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Abstract—This paper presents a decentralized stability analysis
of power systems comprising grid-forming (GFM) inverters. We
leverage a decentralized stability framework capable of ensuring
the stability of the entire interconnection through individual
assessments at each bus. The key novelty lies in incorporating
voltage dynamics and their coupling with reactive power, in
addition to the angle dynamics and their coupling with active
power. We perform loop transformation to address the challenge
posed by the non-Laplacian nature of the network Jacobian
matrix in this case. This methodology is applied to characterize
conditions on the droop gains of GFM controllers that can
preserve system-wide stability. Our proposed stability criteria
exhibit scalability and robustness, and can be extended to
accommodate delays, variations in network conditions, and plug-
and-play of new components in the network.

Index Terms—Stability, decentralized criteria, grid-forming
inverters, power systems, robustness.

I. INTRODUCTION

Increasing shares of renewable generation are being de-
ployed worldwide as a major effort to transition towards
more sustainable power systems [1]. The ongoing transition
leads to significant challenges for maintaining system stability
due to substituting synchronous machines (and their well-
known dynamics) with inverter-based resources (IBRs) whose
dynamics and interaction with the rest of the system are yet
to be fully understood [2]. For example, the West Murray
Zone is a region in Australia that has significant penetration of
renewable IBRs and low system strength. The Australian En-
ergy Market Operator (AEMO) has observed subsynchronous
oscillations (SSO) of 16 to 19 Hz in that region on various
occasions from August 2020 through December 2021 [3].

Future power systems will host a mix of heterogeneous
resources including synchronous machines and numerous
distributed IBRs that interact with each other through the
network. It is imperative to develop rigorous and efficient
methods that can ensure system stability under this circum-
stance. However, there are many challenges. First, system
dynamics will become much more complex. Conventional
stability analysis approaches such as eigenvalue analysis [4]
and transient stability analysis [5] will face significant compu-
tational challenges, especially when detailed inverter models
are considered [6]–[9]. Moreover, the unpredictable nature
of renewable generation introduces significant variability in
operating points, further contributing to the challenge. Most
importantly, unlike the case for synchronous machines whose
dynamics are governed by physics, the IBR dynamics, as
seen from the system level, are dictated by the implemented
controllers. However, due to the proprietary designs of IBRs,
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there is a lack of transparency in control implementations,
which leaves the system more obscure for grid operators
[10] and makes model-based methods such as the well-known
energy function-based method [11] challenging be to applied.

To overcome these challenges, in this paper, we extend
the decentralized stability framework introduced in [12] to
establish decentralized stability criteria for IBR-based power
systems. These criteria, derived from local device dynamics,
ensure system-wide stability with the need for certification
only at the individual component level. The key novelty in
our development lies in incorporating voltage dynamics (in
addition to the angle dynamics) and the coupling between
reactive power and voltage magnitude (in addition to the
coupling between active power and angle) to model IBR
dynamics. However, integrating voltage dynamics prevents
the method from being trivially applicable to the power
system model of interest. The primary bottleneck in this
case is the non-Laplacian nature of the network Jacobian
matrix, characterized by non-zero row sums. To address this
challenge, we perform loop transformation to achieve an
equivalent network feedback interconnection. Subsequently,
we apply the decentralized stability analysis, combined with
the Gershgorin’s Circle Theorem, to characterize conditions
on the droop gains of grid-forming (GFM) inverters that can
preserve system-wide stability. We further illustrate and verify
the efficacy of our decentralized stability criteria through
numerical examples. Finally, it is worth mentioning that, the
constructed stability condition inherently exhibits robustness
to changes in operating points and network configurations,
accommodating seamless integration or removal of devices.

II. PRELIMINARIES

A. Notation
Vector: We use vec({xi}i∈V) = [xT

1 , x
T
2 , . . . , x

T
p ]

T to
denote a stacked vector based on the ordering in the index
set V = {1, 2, . . . , p}.

