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Abstract— Barrier functions constitute an effective tool for
assessing and enforcing safety-critical constraints on dynamical
systems. To this end, one is required to find a function h that
satisfies a Lyapunov-like differential condition, thereby ensuring
the invariance of its zero super-level set h≥0. This methodology,
however, does not prescribe a general method for finding the
function h that satisfies such differential conditions, which, in
general, can be a daunting task. In this paper, we seek to
overcome this limitation by developing a generalized barrier
condition that makes the search for h easier. We do this in
two steps. First, we develop integral barrier conditions that
reveal equivalent asymptotic behavior to the differential ones,
but without requiring differentiability of h. Subsequently, we
further replace the stringent invariance requirement on h ≥ 0
with a more flexible concept known as recurrence. A set is
(τ -)recurrent if every trajectory that starts in the set returns
to it (within τ seconds) infinitely often. We show that, under
mild conditions, a simple sign distance function can satisfy our
relaxed condition and that the (τ -)recurrence of the super-level
set h≥0 is sufficient to guarantee the system’s safety.

I. INTRODUCTION

The ability to enforce safety in a dynamical system is a
fundamental requirement for many engineering systems. Air-
traffic control [1], life support devices [2], robotics [3], and
autonomous driving [4], are prominent examples of safety-
critical applications where a failing event can be catastrophic.
Informally, a system being safe implies that no "bad" event
will ever happen [5]. From a formal standpoint, verifying a
safety property usually involves an invariance agrument [6],
and thus, it is not surprising that guaranteeing the safety of a
dynamical system usually involves finding invariant sets, as
it is the case for backward reachable sets from reachability
theory [1] and barrier functions [7]–[9].

Barrier functions, particularly, have become a prominent
option. First proposed in [7], barrier functions build on
Nagumo’s invariance theorem [10] to establish the invariance
of a set C. Under this framework, one is requiblack to
find both the target set C and a function h, with C =
h≥0 := {x : h(x) ≥ 0}, that satisfies a differential
condition (c.f., e.g., (3)) which, among other things, renders
C invariant. The success of this approach is ingrained in the
flexibility its framework, which allows extensions to account
for the role of stochasticity [8], incorporate robustness guar-
antees [9], [11], and design safety controllers for systems
with inputs [12]. Leading to the so-called Control Barrier
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Function (CLF)–a generalization of Sontag’s Control Lya-
punov Function [13]–that can be combined with performance
requirements such as stabilization [14], [15]. We refer the
reader to [16] for a good recount of the history, theory,
and applications of CLFs. Unfortunately, despite the many
benefits of barrier functions, some limitations prevent their
widespread use. First, there is no a priori computationally
efficient method to find either the set C or the function h.
Though Sum-of-Squares (SoS) methods have been proposed
in the literature [17]–[19], such methods do not scale beyond
a few dimensions. Second, when the system to be controlled
is underactuated, finding the set C is highly non-trivial and
often renders very conservative solutions [20], [21].

The goal of this paper is to relax the conditions that
characterize BFs, intending to make the search for them an
easier undertaking. Our approach stems from the insight that
though invariance is a safety property, not every safety prop-
erty is an invariance one. In fact, despite the many benefits
that invariance has brought to control theory, e.g., Lyapunov
Theory, we argue that it is the invariance conditions on C
and the super-level sets of h that makes the search for barrier
functions intricate. From a theoretical standpoint, invariance
imposes stringent conditions on the geometry of the set C
that can be hard to meet for many parameterizations of h.
Moreover, from a practical standpoint, even when C and h are
found, enforcing invariance (strictly speaking) would require
solving a quadratic program instantaneously at all times [15].

To overcome these challenges, we seek to relax the
invariance condition on h and substitute it with the more
flexible notion of recurrence. A set is (τ -)recurrent if every
trajectory that starts in the set returns to it (within τ seconds)
infinitely often. τ -recurrent sets allow trajectories to leave the
set and thus constitute a strict relaxation of invariance—every
invariant set is τ -recurrent, but not the other way around.
Recent work has shown recurrence to be a powerful mecha-
nism for analyzing dynamical systems, including estimating
regions of attractions of stable equilibrium points [22] and
certifying stability via generalized Lyapunov conditions [23].
Note that, from an information theoretical viewpoint, making
a set τ -recurrent requires less information than to make it
invariant [24], thus making it a more beneficial search target.
We further refer the reader to [25], [26], where a similar
definition of recurrence (p-invariance) was introduced in the
context of constrained model pblackictive control.

Building on this literature, in this paper, we relax the con-
ditions defining classic barrier functions toward conditions
that render C τ -recurrent. We achieve this goal in two steps.
First, we introduce integral barrier conditions that eschew the
requirement for differentiability while providing the same
guarantees as classical barrier functions. Subsequently, we
replace the stringent invariance condition, a cornerstone of



classical and integral barrier functions, with the more flexible
concept of recurrence. Notably, we show that under mild
conditions, the existence of an exponential barrier func-
tion [19] is sufficient to guarantee that virtually any set that
contains the super-level set of that function, equipped with a
signed distance, satisfies our recurrent barrier conditions and
that despite allowing trajectories to leave, recurrent barrier
functions can be used to certified safety.

The remainder of this paper is structublack as follows:
Section II introduces preliminary definitions pertinent to
dynamical systems and safety and revisits classical barrier
conditions that will be utilized throughout this work. In
Section III, we detail the development of integral-based
barrier functions. This discussion is expanded in Section
IV, where we introduce and elaborate on the recurrence
conditions. Under these conditions, one can certify that a
super-level set of h is τ -recurrent, leading to the boundedness
of trajectories. In Section V, we demonstrate the generality
of the recurrence conditions, specifically showing that almost
every set would satisfy our recurrent barrier conditions with
a bounded time horizon τ . In Section VI, we argue that
recurrent sets are functionally equivalent to invariant sets
and, thus, can be indicative of safety. Finally, we conclude
in Section VII.
Notation: Given a set S and an arbitrary norm (denoted by
∥ ·∥), we use sd(x, S) to denote the signed distance between
a point x and S, i.e.,

sd(x, S) :=

{
infy∈∂S ∥y − x∥ if x ̸∈ S

− infy∈∂S ∥y − x∥ if x ∈ S.

We further use PS(x) to denote the set of projections of a
point x on a non-empty closed set S, i.e.,

PS(x) := argmin
y∈S

∥y − x∥.

We respectively use [x]+ and [x]− to denote the projection of
a number x ∈ R on the set of all non-negative real numbers
and the set of all non-positive real numbers, respectively. For
a continuous function h, we use h<0 (h≤0), h>0 (h≥0), and
h=0 to denote the open (closed) sub-level set, open (closed)
super-level set and closed level set, respectively.

II. PRELIMINARY RESULTS

Throughout the paper, we consider a continuous-time
dynamical system described using the following ordinary
differential equation:

ẋ = f(x) , (1)

where x ∈ D ⊂ Rn is the state, and the map f : D → Rn

is a continuous and locally Lipschitz function defined over
a domain D. Given an initial state x0, we use ϕ(t, x0) to
denote the solution of (1). We assume system 1 is forward
complete, which is specified in the following assumption.

Assumption 1 (Forward Completeness). For any x ∈ D, the
trajectory ϕ(·, x) is defined for all t ∈ [0,∞).

In the following, we formally define the notions of safety
and invariance.

