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Abstract—This work examines the conditions for asymptotic
and exponential convergence of saddle flow dynamics of convex-
concave functions. First, we propose an observability-based
certificate for asymptotic convergence, directly bridging the gap
between the invariant set in a LaSalle argument and the equilib-
rium set of saddle flows. This certificate generalizes conventional
conditions for convergence, e.g., strict convexity-concavity, and
leads to a novel state-augmentation method that requires minimal
assumptions for asymptotic convergence. We also show that
global exponential stability follows from strong convexity-strong
concavity, providing a lower-bound estimate of the convergence
rate. This insight also explains the convergence of proximal
saddle flows for strongly convex-concave objective functions.
Our results generalize to dynamics with projections on the
vector field and have applications in solving constrained convex
optimization via primal-dual methods. Based on these insights, we
study four algorithms built upon different Lagrangian function
transformations. We validate our work by applying these methods
to solve a network flow optimization and a Lasso regression
problem.

Index Terms—Saddle flow dynamics, stability of nonlinear
systems, optimization algorithms, nonlinear systems, optimization

I. INTRODUCTION

Studying optimization algorithms from a continuous time
dynamical-systems viewpoint has become an insightful tech-
nique in the analysis of algorithms, providing alternative
means to understand their stability [2], [3], rate of conver-
gence [4]–[6], and robustness [6]–[9]. For example, in the
basic case of gradient descent dynamics for unconstrained
convex optimization, the objective function monotonically
decreases along trajectories towards the optimum, naturally
rendering a Lyapunov function [10]. Such realization leads
to multiple extensions, including finite-time convergence [11],
[12], acceleration [5], [6], and time-varying optimization [13]–
[15], and in many cases it can be used to help understand the
convergence of the discrete-time counterparts [16].

One prominent problem in this field is the study of saddle
flow dynamics, i.e., dynamics that move in the gradient descent
direction for a sub-set of variables and the gradient ascent
direction for the complement. Designed for locating min-
max saddle points, saddle flow dynamics, or saddle flows,
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are particularly suited for solving constrained optimization
problems via primal-dual methods [17] and finding Nash
equilibria of zero-sum games via gradient play [18], which
have led to a broad application spectrum, including power
systems [19], [20], communication networks [21], [22], and
cloud computing [23]. As a result, understanding the properties
that affect the behavior of these dynamics has been a major
focus of study.

The seminal work [24] first explored the asymptotic con-
vergence of primal-dual dynamics using first principles. Since
then, emerging advanced analytical tools have been used to re-
validate conventional conditions or unveil new, weaker ones. A
major set of conditions are related to the convexity properties
of objective functions, including [24]. For instance, [17] revis-
its the strict convexity-concavity condition in the case of dis-
continuous vector fields, using LaSalle’s invariance principle
for discontinuous Caratheodory systems. Besides, weaker con-
ditions have been discovered, such as local strong convexity-
concavity [9], convexity-linearity, or strong quasiconvexity-
quasiconcavity [25]. Regularization serves as an alternative
to circumventing the above conditions. This includes various
forms of penalty terms on equality/inequality constraints to
handle the Lagrangian of constrained optimization [8], [26],
as well as the proximal methods [23], [27]. Despite the merit
of regularization that often relaxes conditions for convergence,
the extra penalty terms may introduce couplings that require
additional computation and communication overheads in dis-
tributed implementation.

More recently, the research focus has shifted toward the
exponential stability of saddle flows and characterizing the
convergence rate. This has been made possible through di-
verse conditions and techniques. For instance, the saddle flow
dynamics of Lagrangian functions augmented with specific
projection are proven exponentially stable in [28]. However,
the convergence rate estimate is not provided therein. Instead,
[29] proposes a projection-free design of dynamics for the
Lagrangian of affine inequality-constrained convex programs.
It is followed up by [30] that further accounts for convex
inequality constraints with semi-global exponential stability
guarantee – the convergence rate is estimated to be depen-
dent on initial points. Besides, [31]–[33] use the Moreau
envelope of Lagrangian functions as a proxy and validate
the exponential stability of the resulting proximal primal-dual
gradient flows using integral quadratic constraints. However,
with this method, accurately estimating the convergence rate
is difficult, thus leading to other alternatives, including con-
traction [34], [35], Riemannian geometric frameworks [36],
and two-timescale approaches [37]. It shall be noted that
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most existing results are restricted to primal-dual dynamics of
Lagrangian functions, and remain highly case-specific. Thus,
the conditions required for the exponential convergence of
general saddle flow dynamics and any convenient methods to
estimate the convergence rate are still not fully understood.

In this paper, we develop a unified analysis for saddle flow
dynamics that renders general conditions for asymptotic and
exponential convergence. Our results hold for, but are not
limited to, Lagrangian functions derived from optimization
problems and can readily be extended for scenarios where
the saddle flow is projected onto a closed convex polyhedron.
The novel analysis provides a unified framework to explain the
convergence of several existing algorithms in the literature and
offers valuable insights for developing new ones. We showcase
several new algorithms that converge under weaker conditions
and/or exhibit superior performance. Specifically, the paper
makes the following contributions to the literature:

• Asymptotic Convergence Condition: We provide a general
certificate for the asymptotic convergence of saddle flow
dynamics. The proposed certificate, which is based on an
observability condition, directly connects the equilibrium set
with the invariant set that is derived from applying LaSalle’s
invariance principle and can be shown to generalize existing
asymptotic convergence results.

• Universal Algorithm for Convex-Concave Saddle Problems:
We further leverage our condition for asymptotic conver-
gence to design a novel saddle flow algorithm, based on
state augmentation, that is able to guarantee convergence to
some saddle point, depending on the initial condition, under
minimal assumptions on convexity-concavity. In particular,
our algorithm is able to converge even for bilinear functions.

• Exponential Convergence Condition: We show that a
strongly convex-strongly concave objective function (with
respective constants µ and q) is sufficient for saddle flows’
exponential convergence and that a lower bound c =
min{µ, q} on the rate of convergence can be readily estab-
lished. We further show how proximal regularization on a
strongly convex-concave function can achieve exponential
convergence by “shifting” some of the strong convexity,
making the resulting function also strongly concave.

• Projected Saddle Flows: Our analysis on both asymptotic
and exponential convergence can be readily extended to the
case where saddle flow dynamics are projected so as to
constrain the trajectories within a closed convex polyhedron.
This is achieved without requiring any strengthening of the
conditions for convergence of the unconstrained case.

• Applications to Constrained Convex Optimization: Finally,
we bring together all our theoretical development and ana-
lyze a wide variety of primal-dual algorithms for constrained
convex optimization, new and existing ones, that lead to
a novel augmented primal-dual algorithm to solve linear
programs, a novel bound on the convergence rate of proxi-
mal primal-dual algorithms, a novel preconditioned primal-
dual algorithm that outperforms the proximal methods for
strongly convex problems with affine constraints, and a
novel reduced primal-dual algorithm that further exploits
separable problem structures and exponentially converges

with a potentially even faster rate than the preconditioned
case.

The versatility of the analysis and new algorithms are validated
with numerical illustrations, showcasing the solution to a net-
work flow optimization problem using our novel primal-dual
LP algorithm and the solution to a Lasso regression problem
via a combination of our novel preconditioning method with
proximal regularization.

Organization: The remainder of the paper is organized as
follows. Section II introduces the problem formulation with
basic definitions and assumptions, followed by the main results
on the asymptotic convergence of saddle flow dynamics in
Section III. The exponential stability analysis of saddle flow
dynamics is demonstrated in Section IV. We further generalize
the results to the projected version in Section V, with vari-
ous applications in algorithm designs for constrained convex
optimization in Section VI. Section VII provides simulation
validations and Section VIII concludes.

Contributions w.r.t. [1]: A preliminary version of this work
appeared in [1]. This paper extends those results in many
ways. First, our asymptotic convergence of the proximal regu-
larization method in Section III is extended to general convex-
concave saddle functions. The exponential convergence anal-
ysis in Section IV, and its extension to projected saddle flows
in Section V-B, is entirely novel, as well as its application to
(a) characterizing conditions for the exponential convergence
of proximal primal-dual algorithms (Section VI-B), and (b)
deriving two new algorithms, the preconditioned primal-dual
(Section VI-C) and the reduced primal-dual (Section VI-D),
with guaranteed exponential convergence. Finally, the numer-
ical validation in Section VII is also a new contribution.

Notation: Let R and R≥0 be the sets of real and non-
negative real numbers, respectively. In ∈ Rn×n denotes the
identity matrix of size n. Given two vectors x, y ∈ Rn, xi

and yi denote their ith entries, respectively; and x ≤ y holds
if xi ≤ yi holds for ∀i. Given a continuously differentiable
function S(x, y) ∈ C1 with S : Rn × Rm 7→ R, we
use ∂xS(x, y) ∈ R1×n and ∂yS(x, y) ∈ R1×m to denote
the partial derivatives with respect to x and y, respectively,
and define ∇xS(x, y) := [∂xS(x, y)]

T . We further use
∂2
xyS(x, y) := ∂x (∇yS(x, y)) to denote the corresponding

second-order partial derivative.

II. PROBLEM FORMULATION

We consider a function S : D 7→ R with D = X × Y ,
where both X ⊆ Rn and Y ⊆ Rm are convex sets. Our
goal is to study different dynamic laws that seek to converge
to some saddle point (x⋆, y⋆) of S(x, y). While in general,
such questions could be asked in a setting without any further
restrictions, neither the existence of saddle points nor con-
vergence towards them is easy to guarantee. For this paper,
we focus our attention on functions S(x, y) that are convex-
concave.

Definition 1 (Convex-Concave Functions). S(x, y) is convex-
concave, if S(·, y) is convex for ∀y ∈ Y and S(x, ·) is concave
for ∀x ∈ X . S(x, y) is strictly convex-concave, if S(x, y) is
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convex-concave, and further either S(·, y) is strictly convex
for ∀y ∈ Y or S(x, ·) is strictly concave for ∀x ∈ X .

