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Abstract— One of the fundamental problems of interest for
discrete-time linear systems is whether its input sequence may
be recovered given its output sequence, a.k.a. the left inversion
problem. Many conditions on the state space geometry, dynam-
ics, and spectral structure of a system have been used to charac-
terize the well-posedness of this problem, without assumptions
on the inputs. However, certain structural assumptions, such as
input sparsity, have been shown to translate to practical gains
in the performance of inversion algorithms, surpassing classical
guarantees. Establishing necessary and sufficient conditions for
left invertibility of systems with sparse inputs is therefore a
crucial step toward understanding the performance limits of
system inversion under structured input assumptions. In this
work, we provide the first necessary and sufficient characteriza-
tions of left invertibility for linear systems with sparse inputs,
echoing classic characterizations for standard linear systems.
The key insight in deriving these results is in establishing the
existence of two novel geometric invariants unique to the sparse-
input setting, the weakly unobservable and strongly reachable
subspace arrangements. By means of a concrete example, we
demonstrate the utility of these characterizations. We conclude
by discussing extensions and applications of this framework to
several related problems in sparse control.

I. INTRODUCTION

Dynamical systems, ubiquitous in modern applied mathe-
matics, are often characterized by their intrinsic properties,
such as stability and orbit structure. However, in many
instances, one is less interested in the system itself, and more
interested in the relationship the system induces between
some input time series, and the resulting observations, usu-
ally produced as some state-dependent function of the inputs.
Nowhere is the importance of this fundamental relationship
more apparent than in signal processing, where one observes
some transformed or corrupted version of an input signal, and
wishes to recover the original signal.

In systems theory, the ability to uniquely recover a se-
quence of inputs given a sequence of outputs, or demonstrate
the existence of a sequence of inputs which produces a
desired output, is called invertibility [1], [2]. In addition to
guaranteeing the well-posedness of signal recovery problems,
left invertibility is a necessary condition for the existence
of unknown input observers, and is closely related to fault
detection [3], [4] and input observability [5], [6].
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In the linear setting, several equivalent and interpretable
characterizations of invertibility providing different perspec-
tives on the problem have been established. In particular, the
geometric approach emphasizes certain invariant subspaces
of the system which give rise to the so-called special coordi-
nate basis [7], which has been used to great practical effect
in observer design [8]. Another characterization focuses on
the algebraic properties of the input-output map, establishing
a clear path to the design of delayed system inverses [1],
[9]. Yet another characterization concerns the zeros of the
Rosenbrock system matrix [10], providing a connection to
transfer function methods and the stronger problem of stable
invertibility [11]. These differing characterizations illuminate
complementary aspects of the system, and have been used
to great effect in the analysis of various recovery problems.

In recent years, there has been an increased awareness of
the benefit of modeling input structure at the heart of various
control applications. Notably, sparsity in the inputs has
been explored in some depth [12]–[15], particularly in the
context of networked systems [16], [17]. Various algorithms
have been developed for online recovery of sparse signals
[18]–[20], and more recently, for the recovery of sparse
inputs to general linear systems [12], [14], [21]. Necessary
and sufficient conditions for the finite-horizon case have
been established in [13], a problem for which a performant
Bayesian recovery algorithm was introduced in [14].

Despite the empirical success of these approaches, char-
acterizations of the well-posedness of the infinite-horizon
left invertibility problem for linear systems with sparse
inputs have yet to emerge. Such characterizations are vital
in particular for applications to structured and networked
systems, in which the minimial required delay for input
recovery may be generically nontrivial [22].

In this work, we establish necessary and sufficient char-
acterizations of left invertibility for linear systems with
sparse inputs, which parallel established characterizations for
standard linear systems. Our contributions are as follows:

1) We introduce the notion of weakly unobservable and
strongly reachable subspace arrangements, generaliz-
ing key invariants of classical geometric linear systems
theory to the sparse input setting, and show that these
objects can be computed and used to directly certify
invertibility.

2) We establish rank-based conditions for left sparse
invertibility, and show that if an inverse exists, it may
be realized with finite delay.

3) The invertibility of systems with sparse inputs having
temporally periodic support patterns is characterized
via the zeros of a generalized Rosenbrock matrix, and



this construction is used to provide a final necessary
and sufficient condition for left invertibility under a
generic sparse input assumption.

4) We present an example to illustrate application of
these ideas, and conclude by discussing extensions and
connections to related problems in sparse control.

II. PRELIMINARIES

In this section, we first introduce the basic notation that
will be used throughout the paper (see Section II-A). Then
in Section II-B, we overview several necessary and sufficient
conditions for left invertibility of linear systems, including
geometric, rank-based and spectral characterizations. Finally,
in Section II-C we review basic properties of subspace
arrangements that are needed to extend classical invertibility
results to linear systems with sparse inputs.