Definition 1 (Safety). Let Xu ⊆ D be a set of unsafe states,
a trajectory ϕ(t, x0) of (1) is unsafe if there exists a time
t ≥ 0 such that ϕ(t, x0) ∩ Xu ̸= ∅.

We say that a set Xs ⊆ D is a safe state space region if
there are no unsafe trajectories starting from Xs.

Definition 2 (Invariant Set). A set S ⊆ D is invariant w.r.t.
(1) if and only if:

x0 ∈ S =⇒ ϕ(t, x0) ∈ S, ∀ t ∈ R≥0.

The notion of invariance is closely related to the barrier
function methods that characterize safe state space regions.
By trapping trajectories on level sets of a function, one can
ensure the system’s safety whenever its initial state belongs
to an invariant set S that does not intersect with Xu.

Next, we review some classic formulations of barrier
functions that certify the invariance of their super-level
sets. These formulations require the barrier functions to be
differentiable, which we will relax in the following sections.
We start with the most basic formulation: Nagumo’s. It only
requires the time derivative of the barrier function h, which
is also its Lie derivative along f , to be non-negative at any
state of its zero level set h=0. That implies that whenever
a trajectory reaches the boundary of that set h≥0 from its
interior, h must not decrease. Thus, the trajectory must
remain in the set, ensuring the latter’s invariance.

Theorem 1 (Nagumo’s Barrier Functions). [27, Th 3.1]
Consider a dynamical system (1) and a differentiable func-
tion h : D ⊂ Rn → R, then h is a Nagumo’s Barrier
Function (NBF) satisfying:

Lfh(x) := lim
t→0

h(ϕ(t, x))− h(x)

t
≥ 0, ∀x ∈ h=0, (2)

if and only if the super-level set h≥0 is invariant.

The following theorem adds an additional constraint to
Nagumo’s definition that further lower-bounds the rates at
which h can at most decrease along the trajectories starting
from the interior of its super-level set and the least at which
it should increase along the trajectories starting from the
exterior of that set. That ensures safe trajectories approach
the boundary slowly, if at all, and possibly unsafe ones
converge to the safe set fast enough, ensuring its stability.
The latter is not guaranteed by Nagumo’s version.

Definition 3 (Extended class K function). [15, Def 2]
A continuous function ζ := (−b, a) → (−∞,∞) is said to
belong to extended class K for some a, b > 0 if it is strictly
increasing and ζ(0) = 0.

Theorem 2 (Zeroing Barrier Functions). [15, Prop 1]
Consider a differentiable function h : D → R and an
extended class K function ζ. Assume there exists a super-
level set D0 := h≥−c ⊆ D for some c ≥ 0 such that:

Lfh(x) ≥ −ζ(h(x)), ∀x ∈ D0, (3)

then:

(i) h is called a Zeroing Barrier Functions (ZBF), and the
super-level set h≥0 is invariant.



(ii) whenever x ∈ h<0∩D0, then as long as h(ϕ(t, x)) < 0,
h(ϕ(t, x)) must monotonically increase to zero, at least,
with a positive rate of −ζ(h(ϕ(t, x))), and

(iii) whenever h(ϕ(t, x)) > 0, then h(ϕ(t, x)) may decrease
to zero, at most, with a negative rate of −ζ(h(ϕ(t, x))).

The bounds on the boundary-approaching rates of Zeroing
barrier functions in Theorem 2 are non-uniform and state-
dependent. In the following remark and the rest of the
section, we describe the special case when ζ is a (piece-wise)
linear function of h(x), which results in uniform exponential
bounds on the evolution of h(ϕ(t, x)).

Remark 1. [15, Remark 6] A special case of (3) is:

Lfh(x) ≥ −αh(x), ∀x ∈ D0, (4)

for some α > 0. Since ζ(s) = αs is an extended class
K function, the super-level set h≥0 is invariant as stated
in Theorem 2. This formulation is commonly used since it
leads to a convex problem that can be efficiently solved using
techniques like SoS programming [17], [19].

The following lemma provides the formal statement on the
exponential bounds on the convergence rates of the function
value h(ϕ(t, x)) under condition (4).The proof is analogous
to [19, Thm 1], with an extension to consider all states x ∈
h≤−c instead of just h≤0.

Lemma 1. Consider a continuous function h : D → R,
an α > 0, and a super-level set D0 := h≥−c for some
c ≥ 0, then condition (4) implies the following exponential
convergence result:

h(ϕ(t, x)) ≥ e−αth(x), ∀t ≥ 0, x ∈ D0.

Proof. Rearranging condition (4) gives:

g(x) := Lfh(x)− (−α)h(x) ≥ 0, ∀x ∈ D0

We then have the following differential equation:

dh(ϕ(t, x))

dt
= Lfh(ϕ(t, x))

= g(ϕ(t, x)) + (−α)h(ϕ(t, x)) (5)

Solving (5) gives:

h(ϕ(t, x)) = e−αt(

∫ t

0

g(ϕ(s, x))eαsds+ h(x)). (6)

Note that condition (4) ensures h≥0 is invariant and the
function value h(ϕ(t, x)) is strictly increasing along the
trajectory starting from x ∈ h<0 ∩ D0. Therefore, D0 is
also an invariant set, and thus∫ t

0

g(ϕ(s, x))ds ≥ 0, ∀t ≥ 0, x ∈ D0. (7)

By applying (7) to (6), one can conclude that:

h(ϕ(t, x)) ≥ e−αth(x), ∀t ≥ 0, x ∈ D0,

and the result follows.

We end this section by generalizing the case in Remark 1
to one where the bounds on the different sides of the

boundary differ, calling the resulting functions exponential
barrier functions (EBFs). The need for this generalization
will become clear in Section V, where we show the gener-
ality of our newly developed conditions.

Theorem 3 (Exponential Barrier Functions). Consider a
differentiable function h : D ⊂ Rn → R, and parameters
α, β > 0. Assume there exists a super-level set D0 := h≥−c

for some c ≥ 0 such that:

Lfh(x) ≥ −(β[h(x)]− + α[h(x)]+), ∀x ∈ D0, (8)

then:
(i) we call h an Exponential Barrier Function (EBF), the

super-level set h≥0 is positively invariant,
(ii) whenever x ∈h<0∩D0, then as long as h(ϕ(t, x)) <

0, h(ϕ(t, x)) must monotonically increase to zero, at
least, with a positive linear rate of −βh(ϕ(t, x)), which
implies,

h(ϕ(t, x)) ≥ e−βth(x), ∀t ≥ 0, x ∈ h<0 ∩D0, (9)

and
(iii) whenever x∈h>0, then h(ϕ(t, x)) may decrease to zero,

at most, with a negative linear rate of −αh(ϕ(t, x)),
which implies,

h(ϕ(t, x)) ≥ e−αth(x), ∀t ≥ 0, x ∈ h≥0. (10)

Proof. (i): Starting from any initial state x ∈ h=0, condition
(8) requires Lfh(x) ≥ 0, i.e., condition (2). According to
Theorem 1, this guarantees the invariance of the super-level
set h≥0.

(ii): As demonstrated in the proof of Lemma 1, the
following two conditions hold for all x ∈ D0 ∩ h<0:

g(x) = Lfh(x)− (−β)h(x) ≥ 0,

h(ϕ(t, x)) = e−βt(

∫ t

0

g(ϕ(s, x))eβsds+ h(x)). (11)

Note that the super-level set h≥0 is invariant, and the func-
tion value h(ϕ(t, x)) increases strictly along the trajectory
starting from any x ∈ D0 ∩ h<0. Hence, D0 is an invariant
set.