In this case, a general definition of a saddle point of S(x, y)
is given as follows:

Definition 2 (Saddle Point). A point (x⋆, y⋆) ∈ D is a saddle
point of a convex-concave function S(x, y) if

S(x⋆, y) ≤ S(x⋆, y⋆) ≤ S(x, y⋆) (1)

holds for ∀x ∈ X and ∀y ∈ Y .

Due to the convexity-concavity of S(x, y), we are specif-
ically interested in minimizing S(x, y) over x and mean-
while maximizing S(x, y) over y. Throughout this work,
we will assume that S(x, y) is continuously differentiable,
i.e., S(x, y) ∈ C1, as formally summarized below.

Assumption 1. S(x, y) is convex-concave, continuously
differentiable, and there exists at least one saddle
point (x⋆, y⋆) ∈ D satisfying (1).

The continuous differentiability in Assumption 1 is intro-
duced to simplify the exposition. It does not significantly
limit the scope of the results as one can always derive (albeit
possibly increased computational complexity) a continuously
differentiable surrogate of a continuous convex-concave func-
tion by means of the Moreau Envelope [38].

Given a convex-concave function S(x, y) satisfying As-
sumption 1, we refer to the following dynamic law

ẋ = −∇xS(x, y) , (2a)
ẏ = +∇yS(x, y) , (2b)

as the saddle flow dynamics of S(x, y). Basically the dynamic
law (2) drives the system in gradient descent and ascent
directions for x and y, respectively.

Suppose the saddle flow (2) does converge to an equilibrium
point (x⋆, y⋆) ∈ D. It has to be a stationary point of S(x, y),
defined by

Definition 3 (Stationary Point). A point (x⋆, y⋆) ∈ D is a
stationary point of a function S(x, y) if{

∇xS(x⋆, y⋆) = 0

∇yS(x⋆, y⋆) = 0
(3)

holds.

Remark 1. In the case of a convex-concave function S(x, y),
any stationary point must be a saddle point:

∇xS(x⋆, y⋆) = 0 ⇒ S(x⋆, y⋆) ≤ S(x, y⋆), ∀x ∈ X ,

∇yS(x⋆, y⋆) = 0 ⇒ S(x⋆, y) ≤ S(x⋆, y⋆), ∀y ∈ Y .

However, the converse does not necessarily hold.

We will mainly work with the standard form (2) of saddle
flow dynamics to locate a saddle point of S(x, y). In the
following Sections III and IV, we first consider a special case
where the feasible domain of S(x, y) is full space, i.e., D =
Rn×Rm, to derive our main results. In this case Assumption 1
implies that any saddle point (x⋆, y⋆) ∈ Rn × Rm is a
stationary point and satisfies (3). Then we move on to relax

the restriction and introduce a solution using a projection on
the vector field to handle more general cases in Section V.

III. ASYMPTOTIC CONVERGENCE

This section presents an observable certificate for a convex-
concave function S(x, y) that, if exists, ensures the asymptotic
convergence of the saddle flow dynamics (2) towards a saddle
point. We show that such certificates exist in the cases of two
conventional sufficient conditions – strict convexity-concavity
and proximal regularization – and are thus weaker. We fur-
ther build on this certificate to develop a state-augmentation
method that entails minimal convexity-concavity requirements
on S(x, y) for saddle flow dynamics to converge to a saddle
point asymptotically.

A. Observable Certificates

We first define the proposed observable certificate for
S(x, y).

Definition 4 (Observable Certificate). A function h(x, y)
with h : Rn × Rm 7→ R2

≥0 is an observable certificate
of S(x, y), if there exists a saddle point (x⋆, y⋆) such that[

S(x⋆, y⋆)− S(x⋆, y)

S(x, y⋆)− S(x⋆, y⋆)

]
≥ h(x, y) ≥ 0 (4)

holds and for any trajectory (x(t), y(t)) of (2) that satis-
fies h(x(t), y(t)) ≡ 0, we have ẋ ≡ 0, ẏ ≡ 0.

We call h(x, y) an observable certificate [10], due to the
second property of Definition 4, which is akin to (2) hav-
ing h(x, y) as an observable output. Our first main result is that
the existence of an observable certificate suffices to guarantee
the asymptotic convergence of the saddle flow dynamics (2),
as we formally state below.

Assumption 2. S(x, y) has an observable certificate h(x, y)
as given by Definition 4.

Theorem 1. Let Assumptions 1 and 2 hold. Then the saddle
flow dynamics (2) globally asymptotically converge to some
saddle point (x⋆, y⋆) of S(x, y).

Proof. The proof follows from applying LaSalle’s invariance
principle [10] to the following candidate Lyapunov function

V (x, y) =
1

2
∥x− x⋆∥2 +

1

2
∥y − y⋆∥2 , (5)

where (x⋆, y⋆) is the saddle point identified in Definition 4.
Taking the Lie derivative of (5) along the trajectory (x(t), y(t))
of (2) gives

V̇ = (x− x⋆)
T ẋ+ (y − y⋆)

T ẏ

= (x− x⋆)
T [−∇xS(x, y)] + (y − y⋆)

T [+∇yS(x, y)]

= (x⋆ − x)T∇xS(x, y)− (y⋆ − y)T∇yS(x, y)

≤ S(x⋆, y)− S(x, y)− (S(x, y⋆)− S(x, y))

= S(x⋆, y)− S(x, y⋆)

= S(x⋆, y)− S(x⋆, y⋆)︸ ︷︷ ︸
≤0

+S(x⋆, y⋆)− S(x, y⋆)︸ ︷︷ ︸
≤0

,
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where the second equality follows from the dynamic law (2),
the first inequality follows from the convexity-concavity
of S(x, y), and the last inequality follows from the saddle
property (1) of (x⋆, y⋆).

Since (5) is radially unbounded, all its sub-level sets are
compact. From above, it follows that the trajectories of (2)
are bounded and contained in an invariant domain

D0(x(0), y(0)) := {(x, y) | V (x, y) ≤ V (x(0), y(0))} , (6)

where (x(0), y(0)) is any given initial point. LaSalle’s invari-
ance principle then implies that any trajectory of (2) should
converge to the largest invariant set

S := D0(x(0), y(0)) ∩
{
(x, y) | V̇ (x(t), y(t)) ≡ 0

}
. (7)

Given Assumption 2, (4) implies that S is indeed a subset of

H = {(x, y) | h(x(t), y(t)) ≡ 0} , (8)

which is further a subset of the equilibrium set of (2), denoted
as

E := {(x, y) | ẋ(t), ẏ(t) ≡ 0} , (9)

i.e., S ⊂ H ⊂ E.
Therefore, the invariant set S contains only equilibrium

points. If S were to be composed of isolated points – only
possible when there is a unique saddle point – this would
be sufficient to prove convergence to the (unique) saddle
point. However, in general, LaSalle’s invariance principle only
shows asymptotic convergence to the invariant set, without
guaranteeing convergence to a point within it, even in the case
where the set is composed of equilibrium points.

This issue is circumvented by the fact that all the equilibria
within S are stable. See, e.g., [39, Corollary 5.2]. Alternatively,
notice that S is compact, and as a result any trajectory within
the Ω limit set of (2) has a convergent sub-sequence. Let (x̄, ȳ)
be the limit point of such a sequence. Due to (x̄, ȳ) ∈ S,
it is also a saddle point. By changing (x⋆, y⋆) in the defi-
nition of V (x, y) specifically to (x̄, ȳ), it follows that 0 ≤
V (x(t), y(t)) → 0 holds, which implies (x(t), y(t)) → (x̄, ȳ).
■

Checking whether Assumption 2 holds basically re-
quires hunting for a qualified observable certificate h(x, y)
of S(x, y). The existence and characterization of such ob-
servable certificates are still vague from Definition 4. We
next discuss how they can be identified through concrete
examples. We show that the observable certificate is indeed
a weaker condition underneath some of the conventional ones
required for the asymptotic convergence of the saddle flow
dynamics (2).

1) Strict Convexity-Concavity: The most common condi-
tion is arguably the strict convexity-concavity of S(x, y) [17].
We formalize its connection with our observable certificate as
below.

Assumption 3. S(x, y) is strictly convex-concave.

Proposition 2. Let Assumptions 1 and 3 hold. Then the
function

h(x, y) :=

[
S(x⋆, y⋆)− S(x⋆, y)

S(x, y⋆)− S(x⋆, y⋆)

]
, (10)

with (x⋆, y⋆) being an arbitrary saddle point of S(x, y), is an
observable certificate of S(x, y).

The fact that (10) meets the second requirement

h(x(t), y(t)) ≡ 0 ⇒ ẋ ≡ 0, ẏ ≡ 0

to be an observable certificate can be readily verified using
the strict convexity-concavity of S(x, y). See [1] for a full
analysis.

The asymptotic convergence of the saddle flow dynamics (2)
then immediately follows from Theorem 1.

Corollary 3. Let Assumptions 1 and 3 hold. Then the saddle
flow dynamics (2) globally asymptotically converge to some
saddle point (x⋆, y⋆) of S(x, y).

2) Proximal Regularization: Proximal regularization has
been widely recognized as an alternative method to guarantee
the asymptotic convergence of proximal primal-dual dynamics
- an exemplar of saddle flows [23], [27]. More generally, a
surrogate function

S̃(u, y) := min
x∈Rn

{
S(x, y) +

ρ

2
∥x− u∥2

}
(11)

can be defined on S(x, y), where ρ > 0 is a constant
regularization coefficient (throughout the paper). An important
fact is that the surrogate function S̃(u, y) is also convex-
concave and always maintains the same set of saddle points as
the original function S(x, y), as stated in the following lemma.

Lemma 4. Let Assumption 1 hold. Then S̃(u, y) is convex
in u, concave in y and continuously differentiable with the
gradient:

∇uS̃(u, y) = ρu− ρx̃(u, y) , (12a)

∇yS̃(u, y) = ∇yS(x̃(u, y), y) , (12b)

where x̃(u, y) is the unique minimizer in (11) satisfying

∇xS(x̃(u, y), y) + ρ(x̃(u, y)− u) = 0 . (13)

Moreover, a point (x⋆, y⋆) is a saddle point of S(x, y) if and
only if (u⋆, y⋆) is a saddle point of S̃(u, y) with u⋆ = x⋆.