A. Notation

We denote N := {0, 1, 2, . . .}, and for any natural number
N ∈ N, [[N ]] := {0, 1, . . . , N − 1}. Let Ω,Ω′ be sets. We
define the product Ω×Ω′ = {(ω, ω′) : ω ∈ Ω, ω′ ∈ Ω′}, and
identify ΩN with the set of functions {ω : [[N ]] → Ω}; and
equivalently, the set of N -tuples (ω0, ω1, . . . , ωN−1). |Ω| is
the cardinality of Ω. For a sequence ω : N → Ω, we denote
by [ω]Nk ∈ ΩN the tuple (ωk, ωk+1, . . . , ωk+N−1), which
may be read as the first N elements of ω beginning at k. We
also define the shift operator σ on tuples and sequences such
that ∀k, σ(ω)k = ωk+1; note that σ : ΩN → ΩN−1 for tuples
and σ : ΩN → ΩN for sequences. We liberally define 0 to be
the zero element in the relevant context. We denote the kth
canonical Euclidean basis vector by ek ∈ Rn, the canonical
subspace associated with S ⊆ [[m]] as ⟨S⟩ := span{ei}i∈S ,
and the preimage of a set V under a linear map/matrix A as
A−1V := {x : Ax ∈ V}. If ∆ is a set of sets, given S, T :
N → ∆, we define the sequence S ∪ T := (Sk ∪ Tk)k∈N.
If ∆ consists of subsets of the support of A, for S ∈ ∆,
AS is the matrix consisting of columns indexed by S. For
a block matrix ΘN with N block columns {Θi}i∈[[N ]] and
S ∈ ∆N , we define the matrix ΘS to be the block matrix
with N block columns {(Θi)Si}i∈[[N ]].

B. Linear Systems

Throughout, we consider a fixed, finite-dimensional, dis-
crete time linear system Σ = (A,B,C,D) ∈ Rn×n ×
Rn×m × Rp×n × Rp×m. To this system, for any N > 0,
we associate the following block matrices; respectively, the
observability, finite response, and controllability matrices:

ON =


C
CA
CA2

...
CAN−1

,ΓN =


D
CB D
CAB CB D

...
. . . . . .

CAN−2B · · · CB D

.
CN =

[
AN−1B · · · A2B AB B

]
.

Note that our definition of the controllability matrix has a
reversed order of powers from the typical definition; this

permits concise identities like the following, for any M < N :

ΓN =

[
ΓN−M 0

OMCN−M ΓM

]
=

[
D 0

ON−1B ΓN−1

]
. (1)

Given an input sequence u : N → Rm, we define the
infinite response of Σ from x0 ∈ Rn to be the sequence
γ(x0,u) : N → Rp such that for any N, k, the following
conditions hold:

[γ(x0,u)]
N
k = ONxk + ΓN [u]Nk , (2)

σk(γ(x0,u)) = γ(Akx0 + Ck[u]
k
0 , σ

k(u)). (3)

Note that (γ(x0,u)k)k∈N is just the sequence of outputs for
the linear system with initial state x0 and inputs (uk)k∈N,
and that γ is linear: γ(α(x0,u)+β(x′

0,u
′)) = αγ(x0,u)+

βγ(x′
0,u

′). To denote the zero-state response, we write
γ0(u) := γ(0,u).

The geometric approach to analyzing system invertibility
emphasizes certain subspaces linking output behavior to
choice of inputs:

Definition 1 (Invariant Subspaces):
• The weakly unobservable subspace V(m) ⊆ Rn con-

sists of x s.t. ∃u : N → Rm, γ(x,u) = 0.
• The strongly reachable subspace T (m) ⊆ Rn consists

of x s.t. ∃u : N → Rm,∃N ∈ N, ΓN [u]N0 = 0 and
CN [u]N0 = x.

Note that V(m) contains the unobservable subspace
kerOn, and T (m) is a subspace of the reachable subspace
imCn. They are thus naturally viewed as respectively weak-
ened and strengthened versions of these spaces, accounting
for particular choices of inputs.

An alternative viewpoint of the input-output characteristics
of a linear system involves its invariant zeros, which are
defined as the z ∈ C such that the following matrix pencil
drops rank:

Definition 2 (Rosenbrock System Matrix):

R(z) =

[
A− zI B

C D

]
(4)

We now recall the definition of left invertibility for linear
systems [1]:

Definition 3 (Left Invertibility): We say that Σ is left
invertible if for any u,u′ : N → Rm, γ0(u) = γ0(u

′)
implies u = u′.

There are several equivalent characterizations of when left
invertibility holds, which can be considered as arising from
complementary perspectives on what it means for a system
to be invertible. In the case of left invertibility:

Theorem 1 (Left Invertibility, [1], [10]): The following
are equivalent:

1) Σ is left invertible.

2) V(m) ∩ T (m) = 0 and ker

[
B
D

]
= 0.