Now, starting from x ∈ h<0∩D0, if there is a time t′ with
h(ϕ(t′, x)) ≥ 0, then condition (9) is automatically satisfied
for any time t ≥ t′. Thus, w.l.o.g. we concentrate on the
scenario where h(ϕ(t, x)) < 0 for all t ≥ 0. In this case,
ϕ(t, x) remains within D0 ∩ h<0, and consequently:∫ t

0

g(ϕ(s, x))ds ≥ 0, ∀t ≥ 0. (12)

By applying (12) to (11), we successfully verify (10).
(iii): This result is trivially obtained by applying Lemma 1

with D0 = h≥0.

We finalize by reminding that all the results of this section
require the differentiability of h. In the next section, we relax
this requirement.

III. INTEGRAL BARRIER FUNCTIONS

This section examines integral-based versions of the clas-
sic barrier function formulations previously discussed. We



will explore how these integral forms relate to earlier for-
mulations and their implications for the invariance of a
set. Specifically, in Theorems 4, 5, and 6, we present the
integral-based versions of the barrier function formulations
of Theorems 1, 2, and 3, respectively. Additionally, we
discuss in Remarks 2, 3, and 4 the equivalence between
the integral formulations and classical ones when the barrier
function is differentiable.

Theorem 4 (Integral Nagumo’s Barrier Functions). Consider
a continuous function h : D → R. The super-level set h≥0

is invariant if and only if h satisfies:

h(ϕ(t, x)) ≥ 0, ∀x ∈ h=0, t ≥ 0, (13)

in which case we call h an Integral Nagumo’s Barrier
Function (INBF).

Proof. (=⇒): This direction follows directly from the defi-
nition of the invariant set. Precisely, the super-level set h≥0

being invariant implies:

ϕ(t, x) ∈ h≥0 =⇒ h(ϕ(t, x)) ≥ 0,

for all t ≥ 0 and x ∈ h≥0.
(⇐=): Suppose h≥0 is not invariant. Then there must exist

an initial state x ∈ h≥0 and a time instant t∗ ≥ 0, such that
ϕ(t∗, x) ̸∈ h≥0. We then use t′ to denote the last time the
trajectory ϕ(t, x) stays within the closed set h≥0 before t∗,
i.e.,

x′ := ϕ(t′, x) ∈ h=0 and h(ϕ(t, x)) < 0, ∀t ∈ (t′, t∗].

This contradicts condition (13), which requires h(ϕ(t, x′))
to always remain non-negative when starting from h(x′) =
h(ϕ(t′, x)) = 0. Therefore, the result follows.

Remark 2. Theorem 4 only requires h to be continuous.
If h is also differentiable, then (13) is equivalent to (2).
Specifically, starting from an arbitrary point x ∈ h=0,
condition (13) implies that h(ϕ(t, x)) ≥ 0 for all t ≥ 0.
Therefore, h(ϕ(t, x))− h(x) ≥ −h(x) = 0, ∀x ∈ h=0, t ≥
0. Then, by evaluating the Lie derivative:

Lfh(x) = lim
t→0

h(ϕ(t, x))− h(x)

t
≥ 0,

condition (2) follows.
For the other direction, note that condition (2) implies h≥0

is invariant, which is equivalent to condition (13).

In the following theorem, we relax the differentiability
conditions on zeroing barrier functions recalled in Theorem 2
and define the integral zeroing barrier functions.

Theorem 5 (Integral Zeroing Barrier Functions). Consider
a continuous function h : D ⊂ Rn → R, and an extended
class K function ζ. Assume there exists a super-level set
D0 := h≥−c for some c ≥ 0 such that:

h(ϕ(t, x)) +

∫ t

0

ζ(h(ϕ(s, x)))ds ≥ h(x), (14)

for all t ≥ 0 and x ∈ D0, then:
(i) we call h an Integral Zeroing Barrier Function (IZBF),

the super-level set h≥0 is invariant, and

(ii) the conditions (ii)-(iii) stated in Theorem 2 are satisfied.

Proof. (i): Suppose h≥0 is not invariant. As stated in the
proof of Theorem 4, there exists a t ≥ 0 and x ∈ h=0 such
that:

h(ϕ(s, x)) < 0, ∀s ∈ (0, t].

However, condition (14) requires that h(ϕ(t, x)) ≥ h(x) −∫ t

0
ζ(h(ϕ(s, x)))ds, and the right-hand side would be non-

negative in this case. This is a contradiction.
(ii): We first evaluate the following Taylor expansion for

t around 0:∫ t

0

ζ(h(ϕ(s, x)))ds = 0 + ζ(h(ϕ(0, x)))t+ o(t).

This, together with condition (14), implies the following
bound on the convergence rate expressed in the form of the
lower-right Dini derivative [28]:

D+h(x) := lim inf
t→0

h(ϕ(t, x))− h(x)

t

≥ lim inf
t→0

−
∫ t

0
ζ(h(ϕ(s, x)))ds

t

= lim inf
t→0

0− ζ(h(ϕ(0, x)))t− o(t)

t
=− ζ(h(x)), ∀x ∈ D0.

Remark 3. Theorem 5 only requires h to be continuous. If h
is also differentiable, (14) is equivalent to (3), and thus the
asymptotic convergence results (ii)-(iii) stated in Theorem 2
are satisfied.

Precisely, condition (3) follows by evaluating the following
Lie derivative everywhere under condition (14):

Lfh(x)=lim
t→0

h(ϕ(t, x))−h(x)

t
≥ lim

t→0

−
∫ t

0
ζ(h(ϕ(s, x)))ds

t

=lim
t→0

0− ζ(h(ϕ(0, x)))t− o(t)

t
= −ζ(h(x)).

For the other direction, condition (14) follows directly from
(3) by applying the ‘fundamental theorem of calculus II’
[29].

In the last theorem of this section, we relax the differentia-
bility conditions on exponential barrier functions introduced
in Theorem 3 and define the integral exponential barrier
functions.

Theorem 6 (Integral Exponential Barrier Functions). Con-
sider a continuous function h : D ⊂ Rn → R and
parameters α, β > 0. Assume there exists a super-level set
D0 := h≥−c for some c ≥ 0 such that:

h(ϕ(t, x)) ≥ e−βt[h(x)]−+e−αt[h(x)]+, (15)

for all x ∈ D0 and t ≥ 0, then:
(i) we call h an Integral Exponential Barrier Function

(IEBF), the super-level set h≥0 is invariant, and
(ii) the conditions (ii)-(iii) stated in Theorem 3 are satisfied.

Proof. (i): Suppose h≥0 is not invariant. As stated in the
proof of Theorem 4, there exists a t ≥ 0 and x ∈ h=0 such



that:
h(ϕ(s, x)) < 0, ∀s ∈ (0, t].

This contradicts condition (15), which requires the function
value h(ϕ(t, x)) ≥ h(x)e−αt = 0 for all t ≥ 0. Therefore,
the result follows.

(ii): This part follows trivially given condition (15).

Remark 4. Theorem 6 only requires h to be continuous.
If h is also differentiable, then (15) is equivalent to (8). In
particular, condition (8) follows by evaluating the following
Lie derivative everywhere under condition (15), i.e.,

Whenever x ∈ h≥0 :

Lfh(x) = lim
t→0

h(ϕ(t, x))−h(x)

t
≥ lim

t→0

h(x)e−αt−h(x)

t

= h(x) lim
t→0

e−αt − 1

t
= −αh(x).

