(t)

t
=− ζ(h(x)), ∀x ∈ D0.

Proof of Theorem 3.6

Proof. (i): Suppose h≥0 is not invariant. As stated in the proof of Theorem 3.4, there

exists a t ≥ 0 and x ∈ h=0 such that:

h(ϕ(s, x)) < 0, ∀s ∈ (0, t].
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This contradicts condition (3.10), which requires the function value h(ϕ(t, x)) ≥

h(x)e−αt = 0 for all t ≥ 0. Therefore, the result follows.

(ii): This part follows trivially given condition (3.10).

Proof of Theorem 3.7

Proof. (=⇒): This direction follows directly from the definition of a τ -recurrent set.

Precisely, the super-level set h≥0 being τ -recurrent implies that for all x ∈ h≥0,

∃t′ ∈ (0, τ ] s.t. ϕ(t′, x) ∈ h≥0 =⇒ max
t∈(0,τ ]

h(ϕ(t, x)) ≥ 0.

(⇐=): Suppose the closed set h≥0 is not τ -recurrent. There must exist an initial

state x ∈ h=0 such that ϕ(t, x) ̸∈ h≥0 for all t ∈ (0, τ ]. In this case, h(ϕ(t, x)) <

h(x) = 0 for all t ∈ (0, τ ], which contradict with condition (3.11). Therefore, h≥0 is

τ -recurrent.

Proof of Lemma 3.2

Proof. Given x ∈ D0, we build the time sequence {tn}n∈N satisfying (3.13) and (3.14),

following an inductive method similar to that detailed in our previous work [1,

Lem 1].

[Base case]: For the base case, we have t0 = 0, x0 = x ∈ D0, and define t1 as

follows:

t1 = max{argmax
t∈(0,τ ]

{h(ϕ(t, x0)) +

∫︂ t

0

ζ(h(ϕ(s, x0)))ds}}; (3.59)

note that the second maximum exists by condition (3.12), and is no smaller than

h(x0); if there are multiple maximizing times, t1 is defined as the largest. By

construction, t1 − t0 ∈ (0, τ ], and the function h evaluated at x1 := ϕ(t1, x0) satisfies:

h(x1) ≥ h(x0)−
∫︂ t1

0

ζ(h(ϕ(s, x0)))ds = h(x0) + δ0,

thus confirming (3.14) with the left argument on the max of the right-hand side.
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To prove the right argument on the max of equation (3.14), one need to first

show that:

h(xn+1)

{︃
> h(xn) if xn ∈ h<0 ∩D0

≥ 0 if xn ∈ h≥0,

(3.60a)
(3.60b)

Let us first consider the case x0 ∈ h<0 ∩ D0. If h(x1) ≥ 0, then (3.60a) follows

trivially. If h(x1) < 0, we argue that h(ϕ(t, x0)) < 0 and ζ(h(ϕ(t, x0))) < 0 for all

t ∈ [0, t1]; otherwise, t1 would not maximize (3.59). Hence, δ0 > 0, and we verified

h(x1) ≥ h(x0) + δ0 > h(x0), thereby satisfying (3.60a).

In the other case that x0 ∈ h≥0, we demonstrate that h(x1) ≥ 0 by contradiction.

Suppose h(x0) ≥ 0 and h(x1) < 0, we use t′ to denote the last time the trajectory

ϕ(t, x0) stays within the closed set h≥0 before t1, i.e.,

x′ := ϕ(t′, x0) ∈ h=0 and h(ϕ(t, x0)) < 0, ∀t ∈ (t′, t1].

This contradicts with the fact that t1 is a maximizer of (3.59), since h(x′) = 0 > h(x1)

and
∫︁ t′

0
ζ(h(ϕ(s, x0)))ds >

∫︁ t1
0

ζ(h(ϕ(s, x0)))ds. Therefore, we have h(x1) ≥ 0, and

thus (3.60b) follows.

[Inductive step]: Note that condition (3.14) further implies x1 =ϕ(t1, x0) ∈ D0,

since h(x0) ≥ −c. Thus, the inductive construction proceeds in a similar manner:

given t1 < t2 < · · · tn, with xn := ϕ(tn, x) ∈ D0, define tn+1 − tn as:

max{argmax
t∈(0,τ ]

h(ϕ(t, xn)) +

∫︂ t

0

ζ(h(ϕ(s, xn)))ds}. (3.61)

Note that tn+1 − tn ∈ (0, τ ] as required. Also, similar to the base case,

xn+1 := ϕ(tn+1, x0) = ϕ(tn+1 − tn, xn)

satisfies the conditions in (3.14).

[Divergence of tn]: It remains to show that tn → ∞, which we argue by con-

tradiction. If, instead, the strictly increasing sequence of times was bounded, we
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would have tn ↑ t∗. Note that ϕ(t∗, x0) is well defined since the dynamical system

(2.1) is forward complete. Also, by the continuity of ϕ(·, x):

vn := h(ϕ(tn, x0)) +

∫︂ tn

0

ζ(h(ϕ(s, x0)))ds

→ v∗ := h(ϕ(t∗, x0)) +

∫︂ t∗

0

ζ(h(ϕ(s, x0)))ds.

Note that it follows from the first inequality of (3.14) that:

h(xn+1) ≥ h(xn) + δn

≥ h(xn)−
∫︂ tn+1−tn

0

ζ(h(ϕ(s, xn)))ds

= h(xn)−
∫︂ tn+1

tn

ζ(h(ϕ(s, x0)))ds

≥ h(xn)−
∫︂ tn+1

0

ζ(h(ϕ(s, x0)))ds+

∫︂ tn

0

ζ(h(ϕ(s, x0)))ds

=⇒ vn+1 ≥ vn, ∀n ∈ N.