3) ∃N , rankΓN − rankΓN−1 = m.
4) ∃z ∈ C, rankR(z) = n+m.
One may think of conditions (2-4) as providing geometric,

rank based, and spectral characterizations of left invertibility:



(2) indicates that no input is invisible to measurement results
in a weakly unobservable perturbation to the state; (3)
indicates that if an inverse exists, it can be implemented
with some finite delay; and (4) can be used to show that
the associated transfer function matrix admits a rational
polynomial left inverse.

C. Subspace Arrangements

In the sparse recovery literature, one often considers the
set of all vectors with a particular sparsity pattern. If we
denote ∆s := {S ⊆ [[m]] : |S| ≤ s}, this set of vectors may
be written as

⋃
S∈∆s

⟨S⟩. Generally speaking, for any set ∆
of subsets of [[m]], we will write

⟨∆⟩ :=
⋃
S∈∆

⟨S⟩ ⊆ Rm (5)

This object is an example of a finite subspace arrangement:
Definition 4 (Finite Subspace Arrangement): Let A ⊆

Rn. We call A a finite subspace arrangement in Rn if there
exists an natural number c and a collection of subspaces
(Ui)i∈[[c]], Ui ⊆ Rn, such that A =

⋃
i∈[[c]] Ui. We denote the

smallest such c as c(A), and call this the size of A.
For example, the set of s-sparse vectors ⟨∆s⟩ in Rm

has size
(
m
s

)
. While this case only contains subspaces of

dimension s, in general, subspace arrangements may contain
subspaces of differing dimension.

Definition 5 (Dimension Vector): Let A ⊆ Rn be a
finite subspace arrangement of size c such that A =⋃

i∈[[c]] Ui. Define dk(A) = |{i ∈ [[c]] : dimUi = k}|, and
d(A) = (d1(A), . . . , dn(A)) ∈ Nn. We refer to d(A) as the
dimension vector of A.

Note that for a linear subspace X ⊆ Rn, we have that
d(X ) = edim(X ) ∈ Nn. This provides a means of assessing
the relative size of two subspace arrangements, in a similar
fashion as simple dimension for subspaces:

Definition 6 (Dimensional Order): Define (Nn,⪯) the
totally ordered set such that for a, b ∈ Nn, a ⪯ b if for j =
max{i ∈ [[n]] : ai ̸= bi},aj ≤ bj , and a ≺ b analogously.
Given subspace arrangements A,B ⊆ Rn, we define the
dimensional order ⪯ such that A ⪯ B if d(A) ⪯ d(B).

Lastly, we note that if U ,V ⊆ Rn are finite subspace
arrangements and H is a well-defined linear map, then U ×
V,U ∪ V,U ∩ V,U + V,HU ,H−1U are all finite subspace
arrangements.

III. INVERTIBILITY OF LINEAR SYSTEMS WITH SPARSE
INPUTS

In this section, we will generalize the classical notion of
left invertibility to systems with piecewise s-sparse inputs:

Definition 7 (Left U-Invertibility): Let U ⊆ (Rm)N. We
say that Σ is left U-invertible if ∀u,u′ ∈ U , γ0(u) =
γ0(u

′) =⇒ u = u′. We will say that Σ is left s-sparse
invertible when U = {u : N → ⟨∆s⟩}.

One can interpret this as a statement about the injectivity of
γ0 when restricted to a given input class U . The remainder of
this section is dedicated to establishing analogous conditions
for s-sparse invertibility to those in Theorem 1, beginning

with the characterization of sparse counterparts to the weakly
unobservable and strongly reachable subspaces.

A. Geometric Characterization

The notion of weak unobservability generalizes immedi-
ately to the sparse setting:

Definition 8 (Weakly Unobservable Point): Let x ∈
Rn. If there exists u : N → ⟨∆s⟩ such that γ(x,u) = 0,
then we call x weakly s-sparse unobservable, and denote by
V(s) the set of all such x.

We will proceed to show that V(s) is a finite subspace
arrangement. To compute V(s), consider the following set
mapping:

fs(A) = A ∩
[
C
A

]−1(
0×A+

[
D
B

]
⟨∆s⟩

)
(6)

Intuitively, fs(A) returns the set of x ∈ A such that there
exists an s-sparse input u satisfying Ax + Bu ∈ A and
Cx+Du = 0. Note that, by construction, for any A ⊆ Rn,
fs(A) ⊆ A; and if fs(A) = A, f2

s (A) := (fs ◦fs)(A) = A.
Lemma 1: ∀k > 0, fk

s (Rn) = O−1
k (Γk⟨∆s⟩k)

Proof: We first remark O−1
k+1(Γk+1⟨∆s⟩k+1) ⊆

O−1
k (Γk⟨∆s⟩k), this is readily seen by considering that

Ok+1x ∈ Γk+1⟨∆s⟩k+1 =⇒ Okx ∈ Γk⟨∆s⟩k. The
remaining proof is by induction on k. For k = 1, fs(Rn) =
C−1D⟨∆s⟩ = O−1

1 Γ1⟨∆s⟩. Now suppose fk
s (Rn) =

O−1
k (Γk⟨∆s⟩k):