The proof essentially follows [27, Theorem 2], with a
general convex-concave function replacing a convex-linear
Lagrangian function. Lemma 4 also implies x̃(u⋆, y⋆) = x⋆.
It basically allows us to focus on the proximal saddle flow
dynamics of S(u, y), i.e.,

u̇ = −∇uS̃(u, y) = −(ρu− ρx̃(u, y)) , (14a)

ẏ = +∇yS̃(u, y) = ∇yS(x̃(u, y), y) , (14b)

which suffice to locate a saddle point of the original function
S(x, y). We formalize the connection of this method with our
observable certificate as follows.
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Proposition 5. Let Assumption 1 hold. Then the function

h̃(u, y) :=

[
S̃(u⋆, y⋆)− S̃(u⋆, y)

ρ
2∥x̃(u, y⋆)− u∥2

]
, (15)

with (u⋆, y⋆) being an arbitrary saddle point of S̃(u, y), is an
observable certificate of S̃(u, y).

Proof. (15) is a qualified observable certificate since it has the
following two properties. First, to show[

S̃(u⋆, y⋆)− S̃(u⋆, y)

S̃(u, y⋆)− S̃(u⋆, y⋆)

]
≥ h̃(u, y) ≥ 0 ,

the main task boils down to showing the following inequality:

S̃(u, y⋆)− S̃(u⋆, y⋆)

= S(x̃(u, y⋆), y⋆) +
ρ

2
∥x̃(u, y⋆)− u∥2 − S(x̃(u⋆, y⋆), y⋆)

− ρ

2
∥x̃(u⋆, y⋆)− u⋆∥2

= S(x̃(u, y⋆), y⋆)− S(x⋆, y⋆) +
ρ

2
∥x̃(u, y⋆)− u∥2

≥ ρ

2
∥x̃(u, y⋆)− u∥2 ,

where the second equality follows from x̃(u⋆, y⋆) = x⋆ = u⋆

and the inequality follows from the convexity of S(x, y) in x.
Second, to show

h̃(u(t), y(t)) ≡ 0 ⇒ u̇ ≡ 0, ẏ ≡ 0 ,

we refer readers to the proof of [27, Proposition 10]. ■

Similarly, Theorem 1 guarantees the asymptotic conver-
gence of the proximal saddle flow dynamics (14).

Corollary 6. Let Assumption 1 hold. Then the proximal saddle
flow dynamics (14) globally asymptotically converge to some
saddle point (u⋆, y⋆) of S̃(u, y), with (x⋆ = u⋆, y⋆) being a
saddle point of S(x, y).

In fact, even the differentiability in Assumption 1 is not
required since the surrogate S̃(u, y) can be continuously
differentiable regardless.

B. Augmented Saddle Flow Dynamics

We further design a novel state-augmentation method that
exploits our observable certificate and only requires Assump-
tion 1 for augmented saddle flow dynamics to asymptotically
converge to a saddle point. The key of this method is to
augment the domain of S(x, y) and introduce regularization
terms that provide a convenient observable certificate without
altering the positions of the original saddle points. In par-
ticular, we propose a surrogate for S(x, y) via the following
augmentation

Ŝ(x, x̂, y, ŷ) :=
ρ

2
∥x− x̂∥2 + S(x, y)− ρ

2
∥y − ŷ∥2 , (16)

where x̂ ∈ Rn and ŷ ∈ Rm serve as two new sets of virtual
variables. It can be readily verified that the saddle points
remain invariant for Ŝ(x, x̂, y, ŷ).

Lemma 7. Let Assumption 1 hold. Then a point (x⋆, y⋆) is
a saddle point of S(x, y) if and only if (x⋆, x̂⋆, y⋆, ŷ⋆) is a
saddle point of Ŝ(x, x̂, y, ŷ), with

x⋆ = x̂⋆ and y⋆ = ŷ⋆ . (17)

Proof. Recall the saddle property (1) of a saddle point, this
theorem follows immediately from the equivalence of the
following three arguments:

• Ŝ(x⋆, x̂⋆, y, ŷ) ≤ Ŝ(x⋆, x⋆, y⋆, y⋆) ≤ Ŝ(x, x̂, y⋆, ŷ⋆)
holds for ∀(x, x̂, y, ŷ);

• S(x⋆, y)− ρ
2∥y−ŷ∥2 ≤ S(x⋆, y⋆) ≤ S(x, y⋆)+

ρ
2∥x−x̂∥2

holds for ∀(x, x̂, y, ŷ);
• S(x⋆, y) ≤ S(x⋆, y⋆) ≤ S(x, y⋆) holds for ∀(x, y).

Here the first and second arguments are equivalent due to
the definition (16) of Ŝ(x, x̂, y, ŷ), while the second and third
arguments are equivalent since the regularization terms attain
zero at the minimum. ■

Under Assumption 1 for S(x, y), the augmented func-
tion Ŝ(x, x̂, y, ŷ) is convex in (x, x̂), concave in (y, ŷ), and
continuously differentiable with at least one saddle point, by
its definition (16) and Lemma 7. Therefore, Assumption 1
also holds for Ŝ(x, x̂, y, ŷ). Lemma 7 further ensures that
whenever we locate a saddle point of Ŝ(x, x̂, y, ŷ), a saddle
point of S(x, y) is attained simultaneously. This motivates us
to instead look at the saddle flow dynamics of Ŝ(x, x̂, y, ŷ).

Following (2), this augmented version of saddle flow dy-
namics is given by

ẋ = −∇xS(x, y)− ρ(x− x̂) , (18a)
˙̂x = ρ(x− x̂) , (18b)
ẏ = +∇yS(x, y)− ρ(y − ŷ) , (18c)
˙̂y = ρ(y − ŷ) . (18d)

Although this dynamic law has twice as many state variables as
its prototype (2), it is important to notice that, unlike proximal
regularization [23], [27], [38] and quadratic regularizers on
equality constraints [8], [26], the state augmentation does
not introduce couplings and (18) preserves any distributed
structure that the system may originally have.

We now provide the key result on the asymptotic conver-
gence of the augmented saddle flow dynamics (18).

Proposition 8. Let Assumption 1 hold. Then the function

ĥ(x, x̂, y, ŷ) :=

[
ρ
2∥y − ŷ∥2
ρ
2∥x− x̂∥2

]
(19)

is an observable certificate of Ŝ(x, x̂, y, ŷ).

Proof. ĥ(x, x̂, y, ŷ) satisfies (4) as follows:[
Ŝ(x⋆, x̂⋆, y⋆, ŷ⋆)− Ŝ(x⋆, x̂⋆, y, ŷ)

Ŝ(x, x̂, y⋆, ŷ⋆)− Ŝ(x⋆, x̂⋆, y⋆, ŷ⋆)

]

=


S(x⋆, y⋆)− S(x⋆, y)︸ ︷︷ ︸

≥0

+ρ
2∥y − ŷ∥2

S(x, y⋆)− S(x⋆, y⋆)︸ ︷︷ ︸
≥0

+ρ
2∥x− x̂∥2
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≥
[

ρ
2∥y − ŷ∥2
ρ
2∥x− x̂∥2

]
≥ 0 .

Moreover, ĥ(x, x̂, y, ŷ) ≡ 0 implies x(t) ≡ x̂(t) and y(t) ≡
ŷ(t), which, by (18d) and (18b), enforce ˙̂x ≡ 0, ˙̂y ≡ 0.
Therefore, x̂(t) and ŷ(t), and thus x(t) and y(t), all remain
constant and have reached an equilibrium point. ■

Assumption 2 thus holds for the augmented func-
tion Ŝ(x, x̂, y, ŷ) and the asymptotic convergence of the aug-
mented saddle flow dynamics (18) follows immediately from
Theorem 1. We summarize this result next.

Corollary 9. Let Assumption 1 hold. Then the augmented
saddle flow dynamics (18) globally asymptotically con-
verge to some saddle point (x⋆, x̂⋆, y⋆, ŷ⋆) of Ŝ(x, x̂, y, ŷ),
with (x⋆, y⋆) being a saddle point of S(x, y).

Corollary 9 indicates that only the convexity-concavity
of S(x, y) is required to asymptotically arrive at a saddle
point through the augmented saddle flow dynamics (18).
This condition applies to general convex-concave functions,
including bilinear functions, and is milder than many existing
conditions in the literature. The fact that the state-augmented
saddle flow (18) asymptotically converges for any convex-
concave saddle function S(x, y) (even in cases where the
saddle flow of S(x, y) does not converge) should come as
a surprise, given that the augmented function Ŝ(x, x̂, y, ŷ) is
identical to S(x, y) on the hyperplane defined by x = x̂ and
y = ŷ. One explanation for this phenomenon is rooted in the
dissipative theory. That is, (18d) and (18b) act as a dynamic
feedback aimed at dissipating the “energy” that prevents the
regular saddle flow (2) from converging. We refer readers to
[40] for further discussion on this subject.

IV. EXPONENTIAL CONVERGENCE

This section explores the conditions under which the saddle
flow dynamics (2) are globally exponentially stable. We es-
tablish exponential stability as a direct consequence of strong
convexity-strong concavity of S(x, y). This insight can be used
to explain the convergence behavior of the proximal saddle
flow dynamics (14), which generalizes existing results for the
proximal gradient algorithms [33], [41].

A. Strong Convexity-Strong Concavity

We first rewrite the saddle flow dynamics (2) in a more
compact form

ż = F (z) (20)

with z := (x, y) and

F (z) =

[
−∇xS(x, y)

+∇yS(x, y)

]
. (21)

We further assume absolute continuity for F (z).

Assumption 4. The gradient of S(x, y), i.e., ∇S(x, y) :=
[∂xS(x, y), ∂yS(x, y)]

T , is absolutely continuous [42].

Remark 2. Assumption 4 is slightly weaker than Lipschitz
continuity - the common assumption used in the studies of
global exponential stability of saddle flows [29], [32], [43].