Therefore, {vn} is non-decreasing, and we further conclude that v∗ ≥ vn for all

n ∈ N. Now pick n such that tn ≥ t∗ − τ . This means that s∗ := t∗ − tn ∈ (0, τ ]

is in the feasible set for the maximization in (3.61), which by definition gives as

maximum vn+1, achieved at tn+1 − tn.

Now, since v∗ = h(s∗, xn) +
∫︁ s∗

0
ζ(h(ϕ(s, xn)))ds ≥ vn+1, this means s∗ also quali-

fies as a maximizer, and in fact s∗ = t∗−tn > tn+1−tn. This contradicts the definition

of tn+1 − tn given in (3.61), because it would not be the largest maximizing time.

Thus, the sequence must be divergent, establishing the claim.

Proof of Theorem 3.8

Proof. (i): Suppose the closed set h≥0 is not τ -recurrent. Then, there exists an initial

condition x ∈ h=0 such that ϕ(t, x) ̸∈ h≥0 for all t ∈ (0, τ ]. In this case, h(ϕ(t, x)) < 0

and ζ(h(ϕ(t, x))) < 0 for all t ∈ (0, τ ]. Note that this contradicts condition (3.12),

which requires its left-hand side to be nonnegative starting from h(x) = 0. Therefore,

h≥0 is τ -recurrent.
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(ii): Starting from h(xn) < 0, if h(xn+1) ≥ 0, a positive step size h(xn+1)−h(xn) ≥

−h(xn) > 0 can be ensured automatically. Conversely, if h(xn+1) < 0, it follows

from Lemma 3.2 that h(xn+1) ≥ h(xn) + δn with δn > 0. Thus, a positive step size

h(xn+1)− h(xn) ≥ δn > 0 is also guaranteed.

(iii): Given h(xn) > 0, the inequality (3.14) requires:

h(xn+1) ≥ h(xn) + δn and h(xn+1) ≥ 0.

Then, by rearranging terms, one can conclude h(xn+1)− h(xn) ≥ max{δn,−h(xn)}.

Proof of Lemma 3.3

Proof. Given x0 = x ∈ D0, we build the time sequence {tn}n∈N satisfying (3.16) and

(3.17) again by induction.

[Base case]: For the base case, we have t0 = 0 and define t1 as follows:

t1 = max{argmax
t∈(0,τ ]

{eβt[h(ϕ(t, x0))]− + eαt[h(ϕ(t, x0))]+}}

note that the second maximum exists by condition (3.15), and is no smaller than

h(x0); if there are multiple maximizing times, t1 is defined as the largest. By

construction, t1 − t0 ∈ (0, τ ], and the function h evaluated at x1 := ϕ(t1, x0) satisfies:

eβt1 [h(x1)]− + eαt1 [h(x1)]+ ≥ h(x0).
(3.62)

Note that whenever h(x0) ≥ 0, (3.62) requires h(x1) ≥ 0 and thus

h(x1) ≥ e−αt1h(x0).

In the case that h(x0) < 0, we have:

h(x1) ≥ e−βt1h(x0).

91



Therefore, (3.17) follows. Finally, h(x0) ≥ −c and by (3.17) h(x1) > h(x0), we have

x1 = ϕ(t1, x0) ∈ D0, which finishes the proof of the base case of the induction.

[Inductive step]: The inductive step construction proceeds in a similar manner:

given t1 < t2 < · · · tn, with xk := ϕ(tk, x0) ∈ D0, 0 ≤ k ≤ n. Now, define tn+1 − tn as:

max{argmax
t∈(0,τ ]

{eβt[h(ϕ(t, xn))]− + eαt[h(ϕ(t, xn))]+}} (3.63)

Note that tn+1 − tn ∈ (0, τ ] as required. A similar proof to the base case then shows

that

xn+1 := ϕ(tn+1, x0) = ϕ(tn+1 − tn, xn) ∈ D0

and (3.17) is satisfied.

[Divergence of tn]: It remains to show that tn → ∞, which we argue by con-

tradiction. If, instead, the strictly increasing sequence of times was bounded, we

would have tn ↑ t∗. Note that ϕ(t∗, x0) is well defined since the dynamical system

(2.1) is forward complete. Also, by the continuity of ϕ(·, x):

vn := eβtn [h(ϕ(tn, x0))]− + eαtn [h(ϕ(tn, x0))]+

→ v∗ := eβt
∗
[h(ϕ(t∗, x0))]− + eαt

∗
[h(ϕ(t∗, x0))]+.

Note that it follows from (3.17) that:

eβtn+1 [h(ϕ(tn+1, x0))]− + eαtn+1 [h(ϕ(tn+1, x0))]+

≥eβtn [h(ϕ(tn, x0))]− + eαtn [h(ϕ(tn, x0))]+

=⇒ vn+1 ≥ vn, ∀n ∈ N.

Therefore, {vn} is non-decreasing, and we further conclude that v∗ ≥ vn for all

n ∈ N. Now pick n such that tn ≥ t∗ − τ . This means that s∗ := t∗ − tn ∈ (0, τ ]

is in the feasible set for the maximization in (3.63), which by definition gives as

maximum vn+1, achieved at tn+1 − tn.

Now, since

v∗ = eβs
∗
[h(ϕ(s∗, xn))]− + eαs

∗
[h(ϕ(s∗, xn))]+ ≥ vn+1,
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this means s∗ also qualifies as a maximizer, and in fact s∗ = t∗ − tn > tn+1 − tn.