O−1
k+1(Γk+1⟨∆s⟩k+1)

=

[
C

OkA

]−1([
D

OkB

]
⟨∆s⟩+

[
0
Γk

]
⟨∆s⟩k

)
∗
=

[
C
A

]−1
([

I 0
0 Ok

]−1 [
D

OkB

]
⟨∆s⟩

+

[
I 0
0 Ok

]−1 [
0
Γk

]
⟨∆s⟩k

)

=

[
C
A

]−1([
D
B

]
⟨∆s⟩+ 0×O−1

k (Γk⟨∆s⟩k)
)

= fs(f
k
s (Rn)) = fk+1

s (Rn)

Where ∗ follows from the subspace identity A−1(B +
C) = A−1B + A−1C when B ⊆ imA and distribu-
tivity of preimage over unions, and the last step follows
from the inductive hypothesis together with the fact that
O−1

k+1(Γk+1⟨∆s⟩k+1) ⊆ O−1
k (Γk⟨∆s⟩k).

Proposition 1: For every s, V(s) is a finite subspace
arrangement. Furthermore, defining

Vk(s) := O−1
k (Γk⟨∆s⟩k), (7)

there exists N such that VN (s) = VN+1(s) = V(s). We
define the weak s-sparse observability index νs to be the
smallest such N .

Proof: Suppose that there exists N such that fN
s (Rn) =

fN+1
s (Rn) = fs(f

N
s (Rn)), then V∗ := fN

s (Rn) is a fixed
point of fs. Hence, suppose x ∈ V∗, it follows that there
exists u0 ∈ ⟨∆s⟩ such that Ax + Bu0 ∈ V∗ and Cx +



Du0 = 0, hence we we may construct u : N → ⟨∆s⟩ such
that γx(u) = 0, so x ∈ V(s).

Fix s, and denote Vk := fk
s (Rn) = Vk(s). Consider that, if

A,B are subspace arrangments, A ⊊ B =⇒ d(A) ≺ d(B).
Note that c(Vk+1) ≤ c(Vk)C(m, s), as there are at most
c(⟨∆s⟩) subspaces in Vk+1 for every subspace in Vk.

Suppose that for some k, there exists A such that Vk ⊆
A and Vk ̸= Vk+1. Suppose that fs(A) = A. We have
that A ⊆ Rn, so A = fk

s (A) ⊆ Vk =⇒ A = Vk. But
Vk ̸= Vk+1, this is a contradiction, hence if Vk ̸= Vk+1,
Vk ⊆ A =⇒ fs(A) ⊊ A, and therefore d(fs(A)) ≺ d(A).

By way of contradiction, suppose there does not exist N
such that VN = VN+1. Then the sequence Vk is strictly
decreasing by inclusion in k, and therefore strictly decreasing
in dimension. By the above, Vk ⊆ A =⇒ d(fs(A)) ≺
d(A). We show a contradiction by induction on µ(Vk) =
min{i : di(Vk) ̸= 0}.

Suppose ∃k, (d1, . . . , dn) such that d1 ̸= 0 and d(Vk) ⪯
(d1, . . . , dn). Since fs(Vk) ≺ Vk, d(fd1

s (Vk)) = d(Vk+d1) ⪯
(0, d2, . . . , dn).

Now assume, by induction, that if ∃k,d such that d =
(0, . . . , 0, dr−1, dr, . . . , dn) and d(Vk) ≤ d, that ∃N such
that d(Vk+N ) ⪯ (0, . . . , 0, dr, dr+1, . . . , dn). Suppose that
∃k,d such that d = (0, . . . , 0, dr, . . . , dn) and d(Vk) ⪯
d. Let A be such that Vk ⊆ A, and d(A) = d. Then
since c(f(A)) ≤ c(A)c(⟨∆s⟩), d(Vk+1) ⪯ d(f(A)) ⪯
(0, . . . , c(A)(c(⟨∆s⟩) − 1) + 1, dkr − 1, . . . , dkn) = d′.
Then there exists k′ = k + 1,d′ such that d(Vk′) ⪯
d′ and d′ = (0, . . . , 0, d′r−1, dr − 1, dr+1, . . . , dn). So,
by the inductive hypothesis, there exists N such that
d(Vk′+N ) ⪯ (0, . . . , 0, dr − 1, dr+1, . . . , dn). By repeated
application of this fact, ∃N ′ such that d(Vk′+N ′) ⪯
(0, . . . , 0, 0, dr+1, . . . , dn).

It follows by induction that as d(V0) = d(Rn) =
(0, . . . , 1), there exists N such that d(VN ) ⪯ 0. But then
VN = 0, and so VN+1 = VN , a contradiction.

To see that the resulting subspace arrangement is finite, it
suffices to note that the subspace arrangement is of size at
most

(
m
s

)νs .
The set of strongly s-sparse reachable points likewise is

readily generalized from the linear case:
Definition 9: Let x ∈ Rn. If there exists u : N → ⟨∆s⟩

and N such that x = CN [u]N0 and ΓN [u]N0 = 0, then x is
said to be strongly s-sparse reachable. We denote the set of
all such x as T (s).