Matrix: We define the identity matrix by I . We define
diag({ai}i∈V) to be a matrix that has terms ai sitting on
the diagonal in order and zero elsewhere. For two Hermitian
matrices A,B ∈ C

n×n, we write A � B if A−B is positive
semi-definite.

Graph: For a connected graph G = (V, E), V and E denote
the set of buses and edges, respectively. Let Ni � {j ∈ V :
(i, j) ∈ E} be the set of buses who are adjacent to bus i.

Transfer function: We denote the space of transfer func-
tion of stable linear time-invariant systems by H∞, describ-
ing the Hardy space of functions that are analytic on the
open right half-plane C>0 with bounded norm ‖g(s)‖∞ :=
sups∈C>0

|g(s)|. We denote the subset of H∞ that is continu-
ous on the extended imaginary axis by A0.
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B. Power System Model

Figure 1. Block diagram of the power system model.

In this paper, we concentrate our analysis on IBR-
based power systems1. We consider a (connected) network-
reduced power system consisting of buses indexed by V :=
{1, . . . , N}, where N denotes the number of IBRs in the
network, with the block diagram structure given in Fig. 1.
Without loss of generality, we assume that the first node
provides an angle reference to the rest of the network. We
denote each transmission line by the unordered pair (j, k) ∈ E .
We define the following:

vec

({[
Pi

Qi

]}
i∈V

)
= [P1, Q1, . . . , PN , QN ]T .

We use similar definitions for vec({[dP,i, dQ,i]
T }i∈V}),

vec({[P 0
i , Q

0
i ]

T }i∈V}), and vec({[θ̇i, V̇i]
T }i∈V}).

The closed-loop system is modeled as the feedback in-
terconnection of bus dynamics H(s) and the linearized net-
work model 1

sLB . For the i-th bus, the exogenous signals

[P 0
i , Q

0
i ]

T ∈ R
2×1 and [dP,i, dQ,i]

T ∈ R
2×1 respectively

represent the power injection setpoint and power fluctuations
around the setpoint that indicates, for example, variations in
power drawn by local loads. The output signals [θ̇i, V̇i]

T ∈
R

2×1 represent the bus frequency and voltage derivative,
respectively. Through the network, the signals [θ̇i, V̇i]

T are
mapped to the power demand [Pi, Qi]

T . Furthermore, we make
the following assumptions for the power system model. First,
transmission lines are lossless. Second, at equilibrium, the
angle difference across each transmission line is less than 90◦.
These assumptions are well-justified and generally hold for
most transmission systems [13]. In addition, we use Vmax,0j to
represent the maximum per unit steady state voltage magnitude
of bus j. We denote the maximum steady state voltage among
all buses j neighboring bus i as maxj∈Ni{V0j}.

We now discuss the model of the different components in
the system in more detail.

1) Bus dynamics: In this paper, we work with droop-based
GFM inverters. The dynamics are composed of the droop-

1Although the results can be generalized to encompass a mix of syn-
chronous machines and various types of IBRs, we restrict to the homogeneous
IBR-based systems due to space limitation.

based control laws described by [6], [14],⎧⎪⎨
⎪⎩
θ̇i = ωi

ωi = ω0
i +mp

i f
p
i (s)((P

0
i + dP,i)− Pi),

Vi = V 0
i +mq

i f
q
i (s)((Q

0
i + dQ,i)−Qi),

∀i ∈ V, (1)

where mp
i ∈ R>0 and mq

i ∈ R>0 are the droop gains; ω0
i and

V 0
i are the frequency and voltage setpoints; P 0

i and Q0
i are the

power setpoints; fp
i (s) =

βp
i

τp
i s+1

and fq
i (s) =

βq
i

τq
i s+1

represent

the low-pass filters applied to the power measurements with
DC gains βp

i ∈ R>0 and βq
i ∈ R>0, and time constants τ qi ∈

R>0 and τpi ∈ R>0. Substituting in the expression of low-pass
filters, we get

ωi = ω0
i +

(
mp

i β
p
i

τpi s+ 1

)
((P 0

i + dP,i)− Pi) (2)