Assumption 4 basically enables

∂zF (z) =

[
−∂2

xxS(x, y) −∂2
xyS(x, y)

∂2
yxS(x, y) ∂2

yyS(x, y)

]
, (22)

and

1

2

(
∂zF (z)+∂zF (z)T

)
=

[
−∂2

xxS(x, y) 0

0 ∂2
yyS(x, y)

]
, (23)

wherever the second-order partial derivatives are defined [44].
We now show that strong convexity-strong concavity of

S(x, y) is conducive to the saddle flow’s exponential conver-
gence.

Assumption 5. S(x, y) is µ-strongly convex in x and q-
strongly concave in y.

Note that µ > 0 and q > 0 are given constants. Throughout
the paper, such constants are always positive unless specified.

Remark 3. One consequence of Assumption 5 is that there is
a unique saddle point (x⋆, y⋆). Further,

Ŝ(x, y) := S(x, y)− µ

2
∥x− x⋆∥2 +

q

2
∥y − y⋆∥2

is convex in x, concave in y, and (x⋆, y⋆) is also a saddle
point of Ŝ(x, y).

Theorem 10. Let Assumptions 1, 4 and 5 hold. Then the
saddle flow dynamics (2) are globally exponentially stable.
More precisely, given the (unique) saddle point z⋆ and any
initial point z(0) with z = (x, y),

∥z(t)− z⋆∥ ≤ ∥z(0)− z⋆∥e−ct

holds with the rate

c = min{µ, q} > 0 .

Proof. The proof features a reformulation of the Lie deriva-
tive of the Lyapunov function (5) based on the fundamental
theorem of calculus for absolutely continuous functions [45].

We consider again the Lyapunov function

V (z) =
1

2
∥z − z⋆∥2 =

1

2
∥x− x⋆∥2 +

1

2
∥y − y⋆∥2 .

Now taking the Lie derivative with respect to (20) gives

V̇ (z) = (z − z⋆)
TF (z)

=
1

2

(
(z − z⋆)

TF (z) + F (z)T (z − z⋆)
)
. (24)

Assumption 4 allows us to write F (z) as

F (z) =

∫ 1

0

∂zF (z(s))(z − z⋆)ds+ F (z⋆)︸ ︷︷ ︸
=0

, (25)

with z(s) = (z−z⋆)s+z⋆, where we introduce a scalar s ∈ R
and use the fact dz(s) = (z − z⋆)ds.
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Now substituting (25) into (24) gives

V̇ (z) = (z − z⋆)
T

∫ 1

0

1

2

(
∂zF (z)+∂zF (z)T

)
ds (z − z⋆)

= (z − z⋆)
T

∫ 1

0

[
−∂2

xxS(z(s)) 0

0 ∂2
yyS(z(s))

]
ds (z − z⋆) .

(26)

Note that up to this point, V̇ (z) is exactly given by (26). With
Assumption 5, (26) can be relaxed as

V̇ (z) ≤ −µ∥x− x⋆∥2 − q∥y − y⋆∥2
≤ −c∥z − z⋆∥2 = −2cV (z) .

Then the Comparison Lemma allows us to derive the expo-
nential convergence [10]:

V (z(t)) ≤ e−2ctV (z(0))

⇐⇒ ∥z(t)− z⋆∥2 ≤ e−2ct∥z(0)− z⋆∥2
⇐⇒ ∥z(t)− z⋆∥ ≤ e−ct∥z(0)− z⋆∥ .

■

The exponential convergence of the saddle flow dynamics
(2) established in Theorem 10 is tightly connected with the
notion of contractivity in contraction theory [46]. It can be
shown that, under the same condition, the vector field F (z)
in (21) is infinitesimally contracting with the rate min{µ, q}.
Our proof however highlights that, while contraction may be
sufficient, it is not necessary for exponential convergence as
long as the integrated matrix in (26) can be uniformly bounded,
thus opening the path for future extensions on the conditions
provided in this paper.

B. Proximal Saddle Flow Dynamics

In this subsection, we use Theorem 10 to understand how
the proximal methods in general enable the exponential con-
vergence of saddle flows. The proximal method has been com-
monly used to handle non-smooth optimization problems [38].
This points to the most relevant applications in primal-dual
dynamics [27], [31], [47], among which [31], [47] have shown
that running primal-dual dynamics on a proximal augmented
Lagrangian function is exponentially convergent. Our analysis
based on Theorem 10 aims to complement these results and
provide more insights into the exponential stability of proximal
saddle flows.

Consider again the surrogate convex-concave function
S̃(u, y) in (11). It can be re-written as

S̃(u, y) = S(x̃(u, y), y) +
ρ

2
∥x̃(u, y)− u∥2 , (27)

using the unique minimizer x̃(u, y) that satisfies the optimality
condition (13), given (u, y). On this basis, the proximal saddle
flow dynamics are given by (14). We make the following
assumptions on the original function S(x, y) that are sufficient
to guarantee the exponential convergence of the proximal
saddle flow dynamics (14) to a unique saddle point.

Assumption 6. The function S(x, y) is µ-strongly convex
with l-Lipschitz gradient in x, i.e., lI ⪰ ∂2

xxS(x, y) ⪰ µI
for ∀(x, y) wherever ∂2

xxS(x, y) is defined.

Assumption 7. The matrix ∂2
yxS(x̃(u, y), y) is full row rank

with σI ⪰ ∂2
yxS(x̃(u, y), y)∂

2
xyS(x̃(u, y), y) ⪰ κI for ∀(u, y)

wherever the second-order partial derivatives are defined.

Remark 4. Assumption 7 is not that restrictive in practice.
For instance, consider S(x, y) = f(x) + yTAx, which could
be a common Lagrangian function. Assumption 7 basically
requires that A should be full row rank with σI ⪰ AAT ⪰
κI , a common assumption for the exponential convergence of
primal-dual dynamics [29], [36]. Assumption 7 could thus be
regarded as a more general version.

Proposition 11. Let Assumptions 1, 4, 6 and 7 hold. Then the
proximal saddle flow dynamics (14) are globally exponentially
stable. More precisely, given the (unique) saddle point w⋆ and
any initial point w(0) with w := (u, y),

∥w(t)− w⋆∥ ≤ ∥w(0)− w⋆∥e−ct

holds with the rate

c = min

{
µρ

µ+ ρ
,

κ

l + ρ

}
> 0 .

Proof. For ease of presentation, we simply use x̃ to represent
x̃(u, y) in the proof. The main task is to characterize the
following second-order partial derivatives of S̃(u, y):

∂2
uuS̃(u, y) = ρI − ρ∂ux̃ , (28a)

∂2
yyS̃(u, y) =

[
∂2
xyS(x̃, y)

]T
∂yx̃+ ∂2

yyS(x̃, y) , (28b)

which can be readily derived based on the gradient in (12).
To further show the properties of the second-order partial
derivatives in (28), we utilize the optimality condition (13)
and take partial derivatives of both sides with respect to x and
y, respectively, leading to

∂2
xxS(x̃, y)∂ux̃+ ρ∂ux̃− ρI = 0 , (29a)

∂2
xxS(x̃, y)∂yx̃+

[
∂2
yxS(x̃, y)

]T
+ ρ∂yx̃ = 0 . (29b)

Since S(x, y) is µ-strongly convex in x, ∂2
xxS(x, y) is positive

definite for ∀(x, y). Therefore, we can re-organize (29) into

∂ux̃ = ρ
(
∂2
xxS(x̃, y) + ρI

)−1
, (30a)

∂yx̃ = −
(
∂2
xxS(x̃, y) + ρI

)−1 [
∂2
yxS(x̃, y)

]T
. (30b)

Combining (28) and (30) yields

∂2
uuS̃(u, y) = ρI − ρ2(∂2

xxS(x̃, y) + ρI)−1 , (31a)

∂2
yyS̃(u, y) = ∂2

yyS(x̃, y)−
[
∂2
xyS(x̃, y)

]T
· (∂2

xxS(x̃, y) + ρI)−1
[
∂2
yxS(x̃, y)

]T
.

(31b)

Recall ∂2
yyS(x̃, y) ⪯ 0 due to the concavity of S(x, y) in

y. Then Assumption 7 implies the strong convexity-strong
concavity of S̃(u, y):

∂2
uuS̃(u, y) ⪰ ρI − ρ2

µ+ ρ
I ⪰ µρ

µ+ ρ
I ≻ 0 , (32a)
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∂2
yyS̃(u, y) ⪯− ∂2

yxS(x̃, y)(∂
2
xxS(x̃, y) + ρI)−1∂2

xyS(x̃, y)

⪯− 1

l + ρ
∂2
yxS(x̃, y)∂

2
xyS(x̃, y)

⪯− κ

l + ρ
I ≺ 0 ,

(32b)
where ∂2

yxS(x̃, y) = [∂2
xyS(x̃, y)]

T has been employed. Then
the exponential stability of the proximal saddle flow dynamics
(14) follows immediately from Theorem 10. ■

Remark 5. According to Assumption 7, the second term on
the right-hand side of (31b) is positive definite and reflects
the cross-term interaction between x and y in S(x, y). This
analysis following Theorem 10 reveals the impact of such
interaction on the convergence rate of the proximal saddle
flow dynamics (14). This insight is consistent with the results
from [48] that focuses on discrete-time proximal algorithms.

Proposition 11 highlights the strong convexity-strong con-
cavity of the surrogate function S̃(u, y) (with respective con-
stants µρ

µ+ρ and κ
l+ρ ), compared with the strong convexity-

concavity of the original function S(x, y) (with respective
constants µ and 0). The fact of

µρ

µ+ ρ
< µ and

κ

l + ρ
> 0

unveils the rationale behind the proximal regularization that
enables exponential convergence of saddle flows. Further note
that a larger ρ increases the strong convexity constant while
decreasing the strong concavity constant. This tradeoff sug-
gests that the convergence rate estimate - the smaller between
the two constants - could be optimized with a proper choice
of ρ.