We omit the proof for the following, as it follows from
essentially the same argument as for V(s):

Proposition 2: For every s, T (s) is a finite subspace
arrangement. Furthermore, defining

Tk(s) := Ck(kerΓk ∩ ⟨∆s⟩k) (8)

there exists N such that TN (s) = TN+1(s) = T (s). We
define the strong s-sparse reachability index τs to be the
smallest such N .

It may be in turn shown that T (s) is obtained as the fixed
point of an iterated set map, as in (6)

Corollary 1: Tk(s) satisfies the recursion

Tk+1(s) =
[
A B

] (
(Tk(s)× ⟨∆s⟩) ∩ ker

[
C D

])
(9)

Using these subspace arrangements, we may geometrically
characterize left invertibility.

Proposition 3: The following are equivalent:
1) Σ is left s-sparse invertible.

2) T (2s) ∩ V(2s) = 0 and ∀S ∈ ∆2s, ker

[
DS

BS

]
= 0.

3) For any S, T ∈ ∆s, kerDS∪T ∩B−1V(2s) = 0.
Proof: (1 ⇒ 2) Suppose Σ is left s-sparse invertible.

Toward contradiction, take S ∈ ∆2s such that kerDS ∩
kerBS ̸= 0, then there exists T, T ′ ∈ ∆s such that T ∪
T ′ = S and u : N → ⟨T ⟩,v : N → ⟨T ′⟩ not equal such
that ∀k ∈ N,D(uk − vk) = 0 and B(uk − vk) = 0, so
necessarily γ0(u − v) = 0 =⇒ γ0(u) = γ0(v), this is a
contradiction. Now suppose instead that ∃x ∈ T (2s)∩V(2s),
then there exists u,v : N → ⟨∆s⟩ and N ∈ N such that
ΓN [u − v]N0 = 0 and CN [u − v]N0 = x ∈ V(2s), and
γ(x, σN (u− v)) = 0.

(2 ⇒ 3) Suppose kerDS∪T ∩B−1V(2s) ̸= 0, then there
exists u0 ∈ ⟨S⟩,v0 ∈ ⟨T ⟩ such that D(u0 − v0) = 0 and
B(u0 − v0) ∈ V(2s). But then B(u0 − v0) ∈ T1(2s) ∩
V(2s) ⊆ T (2s) ∩ V(2s), contradicting (2).

(3 ⇒ 1) Let u,v : N → ⟨∆s⟩, and suppose γ0(u) =
γ0(v). Then D(u0 − v0) = 0 and γ(Bu0, σ(u)) =
γ(Bv0, σ(v)) ⇐⇒ γ(B(u0 − v0), σ(u − v)) = 0, so
u0 − v0 ∈ B−1V(2s). So by (3), u0 = v0. Hence we
conclude Σ is left s-sparse invertible.

B. Rank-Based Characterization

While informative from a geometric perspective, it is not
clear how one could approach the problem of actually build-
ing an inverse system from the geometric characterization.
By considering the rank of Γ when restricted to piecewise-
2s-sparse supports, we show that if the system is s-sparse
invertible, then it is possible to construct an inverse with a
finite delay.

Proposition 4: The system Σ is s-sparse invertible if
and only if there exists N < ν2s s.t. for any S =
(S0, S1, . . . , SN ) ∈ ∆N+1

2s ,

rankΓS − rankΓσ(S) = |S0|. (10)

In this event, we say Σ is s-sparse invertible with delay N .
Proof: Recall that for S ∈ ∆N+1

2s , σ(S) =
(S1, . . . , SN ) ∈ ∆N

2s.

(⇒) Note that rankΓS = rank

[
DS0

0
ON−1BS0

Γσ(S)

]
is equal to |S0| − dim

[
DS0

ONBS0

]−1

(0 × imΓσ(S)) +

rankΓσ(S), so this characterization is equivalent to showing

that
[

DS0

ONBS0

]−1

(0 × imΓσ(S)) = 0. Suppose that for all

N ∈ N, there exists S ∈ ∆N+1
2s such that

[
DS0

ONBS0

]−1

(0×
imΓσ(S)) ̸= 0. Then there exists u0,v0 ∈ ⟨∆s⟩ such that



D(u0 − v0) = 0, and B(u0 − v0) ∈ O−1
N (ΓN ⟨∆2s⟩N ).

But then for N ≥ ν2s, B(kerD ∩ ⟨∆2s⟩) ∩ V(2s) ̸= 0,
contradicting invertibility.