Similarily, whenever x ∈ D0 ∩ h<0 :

Lfh(x) = lim
t→0

h(ϕ(t, x))− h(x)

t
≥ −βh(x).

For the other direction, we have shown condition (8) implies
(15) in Theorem 3 part (ii-iii).

IV. RECURRENT BARRIER FUNCTIONS

We are now ready to provide a relaxation to the barrier
conditions that lead to the invariance of the super-level set
h≥0. To relax the notion of invariance, one must allow tra-
jectories to temporarily leave a set. Our recurrent condition,
first proposed in [22, Def 4], requires trajectories to return
to the set within a finite time, infinitely many times.

To be able to provide safety guarantees under recurrence,
we additionally require the trajectories to return back to the
set within a predefined finite duration every time they leave it.
This is formalized in a stronger notion of recurrence known
as τ -recurrence [22, Def 5].

Definition 4 (Recurrent and τ -Recurrent Sets).
A set S ⊆ Rn is recurrent w.r.t. (1), if for any x ∈ S and
t ≥ 0,

∃ t′ > t, s.t. ϕ(t′, x) ∈ S.

A set S ⊆ Rn is τ -recurrent w.r.t. (1), if for any x ∈ S , and
t ≥ 0,

∃ t′ > t, with t′ − t ∈ (0, τ ] s.t. ϕ(t′, x) ∈ S.

Note that, while not invariant, such a τ -recurrent set
guarantees that solutions starting in this set will visit it back
within τ -seconds infinitely often. In particular, by Definition
2, an invariant set is τ -recurrent for any τ > 0. Additionally,
a 0-recurrent set is invariant. Thus, Definition 4 generalizes
the notion of invariance by allowing the solution ϕ(t, x0) to
step outside the set S.

In the rest of this section, we generalize the aforemen-
tioned barrier function formulations into recurrent-based
versions that certify the τ -recurrence of the super-level set
h≥0. Specifically, in theorems 7, 8, and 9, we present the
recurrence-based versions of the integral barrier function
formulations of theorems 4, 5, and 6, respectively. The

Fig. 1: Relationships among classic barrier functions (The-
orems 1-3), integral barrier functions (Theorem 4-6), and
recurrent barrier functions (Theorem 7-9).

relationships between all barrier functions are summarized
in Fig 1. As usual, we start with Nagumo’s version.

Theorem 7 (Recurrent Nagumo’s Barrier Functions). Con-
sider a continuous function h : D → R, then the super-level
h≥0 is τ -recurrent if and only if h satisfies:

max
t∈(0,τ ]

h(ϕ(t, x)) ≥ 0, ∀x ∈ h=0, (16)

in which case we call it a Recurrent Nagumo’s Barrier
Function (RNBF).

Proof. (=⇒): This direction follows directly from the defi-
nition of a τ -recurrent set. Precisely, the super-level set h≥0

being τ -recurrent implies that for all x ∈ h≥0,

∃t′ ∈ (0, τ ] s.t. ϕ(t′, x) ∈ h≥0 =⇒ max
t∈(0,τ ]

h(ϕ(t, x)) ≥ 0.

(⇐=): Suppose the closed set h≥0 is not τ -recurrent. There
must exist an initial state x ∈ h=0 such that ϕ(t, x) ̸∈ h≥0

for all t ∈ (0, τ ]. In this case, h(ϕ(t, x)) < h(x) = 0 for all
t ∈ (0, τ ], which contradict with condition (16). Therefore,
h≥0 is τ -recurrent.

As in the differential and integral formulations, Nagumo’s
version of recurrence does not restrict the rate at which the
barrier function changes along the trajectories. For that, we
will need to introduce the Zeroing formulation.

Definition 5 (Recurrent Zeroing Barrier Functions).
A continuous function h : D ⊂ Rn → R is a Recurrent
Zeroing Barrier Function (RZBF) if there exists an extended
class K function ζ and a super-level set D0 := h≥−c , c ≥ 0 ,
such that:

max
t∈(0,τ ]

h(ϕ(t, x))+

∫ t

0

ζ(h(ϕ(s, x)))ds≥h(x), ∀x ∈ D0. (17)

In contrast with the differential and integral formulations
of zeroing barrier functions, the recurrent one does not
constrain the rates at which the barrier function changes at
all time instants of a trajectory, but only on countably infinite
many times that are most separated by τ in consecutive steps.

Lemma 2. Consider a Recurrent Zeroing Barrier Function



h defined over D0 := h≥−c for some c ≥ 0. Then, for any
x ∈ D0, there exists a sequence of times {tn}n∈N, with
t0 = 0,

tn+1= max{argmax
t∈(tn,tn+τ ]

h(ϕ(t, x))+

∫ t

tn

ζ(h(ϕ(s, x)))ds},

lim
n→∞

tn = ∞, and tn+1 − tn ∈ (0, τ ], ∀n ∈ N, (18)

such that for each xn := ϕ(tn, x), xn ∈ D0, and

h(xn+1) ≥ max{h(xn)+δn, [h(xn)]−}, ∀n ∈ N, (19)

with δn := −
∫ tn+1−tn
0

ζ(h(ϕ(s, xn)))ds, satisfying δn > 0
whenever h(xn) and h(xn+1) < 0.

Proof. See Appendix (Section VIII-A).

The following theorem gives a detailed explanation of the
implications of the Recurrent Zeroing Barrier Function.

Theorem 8. Consider a Recurrent Zeroing Barrier Function
h defined over D0 := h≥−c for some c ≥ 0 and let xn :=
ϕ(tn, x) be the states along the sequence of times {tn}n∈N
specified in Lemma 2. Then:

(i) the super-level set h≥0 is τ -recurrent,
(ii) whenever x ∈ h<0∩D0, then as long as h(xn) < 0,

h(xn+1) must monotonically increase, at least, by a step
size of δn > 0, if h(xn+1) < 0, or −h(xn) > 0, if
h(xn+1) ≥ 0, and

(iii) whenever h(xn)>0, then h(xn+1) may decrease to zero,
at most, by a negative step size of max{δn,−h(xn)}.

Proof. (i): Suppose the closed set h≥0 is not τ -recurrent.
Then, there exists an initial condition x ∈ h=0 such that
ϕ(t, x) ̸∈ h≥0 for all t ∈ (0, τ ]. In this case, h(ϕ(t, x)) <
0 and ζ(h(ϕ(t, x))) < 0 for all t ∈ (0, τ ]. Note that this
contradicts condition (17), which requires its left-hand side
to be nonnegative starting from h(x) = 0. Therefore, h≥0 is
τ -recurrent.

(ii): Starting from h(xn) < 0, if h(xn+1) ≥ 0, a positive
step size h(xn+1) − h(xn) ≥ −h(xn) > 0 can be ensured
automatically. Conversely, if h(xn+1) < 0, it follows from
Lemma 2 that h(xn+1) ≥ h(xn) + δn with δn > 0. Thus,
a positive step size h(xn+1) − h(xn) ≥ δn > 0 is also
guaranteed.

(iii): Given h(xn) > 0, the inequality (19) requires:

h(xn+1) ≥ h(xn) + δn and h(xn+1) ≥ 0.

Then, by rearranging terms, one can conclude h(xn+1) −
h(xn) ≥ max{δn,−h(xn)}.