Corollary 12. The fastest convergence rate estimate is at-
tained at

c⋆ =
2µκ√

(µl − κ)2 + 4µ2κ+ µl + κ
< µ (33)

by optimizing ρ to be ρ⋆ > 0 that satisfies
µρ⋆

µ+ ρ⋆
=

κ

l + ρ⋆
. (34)

The uniqueness of ρ⋆ > 0 is straightforward from the fact
that the two sides of (34) are both strictly monotone in ρ
and are guaranteed to intersect. However, Corollary 12 points
out a bottleneck for the proximal saddle flow’s convergence
rate estimate, i.e., it is always limited by the strong convexity
constant µ of S(x, y) in x.

V. PROJECTED SADDLE FLOW DYNAMICS

In this section, we generalize the convergence results in
Sections III and IV to account for a projection defined on
the vector field of the saddle flow dynamics (2), which is
commonly introduced to constrain solution trajectories within
a feasible region.

Specifically, we look at a projected version of saddle flow
dynamics of a convex-concave function S(x, y) as

ż =

[
ẋ

ẏ

]
=

[
ΠX [x,−∇xS(x, y)]

ΠY [y,+∇yS(x, y)]

]
. (35)

Here we consider the case where X and Y are both closed
convex polyhedra feasible for x and y, respectively. The
projection is explicitly defined as follows.

Definition 5 (Vector Field Projection [22]). Given p ∈ P ⊆
Rn where P is a closed convex set and s ∈ Rn, the vector
field projection ΠP [p, s] of s at p with respect to P is defined
as

ΠP [p, s] := lim
δ→0+

ΨP [p+ δs]− p

δ
, (36)

with δ ∈ R and ΨP [r] := argminp̂∈P ∥p̂ − r∥ denoting the
point in P closest to r ∈ Rn.

With the projection, any trajectory of (35) will remain in
the feasible set D = X ×Y as long as it starts with a feasible
initial point. Meanwhile, the existence and uniqueness of the
solutions of (35) are guaranteed by [49, Theorem 2.5] when
the vector field of (35) is Lipschitz continuous. Therefore,
to work with the projected saddle flow dynamics (35), we
enhance Assumptions 1 and 4 as follows.

Assumption 8. The gradient of S(x, y), i.e., ∇S(x, y) :=
[∂xS(x, y), ∂yS(x, y)]

T , is Lipschitz continuous.

On this basis, a key enabler for generalizing the convergence
results to such projected saddle flow dynamics is the following
property of the projection.

Lemma 13. Given any closed convex set P ⊂ Rn, and p ∈ P ,
p⋆ ∈ P , s ∈ Rn, the following inner product inequality always
holds:

⟨p⋆ − p, s−ΠP [p, s]⟩ ≤ 0 .

Proof. We start with a variational inequality from [50, Chapter
0.6, Corollary 1]:

⟨p⋆ −ΨP [r], r −ΨP [r]⟩ ≤ 0 , ∀r ∈ Rn ,

which is intuitive, considering the projection of a point onto
a convex set.

Apply the inequality to r = p+ δs, and further divide both
sides by δ > 0, then we arrive at〈

p⋆ −ΨP [p+ δs],
p+ δs−ΨP [p+ δs]

δ

〉
≤ 0 .

By taking the limit δ → 0+, the first term of the inner product
converges to p⋆ − p while the second term converges to s −
ΠP [p, s]. This completes the proof of the lemma. ■

Following Lemma 13, it can be readily verified that if any
trajectory of (38) does converges to an equilibrium point, it is
also a saddle point of S(x, y).

Lemma 14. Any equilibrium point of the projected saddle
flow dynamics (38) is a saddle point (x⋆, y⋆) ∈ D of S(x, y),
satisfying Definition 2.

Proof. Consider an equilibrium point (x⋆, y⋆) subject to[
ΠX [x⋆,−∇xS(x⋆, y⋆)]

ΠY [y⋆,+∇yS(x⋆, y⋆)]

]
= 0 .

When either of the element-wise projection is inactive, it boils
down to the case without the projection discussed in Section II.
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Therefore, we focus on active projections. Without loss of
generality, suppose ΠX [x⋆,−∇xS(x⋆, y⋆)] = 0 holds. Based
on Lemma 13, we can readily attain the saddle property from
the following:

⟨x− x⋆,−∇xS(x⋆, y⋆)−ΠX [x⋆,−∇xS(x⋆, y⋆)]⟩ ≤ 0 ,

⇒ ⟨x− x⋆,−∇xS(x⋆, y⋆)⟩ ≤ 0 ,

⇒ S(x⋆, y⋆)− S(x, y⋆) ≤ 0 ,

which holds for x⋆ ∈ X and ∀x ∈ X . ■

Next, we formally generalize the sufficiency of observable
certificates (Theorem 1) in Section III-A and the sufficiency
of strong convexity-strong concavity (Theorem 10) in Section
IV-A to prove the asymptotic and exponential convergence,
respectively, of the projected saddle flow dynamics (35).

A. Asymptotic Convergence of Projected Saddle Flows

The sufficiency of observable certificates to guarantee the
asymptotic convergence of the projected saddle flow dynam-
ics (35) to a saddle point of S(x, y) in the feasible domain D
is summarized as follows.

Theorem 15. Let Assumptions 1, 2 and 8 hold. Then starting
from an arbitrary initial point (x(0), y(0)) ∈ D, the projected
saddle flow dynamics (35) asymptotically converge to some
saddle point (x⋆, y⋆) ∈ D of S(x, y).

Proof. Consider the same quadratic Lyapunov function (5).
Taking its Lie derivative along the trajectory (x(t), y(t))
of (35) yields

V̇ = (x− x⋆)
T ẋ+ (y − y⋆)

T ẏ

= (x− x⋆)
TΠX [x,−∇xS(x, y)]

+ (y − y⋆)
TΠY [y,+∇yS(x, y)]

= (x⋆ − x)T∇xS(x, y)− (y⋆ − y)T∇yS(x, y)

+ (x⋆ − x)T (−∇xS(x, y)−ΠX [x,−∇xS(x, y)])︸ ︷︷ ︸
≤0

+ (y⋆ − y)T (∇yS(x, y)−ΠY [y,∇yS(x, y)])︸ ︷︷ ︸
≤0

≤ (x⋆ − x)T∇xS(x, y)− (y⋆ − y)T∇yS(x, y)

≤ S(x⋆, y)− S(x, y)− (S(x, y⋆)− S(x, y))

= S(x⋆, y)− S(x, y⋆)

= S(x⋆, y)− S(x⋆, y⋆)︸ ︷︷ ︸
≤0

+S(x⋆, y⋆)− S(x, y⋆)︸ ︷︷ ︸
≤0

,

where the key step is to use Lemma 13 in the first inequality.
We then define the largest invariant set between the on-off

switches of the projection as

S := D0(x(0), y(0)) ∩
{
(x, y) | V̇ (x(t), y(t)) ≡ 0, t ∈ R≥0\T

}
,

(37)
where T consists of all the time epochs when the projection
switches on and off. According to the invariance principle for
Caratheodory systems [51], any trajectory of (35) converges to
S. Then Assumption 2 basically still implies S ⊂ H ⊂ E, i.e.,
the invariant set contains only equilibrium points. Following
the same discussion in the proof of Theorem 1, any trajectory

of (35) indeed asymptotically converges to an equilibrium
point, i.e., a saddle point of S(x, y). ■

B. Exponential Convergence of Projected Saddle Flows

We then generalize the role of a strongly convex-strongly
concave objective function in the exponential convergence of
the projected saddle flow dynamics (35).

Theorem 16. Let Assumptions 1, 5 and 8 hold. Then the
projected saddle flow dynamics (35) are globally exponentially
stable. More precisely, given the (unique) saddle point z⋆ and
any initial point z(0) ∈ D with z = (x, y),

∥z(t)− z⋆∥ ≤ ∥z(0)− z⋆∥e−ct

holds with the rate

c = min{µ, q} > 0 .

Proof. Lemma 13 allows the proof pipeline of Theorem 10 to
still apply here. In particular, given z = (x, y), consider again
the quadratic Lyapunov function

V (z) =
1

2
∥z − z⋆∥2 =

1

2
∥x− x⋆∥2 +

1

2
∥y − y⋆∥2 .

From the proof of Theorem 15, we already have its Lie
derivative with respect to (35) that satisfies

V̇ (z) ≤ (x⋆ − x)T∇xS(x, y)− (y⋆ − y)T∇yS(x, y)

≤ (z − z⋆)
TF (z) .

Following the analysis in the proof of Theorem 10, we can
directly obtain

V̇ (z) ≤ −µ∥x− x⋆∥2 − q∥y − y⋆∥2 ≤ −c∥z − z⋆∥2 = −2cV (z) .

Using the Comparison Lemma defined on the Dini derivative
of non-differentiable functions [10], we can still derive the
exponential convergence:

V (z(t)) ≤ e−2ctV (z(0))

⇐⇒ ∥z(t)− z⋆∥2 ≤ e−2ct∥z(0)− z⋆∥2
⇐⇒ ∥z(t)− z⋆∥ ≤ e−ct∥z(0)− z⋆∥ .

■

Theorems 15 and 16 significantly broaden the use of the
proposed conditions. In the next section we will demonstrate
how they could be applied to algorithm analysis and design
for solving constrained convex programs.

VI. APPLICATIONS TO CONSTRAINED CONVEX
OPTIMIZATION

We present four algorithms for constrained convex optimiza-
tion. Three of them are novel and inspired by the proposed
convergence results. Their asymptotic/exponential stability
either requires weaker conditions and/or exhibits superior
performance, i.e., faster convergence rate estimates. For an
existing algorithm based on proximal primal-dual dynamics,
we use our convergence results to develop a novel bound on
its convergence rate. All the algorithms are rooted in different
transformations of Lagrangian functions that aim to meet our
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convergence conditions while preserving saddle points. This
provides a systematic approach to algorithm design.

The Lagrangian of an inequality-constrained convex pro-
gram is, in general, convex in x ∈ Rn and linear in y ∈ Rm

≥0.
Due to non-negative dual variables, we will, in particular, focus
on the vector field projection of the form [s]+p := ΠRm

≥0
[p, s].