This contradicts the definition of tn+1 − tn given in (3.63), since it would not be the

largest maximizing time. Thus, the sequence must be divergent, establishing the

claim.

Proof of Theorem 3.9

Proof. (i): Suppose the closed set h≥0 is not τ -recurrent. There exists an initial

condition x ∈ h=0 such that ϕ(t, x) ̸∈ h≥0 for all t ∈ (0, τ ]. In this case, h(ϕ(t, x)) <

0 for all t ∈ (0, τ ]. Note that this contradicts condition (3.15), which requires

maxt∈(0,τ ] e
βth(ϕ(t, x)) ≥ 0 starting from h(x) = 0. Therefore, h≥0 is τ -recurrent.

(ii): Given h(xn) < 0, then inequality (3.17) requires h(xn+1) ≥ e−β∆tnh(xn).

Thus,

h(xn+1)− h(xn) = (e−β∆tn − 1)h(xn) > 0.

Now, starting from x ∈ h<0 ∩D0, we have

0 > h(xn) ≥ e−β(tn−tn−1)h(xn−1)

≥ e−β(tn−tn+1+tn+1−tn−2)h(xn−2) ≥ h(x)e−βtn .

whenever xn, ..., x1 ∈ h<0 ∩D0. If there exists a n′ ∈ {1, . . . , n} such that h(xn′) ≥ 0,

(3.18) still follows since

h(xn) ≥ h(xn′)e−α̂(tn−tn′ ) ≥ 0 > h(x)e−βtn .

(iii): Whenever h(xn) > 0, then inequality (3.17) requires h(xn+1) ≥ e−α∆tnh(xn).

Thus,

h(xn+1)− h(xn) = (e−α∆tn − 1)h(xn) < 0.

In the case that x ∈ h≥0, we have:

h(xn) ≥ e−α(tn−tn−1)h(xn−1)

≥ e−α(tn−tn+1+tn+1−tn−2)h(xn−2)

≥ h(x)e−αtn ≥ 0,

i.e., (3.19) follows.
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Proof of Theorem 3.10

Proof. Let us first consider the case that x ∈ h<0 ∩D0. In this case, (3.23) is automat-

ically satisfied if there is a time t′ with h(ϕ(t′, x)) ≥ 0. Therefore, we focus on the

case where h(ϕ(t, x)) < 0 for all t ∈ (0, τ̂ ]. In this case, we have:

0 > max
t∈(0,τ̂ ]

eβ̂tsd(ϕ(t, x), h≤0)

≥ max
t∈(0,τ̂ ]

eβ̂t
1

α1

h(ϕ(t, x))

≥ max
t∈(0,τ̂ ]

e(β̂−β)t 1

α1

h(x)

≥ e(β̂−β)τ̂ α2

α1

sd(x, h≤0)

≥ sd(x, h≤0),

(3.64)

(3.65)

(3.66)

(3.67)

where (3.65) comes from the definition of the IEBF (3.10) and (3.64) and (3.66)

are based on the sector containment assumption (3.22). Note that sd(x, h≤0) < 0,

and thus (3.67) is true whenever e(β̂−β)τ̂ α2

α1
≤ 1, which is achieved by choosing

τ̂ ≥ log(α2/α1)/(β − β̂).

Next, starting from x ∈ h≥0, observe that h(ϕ(t, x)) ≥ 0,∀t ≥ 0, since Theo-

rem 3.6 ensures h≥0 is an invariant set. Therefore, we proceed similarly:

max
t∈(0,τ̂ ]

eα̂tsd(ϕ(t, x), h≤0)

≥ max
t∈(0,τ̂ ]

eα̂t
1

α2

h(ϕ(t, x))

≥ max
t∈(0,τ̂ ]

e(α̂−α)t 1

α2

h(x)

≥ e(α̂−α)τ̂ α1

α2

sd(x, h≤0)

≥ sd(x, h≤0) ≥ 0,

(3.68)

(3.69)

(3.70)

(3.71)

where (3.69) comes from the definition of the IEBF (3.10), (3.68) and (3.70) come from

the sector containment assumption (3.21). Now, since sd(x, h≤0) ≥ 0, (3.71) is true

whenever e(α̂−α)τ̂ α1

α2
≥ 1, which can be achieved by choosing τ̂ ≥ log(α1/α2)/(α− α̂).

Consequently, by choosing τ̂ as specified in (3.24), we guarantee (3.23) in all possible

scenarios.

94



Proof of Theorem 3.11

Proof. We first note that since h≥0 ⊂ S and ∂S ∩ h=0 = ∅, the inequality δ̄ ≥ δ > 0

naturally holds. On top of this, definitions (3.26a) and (3.26b) together imples:

0 < δ ≤ sd(x, h≥0)− sd(x, S) ≤ δ̄, ∀x ∈ D0.

Consequently, we have

0 > −δ ≥ sd(x, h≤0)− ĥ(x) ≥ −δ̄, ∀x ∈ D0,
(3.72)

since sd(x, h≤0) = −sd(x, h≥0) and ĥ(x) = −sd(x, S).

Since h is a sector contained IEBF, Theorem 3.10 ensures that the function

sd(·, h≤0) is a REBF satisfying (3.23) with any τ̂ ≥ τ ∗ := max{ log(α2/α1)
α̂−α

, log(α2/α1)

β−β̂
}.