As before, we end with the exponential formulation which
constrains the rates using exponential functions of time. As in
the zeroing version, it only constrains the rates at countably
infinite time instants.

Definition 6 (Recurrent Exponential Barrier Functions).
A continuous function h : D ⊂ Rn → R is a Recurrent
Exponential Barrier Function (REBF) if there exists param-
eters α, β > 0 and a super-level set D0 := h≥−c , for some

c ≥ 0, such that:

max
t∈(0,τ ]

eβt[h(ϕ(t, x))]−+eαt[h(ϕ(t, x))]+ ≥ h(x), (20)

Lemma 3. Consider a Recurrent Exponential Barrier Func-
tion h defined over D0 := h≥−c for some c ≥ 0 with
parameters α, β > 0. Then, for any x ∈ D0, there exists
a sequence of times {tn}n∈N, with t0 = 0,

tn+1=max{argmax
t∈(tn,tn+τ ]

eβt[h(ϕ(t, x))]−+eαt[h(ϕ(t, x))]+}

lim
n→∞

tn = ∞ and tn+1 − tn ∈ (0, τ ], ∀n ∈ N, (21)

such that for each state xn := ϕ(tn, x), we have, xn ∈ D0,
and

h(xn+1)≥e−β∆tn [h(xn)]−+ e−α∆tn [h(xn)]+ , (22)

for all n ∈ N, with ∆tn := tn+1 − tn.

Proof. See Appendix (Section VIII-B).

We then summarize the implications of the Recurrent
Exponential Barrier Function in the next theorem.

Theorem 9. Consider a Recurrent Exponential Barrier
Function h defined over D0 := h≥−c for some c ≥ 0 with
parameters α, β > 0 and let xn := ϕ(tn, x) be the states
along the sequence of times {tn}n∈N specified in Lemma 3.
Then:

(i) the super-level set h≥0 is τ -recurrent,
(ii) whenever x ∈ h<0∩D0, then as long as h(xn) < 0,

h(xn+1) must monotonically increase, at least, by a
positive step size of δn = (e−β∆tn − 1)h(xn), which
implies,

h(xn) ≥ h(x)e−βtn , ∀n ∈ N, x ∈ h<0 ∩D0, (23)

and
(iii) whenever h(xn) > 0, then h(xn+1) may decrease to

zero, at most, by a negative step size of δn=(e−β∆tn−
1)h(xn), which implies,

h(xn) ≥ h(x)e−αtn , ∀n ∈ N, x ∈ h≥0. (24)

Proof. (i): Suppose the closed set h≥0 is not τ -recurrent.
There exists an initial condition x ∈ h=0 such that ϕ(t, x) ̸∈
h≥0 for all t ∈ (0, τ ]. In this case, h(ϕ(t, x)) < 0 for all
t ∈ (0, τ ]. Note that this contradicts condition (20), which
requires maxt∈(0,τ ] e

βth(ϕ(t, x)) ≥ 0 starting from h(x) =
0. Therefore, h≥0 is τ -recurrent.

(ii): Given h(xn) < 0, then inequality (22) requires
h(xn+1)≥e−β∆tnh(xn). Thus,

h(xn+1)− h(xn)=(e−β∆tn−1)h(xn) > 0.

Now, starting from x ∈ h<0 ∩D0, we have

0 > h(xn) ≥ e−β(tn−tn−1)h(xn−1)

≥ e−β(tn−tn+1+tn+1−tn−2)h(xn−2) ≥ h(x)e−βtn .

whenever xn, ..., x1 ∈ h<0 ∩ D0. If there exists a n′ ∈
{1, . . . , n} such that h(xn′) ≥ 0, (23) still follows since

h(xn) ≥ h(xn′)e−α̂(tn−tn′ ) ≥ 0 > h(x)e−βtn .



(iii): Whenever h(xn) > 0, then inequality (22) requires
h(xn+1)≥e−α∆tnh(xn). Thus,

h(xn+1)− h(xn)=(e−α∆tn−1)h(xn) < 0.

In the case that x ∈ h≥0, we have:

h(xn) ≥ e−α(tn−tn−1)h(xn−1)

≥ e−α(tn−tn+1+tn+1−tn−2)h(xn−2)

≥ h(x)e−αtn ≥ 0,

i.e., (24) follows.

V. THE GENERALITY OF RECURRENCE CONDITIONS

In the previous section, we introduced a set of novel barrier
conditions that relaxed the invariant requirement on the zero
super level set of h. We will now show that this relaxation
widely decouples the geometry of the vector field with the
geometry of the level sets of h. This allows us to characterize
a vast family of sets and functions that can be used to certify
safety. Our prior work inspires our results, [22], wherein we
show that under mild conditions, every set contained within
the region of attraction of an equilibrium point is recurrent
see, e.g., [22, Cor 2]. In this section, we generalize this idea
in the context of certifying safety. We start by introducing
mild regularity constraints on h, which we will need later
in Theorem 10. This requires us to introduce the notion of
sector-bounded functions.

Definition 7 (Sector Containment). Let h : D ⊂ Rn → R
be continuous. If ∃α1, α2 > 0 such that

(h(x)−α1sd(x, h≤0))(h(x)−α2sd(x, h≤0)) ≤ 0, (25)

for all x ∈ D, we say that h is sector-contained.

Remark 5. Given parameters α2 ≥ α1 > 0, (25) is satisfied
if and only if for all x ∈ D:

α2sd(x, h≤0)≥h(x)≥α1sd(x, h≤0)≥0 if h(x)≥0,

0≥α1sd(x, h≤0)≥h(x)≥α2sd(x, h≤0) if h(x)<0.

(26)
(27)

In the following theorem, we show that the existence of
a sector-contained IEBF h is sufficient to make the signed
distance to the zero sub-level set of h a REBF. As such, this
theorem illustrates the generality of our recurrent condition.

Theorem 10. Let h be an Integral Exponential Barrier
Function with exponential rates α and β, defined over D0 :=
h≥−c for some c ≥ 0. Then, if h is sector-contained with
parameters α1 and α2, the function ĥ(·) = sd(·, h≤0) is a
Recurrent Exponential Barrier Function, i.e., the following
conditions hold:

max
t∈(0,τ̂ ]

eβ̂t[ĥ(ϕ(t, x))]−+eα̂t[ĥ(ϕ(t, x)]+ ≥ ĥ(x) , (28)

for all x ∈ D0 and any α̂, β̂, τ̂ > 0 satisfying α̂ > α, β̂ < β,
and

τ̂ ≥ max{ log(α2/α1)

α̂− α
,
log(α2/α1)

β − β̂
}. (29)

Proof. Let us first consider the case that x ∈ h<0 ∩D0. In
this case, (28) is automatically satisfied if there is a time t′

with h(ϕ(t′, x)) ≥ 0. Therefore, we focus on the case where
h(ϕ(t, x)) < 0 for all t ∈ (0, τ̂ ]. In this case, we have:

0 > max
t∈(0,τ̂ ]

eβ̂tsd(ϕ(t, x), h≤0)

≥ max
t∈(0,τ̂ ]

eβ̂t
1

α1
h(ϕ(t, x))

≥ max
t∈(0,τ̂ ]

e(β̂−β)t 1

α1
h(x)

≥ e(β̂−β)τ̂ α2

α1
sd(x, h≤0)

≥ sd(x, h≤0),

(30)

(31)

(32)