In this case, this projection can be implemented element-wise,
i.e.,

[sj ]
+
pj

=

{
sj , if pj > 0 ,

max {sj , 0} , otherwise ,

for j = 1, 2, . . . ,m, given p ∈ Rm
≥0 and s ∈ Rm. Therefore, in

this section we mainly look at the particular projected saddle
flow dynamics:

ẋ = −∇xS(x, y) , (38a)

ẏ = [+∇yS(x, y)]
+
y . (38b)

Along any solution trajectories, y(t) will be constrained to be
non-negative as long as it starts with a non-negative initial
point.

A. Augmented Primal-Dual Dynamics
Theorem 15 allows the state-augmentation method in Sec-

tion III-B to work for the projected saddle flow dynamics (38),
given the same observable certificate

ĥ(x, x̂, y, ŷ) =

[
ρ
2∥y − ŷ∥2
ρ
2∥x− x̂∥2

]
,

which consists of only the regularization terms, to satisfy As-
sumption 2. One interesting application is a novel augmented
primal-dual algorithm to solve linear programs.

Consider the following problem:

min
x∈Rn

cTx (39a)

s.t. Ax− b ≤ 0 : y ∈ Rm
≥0 (39b)

where c ∈ Rn, A ∈ Rm×n, and b ∈ Rm are given. The
problem (39) corresponds to a bi-linear Lagrangian

L(x, y) := cTx+ yT (Ax− b) .

We introduce virtual variables x̂ ∈ Rn, ŷ ∈ Rm to define the
following augmented Lagrangian:

L̂(x, x̂, y, ŷ) :=
ρ

2
∥x− x̂∥2 + cTx+ yT (Ax− b)− ρ

2
∥y − ŷ∥2 .

From Proposition 8 and Theorem 15, the projected saddle
flow dynamics (38) of the augmented Lagrangian suggest an
algorithm that globally asymptotically converges to one of its
saddle points:

ẋ = −c−AT y − ρ(x− x̂) , (40a)
˙̂x = ρ(x− x̂) , (40b)

ẏ = [Ax− b− ρ(y − ŷ)]
+
y , (40c)

˙̂y = ρ(y − ŷ) . (40d)

The augmented primal-dual dynamics (40) maintain the dis-
tributed structure where each agent i = 1, 2, . . . , n may locally
manage

ẋi = −ci −AT
i y − ρ(xi − x̂i) , (41a)

˙̂xi = ρ(xi − x̂i) , (41b)

and/or each dual agent j = 1, 2, . . . ,m may locally manage

ẏj = [Ajx− bj − ρ(yj − ŷj)]
+
yj

, (41c)
˙̂yj = ρ(yj − ŷj) , (41d)

with Ai and Aj denoting the ith column and the jth row
of A, respectively. Lemma 7 implies that any saddle point
of L̂(x, x̂, y, ŷ) corresponds to a saddle point of L(x, y), i.e.,
an optimal primal-dual solution to the linear program (39).
Therefore, the augmented primal-dual dynamics (40) can be
used as a distributed linear programming solver.

B. Proximal Primal-Dual Dynamics

Likewise, Theorem 16 suggests that the proximal saddle
flow dynamics in Section IV-B can be extended to handle
inequality-constrained convex programs, leading to the proxi-
mal primal-dual algorithm proposed in [27]. However, rather
than the asymptotic stability established therein, our theories
enable a novel analysis of the algorithm that provides a bound
on its convergence rate.

Consider the following problem:

min
x∈Rn

f(x) (42a)

s.t. g(x) ≤ 0 : y ∈ Rm
≥0 (42b)

Here f : Rn 7→ R is continuously differentiable and convex.
g : Rn 7→ Rm is a vector-valued function, and gj(x),
j = 1, 2, . . . ,m, is convex with locally Lipschitz gradient.
We define the standard Lagrangian:

L(x, y) := f(x) + yT g(x) ,

and its surrogate function using proximal regularization:

L̃(u, y) := min
x∈Rn

{
f(x) + yT g(x) +

ρ

2
∥x− u∥2

}
=f(x̃(u, y)) + yT g(x̃(u, y)) +

ρ

2
∥x̃(u, y)− u∥2 ,

(43)
where x̃(u, y) is the unique minimizer or the unique solution
to the following first-order optimality condition:

H(x, u, y) = 0 , (44)

with

H(x, u, y) := ∇f(x) + [∂xg(x)]
T y + ρ(x− u) . (45)

Note that here ∂xg(x) is the Jacobian matrix of g(x).
The proximal primal-dual dynamics, i.e., the projected sad-

dle flow dynamics (38) of L̃(u, y),

u̇ = ρu− ρx̃(u, y) , (46a)

ẏ =
[
g(x̃(u, y))

]+
y
, (46b)

enjoy exponential convergence to a (unique) saddle point if
the following assumption holds.

Assumption 9. The function f(x) is µ-strongly convex with l-
Lipschitz gradient, i.e., lI ⪰ ∇2f(x) ⪰ µI wherever ∇2f(x)
is defined. The Jacobian matrix ∂xg(x) is full row rank
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with σI ⪰ ∂xg(x)[∂xg(x)]
T ⪰ κI , and locally Lipschitz

continuous row-wise.

Remark 6. ∂xg(x) being full row rank implies that the
linear independence constraint qualification is satisfied, and
the saddle point is unique.

Given Assumption 9, we can derive the partial derivatives
of x̃(u, y) as

∂ux̃ = −(∂xH)−1∂uH

= ρ

(
∇2f(x) + ρI +

m∑
j=1

yj∇2gj(x)

)−1

,
(47a)

∂yx̃ = −(∂xH)−1∂yH

= −
(
∇2f(x) + ρI +

m∑
j=1

yj∇2gj(x)

)−1

[∂xg(x)]
T ,

(47b)

which imply the second-order partial derivatives of L̃(u, y):

∂2
uuL̃ = ρI − ρ∂ux̃ ⪰ µρ

µ+ ρ
I ≻ 0 , (48a)

∂2
yyL̃ = ∂xg(x)∂yx̃

⪯ −∂xg(x)

(
lI + ρI +

m∑
j=1

yj∇2gj(x)

)−1

[∂xg(x)]
T

≺ 0 .
(48b)

Here we have used the fact of yj ≥ 0 and ∇2gj(x) ⪰ 0, ∀j =
1, 2, . . . ,m.

Recall the analysis in (26) used to establish saddle flows’
exponential convergence. Given the saddle point (u⋆, y⋆) of
L̃(u, y), (48) suffices to guarantee that the following quadratic
Lyapunov function

Ṽ (u, y) :=
1

2
∥u− u⋆∥2 +

1

2
∥y − y⋆∥2

is non-increasing along any trajectories of the proximal primal-
dual dynamics (46). As a result, given an arbitrary initial
point (u(0), y(0)), the trajectory of (46) is bounded and
contained in an invariant domain

D̃0(u(0), y(0)) :=
{
(u, y) | Ṽ (u, y) ≤ Ṽ (u(0), y(0))

}
,

which is compact and convex since Ṽ (u, y) is radially un-
bounded. Suppose

∥y∥ ≤ ζ(u(0), y(0)) ,

∇2gj(x) ⪯ γ(u(0), y(0))I , ∀j = 1, 2, . . . ,m ,

hold for any point (u, y) ∈ D̃0(u(0), y(0)). Then along the
trajectory starting from (u(0), y(0)),

∂2
yyL̃ ⪯ − κ

l + ρ+mζ(u(0), y(0))γ(u(0), y(0))
I ≺ 0 (49)

always holds.
Akin to Theorem 16, it can thus be shown that the proximal

primal-dual dynamics (46) are semi-globally exponentially
stable. In other words, given the unique saddle point w⋆ and
any arbitrary initial point w(0) ∈ Rn ×Rm

≥0 with w = (u, y),

∥w(t)− w⋆∥ ≤ ∥w(0)− w⋆∥e−ct

holds with the rate

c = min

{
µρ

µ+ ρ
,

κ

l + ρ+mζ(w(0))γ(w(0))

}
> 0 , (50)

which is initial point-dependent. Meanwhile, according to [27,
Theorem 5], the unique saddle point of L̃(u, y) is also the
saddle point of L(x, y), i.e., the unique optimal primal-dual
solution to the convex program (42).

C. Preconditioned Primal-Dual Dynamics

In light of the strong convexity-strong concavity condition
in Theorems 10 and 16, we have discussed the use of the
proximal methods in Sections IV-B and VI-B to achieve the
exponential convergence of saddle flows. As observed in both
cases, there is a bottleneck for the estimated convergence rate

c ≤ µρ

µ+ ρ
< µ ,

i.e., the strong convexity constant µ. We propose in this
subsection a new algorithm that employs a change of variables
to alter the condition number of the integrand (matrix) in (26)
such that an accelerated convergence rate as fast as µ can be
achieved.

Consider the following problem:

min
x∈Rn

f(x) (51a)

s.t. Ax− b ≤ 0 : y ∈ Rm
≥0 (51b)

where f : Rn 7→ R is continuously differentiable and convex,
and A ∈ Rm×n and b ∈ Rm are given in the affine constraints.
Define its (weighted) Lagrangian as

L(x, y) := f(x) + ηyT (Ax− b), (52)

where η > 0 is a constant. We propose the following change
of variables (with abuse of the notation u)

u := x+ αAT y (53)

to transform L(x, y) into

L̃(u, y) := f(u−αAT y)+ηyT (Au− b)−ηα∥AT y∥2 , (54)

where α > 0 is also a constant. This creates an extra quadratic
term in y and obviously, L̃(u, y) is still convex-concave. In
fact, (x⋆, y⋆) is a saddle point of L(x, y) if and only if (u⋆, y⋆)
is a saddle point of L̃(u, y) with u⋆ = x⋆ + αAT y⋆, which
follows from the equivalence below:{

∇xL(x⋆, y⋆) = 0

[∇yL(x⋆, y⋆)]
+
y = 0

⇐⇒

∇uL̃(u⋆, y⋆) = 0[
∇yL̃(u⋆, y⋆)

]+
y
= 0

Since the problem (51) is a special case of (42), we show
that given the same assumption below (Assumption 9 for the
problem (51)), the projected saddle flow dynamics (38) of
L̃(u, y),

u̇ = −∇f(u− αAT y)− ηAT y , (55a)

ẏ = [−αA∇f(u− αAT y) + η(Au− b)− 2ηαAAT y]+y ,
(55b)
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converge exponentially to a unique saddle point with a rate as
fast as µ.