Theorem 3.9 part (ii-iii) further establishes a sequence {tn}n∈N with t0 = 0 such that

for each state xn := ϕ(tn, x), we have

sd(xn, h≤0) ≥

{︄
sd(x, h≤0)e

−β̂tn if x ∈ h<0 ∩D0

sd(x, h≤0)e
−α̂tn if x ∈ h≥0

(3.73a)

(3.73b)

for all n ∈ N.

Now, starting from any initial state x ∈ ĥ<0 ∩ D0, we have h(x) < 0 since

ĥ≥0 = S ⊃ h≥0. Therefore,

eβ̂tnĥ(ϕ(tn, x)) ≥ eβ̂tn(sd(ϕ(tn, x), h≤0) + δ)

≥ sd(x, h≤0) + eβ̂tnδ

≥ ĥ(x)− δ̄ + eβ̂tnδ

≥ ĥ(x)

(3.74)

(3.75)

(3.76)

(3.77)

where (3.74) and (3.76) are based on (3.72), (3.75) comes from (3.73a), and (3.77)

follows whenever tn ≥ log(δ̄/δ)/β̂.

Next, starting from any x ∈ ĥ≥0, we have:

eα̂tnĥ(ϕ(tn, x)) ≥ eα̂tn(sd(ϕ(tn, x), h≤0) + δ)

≥ sd(x, h≤0) + eα̂tnδ

≥ ĥ(x)− δ̄ + eα̂tnδ

≥ ĥ(x) ≥ 0, if h(x) ≥ 0,

(3.78)

(3.79)

(3.80)

(3.81)
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or

eα̂tnĥ(ϕ(tn, x)) ≥ eβ̂tnĥ(ϕ(tn, x))

≥ ĥ(x) ≥ 0, if h(x) < 0.

(3.82)

(3.83)

where (3.78) and (3.80) are based on (3.72), (3.79) comes from (3.73b), and (3.81)

follows whenever tn ≥ log(δ̄/δ)/α̂. In the case that h(x) < 0, (3.82) and (3.83) are

based on (3.77) and the assumption that α̂ ≥ β̂.

Finally, by combining these conditions, we can verify (3.25) whenever tn ≥ δ̂ :=

log(δ̄/δ)/min{α̂, β̂}. Note that,

lim
n→∞

tn = ∞ and tn+1 − tn ∈ (0, τ ∗], ∀n ∈ N.

Therefore, by choosing τ̂ ≥ τ ∗ + δ̂, there must be a tn ∈ [δ̂, τ̂ ] ensures (3.25), and the

result follows.

Proof of Theorem 3.12

Proof. Suppose that Rτ (S) is not invariant, there must exist a y ∈ Rτ (S) and a t1 > 0

such that ϕ(t1, y) ̸∈ Rτ (S). By the definition of the reachable set, there also exists

a x ∈ S and a t2 ∈ [0, τ), such that ϕ(t2, x) = y. Since Rτ (S) ⊇ S, we conclude

ϕ(t1, y) = ϕ(t1 + t2, x) ̸∈ S.

We then use t′ to denote the last time the trajectory ϕ(t, x) stays within the closed

set S, i.e.,

x′ := ϕ(t′, x) ∈ S and ϕ(t, x) ̸∈ S ∀t ∈ (t′, t1 + t2].

Note that we must have t1 + t2 − t′ ≤ τ since S is τ -recurrent. This contradicts the

assumption that ϕ(t1, y) ̸∈ Rτ (S) since ϕ(t1, y) = ϕ(t1 + t2 − t′, x′) ∈ Rτ (S).

Proof of Lemma 3.4

Proof. Starting from a point x ∈ S, we use d∗ to denote the maximum signed

distance from the trajectory ϕ(t, x) to the set S within τ seconds, and t∗ to denote
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the time this maximum distance is achieved, i.e.,

d∗ := max
t∈[0,τ ]

sd(ϕ(x, t), S), t∗ := argmax
t∈[0,τ ]

sd(ϕ(x, t), S).

Note that the assumption that the set S is τ -recurrent implies that any trajectory

starting from S can leave S for at most τ seconds. Therefore, we only need to con-

sider the maximum signed distance within τ seconds, which would be equivalent

to the maximum distance of any trajectory starting from S over unbounded time.

If d∗ ≤ 0, it follows that d∗ ≤ 0 ≤ c, and the result follows trivially. We then

consider the case that d∗ > 0. In this case, we further use t′ to denote the last time

before t∗ such that the trajectory ϕ(x, t) ∈ S, i.e.,

ϕ(t′, x) ∈ S and ϕ(t, x) ̸∈ S ∀t ∈ (t′, t∗].

To show sd(ϕ(t, x), S) ≤ c1, we have:

sd(ϕ(t, x), S) ≤ d∗ = sd(ϕ(t∗, x), S)

≤ ∥ϕ(t∗, x)− ϕ(t′, x)∥ =

∫︂ t∗

t′
∥f(ϕ(s, x))∥ds

≤ F (Rτ (S))(t
∗ − t′)

≤ F (Rτ (S))τ.

To show sd(ϕ(t, x), S) ≤ c2, we have:

sd(ϕ(t, x), S) ≤ d∗ = sd(ϕ(t∗, x), S)

≤
∫︂ t∗

t′
∥f(ϕ(s, x))∥ds

≤
∫︂ t∗

t′
∥f(ϕ(s, x))− F (PS(ϕ(s, x)))∥+ ∥F (PS(ϕ(s, x)))∥ds

≤
∫︂ t∗

t′
sd(ϕ(s, x), S)L(Rτ (S)) + F (∂S)ds

=

∫︂ t∗

t′
sd(ϕ(s, x), S)L(Rτ (S))ds+ F (∂S)t

Then, by applying the Grönwall’s inequality [3, Lemma 2.1] with λ = F (∂S)t, µ =

L(∂S), y(t) = sd(ϕ(t, x), S), we have:

sd(ϕ(t, x), S) ≤ F (∂S)τeL(Rτ (S))τ ,∀x ∈ S.