V̇i = V̇ 0
i +

(
mq

iβ
q
i s

τ qi s+ 1

)
((Q0

i + dQ,i)−Qi) (3)

which respectively give the following transfer functions of
frequency and voltage dynamics:

hθ
i (s) =

mp
i β

p
i

τpi s+ 1
, (4)

hV
i (s) =

mq
iβ

q
i s

τ qi s+ 1
. (5)

The term mp
i β

p
i and mq

iβ
q
i represent the effective droop gains.

Furthermore, the matrix of bus dynamics H(s) is modeled as

H(s) = diag
({diag(hθ

i (s), h
V
i (s))}i∈V

)
. (6)

Remark 1. The chosen GFM inverter model (1) is relatively
simplified because we intend to capture important system-level
dynamics. For future studies involving more detailed inverter
modeling, for example, incorporating lower-level control loops
and integrating various other devices into a multi-machine
multi-inverter system, we anticipate dynamic coupling between
voltage magnitude V and angle θ in the bus dynamics. This
coupling is expected to result in a multi-input-multi-output
(MIMO) non-diagonal matrix H .

2) Network model: We consider linearized decoupled
power flow equations. This is under the assumption of a
lossless network with small angle differences in steady state,
which results in very weak coupling between P -V , as well as
Q-θ. It is important to note that this assumption may not hold
in scenarios such as a low voltage distribution system with a
high R/X ratio or in a microgrid. The network model is given
by,

vec

({[
Pi

Qi

]}
i∈V

)
=

1

s
LB vec

({[
θ̇i
V̇i

]}
i∈V

)
(7)

where

LB =

⎡
⎢⎢⎢⎢⎢⎣

P̃θ,11 0 . . . P̃θ,1N 0

0 Q̃v,11 . . . 0 Q̃v,1N

...
...

. . .
...

...

P̃θ,N1 0 . . . P̃θ,NN 0

0 Q̃v,N1 . . . 0 Q̃v,NN

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

2N×2N ,
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Figure 2. General feedback interconnection.

and

P̃θ,ij =
∂

∂θj

∑
l∈Ni

−ViVlBil sin (θi − θl)
∣∣∣ θ=θ0
V=V0

=

{
−∑

l∈Ni
V0iV0lBil cos (θ0i − θ0l), i = j,

V0iV0jBij cos (θ0i − θ0j), i �= j,

Q̃V,ij =
∂

∂Vj

(
V 2
i Bii +

∑
l∈Ni

ViVlBil cos (θi − θl)

)∣∣∣ θ=θ0
V=V0

=

{
2V0iBii +

∑
l∈Ni

V0lBil cos (θ0i − θ0l), i = j,

V0iBij cos (θ0i − θ0j), i �= j.

(8)

In these equations, V0 ∈ R
N and θ0 ∈ R

N denote the voltage
magnitudes and angles at the buses in steady state. The term
Bik ≤ 0 (∀i �= k) denotes the mutual susceptance of the
transmission line connecting buses i and k, Bik = 0 if there
is no line, and Bii = −∑

k∈Ni
Bik ≥ 0 denotes the self

susceptance of bus i.

III. MAIN RESULTS

In this section, we develop the main decentralized stability
criteria for GFM IBR-based power systems. Note that this
result can be extended to more general scenarios in multi-
machine multi-inverter systems. Due to the space limitation,
we defer the discussion of such cases in future work.

We build on a decentralized stability result [12, Th. 1],
which is replicated below in Theorem 1. The theorem is
applicable to a general feedback interconnection as in Fig. 2
with single-input-single-output (SISO) bus dynamics (there-
fore diagonal matrix G(s)) and network model 1

sL. The
system equations are described by,

yi(s) = gi(s)(ei(s)− ui(s)),

u(s) =
1

s
Ly(s).