Assumption 10. The function f(x) is µ-strongly convex
with l-Lipschitz gradient, i.e., lI ⪰ ∇2f(x) ⪰ µI wher-
ever ∇2f(x) is defined. The matrix A is full row rank
with σI ⪰ AAT ⪰ κI .

Given Assumption 10, we can readily verify the strong
convexity-strong concavity of L̃(u, y), as along as the tunable
constants η and α are properly chosen subject to 2η > lα:

∂2
uuL̃ = ∇2f(u− αAT y) ⪰ µI ≻ 0 , (56a)

∂2
yyL̃ = α2A∇2f(u− αAT y)AT − 2ηαAAT

= A
(
α2∇2f(u− αAT y)− 2ηαI

)
AT

⪯ A(lα2 − 2ηα)IAT

⪯ −
(
2ηα− lα2

)
κI

≺ 0 .

(56b)

Following Theorem 16, (56) implies that the preconditioned
primal-dual dynamics (55) are globally exponentially stable,
i.e., given the unique saddle point w⋆ and any arbitrary initial
point w(0) ∈ Rn × Rm

≥0 with w = (u, y),

∥w(t)− w⋆∥ ≤ ∥w(0)− w⋆∥e−ct

holds with the rate

c = min
{
µ,

(
2ηα− lα2

)
κ
}
> 0 .

Remark 7. We can always pick η and α to satisfy 2η >
lα+ µ

κα , i.e.,
(
2ηα− lα2

)
κ > µ, such that

c = min
{
µ, (2ηα− lα2)κ

}
= µ

holds. In this way, the preconditioned primal-dual dynamics
(55) are guaranteed to converge with a faster rate than the
one obtained for the proximal primal-dual dynamics (46).

Due to the linear coordinate transformation, we can also
directly work with the original primal-dual variables (x, y) by
converting the preconditioned primal-dual dynamics (55) to
the following:

ẋ =− αAT [−αA
(
∇f(x) + ηAT y

)
+ η(Ax− b)]+y (57a)

−∇f(x)− ηAT y , (57b)

ẏ =[−αA
(
∇f(x) + ηAT y

)
+ η(Ax− b)]+y . (57c)

Essentially (57), inspired by

ẋ := u̇− αAT ẏ ,

yields a trajectory (x(t), y(t)) that satisfies

x(t) ≡ u(t)− αAT y(t)

for any trajectory (u(t), y(t)) of the preconditioned primal-
dual dynamics (55). Thus, given Assumption 10, (57) exponen-
tially converges to the unique saddle point (x⋆, y⋆) of L(x, y)
with x⋆ = u⋆ − αAT y⋆. Note that (x⋆, ηy⋆) is the unique
optimal primal-dual solution to the convex program (51).

Proposition 17. Let Assumption 10 hold. Then the dynam-
ics (57) are globally exponentially stable, given any η > 0 and

α > 0 that satisfy 2η > lα + µ
κα . More precisely, given the

(unique) saddle point z⋆ and any initial point z(0) ∈ Rn×Rm
≥0

with z = (x, y),

∥z(t)− z⋆∥ ≤ K∥z(0)− z⋆∥e−µt

holds with K := max{2, 2σα2 + 1}.

Proof. We start with the following inequalities:

∥x(t)− x⋆∥2

= ∥(u(t)− u⋆)− αAT (y(t)− y⋆)∥2

≤ 2∥u(t)− u⋆∥2 + 2α2∥AT (y(t)− y⋆)∥2
≤ 2∥u(t)− u⋆∥2 + 2σα2∥y(t)− y⋆∥2

(58)

and
∥u(t)− u⋆∥2

= ∥(x(t)− x⋆) + αAT (y(t)− y⋆)∥2

≤ 2∥x(t)− x⋆∥2 + 2α2∥AT (y(t)− y⋆)∥2
≤ 2∥x(t)− x⋆∥2 + 2σα2∥y(t)− y⋆∥2 .

(59)

Recall that here σ is the largest eigenvalue of AAT from
Assumption 10. Then given w = (u, y), we are able to derive

∥z(t)− z⋆∥
≤

√
2∥u(t)− u⋆∥2 + (2σα2 + 1)∥y(t)− y⋆∥2

≤
√
K∥w(t)− w⋆∥

≤
√
K∥w(0)− w⋆∥e−µt

≤
√
K
√
2∥x(0)− x⋆∥2 + (2σα2 + 1)∥y(0)− y⋆∥2e−µt

≤ K∥z(0)− z⋆∥e−µt ,

where the first inequality uses (58), the third inequality uses
the exponential stability of the preconditioned primal-dual
dynamics (55), and the fourth inequality uses (59). ■

Remark 8. Despite the strongly convex-linear Lagrangian
L(x, y), the coordinate transformation[

u

y

]
=

[
I αAT

0 I

][
x

y

]
renders strong convexity-strong concavity of the function in the
(u, y) space, and thus establishes the exponential stability of
the corresponding saddle flow dynamics. When the trajectories
are converted back to the original (x, y) space, they are still
exponentially convergent with the same rate, but the distance
to equilibrium is not monotonically decreasing due to the
constant K.

D. Reduced Primal-Dual Dynamics

To show the versatility of our condition for saddle flows’
exponential convergence, we further propose a reduced primal-
dual algorithm to solve the convex program (51) in Sec-
tion VI-C if it admits the following separable structure:

min
x∈Rn

f(x) := fs(xs) + fc(xc) (60a)

s.t. Asxs +Acxc − b ≤ 0 : y ∈ Rm
≥0 (60b)

where f : Rn 7→ R is additively separable into fs : Rns 7→ R
and fc : Rnc 7→ R. Accordingly, xs ∈ Rns and xc ∈ Rnc are
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the two separated subsets of variables with x = [xT
s , x

T
c ]

T ∈
Rn and n = ns + nc. Both fs(xs) and fc(xc) are assumed to
be continuously differentiable and convex. A ∈ Rm×n and
b ∈ Rm are given. As ∈ Rm×ns and Ac ∈ Rm×nc are
the submatrices of A = [As, Ac] that consist of the columns
corresponding to xs and xc, respectively.

We make the following assumption to proceed.

Assumption 11. The function fs(x) is µs-strongly convex
with ls-Lipschitz gradient, i.e., lsI ⪰ ∇2fs(x) ⪰ µsI
wherever ∇2fs(x) is defined. Similarly, lcI ⪰ ∇2fc(x) ⪰ µcI
holds wherever ∇2fc(x) is defined. The matrix As is full row
rank with σsI ⪰ AsA

T
s ⪰ κsI .

Instead of introducing regularization, we use the standard
Lagrangian

L(x, y) := fs(xs) + fc(xc) + yT (Asxs +Acxc − b) , (61)

but minimize it over xs to attain a reduced Lagrangian

L̄(xc, y) := min
xs∈Rns

L(x, y)

=fs(x̄s(y)) + fc(xc) + yT (Asx̄s(y) +Acxc − b)
(62)

with x̄s(y) being the unique minimizer given y such that

∇fs(x̄s(y)) +AT
s y = 0 (63)

holds.
The reduced Lagrangian L̄(xc, y) can be exploited due to

the properties below.

Lemma 18. Let Assumption 11 hold. Then L̄(xc, y) is strongly
convex-strongly concave with the Lipschitz gradient:

∇xc
L̄(xc, y) = ∇fc(xc) +AT

c y , (64a)
∇yL̄(xc, y) = Asx̄s(y) +Acxc − b . (64b)

Moreover, a point (x⋆, y⋆) is a saddle point of L(x, y)
if and only if (xc⋆, y⋆) is a saddle point of L̄(xc, y)
with [x̄T

s (y⋆), x
T
c⋆]

T = x⋆.

Proof. It follows from (63) and the strict convexity of fs that

x̄s(y) = (∇fs)
−1(−AT

s y) (65)

is Lipschitz. Denote the Jacobian matrix of (∇fs)
−1 as Js

wherever it is defined. Taking the derivative with respect to y
on both sides of (63) leads to the following:

(−∇2fs(x̄s(y))Js + I)AT
s ≡ 0 ⇐⇒ ∇2fs(x̄s(y))Js ≡ I

(66)
Then the gradient of L̄(xc, y) can be obtained using the

chain rule:

∇xc
L̄(xc, y) = ∇fc(xc) +AT

c y , (67a)

∇yL̄(xc, y) = −AsJT
s ∇fs(x̄s(y))−AsJT

s A
T
s y

+Asx̄s(y) +Acxc − b

= Asx̄s(y) +Acxc − b .

(67b)

This allows us to further compute the second-order partial
derivatives as

∂2
xcxc

L̄(xc, y) = ∇2fc(xc) ⪰ µc , (68a)

∂2
yyL̄(xc, y) = −AsJTs A

T
s ⪯ − 1

ls
AsA

T
s ⪯ −κs

ls
, (68b)

where JTs ⪰ 1
ls

follows from (66) with ∇2
xs
fs(xs) ⪯ ls.

Given the strong convexity-strong concavity of L̄(xc, y)
above, the correspondence between saddle points of L(x, y)
and L̄(xc, y) is straightforward from{

∇xL(x⋆, y⋆) = 0

[∇yL(x⋆, y⋆)]
+
y = 0

⇐⇒
{
∇xc

L̄(xc⋆, y⋆) = 0

∇yL̄ [(xc⋆, y⋆)]
+
y = 0

■

Lemma 18 allows us to focus on the projected saddle flow
dynamics (38) of L̄(xc, y):

ẋc = −∇xc
L̄(xc, y) , (69a)

ẏ =
[
+∇yL̄(xc, y)

]+
y
, (69b)

since such reduced primal-dual dynamics (69) converge expo-
nentially to its unique saddle point according to Theorem 16.
In other words, given the unique saddle point z̄⋆ and any initial
point z̄(0) ∈ Rnc × Rm

≥0 with z̄ := (xc, y),

∥z̄(t)− z̄⋆∥ ≤ ∥z̄(0)− z̄⋆∥e−ct

holds with the rate

c = min

{
µc,

κs

ls

}
> 0 .