A combination of these two conditions implies (3.29).
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Proof of Lemma 3.5

Proof. Given an initial point x0 = Xτ , we build the time sequence {tn}n∈{1,...,N}

satisfying (3.32) and (3.33) again by induction.

[Base case]: For the base case, we have t0 = 0 and define t1 as follows:

t1 = max{argmax
t∈(0,τ ]

{eβt[h(ϕ(t, x0))]− + eαt[h(ϕ(t, x0))]+}}

note that the second maximum exists by condition (3.31), and is no smaller than

h(x0); if there are multiple maximizing times, t1 is defined as the largest. By

construction, t1 − t0 ∈ (0, τ ], and the function h evaluated at x1 := ϕ(t1, x0) satisfies:

eβt1 [h(x1)]− + eαt1 [h(x1)]+ ≥ h(x0).

Note that whenever h(x0) ≥ 0, (3.62) requires h(x1) ≥ 0 and thus

h(x1) ≥ e−αt1h(x0).

In the case that h(x0) < 0, we have:

h(x1) ≥ e−βt1h(x0).

Therefore, (3.33) follows, which finishes the proof of the base case of the induction.

[Inductive step]: The inductive step construction proceeds in a similar manner:

given t1 < t2 < · · · tN , with xk := ϕ(tk, x0) ∈ Xτ , 0 ≤ k ≤ N − 1. Now, define

tn+1 − tn as:

max{argmax
t∈(0,τ ]

{eβt[h(ϕ(t, xn))]− + eαt[h(ϕ(t, xn))]+}} (3.84)

Note that tn+1 − tn ∈ (0, τ ] as required. A similar proof to the base case then shows

that

xn+1 := ϕ(tn+1, x0) = ϕ(tn+1 − tn, xn) ∈ Xτ

and (3.33) is satisfied.
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[Divergence of tn]: It remains to show that tN > T , which we argue by contra-

diction. If, instead, the strictly increasing sequence of times was bounded before T ,

we would have tn ↑ t∗ ≤ T . Note that ϕ(t∗, x0) is well defined since the dynamical

system (2.1) is forward complete. Also, by the continuity of ϕ(·, x):

vn := eβtn [h(ϕ(tn, x0))]− + eαtn [h(ϕ(tn, x0))]+

→ v∗ := eβt
∗
[h(ϕ(t∗, x0))]− + eαt

∗
[h(ϕ(t∗, x0))]+.

Note that it follows from (3.33) that:

eβtn+1 [h(ϕ(tn+1, x0))]− + eαtn+1 [h(ϕ(tn+1, x0))]+

≥eβtn [h(ϕ(tn, x0))]− + eαtn [h(ϕ(tn, x0))]+

=⇒ vn+1 ≥ vn, ∀n ∈ {0, . . . , N − 1}.

Therefore, {vn} is non-decreasing, and we further conclude that v∗ ≥ vn for all

n ∈ N. Now pick n such that tn ≥ t∗ − τ . This means that s∗ := t∗ − tn ∈ (0, τ ]

is in the feasible set for the maximization in (3.84), which by definition gives as

maximum vn+1, achieved at tn+1 − tn.

Now, since

v∗ = eβs
∗
[h(ϕ(s∗, xn))]− + eαs

∗
[h(ϕ(s∗, xn))]+ ≥ vn+1,

this means s∗ also qualifies as a maximizer, and in fact s∗ = t∗ − tn > tn+1 − tn.

This contradicts the definition of tn+1 − tn given in (3.84), since it would not be the

largest maximizing time. Thus, the sequence must be divergent before achieving T ,

establishing the claim.

Proof of Theorem 3.16

Proof. (i): Suppose for the sake of contradiction that the closed set h≥0 ∩Xτ is not lo-

cally τ -recurrent within X . Then, there exists an initial condition x ∈ h=0 ∩ Xτ

such that ϕ(t, x) ̸∈ h≥0 ∩ X for all t ∈ (0, τ ]. In this case, h(ϕ(t, x)) < 0, for

all t ∈ (0, τ ]. Note that this contradicts condition (3.31), which requires that
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maxt∈(0,τ ] e
βth(ϕ(t, x)) ≥ 0 starting from all x ∈ h=0 ∩ Xτ . Therefore, h≥0 is locally

τ -recurrent w.r.t X .

(ii): If xn∈h<0∩Xτ and ϕ(t, x)∈X , ∀t ∈ [0, tn+ τ ], then inequality (3.33) requires

that h(xn+1)≥e−β∆tnh(xn). Thus,

h(xn+1)− h(xn)≥(e−β∆tn−1)h(xn) > 0.

Now, starting from some x ∈ h<0 ∩ Xτ , we have

0 > h(xn) ≥ e−β(tn−tn−1)h(xn−1)

≥ e−β(tn−tn+1+tn+1−tn−2)h(xn−2) ≥ h(x)e−βtn .

for all n ∈ {0, . . . , N} whenever xn, ..., x1 ∈ h<0∩X . If there exists an n′ ∈ {1, . . . , n}

such that h(xn′) ≥ 0, (3.34) still follows since

h(xn) ≥ h(xn′)e−α(tn−tn′ ) ≥ 0 > h(x)e−βtn .