(⇐) Suppose that there exists N such that for any S ∈
∆N+1

2s , the rank condition holds. Then for any u,u′ : N →
⟨∆s⟩, ΓN+1[u − u′]N+1

k = 0 =⇒ uk = u′
k. Suppose

∀j < k,uj = u′
j . It follows that [γ0(u − u′)]N+1

k =

0 =⇒ ON+1(Ck[u − u′]k0) + ΓN+1[u − u′]N+1
k =

ΓN+1[u − u′]N+1
k = 0 =⇒ uk = u′

k. It follows by
strong induction on k that γ0(u) = γ0(u

′) =⇒ u = u′.
In light of this result, we will define the inherent s-sparse

delay ds of the system as follows:

ds := min{N : ∀S ∈ ∆N+1
2s , rankΓS − rankΓσ(S) = |S0|}

By definition, if ds is finite, ds < ν2s. As is the case with
the inherent delay of linear systems with generic inputs, ds
provides a lower bound on the delay of any s-sparse inversion
algorithm.

C. Spectral Characterization

The characterization of invertibility based on the Rosen-
brock matrix is unique in its apparent simplicity, relying
on no complicated block matrices or subspaces far removed
from basic system parameters. Unfortunately, this simplicity
prevents it from being able to capture the complex properties
of changing input support patterns. To obtain a spectral char-
acterization of left s-sparse invertibility, it is thus necessary
to work with a version of the Rosenbrock matrix generalized
to a pattern of τ supports S ∈ {T : T ⊆ [[m]]}τ :

RS(z) :=

[
Aτ − zI CS

Oτ ΓS

]
. (11)

Before addressing the general case, it is worth considering
what the properties of this matrix can tell us about invertibil-
ity of the system over the set of s-piecewise sparse inputs
with τ -periodic supports, that is:

Uτ (s) := {u : N → ⟨∆s⟩ : ∃S ∈ ∆τ
s ,uk ∈ ⟨Sk mod τ ⟩}.

Lemma 2: If there exists S ∈ ∆τ
2s such that

[
CS

ΓS

]
is rank

deficient, then Σ is not left Uτ (s)-invertible.

Proof: Suppose that for some S,
[
CS

ΓS

]
is not full rank.

Then there exists u,u′ ∈ Uτ (s), ∀k ≥ τ,uk = u′
k = 0, but

u ̸= u′ such that Cτ [u − u′]τ0 = 0 and Γτ [u − u′]τ0 = 0.
Then [γ0(u− u′)]τ0 = 0, and στ (γ0(u− u′)) = γ(Cτ [u−
u′]τ0 , σ

τ (u − u′)) = 0, so γ(u) = γ(u′). Therefore, Σ is
not left Uτ (s)-invertible.

Proposition 5: Σ is left Uτ (s)-invertible if and only if for
any S ∈ ∆τ

2s, there exists z ∈ C such that rankRS(z) =
n+

∑
i∈[[τ ]] |Si|.

Proof: (⇒) Suppose that there exists S ∈ ∆τ
2s such

that for any z ∈ C, RS(z) is rank deficient. Denote the
LTI system ΣS := (Aτ ,CS ,Oτ ,ΓS), then RS is the
Rosenbrock matrix of this system. Hence, by theorem 1,
ΣS is not left invertible, so there exists v,v′ : N → R|S|

not equal such that this system’s response γ(ΣS) satisfies

γ(ΣS)
0 (v−v′) = 0. Choose T, T ′ ⊆ ∆τ

s such that T∪T ′ = S,
and define u,u′ : N → ⟨∆s⟩ such that uk ∈ ⟨Tk mod τ ⟩,
u′
k ∈ ⟨T ′

k mod τ ⟩, and (uk − u′
k)Sk mod τ

= vk − v′
k, then

u ̸= u′ and γ0(u − u′) = 0. It follows that Σ is not left
Uτ (s)-invertible.

(⇐) Suppose Σ is not left Uτ (s)-invertible, then there
exists u,u′ ∈ Uτ (s) distinct such that γ0(u − u′) = 0.
Denote S, S′ ∈ ∆τ

s such that [u]ττk ∈ ⟨S⟩, [u′]ττk ∈ ⟨S′⟩, it
follows that there exists w,w′ : N → R|S∪S′| not equal such
that, denoting γ(S∪S′) the response of the system ΣS∪S′ :=

(Aτ ,CS∪S′ ,Oτ ,ΓS∪S′), γ
(S∪S′)
0 (w) = γ

(S∪S′)
0 (w′), so

ΣS∪S′ is not invertible. It follows that for all z ∈ C,
RS∪S′(z) is rank deficient.

In particular, we obtain a necessary and sufficient charac-
terization of invertibility with respect to inputs with constant
support:

Corollary 2: Σ is left U1(s)-invertible if and only if ∀S ∈
∆2s,

rank

[
A− zI BS

C DS

]
= n+ |S|. (12)

It is probably clear that, for a system Σ to be left s-sparse
invertible, it must be left Uτ (s) invertible for all τ . However,
there is no guarantee that generic s-piecewise sparse inputs
will have periodic supports. Our final result shows that we
may bound the required τ to check, by considering the size
of the strongly reachable subspace arrangement c(T (2s)).