(9)

Theorem 1. [12, Th. 1] Let PR and ESPR denote the set
of positive real and extended strictly positive real functions,
respectively. If there exists a function f(s) ∈ PR∩A0 where
for all bus dynamics it holds that g(s) ∈ Gf , where

Gf := {g(s) ∈ H∞ :

g(0) �= 0, f(s)

(
1 +

g(s)

s

)
∈ ESPR},

Figure 3. Equivalent system to Fig. 1 unto loop transformation.

then the feedback interconnection in (9) is stable for any
network model L ∈ L, where

L := {L : L = LT , 0 
 L 
 I}.

Remark 2. The key strengths of Theorem 1 include its
capability to handle cases when components are added or
removed from the network, and when the operating point
changes [12].

A. Application to IBR-Based Power Systems
We observe that the dynamics of voltage angle and magni-

tude in (6) are completely decoupled. Consequently, we can
treat our model of interest as having separate SISO dynamics,
allowing us to utilize the result from Theorem 1 to formulate
the decentralized stability criteria. The key challenge that
prevents the application of Theorem 1 to the power system
configuration in Fig. 1 lies in that LB is not necessarily in L.
In this section, we address this challenge by performing loop
transformation. We define the following terms,

ĥV
i (s) := mq

iβ
q
i /τ

q
i ,

ki := 1/mq
iβ

q
i ,

γp
i := 2

∑
j∈Ni

Vmax,0iVmax,0jBij ,

γq
i := kiVmax,0i + 2V 2

max,0iBii,

Ĥ(s) := diag({diag(hθ
i (s), ĥ

V
i (s))}i∈V),

K := diag(0, k1, 0, k2, . . . , 0, kN ),

Γ := diag(γp
1 , γ

q
1 , γ

p
2 , γ

q
2 , . . . , γ

p
N , γq

N ),

C := diag(1, V01, 1, V02, . . . , 1, V0N ),

B := diag(0, 2V01B11, 0, 2V02B22, . . . , 0, 2V0NBNN ),

L̂B := LB −B.
(10)

It can be shown that the block diagram in Fig. 1 can be
transformed equivalently into Fig. 3, with the correspond-
ing terms defined above. Upon combining the two feedback
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branches in Fig. 3, we obtain that the corresponding G(s) and
L in Fig. 2 are defined by

G(s) = Γ1/2C−1Ĥ(s)Γ1/2,

L = Γ−1/2((K +B) + L̂B)CΓ−1/2.
(11)

Next, we show that, facilitated by the loop transformation, the
resulting L in (11) can be made to satisfy 0 
 L 
 I .

Lemma 1. If for all buses i ∈ V it holds that(
max
j∈Ni

{V0j} − V0i

)
βq
i ≤ 1

2mq
i |Bii| , (12)

then L as given by (11) satisfies 0 
 L 
 I .

Proof. By definition in (11), L is symmetric. As a conse-
quence of Gershgorin’s Circle Theorem [15], the eigenvalues
of matrix L := {lij} live in a ball centered at lii of radius∑

j∈Ni
lij . Let π : {1, . . . , N} −→ {1, . . . , N} be a bijection.

Then every odd row i in L satisfies

λπ(i)(L) ≥ lii −
∑
j∈Ni

|lij |

=
1

γp
i

∑
j∈Ni

|V0iV0jBij cos (θ0i − θ0j)|

−
∑
j∈Ni

∣∣∣∣ 1γp
i

V0iV0jBij cos (θ0i − θ0j)

∣∣∣∣ = 0.