(iii): Whenever xn ∈ h>0 ∩ Xτ and ϕ(t, x) ∈ X , ∀t ∈ [0, tn + τ ], then inequality

(3.17) requires that h(xn+1)≥e−α∆tnh(xn). Thus,

h(xn+1)− h(xn)≥(e−α∆tn−1)h(xn) < 0.

For any x ∈ h≥0, we have:

h(xn) ≥ e−α(tn−tn−1)h(xn−1)

≥ e−α(tn−tn+1+tn+1−tn−2)h(xn−2)

≥ h(x)e−αtn ≥ 0,

for all n ∈ {0, . . . , N} whenever xn, ..., x1 ∈ h<0 ∩ X , i.e., (3.35) follows.

Proof of Theorem 3.17

Proof. Let us first consider the case that x ∈ h<0 ∩Xτ̂ . In this case, (3.39) is automati-

cally satisfied if there is a t′ ≤ τ̂ with h(ϕ(t′, x)) ≥ 0. Therefore, we focus on the case
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where h(ϕ(t, x)) < 0 for all t ∈ (0, τ̂ ]. In this case, we have:

0 > max
t∈(0,τ̂ ]

eβ̂tsd|X (ϕ(t, x), h≤0)

≥ max
t∈(0,τ̂ ]

eβ̂t
1

α1

h(ϕ(t, x))

≥ max
t∈(0,τ̂ ]

e(β̂−β)t 1

α1

h(x)

≥ e(β̂−β)τ̂ α2

α1

sd|X (x, h≤0)

≥ sd|X (x, h≤0),

(3.85)

(3.86)

(3.87)

(3.88)

where (3.86) comes from the definition of the LIEBF (3.30) and (3.85) and (3.87)

are based on the sector containment assumption (3.38). Note that sd|X (x, h≤0) <

0, and thus (3.88) is true if e(β̂−β)τ̂ α2

α1
≤ 1, which is achieved by choosing τ̂ ≥

log(α2/α1)/(β − β̂).

Next, whenever x ∈ h≥0 ∩ Xτ̂ , Theorem 3.15 implies h(ϕ(t, x)) ≥ 0,∀t ∈ [0, τ̂ ].

Therefore, we proceed similarly:

max
t∈(0,τ̂ ]

eα̂tsd|X (ϕ(t, x), h≤0)

≥ max
t∈(0,τ̂ ]

eα̂t
1

α2

h(ϕ(t, x))

≥ max
t∈(0,τ̂ ]

e(α̂−α)t 1

α2

h(x)

≥ e(α̂−α)τ̂ α1

α2

sd|X (x, h≤0)

≥ sd|X (x, h≤0) ≥ 0,

(3.89)

(3.90)

(3.91)

(3.92)

where (3.90) comes from the definition of the LIEBF (3.30), (3.89) and (3.91) come

from the sector containment assumption (3.37). Now, since sd(x, h≤0) ≥ 0, (3.92) is

true whenever e(α̂−α)τ̂ α1

α2
≥ 1, which can be achieved by choosing τ̂ ≥ log(α1/α2)/(α−

α̂). Consequently, by choosing τ̂ as specified in (3.40), we guarantee (3.39) in all

possible scenarios.
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Proof of Theorem 3.18

Proof. We first note that since h≥0∩X ⊂ S and ∂S∩h=0 = ∅, the inequality δ̄ ≥ δ > 0

naturally holds. On top of this, definitions (3.42a) and (3.42b) together imples:

0 < δ ≤ sd|X (x, h≥0)− sd|X (x, S) ≤ δ̄, ∀x ∈ X .

Consequently, we have

0 > −δ ≥ sd|X (x, h≤0)− ĥ(x) ≥ −δ̄, ∀x ∈ X , (3.93)

since sd|X (x, h≤0) = −sd|X (x, h≥0), ĥ(x) = −sd|X (x, S).

Since h is a locally sector contained LIEBF, Theorem 3.17 ensures that the function

sd|X (·, h≤0) is a REBF satisfying (3.39) with any τ̂ ≥ τ ∗ := max{ log(α2/α1)
α̂−α

, log(α2/α1)

β−β̂
}.

Theorem 3.16 part (ii-iii) further establishes a sequence {tn}n∈{1,...,N} with t0 = 0

such that for each state xn := ϕ(tn, x), we have

sd(xn, h≤0) ≥

{︄
sd|X (x, h≤0)e

−β̂tn if x ∈ h<0 ∩ X
sd|X (x, h≤0)e

−α̂tn if x ∈ h≥0 ∩ X

(3.94a)

(3.94b)

for all n ∈ {0, . . . , N}.

Now, starting from any initial state x ∈ ĥ<0 ∩ Xτ̂ ⊆ X , we have h(x) < 0 since

ĥ≥0 = S ⊃ h≥0 ∩ X . Therefore,

eβ̂tnĥ(ϕ(tn, x)) ≥ eβ̂tn(sd|X (ϕ(tn, x), h≤0) + δ)

≥ sd|X (x, h≤0) + eβ̂tnδ

≥ ĥ(x)− δ̄ + eβ̂tnδ

≥ ĥ(x)

(3.95)

(3.96)

(3.97)

(3.98)

where (3.95) and (3.97) are based on (3.93), (3.96) comes from (3.94a), and (3.98)

follows whenever tn ≥ log(δ̄/δ)/β̂.