Proposition 6: Suppose T (2s) =
⋃

i∈I Vi, and let Ψi be
a basis for Vi. Then Σ is left s-sparse invertible if and only
if ∀i ∈ I, ∀τ ≤ c(T (2s)), ∀S ∈ ∆τ

2s,∀z ∈ C,

rank

[
(Aτ − zI)Ψi CS

OτΨi ΓS

]
= dimVi +

∑
k∈[[τ ]]

|Sk|. (13)

Proof: (⇒) Suppose there exists i ∈ I , τ , S ∈
∆τ

s , and z ∈ C such that the rank condition fails. Then
there exists x ∈ T (2s) and U, V ∈ ⟨∆s⟩τ such that
Aτx + Cτ (U − V ) = zx and Oτx + Γτ (U − V ) = 0.
Let u,v : N → ⟨∆s⟩ be defined such that for some M ,
x = CM [u − v]M0 ,ΓM [u − v]M0 = 0, this is possible as
x ∈ T (2s). Further, ∀k ∈ N we have that [σM (u)]τkτ = zkU
and [σM (v)]τkτ = zkV , it follows that γ0(u) = γ0(v), hence
the system is not invertible.
(⇐) Suppose that Σ is not left s-sparse invertible. If there

exists τ and S ∈ ∆τ
2s such that

[
CS

ΓS

]
is rank deficient,

then we have the claim. So in light of proposition 3, assume
instead that T (2s) ∩ V(2s) ̸= 0. Let x0 ∈ T (2s) ∩ V(2s),
there exists an input u : N → ⟨∆2s⟩ such that ∀k ∈
N,xk := Akx0 + Ck[u]

k
0 ∈ T (2s) ∩ V(2s) ⊆ T (2s).

Since T (2s) is a finite subspace arrangement, there exists
a subspace V ⊆ T (2s) which occurs twice in this trajectory
within c(T (2s)) time steps. Therefore, denoting xk0

,xk1
∈

V the points where this trajectory passes through V and
τ = k1 − k0, there exists S ∈ ∆τ

2s and U such that
Aτxk0 + CSU = xk1 and Oτxk0 + ΓSU = 0. It may
then be shown based on the subspace-preserving property of
the iteration (9) that there exists a linear map F : V → ⟨S⟩
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Fig. 1. The system Σα depicted as a network. Solid black arrows indicate
a weight of +1, dashed indicates −1. Red vertices are inputs, and others
are states. Blue indicates the vertex state is included in the measurement
Cαx, and green indicates inclusion when α = 1.

such that (Aτ +CτF )V ⊆ V and (Oτ +ΓτF )V = 0. As it
is therefore an invariant subspace, V contains an eigenvector
v of Aτ +CτF . Denote Ψi a basis for V , and v = Ψix and
Ũ = Fv ∈ ⟨S⟩, we have that there exists z ∈ C satisfying

AτΨix+ Cτ Ũ = zΨix, OτΨix+ Γτ Ũ = 0

We then conclude
[
(Aτ − zI)Ψi CS

OτΨi ΓS

]
is not full rank.

This result may be alternatively characterized without
detailed knowledge of T (2s), using only its size and the
strong 2s-sparse reachability index:

Corollary 3: Σ is left s-sparse invertible if and only if
∀N ≤ τ2s + c(T (2s)),∀M < N , ∀S ∈ ∆N

2s, ∀z ∈ C,

rank

[
ΓS

CS − z
[
C[S]M0

0
]] = ∑

i∈[[N ]]

|Si|. (14)

IV. EXAMPLE: NETWORK WITH EDGE ATTACKS

In this section, we demonstrate our results on two linear
systems, one which is left 1-sparse invertible and one which
is not, illustrating the three primary characterizations of left
s-sparse invertibility introduced in section III, as well as
an instance of a nontrivial weakly unobservable subspace
arrangement V(1).

Consider the following system Σα = (A,B,Cα,D),
where α ∈ {0, 1}, depicted as a network in figure 1:

[
A B
Cα D

]
=



0 0 0 1 −1 0 0 1
1 0 0 0 1 −1 0 0
0 1 0 0 0 1 −1 0
0 0 1 0 0 0 1 −1
1 0 0 0 0 0 0 0
0 α 0 0 0 0 0 0
0 0 1 0 0 0 0 0


.

The dynamics simply permute the state of four nodes, and
Cα measures the state of nodes 1 and 3, and 2 if α =
1. The inputs may be thought of as edge attacks which
could “interfere” with the transmission of information from

a given node to the next, by changing the apparent amount
of information transmitted. Since 3 = p < m = 4 in this
example, the system is not classically left invertible, but here
we will suppose that inputs are 1-sparse. We will demonstrate
that the system is not left 1-sparse invertible with α = 0 but
is left 1-sparse invertible when α = 1, using propositions 3,
4, and 6.