Remark 9. The key enabler for the reduced primal-dual
dynamics (69) is the separability of x into xs and xc such that
all the necessary assumptions hold. It is possible that multiple
ways of separation exist, then the convergence rate could be
further optimized based on how the variables are split. In this
case, comparing the reduced primal-dual dynamics (69) with
the preconditioned primal-dual dynamics (55) might also sug-
gest a better option between the two since in general neither
of them dominates the other in terms of the convergence rate.

VII. SIMULATION RESULTS

A. Network Flow Optimization

We apply the augmented primal-dual dynamics (40) to
a network flow optimization problem, which is commonly
formulated as a linear program. Consider a minimum-cost
flow problem with a network specified in Fig. 1(a). Let V
and E denote the sets of the nodes and the directed edges,
respectively. x := (xij , (i, j) ∈ E) ∈ R|E| is the variable
defined as the amount of flow on each edge (i, j) from node i
to node j. c ∈ R|E| and b ∈ R2|E| denote the unit cost of flow
transmission and the capacity for all the edges, respectively.
Note that b is the concatenation of upper bounds (given in
Fig. 1(a)) and lower bounds (set to 0). d ∈ R|V| denotes
the nodal (net) injection. Then given the incidence matrix
B ∈ R|V|×|E| and the matrix A := diag(I|E|,−I|E|), the
minimum-cost flow problem is formulated as follows:

min
x∈R|E|

cTx (70a)

s.t. Bx− d = 0 : yE ∈ R|V| (70b)

Ax− b ≤ 0 : yI ∈ R2|E|
≥0 (70c)

13



(a)

0 50 100 150 200 250
Time

−5

0

5

10

15

20

V
ar

ia
b

le
x

(b)

0 25 50 75 100 125 150 175
Time

−1

0

1

2

3

4

V
ar

ia
b

le
s

(c)

0 25 50 75 100 125 150 175
Time

10−7

10−5

10−3

10−1

101

D
is

ta
n

ce
to

eq
u

ili
b

ri
u

m α = 0.01/l

α = 0.1/l

α = 0.5/l

α = 1.0/l

α = 1.5/l

α = 1.9/l

(d)

Fig. 1: (a) Network specification. The nodes are parameterized by injection (positive) or withdrawal (negative), and the edges
are parameterized by capacity and unit cost. (b) Asymptotic convergence of trajectories for primal variable x with ρ = 0.05.
(c) Exponential convergence of trajectories for variables u (solid lines) and v (dashed lines) with α = 0.01

l . (d) Exponential
decay of distance to equilibrium

√
∥u(t)− u⋆∥2 + ∥v(t)− v⋆∥2 with varying α.

where the equality constraints enforce the flow conservation
while the inequality constraints enforce the flow capacity.

Given the linear programming formulation (70), the aug-
mented primal-dual dynamics (40) can be applied to attain an
optimal solution with asymptotic convergence guarantee. Note
the projection is only defined on yI . Fig. 1(b) shows three
stages of the convergence process. Initially, the trajectories
exhibit large-amplitude oscillations in the first 10 seconds, as
the system searches around for the region of optimal solutions.
The oscillations decay over the following 40 seconds. After
approximately 50 seconds, the trajectories start to center
around the equilibrium, and finally asymptotically converge to
an optimal solution of the minimum flow cost problem (70).

B. Lasso Regression

We use a classical Lasso regression problem to test the
performance of an algorithm that combines the precondition-
ing method in Section VI-C with proximal regularization.
Consider the following problem

min
x̂∈Rn

f̂(x̂) + λ∥x̂∥1 (71)

where λ is a constant. f̂ : Rn 7→ R is convex with l-Lipschitz
gradient, i.e., lI ⪰ ∇2f̂(x̂) ⪰ 0 wherever ∇2f̂(x̂) is defined.

To handle the non-smooth term ∥x̂∥1, we define x̄+
i :=

max{x̂i, 0} and x̄−
i = max{−x̂i, 0} for ∀i = 1, 2, . . . , n,

such that

x̂i = x̄+
i − x̄−

i , (72a)

|x̂i| = x̄+
i + x̄−

i , (72b)

hold. Denote x̄+ := (x̄+
i , i = 1, 2, . . . , n) ∈ Rn, x̄− :=

(x̄−
i , i = 1, 2, . . . , n) ∈ Rn, and x̄ := [(x̄+)T , (x̄−)T ]T . The

Lasso regression problem (71) can be transformed equivalently
into

min
x̂∈Rn, x̄∈R2n

f̂(x̂) + λ1T x̄ (73a)

s.t. x̂+ Cx̄ = 0 : ŷ ∈ Rn (73b)
x̄ ≥ 0 : ȳ ∈ R2n

≥0 (73c)

with C = [−In, In]. Given x := [x̂T , x̄T ]T and y :=
[ŷT , ȳT ]T , we can define its Lagrangian as

L(x, y) : = f̂(x̂) + λ1T x̄+ ŷT (x̂+ Cx̄)− ȳT x̄

= f̂(x̂) + λ1T x̄︸ ︷︷ ︸
=:f(x)

+yT

[
In C

0 −I2n

]
︸ ︷︷ ︸

A

x . (74)

Note that the matrix A is full row rank. Thus we bound the
eigenvalues of AAT by σI ⪰ AAT ⪰ κI .

The Lagrangian (74) is only convex-linear. We propose
an algorithm that implements the primal-dual dynamics of a
transformed function. The transformation involves two steps:
first use the change of variables (53) to attain a convex-strongly
concave function and then apply a more general version of
proximal regularization on the dual variable y to attain the
final function (recall our analysis of the proximal method in
Section IV-B showing the “shift” of strong convexity).

More specifically, with the change of variables (53), the
Lagrangian (74) is transformed into

LC(u, y) := f(u− αAT y) + yTAu− α∥AT y∥2 . (75)

By properly choosing the constant α > 0 such that α < 2
l , we

can verify the convexity-strong concavity of LC(u, y) with

∂2
uuL

C(u, y) = ∇2f(u− αAT y) ⪰ 0 , (76a)

∂2
yyL

C(u, y) = α2A∇2f(u− αAT y)AT − 2αAAT

= A
(
α2∇2f(u− αAT y)− 2αI

)
AT

⪯ A(lα2 − 2α)AT

⪯ −
(
2α− lα2

)
κI

≺ 0 .

(76b)

In terms of LC(u, y), we apply the following proximal
method on y to attain the final transformed function:

LP (u, v) := max
y∈Rn×R2n

≥0

{
LC(u, y)− ρ

2
∥y − v∥2

}
=f(u− αAT ỹ) + ỹTAu− α∥AT ỹ∥2 − ρ

2
∥ỹ − v∥2 ,

(77)
where ỹ is a shorthand of ỹ(u, v), denoting the unique maxi-
mizer given (u, v).
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We thus employ the saddle flow dynamics of LP (u, v), i.e.,

u̇ = −∇f
(
u− αAT ỹ(u, v)

)
−AT ỹ(u, v) , (78a)

v̇ = ρỹ(u, v)− ρv . (78b)

to solve the Lasso regression problem (71), since whenever
(78) converges to an equilibrium point (u⋆, v⋆), we can easily
recover (x⋆ = u⋆ − αAT v⋆, y⋆ = v⋆) as an optimal solution
to (71). Note that the maximizer ỹ(u, v) can be efficiently
computed using numerical methods since ∇f(·) is strictly
monotone.

In particular, we specify f̂(x̂) := 1
2∥Ax̂ − b∥2, where

A ∈ Rm×n and b ∈ Rm could represent a collection of known
input and output data of size m, respectively. Fig. 1(c) shows
the trajectories of (78) that converge rapidly in approximately
40 seconds. Fig. 1(d) further shows the exponentially decaying
distance to the equilibrium as we implement the dynamics
(78). Moreover, the decaying rate increases in the tunable
constant α. While the more general version of proximal regu-
larization (77) goes beyond our analysis in Section IV-B due to
the constrained feasible region Rn×R2n

≥0 for y, the numerical
results suggest that the desirable exponential stability of the
saddle flow dynamics (78) may still hold, thus opening the
path for future extensions to further relax our conditions.

VIII. CONCLUSION

This paper focuses on the convergence behavior of saddle
flow dynamics and provides a unified analysis that leads to
two novel conditions for asymptotic and exponential conver-
gence. The first condition is an observable certificate which, if
identified for a convex-concave function, guarantees the saddle
flow dynamics to converge asymptotically. It generalizes some
existing conditions and further inspires the design of a novel
augmented algorithm that only requires minimal assumptions
on convexity-concavity for asymptotic convergence and even
works for bilinear functions. The second condition is the
strong convexity-strong concavity of an objective function
which suffices to guarantee saddle flows’ global exponential
stability and provides a convenient lower-bound estimate of the
rate of convergence. The insight also reveals how proximal
regularization on a strongly convex-concave function leads
to exponential convergence by “shifting” some of the strong
convexity to make the resulting function also strongly concave.
Our analysis and results can be extended to a projected version
of saddle flow dynamics, the trajectories of which are con-
strained within a closed convex polyhedron. Such an extension
allows the immediate application of our theory to develop
and analyze primal-dual algorithms for constrained convex
optimization. This leads to three novel algorithm designs and
one novel bound on the convergence rate of proximal primal-
dual algorithms, highlighting weaker convergence conditions
and/or faster convergence rates. Finally, we run extensive
numerical experiments with our new algorithms applied to
solve network flow optimization and Lasso regression. The
simulations validate our theoretical development and also
suggest potential extensions.
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