Next, starting from any x ∈ ĥ≥0 ∩ Xτ̂ , we have:

eα̂tnĥ(ϕ(tn, x)) ≥ eα̂tn(sd|X (ϕ(tn, x), h≤0) + δ)

≥ sd|X (x, h≤0) + eα̂tnδ

≥ ĥ(x)− δ̄ + eα̂tnδ

≥ ĥ(x) ≥ 0, if h(x) ≥ 0,

(3.99)

(3.100)

(3.101)
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or

eα̂tnĥ(ϕ(tn, x)) ≥ eβ̂tnĥ(ϕ(tn, x))

≥ ĥ(x) ≥ 0, if h(x) < 0.

(3.102)

(3.103)

where (3.99) and (3.100) are based on (3.93), (3.79) comes from (3.94b), and (3.101)

follows whenever tn ≥ log(δ̄/δ)/α̂. In the case that h(x) < 0, (3.102) and (3.103) are

based on (3.98) and the assumption that α̂ ≥ β̂.

Finally, by combining these conditions, we can verify (3.41) whenever tn ≥ δ̂ :=

log(δ̄/δ)/min{α̂, β̂}. Note that, starting from any x ∈ Xτ̂ , we have tN ≥ τ̂ − τ ∗ and:

tn+1 − tn ∈ (0, τ ∗], ∀n ∈ {0, . . . , N − 1}.

Therefore, by choosing τ̂ ≥ τ ∗ + δ̂, there must be a tn ∈ [δ̂, τ̂ ] ensures (3.41), and the

result follows.

Proof of Lemma 3.6

Proof. We will leverage the fact that ∥x − y∥ ≤ r to show equation (3.43) in the

following four cases:

(1): Whenever x, y ̸∈ S:

sd(x, S) = ∥x− P∂S(x)∥ ≤ ∥x− P∂S(y)∥
≤ ∥x− y + y − P∂S(y)∥
≤ ∥x− y∥+ ∥y − P∂S(y)∥
= ∥x− y∥+ sd(y, S)

≤ r + sd(y, S)

=⇒ sd(y, S) ≥ sd(x, S)− r

(2): Whenever x ∈ S and y ̸∈ S:

sd(x, S) = −∥x− P∂S(x)∥ ≤ ∥x− P∂S(x)∥
≤ ∥x− P∂S(y)∥
≤ ∥x− y + y − P∂S(y)∥
≤ ∥x− y∥+ ∥y − P∂S(y)∥
= ∥x− y∥+ sd(y, S)

≤ r + sd(y, S)

=⇒ sd(y, S) ≥ sd(x, S)− r
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(3): Whenever x, y ∈ S:

−sd(y, S) = ∥y − P∂S(y)∥ ≤ ∥y − P∂S(x)∥
≤ ∥y − x+ x− P∂S(x)∥
≤ ∥y − x∥+ ∥x− P∂S(x)∥
= ∥y − x∥ − sd(x, S)

≤ r − sd(x, S)

=⇒ sd(y, S) ≥ sd(x, S)− r

(4): Whenever x ̸∈ S and y ∈ S:

In this case, we use p to denote the point where ∂S intersects with the line

between x and y. If there is more than one intersection, let p be a random one. Note

that such a point p must exist since x ̸∈ S but y ∈ S. Then:

r ≥ ∥x− y∥ = ∥x− p∥+ ∥p− y∥
≥ ∥y − P∂S(y)∥+ ∥x− P∂S(x)∥
= −sd(y, S) + sd(x, S)

=⇒ sd(y, S) ≥ sd(x, S)− r

A combination of these four conditions implies (3.43). Result follows.

Proof of Theorem 3.20

Proof. (i): If the initial states satisfies the condition in (3.45), then it follows from

Corollary 3.1 that:

sd(ϕ(t, y),Xu) ≥ sd(ϕ(t, x),Xu)− reLt > 0,

for all t ∈ [0, τ ] and for all y ∈ Br(x). Therefore, Br(x) ∩R−1
τ (Xu) = ∅.

(ii): If the initial states satisfies the condition in (3.46) instead, then let us use

t∗ to denote the time at which sd(ϕ(t∗, x),Xu) < −reLt
∗ . Again, it follows from

Corollary 3.1 that:

sd(ϕ(t∗, y),Xu) ≤ sd(ϕ(t∗, x),Xu) + reLt
∗
< 0,

for all y ∈ Br(x). Consequently, Br(x) ⊆ R−1
τ (Xu).
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Proof of Lemma 3.7

Proof. Again, we leverage the fact that ∥x− y∥ ≤ r to show equation (3.49) in the

following four cases:

(1): Whenever x, y ̸∈ S:

sd|X (x, S) = ∥x− P∂S∩intX (x)∥ ≤ ∥x− P∂S∩intX (y)∥
≤ ∥x− y + y − P∂S∩intX (y)∥
≤ ∥x− y∥+ ∥y − P∂S∩intX (y)∥
= ∥x− y∥+ sd|X (y, S)
≤ r + sd|X (y, S)

=⇒ sd|X (y, S) ≥ sd|X (x, S)− r

(2): Whenever x ∈ S and y ̸∈ S:

sd(x, S) = −∥x− P∂S∩intX (x)∥ ≤ ∥x− P∂S∩intX (x)∥
≤ ∥x− P∂S∩intX (y)∥
≤ ∥x− y + y − P∂S∩intX (y)∥
≤ ∥x− y∥+ ∥y − P∂S∩intX (y)∥
= ∥x− y∥+ sd(y, S)

≤ r + sd(y, S)

=⇒ sd(y, S) ≥ sd(x, S)− r

(3): Whenever x, y ∈ S:

−sd|X (y, S) = ∥y − P∂S∩intX (y)∥ ≤ ∥y − P∂S∩intX (x)∥
≤ ∥y − x+ x− P∂S∩intX (x)∥
≤ ∥y − x∥+ ∥x− P∂S∩intX (x)∥
= ∥y − x∥ − sd|X (x, S)
≤ r − sd|X (x, S)

=⇒ sd|X (y, S) ≥ sd|X (x, S)− r

(4): Whenever x ̸∈ S and y ∈ S:

In this case, we use p to denote the point where ∂S ∩ intX intersects with the

line between x and y. If there is more than one intersection, let p be a random one.