(33)

where (31) comes from the definition of the IEBF (15) and
(30) and (32) are based on the sector containment assumption
(27). Note that sd(x, h≤0) < 0, and thus (33) is true
whenever e(β̂−β)τ̂ α2

α1
≤ 1, which is achieved by choosing

τ̂ ≥ log(α2/α1)/(β − β̂).
Next, starting from x ∈ h≥0, observe that h(ϕ(t, x)) ≥

0,∀t ≥ 0, since Theorem 6 ensures h≥0 is an invariant set.
Therefore, we proceed similarly:

max
t∈(0,τ̂ ]

eα̂tsd(ϕ(t, x), h≤0)

≥ max
t∈(0,τ̂ ]

eα̂t
1

α2
h(ϕ(t, x))

≥ max
t∈(0,τ̂ ]

e(α̂−α)t 1

α2
h(x)

≥ e(α̂−α)τ̂ α1

α2
sd(x, h≤0)

≥ sd(x, h≤0) ≥ 0,

(34)

(35)

(36)

(37)

where (35) comes from the definition of the IEBF (15),
(34) and (36) come from the sector containment assumption
(26). Now, since sd(x, h≤0) ≥ 0, (37) is true whenever
e(α̂−α)τ̂ α1

α2
≥ 1, which can be achieved by choosing τ̂ ≥

log(α1/α2)/(α− α̂). Consequently, by choosing τ̂ as speci-
fied in (29), we guarantee (28) in all possible scenarios.

While the REBF in Theorem 10 has a simple definition, it
still requires the knowledge of the lower-level set of the IEBF
that is assumed to exist. In the following theorem, we relax
this assumption and only require the knowledge of any set
that contains the super-level set of the IEBF and is contained
in the domain that satisfies the IEBF conditions.

Theorem 11. Let h be an Integral Exponential Barrier
Function with exponential rates α and β defined over
D0 := h≥−c for some c ≥ 0. If h is sector-contained with
parameters α1 and α2, then, for any closed set S satisfying
h≥0 ⊂ S ⊆ D0 = h≥−c and ∂S ∩ h=0 = ∅, the function

ĥ(x) := −sd(x, S)

is a Recurrent Exponential Barrier, i.e., the following condi-
tions hold:

max
t∈(0,τ̂ ]

{eβ̂t[ĥ(ϕ(t, x))]− + eα̂t[ĥ(ϕ(t, x))]+} ≥ ĥ(x) (38)

for all x ∈ ĥ≥−ĉ with ĉ ≥ 0 such that ĥ≥−ĉ ⊆ D0, any



α̂, β̂, τ̂ > 0 satisfying α̂ > α, β̂ < β, β̂ ≤ α̂, and

τ̂ ≥ max{ log(α2/α1)

α̂− α
,
log(α2/α1)

β − β̂
}+ log(δ̄/δ)

min{α̂, β̂}
,

with
δ̄ := sup

x∈D0

(sd(x, h≥0)− sd(x, S)),

δ := inf
x∈D0

(sd(x, h≥0)− sd(x, S)).

(39a)

(39b)

Proof. We first note that since h≥0 ⊂ S and ∂S ∩ h=0 = ∅,
the inequality δ̄ ≥ δ > 0 naturally holds. On top of this,
definitions (39a) and (39b) together imples:

0 < δ ≤ sd(x, h≥0)− sd(x, S) ≤ δ̄, ∀x ∈ D0.

Consequently, we have

0 > −δ ≥ sd(x, h≤0)− ĥ(x) ≥ −δ̄, ∀x ∈ D0, (40)

since sd(x, h≤0) = −sd(x, h≥0) and ĥ(x) = −sd(x, S).
Since h is a sector contained IEBF, Theorem 10 ensures

that the function sd(·, h≤0) is a REBF satisfying (28) with
any τ̂ ≥ τ∗ := max{ log(α2/α1)

α̂−α , log(α2/α1)

β−β̂
}. Theorem 9 part

(ii-iii) further establishes a sequence {tn}n∈N with t0 = 0
such that for each state xn := ϕ(tn, x), we have

sd(xn, h≤0)≥

{
sd(x, h≤0)e

−β̂tn if x∈h<0∩D0

sd(x, h≤0)e
−α̂tn if x∈h≥0

(41a)

(41b)

for all n ∈ N.
Now, starting from any initial state x∈ ĥ<0∩D0, we have

h(x) < 0 since ĥ≥0 = S ⊃ h≥0. Therefore,

eβ̂tn ĥ(ϕ(tn, x)) ≥ eβ̂tn(sd(ϕ(tn, x), h≤0) + δ)

≥ sd(x, h≤0) + eβ̂tnδ

≥ ĥ(x)− δ̄ + eβ̂tnδ

≥ ĥ(x)

(42)

(43)

(44)

(45)

where (42) and (44) are based on (40), (43) comes from
(41a), and (45) follows whenever tn ≥ log(δ̄/δ)/β̂.

Next, starting from any x ∈ ĥ≥0, we have:

eα̂tn ĥ(ϕ(tn, x)) ≥ eα̂tn(sd(ϕ(tn, x), h≤0) + δ)

≥ sd(x, h≤0) + eα̂tnδ

≥ ĥ(x)− δ̄ + eα̂tnδ

≥ ĥ(x) ≥ 0, if h(x) ≥ 0,

(46)

(47)

(48)

(49)
or

eα̂tn ĥ(ϕ(tn, x)) ≥ eβ̂tn ĥ(ϕ(tn, x))

≥ ĥ(x) ≥ 0, if h(x) < 0.

(50)

(51)

where (46) and (48) are based on (40), (47) comes from
(41b), and (49) follows whenever tn ≥ log(δ̄/δ)/α̂. In the
case that h(x) < 0, (50) and (51) are based on (45) and the
assumption that α̂ ≥ β̂.

Finally, by combining these conditions, we can verify (38)
whenever tn ≥ δ̂ := log(δ̄/δ)/min{α̂, β̂}. Note that,

lim
n→∞

tn = ∞ and tn+1 − tn ∈ (0, τ∗], ∀n ∈ N.

Therefore, by choosing τ̂ ≥ τ∗+δ̂, there must be a tn ∈ [δ̂, τ̂ ]
ensures (38), and the result follows.

VI. SAFETY ASSESSMENT

A τ -recurrent set S outside of the known unsafe region
does not immediately imply safety, as is the case with an
invariant one. To practically employ the notion of recurrence
for ensuring safety, the following result is pivotal: it demon-
strates that a τ -recurrent set, along with the states visited by
the finite-time trajectories starting from it, i.e., the finite-time
reachable set, constitute an invariant set. Consequently, this
process certifies an invariant set in a manner akin to classical
methodologies, which can be used to verify safety.

Theorem 12. Consider a closed set S that is τ -recurrent.
Then the finite time reachable set

Rτ (S) :=
⋃

x∈S,t∈[0,τ ]

ϕ(t, x) (52)

is invariant.

Proof. Suppose that Rτ (S) is not invariant, there must exist
a y ∈ Rτ (S) and a t1 > 0 such that ϕ(t1, y) ̸∈ Rτ (S). By
the definition of the reachable set, there also exists a x ∈ S
and a t2 ∈ [0, τ), such that ϕ(t2, x) = y. Since Rτ (S) ⊇ S,
we conclude ϕ(t1, y) = ϕ(t1 + t2, x) ̸∈ S.

We then use t′ to denote the last time the trajectory ϕ(t, x)
stays within the closed set S, i.e.,

x′ := ϕ(t′, x) ∈ S and ϕ(t, x) ̸∈ S ∀t ∈ (t′, t1 + t2].