A. α = 0, Geometric Characterization

Consider the state xk = e4 ∈ kerC0. By choosing uk =
−e4, xk+1 = Axk + Buk = e1 + e4 − e1 = e4. Hence,
for all s ≥ 1, ⟨4⟩ ⊆ V(s). Likewise, xk = e2 implies xk ∈
kerC0, and a choice of uk = −e2 results in xk+1 ∈ C0. So
⟨2⟩ ⊆ V(s). However, suppose xk ∈ ⟨2, 4⟩\ (⟨2⟩∪⟨4⟩), then
no 1-sparse input can result in xk+1 ∈ kerC0, but there does
exist a 2-sparse input satisfying this requirement. It follows
that V(1) = ⟨2⟩ ∪ ⟨4⟩ and V(2) = ⟨2, 4⟩.

Observe that kerΓ1 = kerD = Rm, so B⟨∆2⟩ ⊆ T (2).
In particular, it contains B(e1 + e4) = e2 − e4, which is
also contained in V(2). Therefore, by proposition 3, Σ0 is
not 1-sparse invertible.

B. α = 1, Rank-Based Characterization

Consider that the matrix

C1B =

−1 0 0 1
1 −1 0 0
0 1 −1 0

 (15)

satisfies rankC1BS0 = |S0| for any S0 ∈ ∆2. Since
D = 0, for any other S1 ∈ ∆2, rankΓ(S0,S1) − ΓS1

=
rankC1BS0

= |S0|, so by proposition 4, Σ1 is left 1-sparse
invertible with delay 1.

C. α = 0, Spectral Characterization

Consider the strongly 2s-sparse reachable point x0 = e2−
e4. The input u0 = e3 − e1 results in x1 = Ax0 +Bu0 =
e4 − e2. Let Ψi denote a basis for the subspace of T (2s)
to which x0 belongs, we may write x0 = Ψiv0. Setting
z = −1, we have that[

AΨi B
CΨi D

] [
v0

u0

]
=

[
zΨiv0

0

]
. (16)

By proposition 6, we may conclude that Σ0 is not left 1-
sparse invertible.

V. DISCUSSION

As a collection of necessary and sufficient conditions for
the well-posedness of sparse recovery problems, this work
deals with conditions that are by their nature computationally
hard [23]. However, they provide a natural scaffolding to deal
with sparse inversion problems, and in particular for struc-
tured and networked systems, where the inherent delay of a
system can be generically nontrivial [22]. We expect that, as
in the case of the classical ℓ1 relaxation for sparse recovery,
optimal and computationally tractable implementations will
arise as relaxations of appropriate combinatorial problems in
this setting. The following are interesting future directions
and applications of our results:



A. Bounding constants associated with T (s),V(s)
The difficulty of verifying the conditions in this work is

determined by the size of V(s), T (s) and their indices νs, τs.
We expect that the magnitude of νs implied by the proof of
proposition 1 is a dramatic overshoot in most cases, and
future work should seek to establish general bounds.

B. Connections to Inversion of Switched Systems

One may formally identify linear systems with sparse
inputs with a class of switched systems: consider the support
S : N → ∆s to be an unknown switching signal determining
the time varying system ΣS(k) = (A,BSk

,C,DSk
). We

expect that our results on invertibility may therefore be
generalized to a class of switched systems, where switching
is restricted to the B and D matrices.

C. Generalization to Inputs taking values in Subspace Ar-
rangements

All of our results use properties of sparsity which are also
features of subspace arrangements generally. We therefore
expect immediate generalization to the setting where u :
N → U ⊆ Rm, and U =

⋃
i∈I Ui is a finite subspace

arrangement. In the case that U is a subspace arrangement
that is not finite–for example, U taken to be the set of rank
1 matrices–generalization is less clear, and is an interesting
direction for future work. Such results could

D. Strong Observability and Unknown Input Observers

Strong observability, the ability to recover the initial state
in finite time in the presence of unknown inputs, may be
geometrically characterized for linear systems as having a
trivial weakly unobservable subspace. Analogously, V(2s) =
0 is necessary and sufficient for initial state recovery in the
presence of unknown s-sparse inputs. Exploring a character-
ization of strong detectability, known to be a necessary and
sufficient condition for the existence of an unknown input
observer for linear systems, is a direction of interest in the
sparse case.

E. Right Invertibility

Right invertibility is formally the ability to construct
an input and initial condition which produces any desired
output. Due to space constraints, we have restricted our
exposition in this work to focus on left invertibility; however,
we expect similar arguments to lead to characterizations of
right invertibility in the sparse input setting.

VI. CONCLUSIONS

In this work, we have established the first necessary and
sufficient conditions for the left invertibility of linear systems
with sparse inputs. Leveraging properties of the novel weakly
unobservable and strongly reachable subspace arrangements,
these characterizations echo the fundamental characteriza-
tions of invertibility for standard linear systems. We expect
that these characterizations will lead to the generalization of
a variety of techniques for inversion of linear systems, and
enable a systematic approach to related problems in sparse
control.
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