(13)

For every even row i, Gershgorin’s Circle Theorem gives

λπ(i)(L) ≥lii −
∑
j∈Ni

|lij | ≥ 1

γq
i

kiV0i +
2

γq
i

V 2
0iBii

+
1

γq
i

∑
j∈Ni

V0iV0jBij cos (θ0i − θ0j)

−
∑
j∈Ni

| 1
γq
i

V0iV0jBij cos (θ0i − θ0j)|.

(14)

Now, suppose the voltage magnitude at each bus j neighboring
bus i satisfies (12). Then,

ki ≥ 2

(
max
j∈Ni

{V0j} − V0i

)
|Bii|

≥ 2
∑
j∈Ni

max
j∈Ni

{V0j}|Bij | − 2V0i|Bii|.
(15)

Since 1
γq
i
V0i ≥ 0, (15) ensures λπ(i) ≥ 0 for all even i in (14).

Therefore, L is positive semi-definite, or L � 0, as a direct
consequence of (13), (14), and (15).

Furthermore, we want to prove that it holds that L 
 I with
a similar reasoning. For every odd row i, Gershgorin’s Circle
Theorem gives λπ(i)(I − L) satisfies

λπ(i)(I − L) ≥ (1− lii)−
∑
j∈Ni

|lij |

= 1− 2

γp
i

∑
j∈Ni

|V0iV0jBij cos (θ0i − θ0j)|

≥ 0.
(16)

For every even row i, Gershgorin’s Circle Theorem gives

λπ(i)(I − L) ≥ (1− lii)−
∑
j∈Ni

|lij |

= 1− 1

γq
i

(
kiV0i + 2V 2

0iBii

)
≥ 0.

(17)

Thus, (16) and (17) imply I − L � 0 or, equivalently, I � L.
Therefore, satisfying (12) implies 0 
 L 
 I.

B. Decentralized Stability Criteria for IBR-Based Systems
Combining the results in Theorem 1 and Lemma 1, we

derive the final result on decentralized stability criteria for
droop-controlled IBR-based power systems.

Theorem 2. Given the feedback interconnection in Fig. 1
consisting of droop-controlled IBRs whose dynamics are given
in (1), with the droop constants mp

i ,m
q
i ∈ R≥0 and the filter

time constants τpi , τ
q
i ∈ R>0. The grid-forming IBR-based

power system is stable whenever each controller gain satisfies,(
max
j∈Ni

{V0j} − V0i

)
βq
i ≤ 1

2mq
i |Bii| , ∀i ∈ V. (18)

Remark 3. For any nodes j neighboring i where it holds that
maxj∈Ni

{V0j} > V0i, one can represent (18) as

mq
iβ

q
i ≤ Ki, ∀i ∈ V (19)

where we define

Ki :=
1

2 (maxj∈Ni{V0j} − V0i) |Bii| . (20)

The term mq
iβ

q
i represents the effective droop gain, as demon-

strated in (5). Additionally, we can observe from (20) that the
higher |Bii|, the lower the value of K(i).

Proof. By treating our MIMO model as two SISO dynamical
subsystems, the stability of the entire bus dynamics can be
ensured by independently verifying the stability of each SISO
system. After transforming our model from Fig. 1 to Fig. 3,
we can consider the feedback loop as equivalent to Fig. 2
where G and 1

sL are given by (11). Suppose (18) is fulfilled,

then Lemma 1 implies that our network model 1
sL satisfies

0 
 L 
 I . Therefore, we can utilize Theorem 1 to verify
the stability.

Let gVi and gθi describe the voltage magnitude and angle
dynamics of bus i, respectively. We then can define

gVi =
γq
i m

q
iβ

q
i

V0iτ
q
i

.

Since gVi ≥ 0 for all i, then by Theorem 1 we can easily
choose any positive constant f ∈ PR∩A0 such that gVi ∈ Gf .
We also have

gθi =
γp
i m

p
i β

p
i

V0i(τ
p
i s+ 1)

.