Note that we must have t1+t2−t′ ≤ τ since S is τ -recurrent.
This contradicts the assumption that ϕ(t1, y) ̸∈ Rτ (S) since
ϕ(t1, y) = ϕ(t1 + t2 − t′, x′) ∈ Rτ (S).

We have identified sufficient conditions that guarantee a
super-level set of a recurrent-based barrier function is τ -
recurrent, which in turn implies its bounded-time reachable
set with bound τ is invariant.

Now, one needs to additionally make sure its τ -seconds
reachable set, defined in (52), does not intersect with the
known unsafe. However, characterizing such a finite-time
reachable set is non-trivial, as it may require adaptations to
accommodate the distinct trajectories of usually undecidable
nonlinear systems.

Yet, under mild conditions, trajectories originating from a
τ -recurrent set S are restricted from straying too far from
S, as they can only leave S for at most τ -seconds. Con-
sequently, it is possible to over-approximate the τ -seconds
reachable set and effectively certify safety if the resulting
over-approximation does not intersect the unsafe set.

Remark 6. Since the vector field is assumed to be locally
Lipschitz, it is also locally one-sided Lipschitz [30, Page 70],
i.e., for any point z ∈ D, there exists a neighborhood Uz

around z and a constant Lz such that ∀x, y ∈ Uz :

(y − x)T (f(y)− f(x)) ≤ Lz∥y − x∥2

We note that a uniform one-sided Lipschitz constant can
be defined under these conditions over any (bounded) subset



of D. In what follows, we will use:

F (S) := sup
z∈S

∥f(z)∥; L(S) := sup
z∈S

Lz,

for a set S ⊆ D. These terms will be used in the following
lemma that bounds how far the τ -recurrent trajectories can
stray from the recurrent set in τ seconds. The lemma is an
extension of Lemma 1 in [24].

Lemma 4 (Containment Lemma). Let S ⊆ D be a closed
set that is τ -recurrent and define:

c1 = F (Rτ (S))τ, c2 = F (∂S)τeL(Rτ (S))τ ,

c = min{c1, c2}. (53)

Then, starting from any x ∈ S, the trajectory satisfies:

sd(ϕ(t, x), S) ≤ c, ∀t ≥ 0. (54)

Proof. Starting from a point x ∈ S, we use d∗ to denote
the maximum signed distance from the trajectory ϕ(t, x) to
the set S within τ seconds, and t∗ to denote the time this
maximum distance is achieved, i.e.,

d∗ := max
t∈[0,τ ]

sd(ϕ(x, t), S), t∗ := argmax
t∈[0,τ ]

sd(ϕ(x, t), S).

Note that the assumption that the set S is τ -recurrent implies
that any trajectory starting from S can leave S for at most τ
seconds. Therefore, we only need to consider the maximum
signed distance within τ seconds, which would be equivalent
to the maximum distance of any trajectory starting from S
over unbounded time.

If d∗ ≤ 0, it follows that d∗ ≤ 0 ≤ c, and the result
follows trivially. We then consider the case that d∗ > 0. In
this case, we further use t′ to denote the last time before t∗

such that the trajectory ϕ(x, t) ∈ S, i.e.,

ϕ(t′, x) ∈ S and ϕ(t, x) ̸∈ S ∀t ∈ (t′, t∗].

To show sd(ϕ(t, x), S) ≤ c1, we have:

sd(ϕ(t, x), S) ≤ d∗ = sd(ϕ(t∗, x), S)

≤ ∥ϕ(t∗, x)− ϕ(t′, x)∥ =

∫ t∗

t′
∥f(ϕ(s, x))∥ds

≤ F (Rτ (S))(t
∗ − t′)

≤ F (Rτ (S))τ.

To show sd(ϕ(t, x), S) ≤ c2, we have:

sd(ϕ(t, x), S) ≤ d∗ = sd(ϕ(t∗, x), S)

≤
∫ t∗

t′
∥f(ϕ(s, x))∥ds

≤
∫ t∗

t′
∥f(ϕ(s, x))−F (PS(ϕ(s, x)))∥+∥F (PS(ϕ(s, x)))∥ds

≤
∫ t∗

t′
sd(ϕ(s, x), S)L(Rτ (S)) + F (∂S)ds

=

∫ t∗

t′
sd(ϕ(s, x), S)L(Rτ (S))ds+ F (∂S)t

Then, by applying the Grönwall’s inequality [31, Lemma 2.1]
with λ = F (∂S)t, µ = L(∂S), y(t) = sd(ϕ(t, x), S), we

have:

sd(ϕ(t, x), S) ≤ F (∂S)τeL(Rτ (S))τ ,∀x ∈ S.

A combination of these two conditions implies (54).

Note that Lemma 4 provides necessary regularity condi-
tions for trajectories starting of a τ -recurrent set h≥0. Build-
ing on this foundation, we present the following theorem,
which practically leverages the concept of τ -recurrence to
characterize a safe state-space region of the system.

Theorem 13. Consider a continuous function h : D → R
and a set Xu of unsafe states. If the super-level set h≥0 is
τ -recurrent and {h≥0+Bc}∩Xu = ∅, where the ’+’ stands
for the Minkovski sum, Bc is a closed ball of radius r around
the origin, and the constant c is defined in (53), then h≥0 is
a safe state space region.

Proof. Given the closed τ -recurrent set h≥0, note first that
Theorem 12 implies its τ -seconds reachable set Rτ (h≥0) is
invariant. Then, Lemmma 4 further ensures the invariant set
Rτ (h≥0) ⊆ {h≥0 + Bc} since trajecties starting from h≥0

cannot depart from it more then c. Finally, we have

ϕ(t, x) ∈ Rτ (h≥0) ⊆ {h≥0 + Bc},

for all x ∈ h≥0 and t ≥ 0. This, together with the fact
that {h≥0 + Bc} ∩ Xu = ∅, further implies ϕ(t, x) ̸∈ Xu.
Therefore, result follows.

VII. CONCLUSIONS

In this paper, we seek to relax the notion of set invariance
in the context of characterizing the safe state space region.
To this end, we systematically relax the classic differential
barrier conditions into integral conditions and further into
recurrent conditions. We also thoroughly explore the inter-
connections between these conditions. Finally, we establish
sufficient conditions under which a τ -recurrent set, induced
by the recurrent conditions, can be utilized to confirm safety.
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VIII. APPENDIX

A. Proof of Lemma 2

Proof. Given x ∈ D0, we build the time sequence {tn}n∈N
satisfying (18) and (19), following an inductive method
similar to that detailed in our previous work [23, Lem 1].
[Base case]: For the base case, we have t0 = 0, x0 = x ∈
D0, and define t1 as follows:

t1=max{argmax
t∈(0,τ ]

{h(ϕ(t, x0))+

∫ t

0

ζ(h(ϕ(s, x0)))ds}}; (55)

note that the second maximum exists by condition (17), and
is no smaller than h(x0); if there are multiple maximizing
times, t1 is defined as the largest. By construction, t1 −
t0 ∈ (0, τ ], and the function h evaluated at x1 := ϕ(t1, x0)
satisfies:

h(x1) ≥ h(x0)−
∫ t1

0

ζ(h(ϕ(s, x0)))ds = h(x0) + δ0,

thus confirming (19) with the left argument on the max of
the right-hand side.