Since x, y ∈ X and X is convex, the entire line between x and y is a subset of X .
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Therefore, such a point p must exist given x ̸∈ S but y ∈ S. Then:

r ≥ ∥x− y∥ = ∥x− p∥+ ∥p− y∥
≥ ∥y − P∂S∩intX (y)∥+ ∥x− P∂S∩intX (x)∥
= −sd|X (y, S) + sd|X (x, S)

=⇒ sd|X (y, S) ≥ sd|X (x, S)− r

A combination of these four conditions implies (3.49).

For (3.50), we first note that ϕ(t, x), ϕ(t, y) ∈ X , ∀t ∈ [0, τ ] since x, y ∈ Xτ . Then,

under the Lipschiz assumption, i.e., (3.44), (3.50) follows from (3.49).

Proof of Theorem 3.22

Proof. (i): For the right-hand side of (3.51), we first conclude from Lemma 3.7 that:

h(x) + r = −sd|X (x, S) + r ≥ −sd|X (y, S) = h(y). (3.104)

We then let t∗ to be the time when the left-hand side of (3.51) is maximized, i.e.,

t∗=argmax
t∈(0,τ ]

eαt[ĥ
−
r (t, x)]++ eβt[ĥ

−
r (t, x)]−.

At this maximization time t∗ ∈ (0, τ ], we have:

eαt
∗
[h(ϕ(t∗, y))]+ + eβt

∗
[h(ϕ(t∗, y))]−

≥ eαt
∗
[ĥ

−
r (t

∗, x)]++eβt
∗
[ĥ

−
r (t

∗, x)]−

≥ h(x) + r

≥ h(y)

(3.105)
(3.106)
(3.107)

where (3.105) comes from Lemma 3.7, (3.106) comes from (3.51), and (3.107) comes

from (3.104).

(ii): For the right-hand side of (3.52), we again conclude from Lemma 3.7 that:

h(x)−r = −sd|X (x, S)−r ≤ −sd|X (y, S) = h(y). (3.108)

We then let t∗ to be the time when the left-hand side of (3.52) is maximized, i.e.,

t∗=argmax
t∈(0,τ ]

eαt[ĥ
+

r (t, x)]++ eβt[ĥ
+

r (t, x)]−.
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Again, at the maximization time t∗ ∈ (0, τ ], we have:

eαt
∗
[h(ϕ(t∗, y))]+ + eβt

∗
[h(ϕ(t∗, y))]−

≤ eαt
∗
[ĥ

+

r (t
∗, x)]++eβt

∗
[ĥ

+

r (t
∗, x)]−

< h(x)− r

≤ h(y)

(3.109)
(3.110)
(3.111)

where (3.109) follows from Lemma 3.7, (3.110) follows from (3.52), and (3.111)

follows from (3.108).

3.5 Conclusion

In this chapter, we introduce a novel methodology designed to characterize safety

within a model-free context. This approach uniquely relies on sampled system

trajectories, offering a practical way to assess safety without the need for detailed

models of the system dynamics.

Our first step is to relax the notion of set invariance in the context of character-

izing the safe state space region. To this end, we systematically relax the classic

differential barrier conditions into integral conditions and further into recurrent

conditions. We also thoroughly explore the interconnections between these condi-

tions, and we establish sufficient conditions under which a τ -recurrent set, induced

by the recurrent conditions, can be utilized to confirm safety.

We then detail a data-driven algorithm built on the theoretical insights pre-

viously discussed, aimed at effectively characterizing safety within a designated

region, X . This algorithm requires only a limited number of finite-length trajectory

samples, and it capitalizes on the capabilities of highly parallelizable processing

units, facilitating the simultaneous processing of multiple trajectory samples.

The flexibility of this method is further highlighted by its ability to incrementally

search for safety levels through the analysis of safety-boundary-approaching rates

of trajectories originating from X .
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We conclude this chapter with a numerical example that demonstrates the

practical effectiveness of our approach.
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Chapter 4

Conclusions

This thesis explores the development of rigorous methodologies for certifying the

safety of high-dimensional dynamical systems in a model-free context, particularly

focusing on learning regions of attraction and safe state space regions without full

system models. The key innovation is applying the concept of recurrence to relax

the stringent constraints typically imposed by invariance in safety certification. By

leveraging recurrence, this work demonstrates that recurrent sets can be effectively

used to characterize safety with enhanced efficiency and accuracy.

Theoretically, the thesis establishes necessary and sufficient conditions for utiliz-

ing recurrent approaches to characterize safety. This theoretical framework lays the

groundwork for a deeper understanding of how recurrence can serve as a reliable

proxy for invariance, thus simplifying the complex task of safety verification in

dynamic systems.

Building on the theoretical insights, the thesis introduces practical, data-driven

algorithms that leverage a finite number of finite-length sampled trajectories to

determine safe regions within a dynamical system. This algorithm is optimized for

computational efficiency and can be effectively implemented using parallel process-

ing units, making it applicable in real-world scenarios where safety is paramount.

The methodology is validated through various numerical examples that illus-

109



trate the practicality and effectiveness of the proposed approaches. By utilizing

sampled system trajectories, the research provides a robust framework for the safety

verification of dynamic systems.
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