Let f(s) = s
s+T for some T ∈ R>0. Let

F :=
s

s+ T

(
1 +

γp
i m

p
i β

p
i

sV0i(τ
p
i s+ 1)

)
− ε.
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We will show that for all i, there exists an ε > 0 such that

F ∈ PR (21)

and, thus, gθi ∈ Gf . Simplifying the expression of F , we get

F =
ξ2,is

2 + ξ1,is+ ξ0,1
η2,is2 + η1,is+ η0,1

,

where ξ2,i := (1−ε)τ qi , ξ1,i := 1−ε−Tετ qi , ξ0,i := γp
i m

p
i β

p
i −

Tε, η2,i := V0iτ
q
i , η1,i := V0i(1 + Tτ qi ), η0,i := V0iT . We can

choose T sufficiently large and ε small enough such that, for
all i, (√

ξ0,iη2,i −
√
ξ2,iη0,i

)2

≤ ξ2,iη0,i ≤ ξ1,iη1,i,

from which the result (21) immediately follows [16, Cor. 11].
Therefore, satisfying (18) makes the feedback interconnection
in Fig. 1 stable.

IV. NUMERICAL ILLUSTRATION

Figure 4. Three-bus power system.

Table I
PARAMETER VALUES OF THE NETWORK

Parameter Symbol Value Unit

Reactance X1, X2, X3 0.15, 0.20, 0.15 p.u.

Droop gain mp
1 , mp

2 , mq
1, mq

2 0.05, 0.05, 0.05, 0.05 −
Filter gain βp

1 , βp
2 1, 1 −

Upper bound K1/m
q
1, K2/m

q
2 0.75, 0.86 −

Time constant τp1 , τp2 , τq1 , τq2 50, 50, 50, 50 rad/s

We consider a three-bus system consisting of two GFM
IBRs and an infinite bus in a network as shown in Fig. 4.
Nominal parameter values of the system are given in Table
I. We choose various operating points and DC gain βq as
listed in Table II, then use the small-disturbance (eigenvalue)
analysis to analyze the stability around the equilibrium point
under those values.

Table II
SIMULATION CASES

Case βq
1 , βq

2 P 0
1 , P 0

2 Q0
1, Q0

2 V 0
1 , V 0

2

1 0.50, 0.50 1.0, 1.0 0.2, 0.2 1.0, 1.0

2 0.75, 0.75 1.0, 1.0 0.2, 0.2 1.0, 1.0

3 0.75, 0.75 0.8, 0.8 0.1, 0.1 0.9, 0.9

Eigenvalues of the linearized system are presented in Table
III. It is noteworthy that meeting condition (18) results in
eigenvalues with negative real parts in all cases, for all the
chosen operating points. This implies stable dynamics around
the equilibrium points.

Table III
EIGENVALUES OF THE LINEARIZED SYSTEM (×104)

Case 1 Case 2 Case 3

−1.7934 + j0.0000 −2.6878 + j0.0000 −2.6326 + j0.0000
−0.7321 + j0.0000 −1.0962 + j0.0000 −1.0648 + j0.0000
−0.0025 + j0.2063 −0.0025 + j0.2063 −0.0025 + j0.1823
−0.0025− j0.2063 −0.0025− j0.2063 −0.0025− j0.1823
−0.0027 + j0.1282 −0.0027 + j0.1282 −0.0026 + j0.1173
−0.0027− j0.1282 −0.0027− j0.1282 −0.0026− j0.1173

V. CONCLUSION

We present decentralized stability criteria for droop-
controlled grid-forming inverters. Our approach involves ana-
lyzing the Q−V coupling in the network Jacobian matrix and
applying loop transformation for adjustments. The resulting
criteria rely solely on properly tuning the droop gains of
each local controller, as illustrated through numerical exam-
ples. Future works include expanding our analysis on models
with higher fidelity and incorporating heterogeneous grid-edge
components, including grid-following IBRs.
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