To prove the right argument on the max of equation (19),
one need to first show that:

h(xn+1)

{
> h(xn) if xn∈h<0∩D0

≥ 0 if xn∈h≥0,

(56a)
(56b)

Let us first consider the case x0 ∈ h<0 ∩D0. If h(x1) ≥ 0,
then (56a) follows trivially. If h(x1) < 0, we argue that
h(ϕ(t, x0)) < 0 and ζ(h(ϕ(t, x0))) < 0 for all t ∈ [0, t1];
otherwise, t1 would not maximize (55). Hence, δ0 > 0, and
we verified h(x1) ≥ h(x0) + δ0 > h(x0), thereby satisfying
(56a).

In the other case that x0 ∈ h≥0, we demonstrate that
h(x1) ≥ 0 by contradiction. Suppose h(x0) ≥ 0 and
h(x1) < 0, we use t′ to denote the last time the trajectory
ϕ(t, x0) stays within the closed set h≥0 before t1, i.e.,

x′ := ϕ(t′, x0) ∈ h=0 and h(ϕ(t, x0)) < 0, ∀t ∈ (t′, t1].

This contradicts with the fact that t1 is a maximizer of
(55), since h(x′) = 0 > h(x1) and

∫ t′

0
ζ(h(ϕ(s, x0)))ds >∫ t1

0
ζ(h(ϕ(s, x0)))ds. Therefore, we have h(x1) ≥ 0, and

thus (56b) follows.
[Inductive step]: Note that condition (19) further implies
x1 =ϕ(t1, x0) ∈ D0, since h(x0) ≥ −c. Thus, the inductive
construction proceeds in a similar manner: given t1 < t2 <
· · · tn, with xn := ϕ(tn, x) ∈ D0, define tn+1 − tn as:

max{argmax
t∈(0,τ ]

h(ϕ(t, xn))+

∫ t

0

ζ(h(ϕ(s, xn)))ds}. (57)

Note that tn+1− tn ∈ (0, τ ] as required. Also, similar to the
base case,

xn+1 := ϕ(tn+1, x0) = ϕ(tn+1 − tn, xn)

satisfies the conditions in (19).
[Divergence of tn]: It remains to show that tn → ∞, which
we argue by contradiction. If, instead, the strictly increasing
sequence of times was bounded, we would have tn ↑ t∗. Note
that ϕ(t∗, x0) is well defined since the dynamical system (1)



is forward complete. Also, by the continuity of ϕ(·, x):

vn := h(ϕ(tn, x0)) +

∫ tn

0

ζ(h(ϕ(s, x0)))ds

→ v∗ := h(ϕ(t∗, x0)) +

∫ t∗

0

ζ(h(ϕ(s, x0)))ds.

Note that it follows from the first inequality of (19) that:

h(xn+1)≥h(xn)+δn

≥h(xn)−
∫ tn+1−tn

0

ζ(h(ϕ(s, xn)))ds

=h(xn)−
∫ tn+1

tn

ζ(h(ϕ(s, x0)))ds

≥h(xn)−
∫ tn+1

0

ζ(h(ϕ(s, x0)))ds+

∫ tn

0

ζ(h(ϕ(s, x0)))ds

=⇒ vn+1 ≥ vn, ∀n ∈ N.
Therefore, {vn} is non-decreasing, and we further conclude
that v∗ ≥ vn for all n ∈ N. Now pick n such that tn ≥ t∗−τ .
This means that s∗ := t∗ − tn ∈ (0, τ ] is in the feasible set
for the maximization in (57), which by definition gives as
maximum vn+1, achieved at tn+1 − tn.

Now, since v∗ = h(s∗, xn) +
∫ s∗

0
ζ(h(ϕ(s, xn)))ds ≥

vn+1, this means s∗ also qualifies as a maximizer, and in
fact s∗ = t∗− tn > tn+1− tn. This contradicts the definition
of tn+1−tn given in (57), because it would not be the largest
maximizing time. Thus, the sequence must be divergent,
establishing claim (ii).

B. Proof of Lemma 3

Proof. Given x0 = x ∈ D0, we build the time sequence
{tn}n∈N satisfying (21) and (22) again by induction.
[Base case]: For the base case, we have t0 = 0 and define
t1 as follows:

t1=max{argmax
t∈(0,τ ]

{eβt[h(ϕ(t, x0))]−+eαt[h(ϕ(t, x0))]+}}

note that the second maximum exists by condition (20), and
is no smaller than h(x0); if there are multiple maximizing
times, t1 is defined as the largest. By construction, t1 −
t0 ∈ (0, τ ], and the function h evaluated at x1 := ϕ(t1, x0)
satisfies:

eβt1 [h(x1)]−+eαt1 [h(x1)]+ ≥ h(x0). (58)

Note that whenever h(x0) ≥ 0, (58) requires h(x1) ≥ 0 and
thus

h(x1) ≥ e−αt1h(x0).

In the case that h(x0) < 0, we have:

h(x1) ≥ e−βt1h(x0).

Therefore, (22) follows. Finally, h(x0) ≥ −c and by (22)
h(x1) > h(x0), we have x1 = ϕ(t1, x0) ∈ D0, which
finishes the proof of the base case of the induction.
[Inductive step]: The inductive step construction proceeds
in a similar manner: given t1 < t2 < · · · tn, with xk :=

ϕ(tk, x0) ∈ D0, 0 ≤ k ≤ n. Now, define tn+1 − tn as:

max{argmax
t∈(0,τ ]

{eβt[h(ϕ(t, xn))]−+eαt[h(ϕ(t, xn))]+}} (59)

Note that tn+1 − tn ∈ (0, τ ] as required. A similar proof to
the base case then shows that

xn+1 := ϕ(tn+1, x0) = ϕ(tn+1 − tn, xn) ∈ D0

and (22) is satisfied.
[Divergence of tn]: It remains to show that tn → ∞, which
we argue by contradiction. If, instead, the strictly increasing
sequence of times was bounded, we would have tn ↑ t∗. Note
that ϕ(t∗, x0) is well defined since the dynamical system (1)
is forward complete. Also, by the continuity of ϕ(·, x):

vn := eβtn [h(ϕ(tn, x0))]−+eαtn [h(ϕ(tn, x0))]+

→ v∗ := eβt
∗
[h(ϕ(t∗, x0))]−+eαt

∗
[h(ϕ(t∗, x0))]+.

Note that it follows from (22) that:

eβtn+1 [h(ϕ(tn+1, x0))]−+eαtn+1 [h(ϕ(tn+1, x0))]+

≥eβtn [h(ϕ(tn, x0))]−+eαtn [h(ϕ(tn, x0))]+

=⇒ vn+1 ≥ vn, ∀n ∈ N.
Therefore, {vn} is non-decreasing, and we further conclude
that v∗ ≥ vn for all n ∈ N. Now pick n such that tn ≥ t∗−τ .
This means that s∗ := t∗ − tn ∈ (0, τ ] is in the feasible set
for the maximization in (59), which by definition gives as
maximum vn+1, achieved at tn+1 − tn.

Now, since

v∗ = eβs
∗
[h(ϕ(s∗, xn))]−+eαs

∗
[h(ϕ(s∗, xn))]+ ≥ vn+1,

this means s∗ also qualifies as a maximizer, and in fact
s∗ = t∗ − tn > tn+1 − tn. This contradicts the definition
of tn+1 − tn given in (59), since it would not be the largest
maximizing time. Thus, the sequence must be divergent,
establishing claim (ii).
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